reboot: move arch/x86 reboot= handling to generic kernel
[cascardo/linux.git] / arch / arm / kernel / process.c
1 /*
2  *  linux/arch/arm/kernel/process.c
3  *
4  *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
5  *  Original Copyright (C) 1995  Linus Torvalds
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <stdarg.h>
12
13 #include <linux/export.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/mm.h>
17 #include <linux/stddef.h>
18 #include <linux/unistd.h>
19 #include <linux/user.h>
20 #include <linux/delay.h>
21 #include <linux/reboot.h>
22 #include <linux/interrupt.h>
23 #include <linux/kallsyms.h>
24 #include <linux/init.h>
25 #include <linux/cpu.h>
26 #include <linux/elfcore.h>
27 #include <linux/pm.h>
28 #include <linux/tick.h>
29 #include <linux/utsname.h>
30 #include <linux/uaccess.h>
31 #include <linux/random.h>
32 #include <linux/hw_breakpoint.h>
33 #include <linux/cpuidle.h>
34 #include <linux/leds.h>
35 #include <linux/reboot.h>
36
37 #include <asm/cacheflush.h>
38 #include <asm/idmap.h>
39 #include <asm/processor.h>
40 #include <asm/thread_notify.h>
41 #include <asm/stacktrace.h>
42 #include <asm/mach/time.h>
43 #include <asm/tls.h>
44
45 #ifdef CONFIG_CC_STACKPROTECTOR
46 #include <linux/stackprotector.h>
47 unsigned long __stack_chk_guard __read_mostly;
48 EXPORT_SYMBOL(__stack_chk_guard);
49 #endif
50
51 static const char *processor_modes[] = {
52   "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
53   "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
54   "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
55   "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
56 };
57
58 static const char *isa_modes[] = {
59   "ARM" , "Thumb" , "Jazelle", "ThumbEE"
60 };
61
62 extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
63 typedef void (*phys_reset_t)(unsigned long);
64
65 /*
66  * A temporary stack to use for CPU reset. This is static so that we
67  * don't clobber it with the identity mapping. When running with this
68  * stack, any references to the current task *will not work* so you
69  * should really do as little as possible before jumping to your reset
70  * code.
71  */
72 static u64 soft_restart_stack[16];
73
74 static void __soft_restart(void *addr)
75 {
76         phys_reset_t phys_reset;
77
78         /* Take out a flat memory mapping. */
79         setup_mm_for_reboot();
80
81         /* Clean and invalidate caches */
82         flush_cache_all();
83
84         /* Turn off caching */
85         cpu_proc_fin();
86
87         /* Push out any further dirty data, and ensure cache is empty */
88         flush_cache_all();
89
90         /* Switch to the identity mapping. */
91         phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
92         phys_reset((unsigned long)addr);
93
94         /* Should never get here. */
95         BUG();
96 }
97
98 void soft_restart(unsigned long addr)
99 {
100         u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
101
102         /* Disable interrupts first */
103         local_irq_disable();
104         local_fiq_disable();
105
106         /* Disable the L2 if we're the last man standing. */
107         if (num_online_cpus() == 1)
108                 outer_disable();
109
110         /* Change to the new stack and continue with the reset. */
111         call_with_stack(__soft_restart, (void *)addr, (void *)stack);
112
113         /* Should never get here. */
114         BUG();
115 }
116
117 static void null_restart(enum reboot_mode reboot_mode, const char *cmd)
118 {
119 }
120
121 /*
122  * Function pointers to optional machine specific functions
123  */
124 void (*pm_power_off)(void);
125 EXPORT_SYMBOL(pm_power_off);
126
127 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd) = null_restart;
128 EXPORT_SYMBOL_GPL(arm_pm_restart);
129
130 /*
131  * This is our default idle handler.
132  */
133
134 void (*arm_pm_idle)(void);
135
136 static void default_idle(void)
137 {
138         if (arm_pm_idle)
139                 arm_pm_idle();
140         else
141                 cpu_do_idle();
142         local_irq_enable();
143 }
144
145 void arch_cpu_idle_prepare(void)
146 {
147         local_fiq_enable();
148 }
149
150 void arch_cpu_idle_enter(void)
151 {
152         ledtrig_cpu(CPU_LED_IDLE_START);
153 #ifdef CONFIG_PL310_ERRATA_769419
154         wmb();
155 #endif
156 }
157
158 void arch_cpu_idle_exit(void)
159 {
160         ledtrig_cpu(CPU_LED_IDLE_END);
161 }
162
163 #ifdef CONFIG_HOTPLUG_CPU
164 void arch_cpu_idle_dead(void)
165 {
166         cpu_die();
167 }
168 #endif
169
170 /*
171  * Called from the core idle loop.
172  */
173 void arch_cpu_idle(void)
174 {
175         if (cpuidle_idle_call())
176                 default_idle();
177 }
178
179 /*
180  * Called by kexec, immediately prior to machine_kexec().
181  *
182  * This must completely disable all secondary CPUs; simply causing those CPUs
183  * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
184  * kexec'd kernel to use any and all RAM as it sees fit, without having to
185  * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
186  * functionality embodied in disable_nonboot_cpus() to achieve this.
187  */
188 void machine_shutdown(void)
189 {
190         disable_nonboot_cpus();
191 }
192
193 /*
194  * Halting simply requires that the secondary CPUs stop performing any
195  * activity (executing tasks, handling interrupts). smp_send_stop()
196  * achieves this.
197  */
198 void machine_halt(void)
199 {
200         smp_send_stop();
201
202         local_irq_disable();
203         while (1);
204 }
205
206 /*
207  * Power-off simply requires that the secondary CPUs stop performing any
208  * activity (executing tasks, handling interrupts). smp_send_stop()
209  * achieves this. When the system power is turned off, it will take all CPUs
210  * with it.
211  */
212 void machine_power_off(void)
213 {
214         smp_send_stop();
215
216         if (pm_power_off)
217                 pm_power_off();
218 }
219
220 /*
221  * Restart requires that the secondary CPUs stop performing any activity
222  * while the primary CPU resets the system. Systems with a single CPU can
223  * use soft_restart() as their machine descriptor's .restart hook, since that
224  * will cause the only available CPU to reset. Systems with multiple CPUs must
225  * provide a HW restart implementation, to ensure that all CPUs reset at once.
226  * This is required so that any code running after reset on the primary CPU
227  * doesn't have to co-ordinate with other CPUs to ensure they aren't still
228  * executing pre-reset code, and using RAM that the primary CPU's code wishes
229  * to use. Implementing such co-ordination would be essentially impossible.
230  */
231 void machine_restart(char *cmd)
232 {
233         smp_send_stop();
234
235         arm_pm_restart(reboot_mode, cmd);
236
237         /* Give a grace period for failure to restart of 1s */
238         mdelay(1000);
239
240         /* Whoops - the platform was unable to reboot. Tell the user! */
241         printk("Reboot failed -- System halted\n");
242         local_irq_disable();
243         while (1);
244 }
245
246 void __show_regs(struct pt_regs *regs)
247 {
248         unsigned long flags;
249         char buf[64];
250
251         show_regs_print_info(KERN_DEFAULT);
252
253         print_symbol("PC is at %s\n", instruction_pointer(regs));
254         print_symbol("LR is at %s\n", regs->ARM_lr);
255         printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
256                "sp : %08lx  ip : %08lx  fp : %08lx\n",
257                 regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
258                 regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
259         printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
260                 regs->ARM_r10, regs->ARM_r9,
261                 regs->ARM_r8);
262         printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
263                 regs->ARM_r7, regs->ARM_r6,
264                 regs->ARM_r5, regs->ARM_r4);
265         printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
266                 regs->ARM_r3, regs->ARM_r2,
267                 regs->ARM_r1, regs->ARM_r0);
268
269         flags = regs->ARM_cpsr;
270         buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
271         buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
272         buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
273         buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
274         buf[4] = '\0';
275
276         printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
277                 buf, interrupts_enabled(regs) ? "n" : "ff",
278                 fast_interrupts_enabled(regs) ? "n" : "ff",
279                 processor_modes[processor_mode(regs)],
280                 isa_modes[isa_mode(regs)],
281                 get_fs() == get_ds() ? "kernel" : "user");
282 #ifdef CONFIG_CPU_CP15
283         {
284                 unsigned int ctrl;
285
286                 buf[0] = '\0';
287 #ifdef CONFIG_CPU_CP15_MMU
288                 {
289                         unsigned int transbase, dac;
290                         asm("mrc p15, 0, %0, c2, c0\n\t"
291                             "mrc p15, 0, %1, c3, c0\n"
292                             : "=r" (transbase), "=r" (dac));
293                         snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
294                                 transbase, dac);
295                 }
296 #endif
297                 asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
298
299                 printk("Control: %08x%s\n", ctrl, buf);
300         }
301 #endif
302 }
303
304 void show_regs(struct pt_regs * regs)
305 {
306         printk("\n");
307         __show_regs(regs);
308         dump_stack();
309 }
310
311 ATOMIC_NOTIFIER_HEAD(thread_notify_head);
312
313 EXPORT_SYMBOL_GPL(thread_notify_head);
314
315 /*
316  * Free current thread data structures etc..
317  */
318 void exit_thread(void)
319 {
320         thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
321 }
322
323 void flush_thread(void)
324 {
325         struct thread_info *thread = current_thread_info();
326         struct task_struct *tsk = current;
327
328         flush_ptrace_hw_breakpoint(tsk);
329
330         memset(thread->used_cp, 0, sizeof(thread->used_cp));
331         memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
332         memset(&thread->fpstate, 0, sizeof(union fp_state));
333
334         thread_notify(THREAD_NOTIFY_FLUSH, thread);
335 }
336
337 void release_thread(struct task_struct *dead_task)
338 {
339 }
340
341 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
342
343 int
344 copy_thread(unsigned long clone_flags, unsigned long stack_start,
345             unsigned long stk_sz, struct task_struct *p)
346 {
347         struct thread_info *thread = task_thread_info(p);
348         struct pt_regs *childregs = task_pt_regs(p);
349
350         memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
351
352         if (likely(!(p->flags & PF_KTHREAD))) {
353                 *childregs = *current_pt_regs();
354                 childregs->ARM_r0 = 0;
355                 if (stack_start)
356                         childregs->ARM_sp = stack_start;
357         } else {
358                 memset(childregs, 0, sizeof(struct pt_regs));
359                 thread->cpu_context.r4 = stk_sz;
360                 thread->cpu_context.r5 = stack_start;
361                 childregs->ARM_cpsr = SVC_MODE;
362         }
363         thread->cpu_context.pc = (unsigned long)ret_from_fork;
364         thread->cpu_context.sp = (unsigned long)childregs;
365
366         clear_ptrace_hw_breakpoint(p);
367
368         if (clone_flags & CLONE_SETTLS)
369                 thread->tp_value[0] = childregs->ARM_r3;
370         thread->tp_value[1] = get_tpuser();
371
372         thread_notify(THREAD_NOTIFY_COPY, thread);
373
374         return 0;
375 }
376
377 /*
378  * Fill in the task's elfregs structure for a core dump.
379  */
380 int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
381 {
382         elf_core_copy_regs(elfregs, task_pt_regs(t));
383         return 1;
384 }
385
386 /*
387  * fill in the fpe structure for a core dump...
388  */
389 int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
390 {
391         struct thread_info *thread = current_thread_info();
392         int used_math = thread->used_cp[1] | thread->used_cp[2];
393
394         if (used_math)
395                 memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
396
397         return used_math != 0;
398 }
399 EXPORT_SYMBOL(dump_fpu);
400
401 unsigned long get_wchan(struct task_struct *p)
402 {
403         struct stackframe frame;
404         int count = 0;
405         if (!p || p == current || p->state == TASK_RUNNING)
406                 return 0;
407
408         frame.fp = thread_saved_fp(p);
409         frame.sp = thread_saved_sp(p);
410         frame.lr = 0;                   /* recovered from the stack */
411         frame.pc = thread_saved_pc(p);
412         do {
413                 int ret = unwind_frame(&frame);
414                 if (ret < 0)
415                         return 0;
416                 if (!in_sched_functions(frame.pc))
417                         return frame.pc;
418         } while (count ++ < 16);
419         return 0;
420 }
421
422 unsigned long arch_randomize_brk(struct mm_struct *mm)
423 {
424         unsigned long range_end = mm->brk + 0x02000000;
425         return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
426 }
427
428 #ifdef CONFIG_MMU
429 /*
430  * The vectors page is always readable from user space for the
431  * atomic helpers and the signal restart code. Insert it into the
432  * gate_vma so that it is visible through ptrace and /proc/<pid>/mem.
433  */
434 static struct vm_area_struct gate_vma = {
435         .vm_start       = 0xffff0000,
436         .vm_end         = 0xffff0000 + PAGE_SIZE,
437         .vm_flags       = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
438 };
439
440 static int __init gate_vma_init(void)
441 {
442         gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
443         return 0;
444 }
445 arch_initcall(gate_vma_init);
446
447 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
448 {
449         return &gate_vma;
450 }
451
452 int in_gate_area(struct mm_struct *mm, unsigned long addr)
453 {
454         return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
455 }
456
457 int in_gate_area_no_mm(unsigned long addr)
458 {
459         return in_gate_area(NULL, addr);
460 }
461
462 const char *arch_vma_name(struct vm_area_struct *vma)
463 {
464         return (vma == &gate_vma) ? "[vectors]" : NULL;
465 }
466 #endif