cfg80211: handle failed skb allocation
[cascardo/linux.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30 #include <kvm/arm_pmu.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/sections.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension        virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72         BUG_ON(preemptible());
73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78  * Must be called from non-preemptible context
79  */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82         BUG_ON(preemptible());
83         return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88  */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91         return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108
109
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret = 0;
117
118         if (type)
119                 return -EINVAL;
120
121         ret = kvm_alloc_stage2_pgd(kvm);
122         if (ret)
123                 goto out_fail_alloc;
124
125         ret = create_hyp_mappings(kvm, kvm + 1);
126         if (ret)
127                 goto out_free_stage2_pgd;
128
129         kvm_vgic_early_init(kvm);
130         kvm_timer_init(kvm);
131
132         /* Mark the initial VMID generation invalid */
133         kvm->arch.vmid_gen = 0;
134
135         /* The maximum number of VCPUs is limited by the host's GIC model */
136         kvm->arch.max_vcpus = vgic_present ?
137                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
138
139         return ret;
140 out_free_stage2_pgd:
141         kvm_free_stage2_pgd(kvm);
142 out_fail_alloc:
143         return ret;
144 }
145
146 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
147 {
148         return VM_FAULT_SIGBUS;
149 }
150
151
152 /**
153  * kvm_arch_destroy_vm - destroy the VM data structure
154  * @kvm:        pointer to the KVM struct
155  */
156 void kvm_arch_destroy_vm(struct kvm *kvm)
157 {
158         int i;
159
160         kvm_free_stage2_pgd(kvm);
161
162         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
163                 if (kvm->vcpus[i]) {
164                         kvm_arch_vcpu_free(kvm->vcpus[i]);
165                         kvm->vcpus[i] = NULL;
166                 }
167         }
168
169         kvm_vgic_destroy(kvm);
170 }
171
172 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
173 {
174         int r;
175         switch (ext) {
176         case KVM_CAP_IRQCHIP:
177                 r = vgic_present;
178                 break;
179         case KVM_CAP_IOEVENTFD:
180         case KVM_CAP_DEVICE_CTRL:
181         case KVM_CAP_USER_MEMORY:
182         case KVM_CAP_SYNC_MMU:
183         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
184         case KVM_CAP_ONE_REG:
185         case KVM_CAP_ARM_PSCI:
186         case KVM_CAP_ARM_PSCI_0_2:
187         case KVM_CAP_READONLY_MEM:
188         case KVM_CAP_MP_STATE:
189                 r = 1;
190                 break;
191         case KVM_CAP_COALESCED_MMIO:
192                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
193                 break;
194         case KVM_CAP_ARM_SET_DEVICE_ADDR:
195                 r = 1;
196                 break;
197         case KVM_CAP_NR_VCPUS:
198                 r = num_online_cpus();
199                 break;
200         case KVM_CAP_MAX_VCPUS:
201                 r = KVM_MAX_VCPUS;
202                 break;
203         default:
204                 r = kvm_arch_dev_ioctl_check_extension(ext);
205                 break;
206         }
207         return r;
208 }
209
210 long kvm_arch_dev_ioctl(struct file *filp,
211                         unsigned int ioctl, unsigned long arg)
212 {
213         return -EINVAL;
214 }
215
216
217 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
218 {
219         int err;
220         struct kvm_vcpu *vcpu;
221
222         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
223                 err = -EBUSY;
224                 goto out;
225         }
226
227         if (id >= kvm->arch.max_vcpus) {
228                 err = -EINVAL;
229                 goto out;
230         }
231
232         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
233         if (!vcpu) {
234                 err = -ENOMEM;
235                 goto out;
236         }
237
238         err = kvm_vcpu_init(vcpu, kvm, id);
239         if (err)
240                 goto free_vcpu;
241
242         err = create_hyp_mappings(vcpu, vcpu + 1);
243         if (err)
244                 goto vcpu_uninit;
245
246         return vcpu;
247 vcpu_uninit:
248         kvm_vcpu_uninit(vcpu);
249 free_vcpu:
250         kmem_cache_free(kvm_vcpu_cache, vcpu);
251 out:
252         return ERR_PTR(err);
253 }
254
255 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
256 {
257         kvm_vgic_vcpu_early_init(vcpu);
258 }
259
260 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
261 {
262         kvm_mmu_free_memory_caches(vcpu);
263         kvm_timer_vcpu_terminate(vcpu);
264         kvm_vgic_vcpu_destroy(vcpu);
265         kvm_pmu_vcpu_destroy(vcpu);
266         kmem_cache_free(kvm_vcpu_cache, vcpu);
267 }
268
269 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
270 {
271         kvm_arch_vcpu_free(vcpu);
272 }
273
274 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
275 {
276         return kvm_timer_should_fire(vcpu);
277 }
278
279 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
280 {
281         kvm_timer_schedule(vcpu);
282 }
283
284 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
285 {
286         kvm_timer_unschedule(vcpu);
287 }
288
289 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
290 {
291         /* Force users to call KVM_ARM_VCPU_INIT */
292         vcpu->arch.target = -1;
293         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
294
295         /* Set up the timer */
296         kvm_timer_vcpu_init(vcpu);
297
298         kvm_arm_reset_debug_ptr(vcpu);
299
300         return 0;
301 }
302
303 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
304 {
305         vcpu->cpu = cpu;
306         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
307
308         kvm_arm_set_running_vcpu(vcpu);
309 }
310
311 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
312 {
313         /*
314          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
315          * if the vcpu is no longer assigned to a cpu.  This is used for the
316          * optimized make_all_cpus_request path.
317          */
318         vcpu->cpu = -1;
319
320         kvm_arm_set_running_vcpu(NULL);
321         kvm_timer_vcpu_put(vcpu);
322 }
323
324 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
325                                     struct kvm_mp_state *mp_state)
326 {
327         if (vcpu->arch.power_off)
328                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
329         else
330                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
331
332         return 0;
333 }
334
335 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
336                                     struct kvm_mp_state *mp_state)
337 {
338         switch (mp_state->mp_state) {
339         case KVM_MP_STATE_RUNNABLE:
340                 vcpu->arch.power_off = false;
341                 break;
342         case KVM_MP_STATE_STOPPED:
343                 vcpu->arch.power_off = true;
344                 break;
345         default:
346                 return -EINVAL;
347         }
348
349         return 0;
350 }
351
352 /**
353  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
354  * @v:          The VCPU pointer
355  *
356  * If the guest CPU is not waiting for interrupts or an interrupt line is
357  * asserted, the CPU is by definition runnable.
358  */
359 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
360 {
361         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
362                 && !v->arch.power_off && !v->arch.pause);
363 }
364
365 /* Just ensure a guest exit from a particular CPU */
366 static void exit_vm_noop(void *info)
367 {
368 }
369
370 void force_vm_exit(const cpumask_t *mask)
371 {
372         preempt_disable();
373         smp_call_function_many(mask, exit_vm_noop, NULL, true);
374         preempt_enable();
375 }
376
377 /**
378  * need_new_vmid_gen - check that the VMID is still valid
379  * @kvm: The VM's VMID to checkt
380  *
381  * return true if there is a new generation of VMIDs being used
382  *
383  * The hardware supports only 256 values with the value zero reserved for the
384  * host, so we check if an assigned value belongs to a previous generation,
385  * which which requires us to assign a new value. If we're the first to use a
386  * VMID for the new generation, we must flush necessary caches and TLBs on all
387  * CPUs.
388  */
389 static bool need_new_vmid_gen(struct kvm *kvm)
390 {
391         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
392 }
393
394 /**
395  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
396  * @kvm The guest that we are about to run
397  *
398  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
399  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
400  * caches and TLBs.
401  */
402 static void update_vttbr(struct kvm *kvm)
403 {
404         phys_addr_t pgd_phys;
405         u64 vmid;
406
407         if (!need_new_vmid_gen(kvm))
408                 return;
409
410         spin_lock(&kvm_vmid_lock);
411
412         /*
413          * We need to re-check the vmid_gen here to ensure that if another vcpu
414          * already allocated a valid vmid for this vm, then this vcpu should
415          * use the same vmid.
416          */
417         if (!need_new_vmid_gen(kvm)) {
418                 spin_unlock(&kvm_vmid_lock);
419                 return;
420         }
421
422         /* First user of a new VMID generation? */
423         if (unlikely(kvm_next_vmid == 0)) {
424                 atomic64_inc(&kvm_vmid_gen);
425                 kvm_next_vmid = 1;
426
427                 /*
428                  * On SMP we know no other CPUs can use this CPU's or each
429                  * other's VMID after force_vm_exit returns since the
430                  * kvm_vmid_lock blocks them from reentry to the guest.
431                  */
432                 force_vm_exit(cpu_all_mask);
433                 /*
434                  * Now broadcast TLB + ICACHE invalidation over the inner
435                  * shareable domain to make sure all data structures are
436                  * clean.
437                  */
438                 kvm_call_hyp(__kvm_flush_vm_context);
439         }
440
441         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
442         kvm->arch.vmid = kvm_next_vmid;
443         kvm_next_vmid++;
444         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
445
446         /* update vttbr to be used with the new vmid */
447         pgd_phys = virt_to_phys(kvm->arch.pgd);
448         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
449         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
450         kvm->arch.vttbr = pgd_phys | vmid;
451
452         spin_unlock(&kvm_vmid_lock);
453 }
454
455 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
456 {
457         struct kvm *kvm = vcpu->kvm;
458         int ret;
459
460         if (likely(vcpu->arch.has_run_once))
461                 return 0;
462
463         vcpu->arch.has_run_once = true;
464
465         /*
466          * Map the VGIC hardware resources before running a vcpu the first
467          * time on this VM.
468          */
469         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
470                 ret = kvm_vgic_map_resources(kvm);
471                 if (ret)
472                         return ret;
473         }
474
475         /*
476          * Enable the arch timers only if we have an in-kernel VGIC
477          * and it has been properly initialized, since we cannot handle
478          * interrupts from the virtual timer with a userspace gic.
479          */
480         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
481                 kvm_timer_enable(kvm);
482
483         return 0;
484 }
485
486 bool kvm_arch_intc_initialized(struct kvm *kvm)
487 {
488         return vgic_initialized(kvm);
489 }
490
491 static void kvm_arm_halt_guest(struct kvm *kvm) __maybe_unused;
492 static void kvm_arm_resume_guest(struct kvm *kvm) __maybe_unused;
493
494 static void kvm_arm_halt_guest(struct kvm *kvm)
495 {
496         int i;
497         struct kvm_vcpu *vcpu;
498
499         kvm_for_each_vcpu(i, vcpu, kvm)
500                 vcpu->arch.pause = true;
501         force_vm_exit(cpu_all_mask);
502 }
503
504 static void kvm_arm_resume_guest(struct kvm *kvm)
505 {
506         int i;
507         struct kvm_vcpu *vcpu;
508
509         kvm_for_each_vcpu(i, vcpu, kvm) {
510                 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
511
512                 vcpu->arch.pause = false;
513                 swake_up(wq);
514         }
515 }
516
517 static void vcpu_sleep(struct kvm_vcpu *vcpu)
518 {
519         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
520
521         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
522                                        (!vcpu->arch.pause)));
523 }
524
525 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
526 {
527         return vcpu->arch.target >= 0;
528 }
529
530 /**
531  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
532  * @vcpu:       The VCPU pointer
533  * @run:        The kvm_run structure pointer used for userspace state exchange
534  *
535  * This function is called through the VCPU_RUN ioctl called from user space. It
536  * will execute VM code in a loop until the time slice for the process is used
537  * or some emulation is needed from user space in which case the function will
538  * return with return value 0 and with the kvm_run structure filled in with the
539  * required data for the requested emulation.
540  */
541 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
542 {
543         int ret;
544         sigset_t sigsaved;
545
546         if (unlikely(!kvm_vcpu_initialized(vcpu)))
547                 return -ENOEXEC;
548
549         ret = kvm_vcpu_first_run_init(vcpu);
550         if (ret)
551                 return ret;
552
553         if (run->exit_reason == KVM_EXIT_MMIO) {
554                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
555                 if (ret)
556                         return ret;
557         }
558
559         if (vcpu->sigset_active)
560                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
561
562         ret = 1;
563         run->exit_reason = KVM_EXIT_UNKNOWN;
564         while (ret > 0) {
565                 /*
566                  * Check conditions before entering the guest
567                  */
568                 cond_resched();
569
570                 update_vttbr(vcpu->kvm);
571
572                 if (vcpu->arch.power_off || vcpu->arch.pause)
573                         vcpu_sleep(vcpu);
574
575                 /*
576                  * Preparing the interrupts to be injected also
577                  * involves poking the GIC, which must be done in a
578                  * non-preemptible context.
579                  */
580                 preempt_disable();
581                 kvm_pmu_flush_hwstate(vcpu);
582                 kvm_timer_flush_hwstate(vcpu);
583                 kvm_vgic_flush_hwstate(vcpu);
584
585                 local_irq_disable();
586
587                 /*
588                  * Re-check atomic conditions
589                  */
590                 if (signal_pending(current)) {
591                         ret = -EINTR;
592                         run->exit_reason = KVM_EXIT_INTR;
593                 }
594
595                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
596                         vcpu->arch.power_off || vcpu->arch.pause) {
597                         local_irq_enable();
598                         kvm_pmu_sync_hwstate(vcpu);
599                         kvm_timer_sync_hwstate(vcpu);
600                         kvm_vgic_sync_hwstate(vcpu);
601                         preempt_enable();
602                         continue;
603                 }
604
605                 kvm_arm_setup_debug(vcpu);
606
607                 /**************************************************************
608                  * Enter the guest
609                  */
610                 trace_kvm_entry(*vcpu_pc(vcpu));
611                 __kvm_guest_enter();
612                 vcpu->mode = IN_GUEST_MODE;
613
614                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
615
616                 vcpu->mode = OUTSIDE_GUEST_MODE;
617                 vcpu->stat.exits++;
618                 /*
619                  * Back from guest
620                  *************************************************************/
621
622                 kvm_arm_clear_debug(vcpu);
623
624                 /*
625                  * We may have taken a host interrupt in HYP mode (ie
626                  * while executing the guest). This interrupt is still
627                  * pending, as we haven't serviced it yet!
628                  *
629                  * We're now back in SVC mode, with interrupts
630                  * disabled.  Enabling the interrupts now will have
631                  * the effect of taking the interrupt again, in SVC
632                  * mode this time.
633                  */
634                 local_irq_enable();
635
636                 /*
637                  * We do local_irq_enable() before calling kvm_guest_exit() so
638                  * that if a timer interrupt hits while running the guest we
639                  * account that tick as being spent in the guest.  We enable
640                  * preemption after calling kvm_guest_exit() so that if we get
641                  * preempted we make sure ticks after that is not counted as
642                  * guest time.
643                  */
644                 kvm_guest_exit();
645                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
646
647                 /*
648                  * We must sync the PMU and timer state before the vgic state so
649                  * that the vgic can properly sample the updated state of the
650                  * interrupt line.
651                  */
652                 kvm_pmu_sync_hwstate(vcpu);
653                 kvm_timer_sync_hwstate(vcpu);
654
655                 kvm_vgic_sync_hwstate(vcpu);
656
657                 preempt_enable();
658
659                 ret = handle_exit(vcpu, run, ret);
660         }
661
662         if (vcpu->sigset_active)
663                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
664         return ret;
665 }
666
667 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
668 {
669         int bit_index;
670         bool set;
671         unsigned long *ptr;
672
673         if (number == KVM_ARM_IRQ_CPU_IRQ)
674                 bit_index = __ffs(HCR_VI);
675         else /* KVM_ARM_IRQ_CPU_FIQ */
676                 bit_index = __ffs(HCR_VF);
677
678         ptr = (unsigned long *)&vcpu->arch.irq_lines;
679         if (level)
680                 set = test_and_set_bit(bit_index, ptr);
681         else
682                 set = test_and_clear_bit(bit_index, ptr);
683
684         /*
685          * If we didn't change anything, no need to wake up or kick other CPUs
686          */
687         if (set == level)
688                 return 0;
689
690         /*
691          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
692          * trigger a world-switch round on the running physical CPU to set the
693          * virtual IRQ/FIQ fields in the HCR appropriately.
694          */
695         kvm_vcpu_kick(vcpu);
696
697         return 0;
698 }
699
700 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
701                           bool line_status)
702 {
703         u32 irq = irq_level->irq;
704         unsigned int irq_type, vcpu_idx, irq_num;
705         int nrcpus = atomic_read(&kvm->online_vcpus);
706         struct kvm_vcpu *vcpu = NULL;
707         bool level = irq_level->level;
708
709         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
710         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
711         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
712
713         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
714
715         switch (irq_type) {
716         case KVM_ARM_IRQ_TYPE_CPU:
717                 if (irqchip_in_kernel(kvm))
718                         return -ENXIO;
719
720                 if (vcpu_idx >= nrcpus)
721                         return -EINVAL;
722
723                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
724                 if (!vcpu)
725                         return -EINVAL;
726
727                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
728                         return -EINVAL;
729
730                 return vcpu_interrupt_line(vcpu, irq_num, level);
731         case KVM_ARM_IRQ_TYPE_PPI:
732                 if (!irqchip_in_kernel(kvm))
733                         return -ENXIO;
734
735                 if (vcpu_idx >= nrcpus)
736                         return -EINVAL;
737
738                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
739                 if (!vcpu)
740                         return -EINVAL;
741
742                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
743                         return -EINVAL;
744
745                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
746         case KVM_ARM_IRQ_TYPE_SPI:
747                 if (!irqchip_in_kernel(kvm))
748                         return -ENXIO;
749
750                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
751                         return -EINVAL;
752
753                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
754         }
755
756         return -EINVAL;
757 }
758
759 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
760                                const struct kvm_vcpu_init *init)
761 {
762         unsigned int i;
763         int phys_target = kvm_target_cpu();
764
765         if (init->target != phys_target)
766                 return -EINVAL;
767
768         /*
769          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
770          * use the same target.
771          */
772         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
773                 return -EINVAL;
774
775         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
776         for (i = 0; i < sizeof(init->features) * 8; i++) {
777                 bool set = (init->features[i / 32] & (1 << (i % 32)));
778
779                 if (set && i >= KVM_VCPU_MAX_FEATURES)
780                         return -ENOENT;
781
782                 /*
783                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
784                  * use the same feature set.
785                  */
786                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
787                     test_bit(i, vcpu->arch.features) != set)
788                         return -EINVAL;
789
790                 if (set)
791                         set_bit(i, vcpu->arch.features);
792         }
793
794         vcpu->arch.target = phys_target;
795
796         /* Now we know what it is, we can reset it. */
797         return kvm_reset_vcpu(vcpu);
798 }
799
800
801 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
802                                          struct kvm_vcpu_init *init)
803 {
804         int ret;
805
806         ret = kvm_vcpu_set_target(vcpu, init);
807         if (ret)
808                 return ret;
809
810         /*
811          * Ensure a rebooted VM will fault in RAM pages and detect if the
812          * guest MMU is turned off and flush the caches as needed.
813          */
814         if (vcpu->arch.has_run_once)
815                 stage2_unmap_vm(vcpu->kvm);
816
817         vcpu_reset_hcr(vcpu);
818
819         /*
820          * Handle the "start in power-off" case.
821          */
822         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
823                 vcpu->arch.power_off = true;
824         else
825                 vcpu->arch.power_off = false;
826
827         return 0;
828 }
829
830 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
831                                  struct kvm_device_attr *attr)
832 {
833         int ret = -ENXIO;
834
835         switch (attr->group) {
836         default:
837                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
838                 break;
839         }
840
841         return ret;
842 }
843
844 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
845                                  struct kvm_device_attr *attr)
846 {
847         int ret = -ENXIO;
848
849         switch (attr->group) {
850         default:
851                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
852                 break;
853         }
854
855         return ret;
856 }
857
858 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
859                                  struct kvm_device_attr *attr)
860 {
861         int ret = -ENXIO;
862
863         switch (attr->group) {
864         default:
865                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
866                 break;
867         }
868
869         return ret;
870 }
871
872 long kvm_arch_vcpu_ioctl(struct file *filp,
873                          unsigned int ioctl, unsigned long arg)
874 {
875         struct kvm_vcpu *vcpu = filp->private_data;
876         void __user *argp = (void __user *)arg;
877         struct kvm_device_attr attr;
878
879         switch (ioctl) {
880         case KVM_ARM_VCPU_INIT: {
881                 struct kvm_vcpu_init init;
882
883                 if (copy_from_user(&init, argp, sizeof(init)))
884                         return -EFAULT;
885
886                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
887         }
888         case KVM_SET_ONE_REG:
889         case KVM_GET_ONE_REG: {
890                 struct kvm_one_reg reg;
891
892                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
893                         return -ENOEXEC;
894
895                 if (copy_from_user(&reg, argp, sizeof(reg)))
896                         return -EFAULT;
897                 if (ioctl == KVM_SET_ONE_REG)
898                         return kvm_arm_set_reg(vcpu, &reg);
899                 else
900                         return kvm_arm_get_reg(vcpu, &reg);
901         }
902         case KVM_GET_REG_LIST: {
903                 struct kvm_reg_list __user *user_list = argp;
904                 struct kvm_reg_list reg_list;
905                 unsigned n;
906
907                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
908                         return -ENOEXEC;
909
910                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
911                         return -EFAULT;
912                 n = reg_list.n;
913                 reg_list.n = kvm_arm_num_regs(vcpu);
914                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
915                         return -EFAULT;
916                 if (n < reg_list.n)
917                         return -E2BIG;
918                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
919         }
920         case KVM_SET_DEVICE_ATTR: {
921                 if (copy_from_user(&attr, argp, sizeof(attr)))
922                         return -EFAULT;
923                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
924         }
925         case KVM_GET_DEVICE_ATTR: {
926                 if (copy_from_user(&attr, argp, sizeof(attr)))
927                         return -EFAULT;
928                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
929         }
930         case KVM_HAS_DEVICE_ATTR: {
931                 if (copy_from_user(&attr, argp, sizeof(attr)))
932                         return -EFAULT;
933                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
934         }
935         default:
936                 return -EINVAL;
937         }
938 }
939
940 /**
941  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
942  * @kvm: kvm instance
943  * @log: slot id and address to which we copy the log
944  *
945  * Steps 1-4 below provide general overview of dirty page logging. See
946  * kvm_get_dirty_log_protect() function description for additional details.
947  *
948  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
949  * always flush the TLB (step 4) even if previous step failed  and the dirty
950  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
951  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
952  * writes will be marked dirty for next log read.
953  *
954  *   1. Take a snapshot of the bit and clear it if needed.
955  *   2. Write protect the corresponding page.
956  *   3. Copy the snapshot to the userspace.
957  *   4. Flush TLB's if needed.
958  */
959 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
960 {
961         bool is_dirty = false;
962         int r;
963
964         mutex_lock(&kvm->slots_lock);
965
966         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
967
968         if (is_dirty)
969                 kvm_flush_remote_tlbs(kvm);
970
971         mutex_unlock(&kvm->slots_lock);
972         return r;
973 }
974
975 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
976                                         struct kvm_arm_device_addr *dev_addr)
977 {
978         unsigned long dev_id, type;
979
980         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
981                 KVM_ARM_DEVICE_ID_SHIFT;
982         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
983                 KVM_ARM_DEVICE_TYPE_SHIFT;
984
985         switch (dev_id) {
986         case KVM_ARM_DEVICE_VGIC_V2:
987                 if (!vgic_present)
988                         return -ENXIO;
989                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
990         default:
991                 return -ENODEV;
992         }
993 }
994
995 long kvm_arch_vm_ioctl(struct file *filp,
996                        unsigned int ioctl, unsigned long arg)
997 {
998         struct kvm *kvm = filp->private_data;
999         void __user *argp = (void __user *)arg;
1000
1001         switch (ioctl) {
1002         case KVM_CREATE_IRQCHIP: {
1003                 if (!vgic_present)
1004                         return -ENXIO;
1005                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1006         }
1007         case KVM_ARM_SET_DEVICE_ADDR: {
1008                 struct kvm_arm_device_addr dev_addr;
1009
1010                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1011                         return -EFAULT;
1012                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1013         }
1014         case KVM_ARM_PREFERRED_TARGET: {
1015                 int err;
1016                 struct kvm_vcpu_init init;
1017
1018                 err = kvm_vcpu_preferred_target(&init);
1019                 if (err)
1020                         return err;
1021
1022                 if (copy_to_user(argp, &init, sizeof(init)))
1023                         return -EFAULT;
1024
1025                 return 0;
1026         }
1027         default:
1028                 return -EINVAL;
1029         }
1030 }
1031
1032 static void cpu_init_hyp_mode(void *dummy)
1033 {
1034         phys_addr_t boot_pgd_ptr;
1035         phys_addr_t pgd_ptr;
1036         unsigned long hyp_stack_ptr;
1037         unsigned long stack_page;
1038         unsigned long vector_ptr;
1039
1040         /* Switch from the HYP stub to our own HYP init vector */
1041         __hyp_set_vectors(kvm_get_idmap_vector());
1042
1043         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1044         pgd_ptr = kvm_mmu_get_httbr();
1045         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1046         hyp_stack_ptr = stack_page + PAGE_SIZE;
1047         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1048
1049         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
1050         __cpu_init_stage2();
1051
1052         kvm_arm_init_debug();
1053 }
1054
1055 static void cpu_hyp_reinit(void)
1056 {
1057         if (is_kernel_in_hyp_mode()) {
1058                 /*
1059                  * __cpu_init_stage2() is safe to call even if the PM
1060                  * event was cancelled before the CPU was reset.
1061                  */
1062                 __cpu_init_stage2();
1063         } else {
1064                 if (__hyp_get_vectors() == hyp_default_vectors)
1065                         cpu_init_hyp_mode(NULL);
1066         }
1067 }
1068
1069 static void cpu_hyp_reset(void)
1070 {
1071         phys_addr_t boot_pgd_ptr;
1072         phys_addr_t phys_idmap_start;
1073
1074         if (!is_kernel_in_hyp_mode()) {
1075                 boot_pgd_ptr = kvm_mmu_get_boot_httbr();
1076                 phys_idmap_start = kvm_get_idmap_start();
1077
1078                 __cpu_reset_hyp_mode(boot_pgd_ptr, phys_idmap_start);
1079         }
1080 }
1081
1082 static void _kvm_arch_hardware_enable(void *discard)
1083 {
1084         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1085                 cpu_hyp_reinit();
1086                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1087         }
1088 }
1089
1090 int kvm_arch_hardware_enable(void)
1091 {
1092         _kvm_arch_hardware_enable(NULL);
1093         return 0;
1094 }
1095
1096 static void _kvm_arch_hardware_disable(void *discard)
1097 {
1098         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1099                 cpu_hyp_reset();
1100                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1101         }
1102 }
1103
1104 void kvm_arch_hardware_disable(void)
1105 {
1106         _kvm_arch_hardware_disable(NULL);
1107 }
1108
1109 #ifdef CONFIG_CPU_PM
1110 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1111                                     unsigned long cmd,
1112                                     void *v)
1113 {
1114         /*
1115          * kvm_arm_hardware_enabled is left with its old value over
1116          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1117          * re-enable hyp.
1118          */
1119         switch (cmd) {
1120         case CPU_PM_ENTER:
1121                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1122                         /*
1123                          * don't update kvm_arm_hardware_enabled here
1124                          * so that the hardware will be re-enabled
1125                          * when we resume. See below.
1126                          */
1127                         cpu_hyp_reset();
1128
1129                 return NOTIFY_OK;
1130         case CPU_PM_EXIT:
1131                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1132                         /* The hardware was enabled before suspend. */
1133                         cpu_hyp_reinit();
1134
1135                 return NOTIFY_OK;
1136
1137         default:
1138                 return NOTIFY_DONE;
1139         }
1140 }
1141
1142 static struct notifier_block hyp_init_cpu_pm_nb = {
1143         .notifier_call = hyp_init_cpu_pm_notifier,
1144 };
1145
1146 static void __init hyp_cpu_pm_init(void)
1147 {
1148         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1149 }
1150 static void __init hyp_cpu_pm_exit(void)
1151 {
1152         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1153 }
1154 #else
1155 static inline void hyp_cpu_pm_init(void)
1156 {
1157 }
1158 static inline void hyp_cpu_pm_exit(void)
1159 {
1160 }
1161 #endif
1162
1163 static void teardown_common_resources(void)
1164 {
1165         free_percpu(kvm_host_cpu_state);
1166 }
1167
1168 static int init_common_resources(void)
1169 {
1170         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1171         if (!kvm_host_cpu_state) {
1172                 kvm_err("Cannot allocate host CPU state\n");
1173                 return -ENOMEM;
1174         }
1175
1176         return 0;
1177 }
1178
1179 static int init_subsystems(void)
1180 {
1181         int err = 0;
1182
1183         /*
1184          * Enable hardware so that subsystem initialisation can access EL2.
1185          */
1186         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1187
1188         /*
1189          * Register CPU lower-power notifier
1190          */
1191         hyp_cpu_pm_init();
1192
1193         /*
1194          * Init HYP view of VGIC
1195          */
1196         err = kvm_vgic_hyp_init();
1197         switch (err) {
1198         case 0:
1199                 vgic_present = true;
1200                 break;
1201         case -ENODEV:
1202         case -ENXIO:
1203                 vgic_present = false;
1204                 err = 0;
1205                 break;
1206         default:
1207                 goto out;
1208         }
1209
1210         /*
1211          * Init HYP architected timer support
1212          */
1213         err = kvm_timer_hyp_init();
1214         if (err)
1215                 goto out;
1216
1217         kvm_perf_init();
1218         kvm_coproc_table_init();
1219
1220 out:
1221         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1222
1223         return err;
1224 }
1225
1226 static void teardown_hyp_mode(void)
1227 {
1228         int cpu;
1229
1230         if (is_kernel_in_hyp_mode())
1231                 return;
1232
1233         free_hyp_pgds();
1234         for_each_possible_cpu(cpu)
1235                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1236         hyp_cpu_pm_exit();
1237 }
1238
1239 static int init_vhe_mode(void)
1240 {
1241         /* set size of VMID supported by CPU */
1242         kvm_vmid_bits = kvm_get_vmid_bits();
1243         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1244
1245         kvm_info("VHE mode initialized successfully\n");
1246         return 0;
1247 }
1248
1249 /**
1250  * Inits Hyp-mode on all online CPUs
1251  */
1252 static int init_hyp_mode(void)
1253 {
1254         int cpu;
1255         int err = 0;
1256
1257         /*
1258          * Allocate Hyp PGD and setup Hyp identity mapping
1259          */
1260         err = kvm_mmu_init();
1261         if (err)
1262                 goto out_err;
1263
1264         /*
1265          * It is probably enough to obtain the default on one
1266          * CPU. It's unlikely to be different on the others.
1267          */
1268         hyp_default_vectors = __hyp_get_vectors();
1269
1270         /*
1271          * Allocate stack pages for Hypervisor-mode
1272          */
1273         for_each_possible_cpu(cpu) {
1274                 unsigned long stack_page;
1275
1276                 stack_page = __get_free_page(GFP_KERNEL);
1277                 if (!stack_page) {
1278                         err = -ENOMEM;
1279                         goto out_err;
1280                 }
1281
1282                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1283         }
1284
1285         /*
1286          * Map the Hyp-code called directly from the host
1287          */
1288         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1289                                   kvm_ksym_ref(__hyp_text_end));
1290         if (err) {
1291                 kvm_err("Cannot map world-switch code\n");
1292                 goto out_err;
1293         }
1294
1295         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1296                                   kvm_ksym_ref(__end_rodata));
1297         if (err) {
1298                 kvm_err("Cannot map rodata section\n");
1299                 goto out_err;
1300         }
1301
1302         /*
1303          * Map the Hyp stack pages
1304          */
1305         for_each_possible_cpu(cpu) {
1306                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1307                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1308
1309                 if (err) {
1310                         kvm_err("Cannot map hyp stack\n");
1311                         goto out_err;
1312                 }
1313         }
1314
1315         for_each_possible_cpu(cpu) {
1316                 kvm_cpu_context_t *cpu_ctxt;
1317
1318                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1319                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1320
1321                 if (err) {
1322                         kvm_err("Cannot map host CPU state: %d\n", err);
1323                         goto out_err;
1324                 }
1325         }
1326
1327 #ifndef CONFIG_HOTPLUG_CPU
1328         free_boot_hyp_pgd();
1329 #endif
1330
1331         /* set size of VMID supported by CPU */
1332         kvm_vmid_bits = kvm_get_vmid_bits();
1333         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1334
1335         kvm_info("Hyp mode initialized successfully\n");
1336
1337         return 0;
1338
1339 out_err:
1340         teardown_hyp_mode();
1341         kvm_err("error initializing Hyp mode: %d\n", err);
1342         return err;
1343 }
1344
1345 static void check_kvm_target_cpu(void *ret)
1346 {
1347         *(int *)ret = kvm_target_cpu();
1348 }
1349
1350 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1351 {
1352         struct kvm_vcpu *vcpu;
1353         int i;
1354
1355         mpidr &= MPIDR_HWID_BITMASK;
1356         kvm_for_each_vcpu(i, vcpu, kvm) {
1357                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1358                         return vcpu;
1359         }
1360         return NULL;
1361 }
1362
1363 /**
1364  * Initialize Hyp-mode and memory mappings on all CPUs.
1365  */
1366 int kvm_arch_init(void *opaque)
1367 {
1368         int err;
1369         int ret, cpu;
1370
1371         if (!is_hyp_mode_available()) {
1372                 kvm_err("HYP mode not available\n");
1373                 return -ENODEV;
1374         }
1375
1376         for_each_online_cpu(cpu) {
1377                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1378                 if (ret < 0) {
1379                         kvm_err("Error, CPU %d not supported!\n", cpu);
1380                         return -ENODEV;
1381                 }
1382         }
1383
1384         err = init_common_resources();
1385         if (err)
1386                 return err;
1387
1388         if (is_kernel_in_hyp_mode())
1389                 err = init_vhe_mode();
1390         else
1391                 err = init_hyp_mode();
1392         if (err)
1393                 goto out_err;
1394
1395         err = init_subsystems();
1396         if (err)
1397                 goto out_hyp;
1398
1399         return 0;
1400
1401 out_hyp:
1402         teardown_hyp_mode();
1403 out_err:
1404         teardown_common_resources();
1405         return err;
1406 }
1407
1408 /* NOP: Compiling as a module not supported */
1409 void kvm_arch_exit(void)
1410 {
1411         kvm_perf_teardown();
1412 }
1413
1414 static int arm_init(void)
1415 {
1416         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1417         return rc;
1418 }
1419
1420 module_init(arm_init);