74b5d199f6b796681165547669f4780a07628e51
[cascardo/linux.git] / arch / arm / kvm / mmu.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/mman.h>
20 #include <linux/kvm_host.h>
21 #include <linux/io.h>
22 #include <linux/hugetlb.h>
23 #include <trace/events/kvm.h>
24 #include <asm/pgalloc.h>
25 #include <asm/cacheflush.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_mmu.h>
28 #include <asm/kvm_mmio.h>
29 #include <asm/kvm_asm.h>
30 #include <asm/kvm_emulate.h>
31 #include <asm/virt.h>
32
33 #include "trace.h"
34
35 extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
36
37 static pgd_t *boot_hyp_pgd;
38 static pgd_t *hyp_pgd;
39 static pgd_t *merged_hyp_pgd;
40 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
41
42 static unsigned long hyp_idmap_start;
43 static unsigned long hyp_idmap_end;
44 static phys_addr_t hyp_idmap_vector;
45
46 #define S2_PGD_SIZE     (PTRS_PER_S2_PGD * sizeof(pgd_t))
47 #define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
48
49 #define KVM_S2PTE_FLAG_IS_IOMAP         (1UL << 0)
50 #define KVM_S2_FLAG_LOGGING_ACTIVE      (1UL << 1)
51
52 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
53 {
54         return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
55 }
56
57 /**
58  * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
59  * @kvm:        pointer to kvm structure.
60  *
61  * Interface to HYP function to flush all VM TLB entries
62  */
63 void kvm_flush_remote_tlbs(struct kvm *kvm)
64 {
65         kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
66 }
67
68 static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
69 {
70         kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
71 }
72
73 /*
74  * D-Cache management functions. They take the page table entries by
75  * value, as they are flushing the cache using the kernel mapping (or
76  * kmap on 32bit).
77  */
78 static void kvm_flush_dcache_pte(pte_t pte)
79 {
80         __kvm_flush_dcache_pte(pte);
81 }
82
83 static void kvm_flush_dcache_pmd(pmd_t pmd)
84 {
85         __kvm_flush_dcache_pmd(pmd);
86 }
87
88 static void kvm_flush_dcache_pud(pud_t pud)
89 {
90         __kvm_flush_dcache_pud(pud);
91 }
92
93 static bool kvm_is_device_pfn(unsigned long pfn)
94 {
95         return !pfn_valid(pfn);
96 }
97
98 /**
99  * stage2_dissolve_pmd() - clear and flush huge PMD entry
100  * @kvm:        pointer to kvm structure.
101  * @addr:       IPA
102  * @pmd:        pmd pointer for IPA
103  *
104  * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
105  * pages in the range dirty.
106  */
107 static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
108 {
109         if (!pmd_thp_or_huge(*pmd))
110                 return;
111
112         pmd_clear(pmd);
113         kvm_tlb_flush_vmid_ipa(kvm, addr);
114         put_page(virt_to_page(pmd));
115 }
116
117 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
118                                   int min, int max)
119 {
120         void *page;
121
122         BUG_ON(max > KVM_NR_MEM_OBJS);
123         if (cache->nobjs >= min)
124                 return 0;
125         while (cache->nobjs < max) {
126                 page = (void *)__get_free_page(PGALLOC_GFP);
127                 if (!page)
128                         return -ENOMEM;
129                 cache->objects[cache->nobjs++] = page;
130         }
131         return 0;
132 }
133
134 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
135 {
136         while (mc->nobjs)
137                 free_page((unsigned long)mc->objects[--mc->nobjs]);
138 }
139
140 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
141 {
142         void *p;
143
144         BUG_ON(!mc || !mc->nobjs);
145         p = mc->objects[--mc->nobjs];
146         return p;
147 }
148
149 static void clear_stage2_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
150 {
151         pud_t *pud_table __maybe_unused = stage2_pud_offset(pgd, 0UL);
152         stage2_pgd_clear(pgd);
153         kvm_tlb_flush_vmid_ipa(kvm, addr);
154         stage2_pud_free(pud_table);
155         put_page(virt_to_page(pgd));
156 }
157
158 static void clear_stage2_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
159 {
160         pmd_t *pmd_table __maybe_unused = stage2_pmd_offset(pud, 0);
161         VM_BUG_ON(stage2_pud_huge(*pud));
162         stage2_pud_clear(pud);
163         kvm_tlb_flush_vmid_ipa(kvm, addr);
164         stage2_pmd_free(pmd_table);
165         put_page(virt_to_page(pud));
166 }
167
168 static void clear_stage2_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
169 {
170         pte_t *pte_table = pte_offset_kernel(pmd, 0);
171         VM_BUG_ON(pmd_thp_or_huge(*pmd));
172         pmd_clear(pmd);
173         kvm_tlb_flush_vmid_ipa(kvm, addr);
174         pte_free_kernel(NULL, pte_table);
175         put_page(virt_to_page(pmd));
176 }
177
178 /*
179  * Unmapping vs dcache management:
180  *
181  * If a guest maps certain memory pages as uncached, all writes will
182  * bypass the data cache and go directly to RAM.  However, the CPUs
183  * can still speculate reads (not writes) and fill cache lines with
184  * data.
185  *
186  * Those cache lines will be *clean* cache lines though, so a
187  * clean+invalidate operation is equivalent to an invalidate
188  * operation, because no cache lines are marked dirty.
189  *
190  * Those clean cache lines could be filled prior to an uncached write
191  * by the guest, and the cache coherent IO subsystem would therefore
192  * end up writing old data to disk.
193  *
194  * This is why right after unmapping a page/section and invalidating
195  * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
196  * the IO subsystem will never hit in the cache.
197  */
198 static void unmap_stage2_ptes(struct kvm *kvm, pmd_t *pmd,
199                        phys_addr_t addr, phys_addr_t end)
200 {
201         phys_addr_t start_addr = addr;
202         pte_t *pte, *start_pte;
203
204         start_pte = pte = pte_offset_kernel(pmd, addr);
205         do {
206                 if (!pte_none(*pte)) {
207                         pte_t old_pte = *pte;
208
209                         kvm_set_pte(pte, __pte(0));
210                         kvm_tlb_flush_vmid_ipa(kvm, addr);
211
212                         /* No need to invalidate the cache for device mappings */
213                         if (!kvm_is_device_pfn(pte_pfn(old_pte)))
214                                 kvm_flush_dcache_pte(old_pte);
215
216                         put_page(virt_to_page(pte));
217                 }
218         } while (pte++, addr += PAGE_SIZE, addr != end);
219
220         if (stage2_pte_table_empty(start_pte))
221                 clear_stage2_pmd_entry(kvm, pmd, start_addr);
222 }
223
224 static void unmap_stage2_pmds(struct kvm *kvm, pud_t *pud,
225                        phys_addr_t addr, phys_addr_t end)
226 {
227         phys_addr_t next, start_addr = addr;
228         pmd_t *pmd, *start_pmd;
229
230         start_pmd = pmd = stage2_pmd_offset(pud, addr);
231         do {
232                 next = stage2_pmd_addr_end(addr, end);
233                 if (!pmd_none(*pmd)) {
234                         if (pmd_thp_or_huge(*pmd)) {
235                                 pmd_t old_pmd = *pmd;
236
237                                 pmd_clear(pmd);
238                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
239
240                                 kvm_flush_dcache_pmd(old_pmd);
241
242                                 put_page(virt_to_page(pmd));
243                         } else {
244                                 unmap_stage2_ptes(kvm, pmd, addr, next);
245                         }
246                 }
247         } while (pmd++, addr = next, addr != end);
248
249         if (stage2_pmd_table_empty(start_pmd))
250                 clear_stage2_pud_entry(kvm, pud, start_addr);
251 }
252
253 static void unmap_stage2_puds(struct kvm *kvm, pgd_t *pgd,
254                        phys_addr_t addr, phys_addr_t end)
255 {
256         phys_addr_t next, start_addr = addr;
257         pud_t *pud, *start_pud;
258
259         start_pud = pud = stage2_pud_offset(pgd, addr);
260         do {
261                 next = stage2_pud_addr_end(addr, end);
262                 if (!stage2_pud_none(*pud)) {
263                         if (stage2_pud_huge(*pud)) {
264                                 pud_t old_pud = *pud;
265
266                                 stage2_pud_clear(pud);
267                                 kvm_tlb_flush_vmid_ipa(kvm, addr);
268                                 kvm_flush_dcache_pud(old_pud);
269                                 put_page(virt_to_page(pud));
270                         } else {
271                                 unmap_stage2_pmds(kvm, pud, addr, next);
272                         }
273                 }
274         } while (pud++, addr = next, addr != end);
275
276         if (stage2_pud_table_empty(start_pud))
277                 clear_stage2_pgd_entry(kvm, pgd, start_addr);
278 }
279
280 /**
281  * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
282  * @kvm:   The VM pointer
283  * @start: The intermediate physical base address of the range to unmap
284  * @size:  The size of the area to unmap
285  *
286  * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
287  * be called while holding mmu_lock (unless for freeing the stage2 pgd before
288  * destroying the VM), otherwise another faulting VCPU may come in and mess
289  * with things behind our backs.
290  */
291 static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
292 {
293         pgd_t *pgd;
294         phys_addr_t addr = start, end = start + size;
295         phys_addr_t next;
296
297         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
298         do {
299                 next = stage2_pgd_addr_end(addr, end);
300                 if (!stage2_pgd_none(*pgd))
301                         unmap_stage2_puds(kvm, pgd, addr, next);
302         } while (pgd++, addr = next, addr != end);
303 }
304
305 static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
306                               phys_addr_t addr, phys_addr_t end)
307 {
308         pte_t *pte;
309
310         pte = pte_offset_kernel(pmd, addr);
311         do {
312                 if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
313                         kvm_flush_dcache_pte(*pte);
314         } while (pte++, addr += PAGE_SIZE, addr != end);
315 }
316
317 static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
318                               phys_addr_t addr, phys_addr_t end)
319 {
320         pmd_t *pmd;
321         phys_addr_t next;
322
323         pmd = stage2_pmd_offset(pud, addr);
324         do {
325                 next = stage2_pmd_addr_end(addr, end);
326                 if (!pmd_none(*pmd)) {
327                         if (pmd_thp_or_huge(*pmd))
328                                 kvm_flush_dcache_pmd(*pmd);
329                         else
330                                 stage2_flush_ptes(kvm, pmd, addr, next);
331                 }
332         } while (pmd++, addr = next, addr != end);
333 }
334
335 static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
336                               phys_addr_t addr, phys_addr_t end)
337 {
338         pud_t *pud;
339         phys_addr_t next;
340
341         pud = stage2_pud_offset(pgd, addr);
342         do {
343                 next = stage2_pud_addr_end(addr, end);
344                 if (!stage2_pud_none(*pud)) {
345                         if (stage2_pud_huge(*pud))
346                                 kvm_flush_dcache_pud(*pud);
347                         else
348                                 stage2_flush_pmds(kvm, pud, addr, next);
349                 }
350         } while (pud++, addr = next, addr != end);
351 }
352
353 static void stage2_flush_memslot(struct kvm *kvm,
354                                  struct kvm_memory_slot *memslot)
355 {
356         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
357         phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
358         phys_addr_t next;
359         pgd_t *pgd;
360
361         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
362         do {
363                 next = stage2_pgd_addr_end(addr, end);
364                 stage2_flush_puds(kvm, pgd, addr, next);
365         } while (pgd++, addr = next, addr != end);
366 }
367
368 /**
369  * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
370  * @kvm: The struct kvm pointer
371  *
372  * Go through the stage 2 page tables and invalidate any cache lines
373  * backing memory already mapped to the VM.
374  */
375 static void stage2_flush_vm(struct kvm *kvm)
376 {
377         struct kvm_memslots *slots;
378         struct kvm_memory_slot *memslot;
379         int idx;
380
381         idx = srcu_read_lock(&kvm->srcu);
382         spin_lock(&kvm->mmu_lock);
383
384         slots = kvm_memslots(kvm);
385         kvm_for_each_memslot(memslot, slots)
386                 stage2_flush_memslot(kvm, memslot);
387
388         spin_unlock(&kvm->mmu_lock);
389         srcu_read_unlock(&kvm->srcu, idx);
390 }
391
392 static void clear_hyp_pgd_entry(pgd_t *pgd)
393 {
394         pud_t *pud_table __maybe_unused = pud_offset(pgd, 0UL);
395         pgd_clear(pgd);
396         pud_free(NULL, pud_table);
397         put_page(virt_to_page(pgd));
398 }
399
400 static void clear_hyp_pud_entry(pud_t *pud)
401 {
402         pmd_t *pmd_table __maybe_unused = pmd_offset(pud, 0);
403         VM_BUG_ON(pud_huge(*pud));
404         pud_clear(pud);
405         pmd_free(NULL, pmd_table);
406         put_page(virt_to_page(pud));
407 }
408
409 static void clear_hyp_pmd_entry(pmd_t *pmd)
410 {
411         pte_t *pte_table = pte_offset_kernel(pmd, 0);
412         VM_BUG_ON(pmd_thp_or_huge(*pmd));
413         pmd_clear(pmd);
414         pte_free_kernel(NULL, pte_table);
415         put_page(virt_to_page(pmd));
416 }
417
418 static void unmap_hyp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
419 {
420         pte_t *pte, *start_pte;
421
422         start_pte = pte = pte_offset_kernel(pmd, addr);
423         do {
424                 if (!pte_none(*pte)) {
425                         kvm_set_pte(pte, __pte(0));
426                         put_page(virt_to_page(pte));
427                 }
428         } while (pte++, addr += PAGE_SIZE, addr != end);
429
430         if (hyp_pte_table_empty(start_pte))
431                 clear_hyp_pmd_entry(pmd);
432 }
433
434 static void unmap_hyp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
435 {
436         phys_addr_t next;
437         pmd_t *pmd, *start_pmd;
438
439         start_pmd = pmd = pmd_offset(pud, addr);
440         do {
441                 next = pmd_addr_end(addr, end);
442                 /* Hyp doesn't use huge pmds */
443                 if (!pmd_none(*pmd))
444                         unmap_hyp_ptes(pmd, addr, next);
445         } while (pmd++, addr = next, addr != end);
446
447         if (hyp_pmd_table_empty(start_pmd))
448                 clear_hyp_pud_entry(pud);
449 }
450
451 static void unmap_hyp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
452 {
453         phys_addr_t next;
454         pud_t *pud, *start_pud;
455
456         start_pud = pud = pud_offset(pgd, addr);
457         do {
458                 next = pud_addr_end(addr, end);
459                 /* Hyp doesn't use huge puds */
460                 if (!pud_none(*pud))
461                         unmap_hyp_pmds(pud, addr, next);
462         } while (pud++, addr = next, addr != end);
463
464         if (hyp_pud_table_empty(start_pud))
465                 clear_hyp_pgd_entry(pgd);
466 }
467
468 static void unmap_hyp_range(pgd_t *pgdp, phys_addr_t start, u64 size)
469 {
470         pgd_t *pgd;
471         phys_addr_t addr = start, end = start + size;
472         phys_addr_t next;
473
474         /*
475          * We don't unmap anything from HYP, except at the hyp tear down.
476          * Hence, we don't have to invalidate the TLBs here.
477          */
478         pgd = pgdp + pgd_index(addr);
479         do {
480                 next = pgd_addr_end(addr, end);
481                 if (!pgd_none(*pgd))
482                         unmap_hyp_puds(pgd, addr, next);
483         } while (pgd++, addr = next, addr != end);
484 }
485
486 /**
487  * free_boot_hyp_pgd - free HYP boot page tables
488  *
489  * Free the HYP boot page tables. The bounce page is also freed.
490  */
491 void free_boot_hyp_pgd(void)
492 {
493         mutex_lock(&kvm_hyp_pgd_mutex);
494
495         if (boot_hyp_pgd) {
496                 unmap_hyp_range(boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
497                 unmap_hyp_range(boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
498                 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
499                 boot_hyp_pgd = NULL;
500         }
501
502         if (hyp_pgd)
503                 unmap_hyp_range(hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
504
505         mutex_unlock(&kvm_hyp_pgd_mutex);
506 }
507
508 /**
509  * free_hyp_pgds - free Hyp-mode page tables
510  *
511  * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
512  * therefore contains either mappings in the kernel memory area (above
513  * PAGE_OFFSET), or device mappings in the vmalloc range (from
514  * VMALLOC_START to VMALLOC_END).
515  *
516  * boot_hyp_pgd should only map two pages for the init code.
517  */
518 void free_hyp_pgds(void)
519 {
520         unsigned long addr;
521
522         free_boot_hyp_pgd();
523
524         mutex_lock(&kvm_hyp_pgd_mutex);
525
526         if (hyp_pgd) {
527                 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
528                         unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
529                 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
530                         unmap_hyp_range(hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
531
532                 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
533                 hyp_pgd = NULL;
534         }
535         if (merged_hyp_pgd) {
536                 clear_page(merged_hyp_pgd);
537                 free_page((unsigned long)merged_hyp_pgd);
538                 merged_hyp_pgd = NULL;
539         }
540
541         mutex_unlock(&kvm_hyp_pgd_mutex);
542 }
543
544 static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
545                                     unsigned long end, unsigned long pfn,
546                                     pgprot_t prot)
547 {
548         pte_t *pte;
549         unsigned long addr;
550
551         addr = start;
552         do {
553                 pte = pte_offset_kernel(pmd, addr);
554                 kvm_set_pte(pte, pfn_pte(pfn, prot));
555                 get_page(virt_to_page(pte));
556                 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
557                 pfn++;
558         } while (addr += PAGE_SIZE, addr != end);
559 }
560
561 static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
562                                    unsigned long end, unsigned long pfn,
563                                    pgprot_t prot)
564 {
565         pmd_t *pmd;
566         pte_t *pte;
567         unsigned long addr, next;
568
569         addr = start;
570         do {
571                 pmd = pmd_offset(pud, addr);
572
573                 BUG_ON(pmd_sect(*pmd));
574
575                 if (pmd_none(*pmd)) {
576                         pte = pte_alloc_one_kernel(NULL, addr);
577                         if (!pte) {
578                                 kvm_err("Cannot allocate Hyp pte\n");
579                                 return -ENOMEM;
580                         }
581                         pmd_populate_kernel(NULL, pmd, pte);
582                         get_page(virt_to_page(pmd));
583                         kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
584                 }
585
586                 next = pmd_addr_end(addr, end);
587
588                 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
589                 pfn += (next - addr) >> PAGE_SHIFT;
590         } while (addr = next, addr != end);
591
592         return 0;
593 }
594
595 static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
596                                    unsigned long end, unsigned long pfn,
597                                    pgprot_t prot)
598 {
599         pud_t *pud;
600         pmd_t *pmd;
601         unsigned long addr, next;
602         int ret;
603
604         addr = start;
605         do {
606                 pud = pud_offset(pgd, addr);
607
608                 if (pud_none_or_clear_bad(pud)) {
609                         pmd = pmd_alloc_one(NULL, addr);
610                         if (!pmd) {
611                                 kvm_err("Cannot allocate Hyp pmd\n");
612                                 return -ENOMEM;
613                         }
614                         pud_populate(NULL, pud, pmd);
615                         get_page(virt_to_page(pud));
616                         kvm_flush_dcache_to_poc(pud, sizeof(*pud));
617                 }
618
619                 next = pud_addr_end(addr, end);
620                 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
621                 if (ret)
622                         return ret;
623                 pfn += (next - addr) >> PAGE_SHIFT;
624         } while (addr = next, addr != end);
625
626         return 0;
627 }
628
629 static int __create_hyp_mappings(pgd_t *pgdp,
630                                  unsigned long start, unsigned long end,
631                                  unsigned long pfn, pgprot_t prot)
632 {
633         pgd_t *pgd;
634         pud_t *pud;
635         unsigned long addr, next;
636         int err = 0;
637
638         mutex_lock(&kvm_hyp_pgd_mutex);
639         addr = start & PAGE_MASK;
640         end = PAGE_ALIGN(end);
641         do {
642                 pgd = pgdp + pgd_index(addr);
643
644                 if (pgd_none(*pgd)) {
645                         pud = pud_alloc_one(NULL, addr);
646                         if (!pud) {
647                                 kvm_err("Cannot allocate Hyp pud\n");
648                                 err = -ENOMEM;
649                                 goto out;
650                         }
651                         pgd_populate(NULL, pgd, pud);
652                         get_page(virt_to_page(pgd));
653                         kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
654                 }
655
656                 next = pgd_addr_end(addr, end);
657                 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
658                 if (err)
659                         goto out;
660                 pfn += (next - addr) >> PAGE_SHIFT;
661         } while (addr = next, addr != end);
662 out:
663         mutex_unlock(&kvm_hyp_pgd_mutex);
664         return err;
665 }
666
667 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
668 {
669         if (!is_vmalloc_addr(kaddr)) {
670                 BUG_ON(!virt_addr_valid(kaddr));
671                 return __pa(kaddr);
672         } else {
673                 return page_to_phys(vmalloc_to_page(kaddr)) +
674                        offset_in_page(kaddr);
675         }
676 }
677
678 /**
679  * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
680  * @from:       The virtual kernel start address of the range
681  * @to:         The virtual kernel end address of the range (exclusive)
682  *
683  * The same virtual address as the kernel virtual address is also used
684  * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
685  * physical pages.
686  */
687 int create_hyp_mappings(void *from, void *to)
688 {
689         phys_addr_t phys_addr;
690         unsigned long virt_addr;
691         unsigned long start = KERN_TO_HYP((unsigned long)from);
692         unsigned long end = KERN_TO_HYP((unsigned long)to);
693
694         if (is_kernel_in_hyp_mode())
695                 return 0;
696
697         start = start & PAGE_MASK;
698         end = PAGE_ALIGN(end);
699
700         for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
701                 int err;
702
703                 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
704                 err = __create_hyp_mappings(hyp_pgd, virt_addr,
705                                             virt_addr + PAGE_SIZE,
706                                             __phys_to_pfn(phys_addr),
707                                             PAGE_HYP);
708                 if (err)
709                         return err;
710         }
711
712         return 0;
713 }
714
715 /**
716  * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
717  * @from:       The kernel start VA of the range
718  * @to:         The kernel end VA of the range (exclusive)
719  * @phys_addr:  The physical start address which gets mapped
720  *
721  * The resulting HYP VA is the same as the kernel VA, modulo
722  * HYP_PAGE_OFFSET.
723  */
724 int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
725 {
726         unsigned long start = KERN_TO_HYP((unsigned long)from);
727         unsigned long end = KERN_TO_HYP((unsigned long)to);
728
729         if (is_kernel_in_hyp_mode())
730                 return 0;
731
732         /* Check for a valid kernel IO mapping */
733         if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
734                 return -EINVAL;
735
736         return __create_hyp_mappings(hyp_pgd, start, end,
737                                      __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
738 }
739
740 /**
741  * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
742  * @kvm:        The KVM struct pointer for the VM.
743  *
744  * Allocates only the stage-2 HW PGD level table(s) (can support either full
745  * 40-bit input addresses or limited to 32-bit input addresses). Clears the
746  * allocated pages.
747  *
748  * Note we don't need locking here as this is only called when the VM is
749  * created, which can only be done once.
750  */
751 int kvm_alloc_stage2_pgd(struct kvm *kvm)
752 {
753         pgd_t *pgd;
754
755         if (kvm->arch.pgd != NULL) {
756                 kvm_err("kvm_arch already initialized?\n");
757                 return -EINVAL;
758         }
759
760         /* Allocate the HW PGD, making sure that each page gets its own refcount */
761         pgd = alloc_pages_exact(S2_PGD_SIZE, GFP_KERNEL | __GFP_ZERO);
762         if (!pgd)
763                 return -ENOMEM;
764
765         kvm_clean_pgd(pgd);
766         kvm->arch.pgd = pgd;
767         return 0;
768 }
769
770 static void stage2_unmap_memslot(struct kvm *kvm,
771                                  struct kvm_memory_slot *memslot)
772 {
773         hva_t hva = memslot->userspace_addr;
774         phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
775         phys_addr_t size = PAGE_SIZE * memslot->npages;
776         hva_t reg_end = hva + size;
777
778         /*
779          * A memory region could potentially cover multiple VMAs, and any holes
780          * between them, so iterate over all of them to find out if we should
781          * unmap any of them.
782          *
783          *     +--------------------------------------------+
784          * +---------------+----------------+   +----------------+
785          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
786          * +---------------+----------------+   +----------------+
787          *     |               memory region                |
788          *     +--------------------------------------------+
789          */
790         do {
791                 struct vm_area_struct *vma = find_vma(current->mm, hva);
792                 hva_t vm_start, vm_end;
793
794                 if (!vma || vma->vm_start >= reg_end)
795                         break;
796
797                 /*
798                  * Take the intersection of this VMA with the memory region
799                  */
800                 vm_start = max(hva, vma->vm_start);
801                 vm_end = min(reg_end, vma->vm_end);
802
803                 if (!(vma->vm_flags & VM_PFNMAP)) {
804                         gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
805                         unmap_stage2_range(kvm, gpa, vm_end - vm_start);
806                 }
807                 hva = vm_end;
808         } while (hva < reg_end);
809 }
810
811 /**
812  * stage2_unmap_vm - Unmap Stage-2 RAM mappings
813  * @kvm: The struct kvm pointer
814  *
815  * Go through the memregions and unmap any reguler RAM
816  * backing memory already mapped to the VM.
817  */
818 void stage2_unmap_vm(struct kvm *kvm)
819 {
820         struct kvm_memslots *slots;
821         struct kvm_memory_slot *memslot;
822         int idx;
823
824         idx = srcu_read_lock(&kvm->srcu);
825         spin_lock(&kvm->mmu_lock);
826
827         slots = kvm_memslots(kvm);
828         kvm_for_each_memslot(memslot, slots)
829                 stage2_unmap_memslot(kvm, memslot);
830
831         spin_unlock(&kvm->mmu_lock);
832         srcu_read_unlock(&kvm->srcu, idx);
833 }
834
835 /**
836  * kvm_free_stage2_pgd - free all stage-2 tables
837  * @kvm:        The KVM struct pointer for the VM.
838  *
839  * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
840  * underlying level-2 and level-3 tables before freeing the actual level-1 table
841  * and setting the struct pointer to NULL.
842  *
843  * Note we don't need locking here as this is only called when the VM is
844  * destroyed, which can only be done once.
845  */
846 void kvm_free_stage2_pgd(struct kvm *kvm)
847 {
848         if (kvm->arch.pgd == NULL)
849                 return;
850
851         unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
852         /* Free the HW pgd, one page at a time */
853         free_pages_exact(kvm->arch.pgd, S2_PGD_SIZE);
854         kvm->arch.pgd = NULL;
855 }
856
857 static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
858                              phys_addr_t addr)
859 {
860         pgd_t *pgd;
861         pud_t *pud;
862
863         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
864         if (WARN_ON(stage2_pgd_none(*pgd))) {
865                 if (!cache)
866                         return NULL;
867                 pud = mmu_memory_cache_alloc(cache);
868                 stage2_pgd_populate(pgd, pud);
869                 get_page(virt_to_page(pgd));
870         }
871
872         return stage2_pud_offset(pgd, addr);
873 }
874
875 static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
876                              phys_addr_t addr)
877 {
878         pud_t *pud;
879         pmd_t *pmd;
880
881         pud = stage2_get_pud(kvm, cache, addr);
882         if (stage2_pud_none(*pud)) {
883                 if (!cache)
884                         return NULL;
885                 pmd = mmu_memory_cache_alloc(cache);
886                 stage2_pud_populate(pud, pmd);
887                 get_page(virt_to_page(pud));
888         }
889
890         return stage2_pmd_offset(pud, addr);
891 }
892
893 static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
894                                *cache, phys_addr_t addr, const pmd_t *new_pmd)
895 {
896         pmd_t *pmd, old_pmd;
897
898         pmd = stage2_get_pmd(kvm, cache, addr);
899         VM_BUG_ON(!pmd);
900
901         /*
902          * Mapping in huge pages should only happen through a fault.  If a
903          * page is merged into a transparent huge page, the individual
904          * subpages of that huge page should be unmapped through MMU
905          * notifiers before we get here.
906          *
907          * Merging of CompoundPages is not supported; they should become
908          * splitting first, unmapped, merged, and mapped back in on-demand.
909          */
910         VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
911
912         old_pmd = *pmd;
913         if (pmd_present(old_pmd)) {
914                 pmd_clear(pmd);
915                 kvm_tlb_flush_vmid_ipa(kvm, addr);
916         } else {
917                 get_page(virt_to_page(pmd));
918         }
919
920         kvm_set_pmd(pmd, *new_pmd);
921         return 0;
922 }
923
924 static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
925                           phys_addr_t addr, const pte_t *new_pte,
926                           unsigned long flags)
927 {
928         pmd_t *pmd;
929         pte_t *pte, old_pte;
930         bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
931         bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
932
933         VM_BUG_ON(logging_active && !cache);
934
935         /* Create stage-2 page table mapping - Levels 0 and 1 */
936         pmd = stage2_get_pmd(kvm, cache, addr);
937         if (!pmd) {
938                 /*
939                  * Ignore calls from kvm_set_spte_hva for unallocated
940                  * address ranges.
941                  */
942                 return 0;
943         }
944
945         /*
946          * While dirty page logging - dissolve huge PMD, then continue on to
947          * allocate page.
948          */
949         if (logging_active)
950                 stage2_dissolve_pmd(kvm, addr, pmd);
951
952         /* Create stage-2 page mappings - Level 2 */
953         if (pmd_none(*pmd)) {
954                 if (!cache)
955                         return 0; /* ignore calls from kvm_set_spte_hva */
956                 pte = mmu_memory_cache_alloc(cache);
957                 kvm_clean_pte(pte);
958                 pmd_populate_kernel(NULL, pmd, pte);
959                 get_page(virt_to_page(pmd));
960         }
961
962         pte = pte_offset_kernel(pmd, addr);
963
964         if (iomap && pte_present(*pte))
965                 return -EFAULT;
966
967         /* Create 2nd stage page table mapping - Level 3 */
968         old_pte = *pte;
969         if (pte_present(old_pte)) {
970                 kvm_set_pte(pte, __pte(0));
971                 kvm_tlb_flush_vmid_ipa(kvm, addr);
972         } else {
973                 get_page(virt_to_page(pte));
974         }
975
976         kvm_set_pte(pte, *new_pte);
977         return 0;
978 }
979
980 /**
981  * kvm_phys_addr_ioremap - map a device range to guest IPA
982  *
983  * @kvm:        The KVM pointer
984  * @guest_ipa:  The IPA at which to insert the mapping
985  * @pa:         The physical address of the device
986  * @size:       The size of the mapping
987  */
988 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
989                           phys_addr_t pa, unsigned long size, bool writable)
990 {
991         phys_addr_t addr, end;
992         int ret = 0;
993         unsigned long pfn;
994         struct kvm_mmu_memory_cache cache = { 0, };
995
996         end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
997         pfn = __phys_to_pfn(pa);
998
999         for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
1000                 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
1001
1002                 if (writable)
1003                         kvm_set_s2pte_writable(&pte);
1004
1005                 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
1006                                                 KVM_NR_MEM_OBJS);
1007                 if (ret)
1008                         goto out;
1009                 spin_lock(&kvm->mmu_lock);
1010                 ret = stage2_set_pte(kvm, &cache, addr, &pte,
1011                                                 KVM_S2PTE_FLAG_IS_IOMAP);
1012                 spin_unlock(&kvm->mmu_lock);
1013                 if (ret)
1014                         goto out;
1015
1016                 pfn++;
1017         }
1018
1019 out:
1020         mmu_free_memory_cache(&cache);
1021         return ret;
1022 }
1023
1024 static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1025 {
1026         kvm_pfn_t pfn = *pfnp;
1027         gfn_t gfn = *ipap >> PAGE_SHIFT;
1028
1029         if (PageTransCompound(pfn_to_page(pfn))) {
1030                 unsigned long mask;
1031                 /*
1032                  * The address we faulted on is backed by a transparent huge
1033                  * page.  However, because we map the compound huge page and
1034                  * not the individual tail page, we need to transfer the
1035                  * refcount to the head page.  We have to be careful that the
1036                  * THP doesn't start to split while we are adjusting the
1037                  * refcounts.
1038                  *
1039                  * We are sure this doesn't happen, because mmu_notifier_retry
1040                  * was successful and we are holding the mmu_lock, so if this
1041                  * THP is trying to split, it will be blocked in the mmu
1042                  * notifier before touching any of the pages, specifically
1043                  * before being able to call __split_huge_page_refcount().
1044                  *
1045                  * We can therefore safely transfer the refcount from PG_tail
1046                  * to PG_head and switch the pfn from a tail page to the head
1047                  * page accordingly.
1048                  */
1049                 mask = PTRS_PER_PMD - 1;
1050                 VM_BUG_ON((gfn & mask) != (pfn & mask));
1051                 if (pfn & mask) {
1052                         *ipap &= PMD_MASK;
1053                         kvm_release_pfn_clean(pfn);
1054                         pfn &= ~mask;
1055                         kvm_get_pfn(pfn);
1056                         *pfnp = pfn;
1057                 }
1058
1059                 return true;
1060         }
1061
1062         return false;
1063 }
1064
1065 static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1066 {
1067         if (kvm_vcpu_trap_is_iabt(vcpu))
1068                 return false;
1069
1070         return kvm_vcpu_dabt_iswrite(vcpu);
1071 }
1072
1073 /**
1074  * stage2_wp_ptes - write protect PMD range
1075  * @pmd:        pointer to pmd entry
1076  * @addr:       range start address
1077  * @end:        range end address
1078  */
1079 static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1080 {
1081         pte_t *pte;
1082
1083         pte = pte_offset_kernel(pmd, addr);
1084         do {
1085                 if (!pte_none(*pte)) {
1086                         if (!kvm_s2pte_readonly(pte))
1087                                 kvm_set_s2pte_readonly(pte);
1088                 }
1089         } while (pte++, addr += PAGE_SIZE, addr != end);
1090 }
1091
1092 /**
1093  * stage2_wp_pmds - write protect PUD range
1094  * @pud:        pointer to pud entry
1095  * @addr:       range start address
1096  * @end:        range end address
1097  */
1098 static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1099 {
1100         pmd_t *pmd;
1101         phys_addr_t next;
1102
1103         pmd = stage2_pmd_offset(pud, addr);
1104
1105         do {
1106                 next = stage2_pmd_addr_end(addr, end);
1107                 if (!pmd_none(*pmd)) {
1108                         if (pmd_thp_or_huge(*pmd)) {
1109                                 if (!kvm_s2pmd_readonly(pmd))
1110                                         kvm_set_s2pmd_readonly(pmd);
1111                         } else {
1112                                 stage2_wp_ptes(pmd, addr, next);
1113                         }
1114                 }
1115         } while (pmd++, addr = next, addr != end);
1116 }
1117
1118 /**
1119   * stage2_wp_puds - write protect PGD range
1120   * @pgd:       pointer to pgd entry
1121   * @addr:      range start address
1122   * @end:       range end address
1123   *
1124   * Process PUD entries, for a huge PUD we cause a panic.
1125   */
1126 static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1127 {
1128         pud_t *pud;
1129         phys_addr_t next;
1130
1131         pud = stage2_pud_offset(pgd, addr);
1132         do {
1133                 next = stage2_pud_addr_end(addr, end);
1134                 if (!stage2_pud_none(*pud)) {
1135                         /* TODO:PUD not supported, revisit later if supported */
1136                         BUG_ON(stage2_pud_huge(*pud));
1137                         stage2_wp_pmds(pud, addr, next);
1138                 }
1139         } while (pud++, addr = next, addr != end);
1140 }
1141
1142 /**
1143  * stage2_wp_range() - write protect stage2 memory region range
1144  * @kvm:        The KVM pointer
1145  * @addr:       Start address of range
1146  * @end:        End address of range
1147  */
1148 static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1149 {
1150         pgd_t *pgd;
1151         phys_addr_t next;
1152
1153         pgd = kvm->arch.pgd + stage2_pgd_index(addr);
1154         do {
1155                 /*
1156                  * Release kvm_mmu_lock periodically if the memory region is
1157                  * large. Otherwise, we may see kernel panics with
1158                  * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1159                  * CONFIG_LOCKDEP. Additionally, holding the lock too long
1160                  * will also starve other vCPUs.
1161                  */
1162                 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1163                         cond_resched_lock(&kvm->mmu_lock);
1164
1165                 next = stage2_pgd_addr_end(addr, end);
1166                 if (stage2_pgd_present(*pgd))
1167                         stage2_wp_puds(pgd, addr, next);
1168         } while (pgd++, addr = next, addr != end);
1169 }
1170
1171 /**
1172  * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1173  * @kvm:        The KVM pointer
1174  * @slot:       The memory slot to write protect
1175  *
1176  * Called to start logging dirty pages after memory region
1177  * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1178  * all present PMD and PTEs are write protected in the memory region.
1179  * Afterwards read of dirty page log can be called.
1180  *
1181  * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1182  * serializing operations for VM memory regions.
1183  */
1184 void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1185 {
1186         struct kvm_memslots *slots = kvm_memslots(kvm);
1187         struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1188         phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1189         phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1190
1191         spin_lock(&kvm->mmu_lock);
1192         stage2_wp_range(kvm, start, end);
1193         spin_unlock(&kvm->mmu_lock);
1194         kvm_flush_remote_tlbs(kvm);
1195 }
1196
1197 /**
1198  * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1199  * @kvm:        The KVM pointer
1200  * @slot:       The memory slot associated with mask
1201  * @gfn_offset: The gfn offset in memory slot
1202  * @mask:       The mask of dirty pages at offset 'gfn_offset' in this memory
1203  *              slot to be write protected
1204  *
1205  * Walks bits set in mask write protects the associated pte's. Caller must
1206  * acquire kvm_mmu_lock.
1207  */
1208 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1209                 struct kvm_memory_slot *slot,
1210                 gfn_t gfn_offset, unsigned long mask)
1211 {
1212         phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1213         phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1214         phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1215
1216         stage2_wp_range(kvm, start, end);
1217 }
1218
1219 /*
1220  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1221  * dirty pages.
1222  *
1223  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1224  * enable dirty logging for them.
1225  */
1226 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1227                 struct kvm_memory_slot *slot,
1228                 gfn_t gfn_offset, unsigned long mask)
1229 {
1230         kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1231 }
1232
1233 static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1234                                       unsigned long size, bool uncached)
1235 {
1236         __coherent_cache_guest_page(vcpu, pfn, size, uncached);
1237 }
1238
1239 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1240                           struct kvm_memory_slot *memslot, unsigned long hva,
1241                           unsigned long fault_status)
1242 {
1243         int ret;
1244         bool write_fault, writable, hugetlb = false, force_pte = false;
1245         unsigned long mmu_seq;
1246         gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1247         struct kvm *kvm = vcpu->kvm;
1248         struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1249         struct vm_area_struct *vma;
1250         kvm_pfn_t pfn;
1251         pgprot_t mem_type = PAGE_S2;
1252         bool fault_ipa_uncached;
1253         bool logging_active = memslot_is_logging(memslot);
1254         unsigned long flags = 0;
1255
1256         write_fault = kvm_is_write_fault(vcpu);
1257         if (fault_status == FSC_PERM && !write_fault) {
1258                 kvm_err("Unexpected L2 read permission error\n");
1259                 return -EFAULT;
1260         }
1261
1262         /* Let's check if we will get back a huge page backed by hugetlbfs */
1263         down_read(&current->mm->mmap_sem);
1264         vma = find_vma_intersection(current->mm, hva, hva + 1);
1265         if (unlikely(!vma)) {
1266                 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1267                 up_read(&current->mm->mmap_sem);
1268                 return -EFAULT;
1269         }
1270
1271         if (is_vm_hugetlb_page(vma) && !logging_active) {
1272                 hugetlb = true;
1273                 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1274         } else {
1275                 /*
1276                  * Pages belonging to memslots that don't have the same
1277                  * alignment for userspace and IPA cannot be mapped using
1278                  * block descriptors even if the pages belong to a THP for
1279                  * the process, because the stage-2 block descriptor will
1280                  * cover more than a single THP and we loose atomicity for
1281                  * unmapping, updates, and splits of the THP or other pages
1282                  * in the stage-2 block range.
1283                  */
1284                 if ((memslot->userspace_addr & ~PMD_MASK) !=
1285                     ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1286                         force_pte = true;
1287         }
1288         up_read(&current->mm->mmap_sem);
1289
1290         /* We need minimum second+third level pages */
1291         ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1292                                      KVM_NR_MEM_OBJS);
1293         if (ret)
1294                 return ret;
1295
1296         mmu_seq = vcpu->kvm->mmu_notifier_seq;
1297         /*
1298          * Ensure the read of mmu_notifier_seq happens before we call
1299          * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1300          * the page we just got a reference to gets unmapped before we have a
1301          * chance to grab the mmu_lock, which ensure that if the page gets
1302          * unmapped afterwards, the call to kvm_unmap_hva will take it away
1303          * from us again properly. This smp_rmb() interacts with the smp_wmb()
1304          * in kvm_mmu_notifier_invalidate_<page|range_end>.
1305          */
1306         smp_rmb();
1307
1308         pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1309         if (is_error_pfn(pfn))
1310                 return -EFAULT;
1311
1312         if (kvm_is_device_pfn(pfn)) {
1313                 mem_type = PAGE_S2_DEVICE;
1314                 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1315         } else if (logging_active) {
1316                 /*
1317                  * Faults on pages in a memslot with logging enabled
1318                  * should not be mapped with huge pages (it introduces churn
1319                  * and performance degradation), so force a pte mapping.
1320                  */
1321                 force_pte = true;
1322                 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1323
1324                 /*
1325                  * Only actually map the page as writable if this was a write
1326                  * fault.
1327                  */
1328                 if (!write_fault)
1329                         writable = false;
1330         }
1331
1332         spin_lock(&kvm->mmu_lock);
1333         if (mmu_notifier_retry(kvm, mmu_seq))
1334                 goto out_unlock;
1335
1336         if (!hugetlb && !force_pte)
1337                 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1338
1339         fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1340
1341         if (hugetlb) {
1342                 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1343                 new_pmd = pmd_mkhuge(new_pmd);
1344                 if (writable) {
1345                         kvm_set_s2pmd_writable(&new_pmd);
1346                         kvm_set_pfn_dirty(pfn);
1347                 }
1348                 coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1349                 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1350         } else {
1351                 pte_t new_pte = pfn_pte(pfn, mem_type);
1352
1353                 if (writable) {
1354                         kvm_set_s2pte_writable(&new_pte);
1355                         kvm_set_pfn_dirty(pfn);
1356                         mark_page_dirty(kvm, gfn);
1357                 }
1358                 coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1359                 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1360         }
1361
1362 out_unlock:
1363         spin_unlock(&kvm->mmu_lock);
1364         kvm_set_pfn_accessed(pfn);
1365         kvm_release_pfn_clean(pfn);
1366         return ret;
1367 }
1368
1369 /*
1370  * Resolve the access fault by making the page young again.
1371  * Note that because the faulting entry is guaranteed not to be
1372  * cached in the TLB, we don't need to invalidate anything.
1373  */
1374 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1375 {
1376         pmd_t *pmd;
1377         pte_t *pte;
1378         kvm_pfn_t pfn;
1379         bool pfn_valid = false;
1380
1381         trace_kvm_access_fault(fault_ipa);
1382
1383         spin_lock(&vcpu->kvm->mmu_lock);
1384
1385         pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1386         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1387                 goto out;
1388
1389         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1390                 *pmd = pmd_mkyoung(*pmd);
1391                 pfn = pmd_pfn(*pmd);
1392                 pfn_valid = true;
1393                 goto out;
1394         }
1395
1396         pte = pte_offset_kernel(pmd, fault_ipa);
1397         if (pte_none(*pte))             /* Nothing there either */
1398                 goto out;
1399
1400         *pte = pte_mkyoung(*pte);       /* Just a page... */
1401         pfn = pte_pfn(*pte);
1402         pfn_valid = true;
1403 out:
1404         spin_unlock(&vcpu->kvm->mmu_lock);
1405         if (pfn_valid)
1406                 kvm_set_pfn_accessed(pfn);
1407 }
1408
1409 /**
1410  * kvm_handle_guest_abort - handles all 2nd stage aborts
1411  * @vcpu:       the VCPU pointer
1412  * @run:        the kvm_run structure
1413  *
1414  * Any abort that gets to the host is almost guaranteed to be caused by a
1415  * missing second stage translation table entry, which can mean that either the
1416  * guest simply needs more memory and we must allocate an appropriate page or it
1417  * can mean that the guest tried to access I/O memory, which is emulated by user
1418  * space. The distinction is based on the IPA causing the fault and whether this
1419  * memory region has been registered as standard RAM by user space.
1420  */
1421 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1422 {
1423         unsigned long fault_status;
1424         phys_addr_t fault_ipa;
1425         struct kvm_memory_slot *memslot;
1426         unsigned long hva;
1427         bool is_iabt, write_fault, writable;
1428         gfn_t gfn;
1429         int ret, idx;
1430
1431         is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1432         fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1433
1434         trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1435                               kvm_vcpu_get_hfar(vcpu), fault_ipa);
1436
1437         /* Check the stage-2 fault is trans. fault or write fault */
1438         fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1439         if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1440             fault_status != FSC_ACCESS) {
1441                 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1442                         kvm_vcpu_trap_get_class(vcpu),
1443                         (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1444                         (unsigned long)kvm_vcpu_get_hsr(vcpu));
1445                 return -EFAULT;
1446         }
1447
1448         idx = srcu_read_lock(&vcpu->kvm->srcu);
1449
1450         gfn = fault_ipa >> PAGE_SHIFT;
1451         memslot = gfn_to_memslot(vcpu->kvm, gfn);
1452         hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1453         write_fault = kvm_is_write_fault(vcpu);
1454         if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1455                 if (is_iabt) {
1456                         /* Prefetch Abort on I/O address */
1457                         kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1458                         ret = 1;
1459                         goto out_unlock;
1460                 }
1461
1462                 /*
1463                  * Check for a cache maintenance operation. Since we
1464                  * ended-up here, we know it is outside of any memory
1465                  * slot. But we can't find out if that is for a device,
1466                  * or if the guest is just being stupid. The only thing
1467                  * we know for sure is that this range cannot be cached.
1468                  *
1469                  * So let's assume that the guest is just being
1470                  * cautious, and skip the instruction.
1471                  */
1472                 if (kvm_vcpu_dabt_is_cm(vcpu)) {
1473                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1474                         ret = 1;
1475                         goto out_unlock;
1476                 }
1477
1478                 /*
1479                  * The IPA is reported as [MAX:12], so we need to
1480                  * complement it with the bottom 12 bits from the
1481                  * faulting VA. This is always 12 bits, irrespective
1482                  * of the page size.
1483                  */
1484                 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1485                 ret = io_mem_abort(vcpu, run, fault_ipa);
1486                 goto out_unlock;
1487         }
1488
1489         /* Userspace should not be able to register out-of-bounds IPAs */
1490         VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1491
1492         if (fault_status == FSC_ACCESS) {
1493                 handle_access_fault(vcpu, fault_ipa);
1494                 ret = 1;
1495                 goto out_unlock;
1496         }
1497
1498         ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1499         if (ret == 0)
1500                 ret = 1;
1501 out_unlock:
1502         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1503         return ret;
1504 }
1505
1506 static int handle_hva_to_gpa(struct kvm *kvm,
1507                              unsigned long start,
1508                              unsigned long end,
1509                              int (*handler)(struct kvm *kvm,
1510                                             gpa_t gpa, void *data),
1511                              void *data)
1512 {
1513         struct kvm_memslots *slots;
1514         struct kvm_memory_slot *memslot;
1515         int ret = 0;
1516
1517         slots = kvm_memslots(kvm);
1518
1519         /* we only care about the pages that the guest sees */
1520         kvm_for_each_memslot(memslot, slots) {
1521                 unsigned long hva_start, hva_end;
1522                 gfn_t gfn, gfn_end;
1523
1524                 hva_start = max(start, memslot->userspace_addr);
1525                 hva_end = min(end, memslot->userspace_addr +
1526                                         (memslot->npages << PAGE_SHIFT));
1527                 if (hva_start >= hva_end)
1528                         continue;
1529
1530                 /*
1531                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1532                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1533                  */
1534                 gfn = hva_to_gfn_memslot(hva_start, memslot);
1535                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1536
1537                 for (; gfn < gfn_end; ++gfn) {
1538                         gpa_t gpa = gfn << PAGE_SHIFT;
1539                         ret |= handler(kvm, gpa, data);
1540                 }
1541         }
1542
1543         return ret;
1544 }
1545
1546 static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1547 {
1548         unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1549         return 0;
1550 }
1551
1552 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1553 {
1554         unsigned long end = hva + PAGE_SIZE;
1555
1556         if (!kvm->arch.pgd)
1557                 return 0;
1558
1559         trace_kvm_unmap_hva(hva);
1560         handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1561         return 0;
1562 }
1563
1564 int kvm_unmap_hva_range(struct kvm *kvm,
1565                         unsigned long start, unsigned long end)
1566 {
1567         if (!kvm->arch.pgd)
1568                 return 0;
1569
1570         trace_kvm_unmap_hva_range(start, end);
1571         handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1572         return 0;
1573 }
1574
1575 static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1576 {
1577         pte_t *pte = (pte_t *)data;
1578
1579         /*
1580          * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1581          * flag clear because MMU notifiers will have unmapped a huge PMD before
1582          * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1583          * therefore stage2_set_pte() never needs to clear out a huge PMD
1584          * through this calling path.
1585          */
1586         stage2_set_pte(kvm, NULL, gpa, pte, 0);
1587         return 0;
1588 }
1589
1590
1591 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1592 {
1593         unsigned long end = hva + PAGE_SIZE;
1594         pte_t stage2_pte;
1595
1596         if (!kvm->arch.pgd)
1597                 return;
1598
1599         trace_kvm_set_spte_hva(hva);
1600         stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1601         handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1602 }
1603
1604 static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1605 {
1606         pmd_t *pmd;
1607         pte_t *pte;
1608
1609         pmd = stage2_get_pmd(kvm, NULL, gpa);
1610         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1611                 return 0;
1612
1613         if (pmd_thp_or_huge(*pmd)) {    /* THP, HugeTLB */
1614                 if (pmd_young(*pmd)) {
1615                         *pmd = pmd_mkold(*pmd);
1616                         return 1;
1617                 }
1618
1619                 return 0;
1620         }
1621
1622         pte = pte_offset_kernel(pmd, gpa);
1623         if (pte_none(*pte))
1624                 return 0;
1625
1626         if (pte_young(*pte)) {
1627                 *pte = pte_mkold(*pte); /* Just a page... */
1628                 return 1;
1629         }
1630
1631         return 0;
1632 }
1633
1634 static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1635 {
1636         pmd_t *pmd;
1637         pte_t *pte;
1638
1639         pmd = stage2_get_pmd(kvm, NULL, gpa);
1640         if (!pmd || pmd_none(*pmd))     /* Nothing there */
1641                 return 0;
1642
1643         if (pmd_thp_or_huge(*pmd))              /* THP, HugeTLB */
1644                 return pmd_young(*pmd);
1645
1646         pte = pte_offset_kernel(pmd, gpa);
1647         if (!pte_none(*pte))            /* Just a page... */
1648                 return pte_young(*pte);
1649
1650         return 0;
1651 }
1652
1653 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1654 {
1655         trace_kvm_age_hva(start, end);
1656         return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1657 }
1658
1659 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1660 {
1661         trace_kvm_test_age_hva(hva);
1662         return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1663 }
1664
1665 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1666 {
1667         mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1668 }
1669
1670 phys_addr_t kvm_mmu_get_httbr(void)
1671 {
1672         if (__kvm_cpu_uses_extended_idmap())
1673                 return virt_to_phys(merged_hyp_pgd);
1674         else
1675                 return virt_to_phys(hyp_pgd);
1676 }
1677
1678 phys_addr_t kvm_mmu_get_boot_httbr(void)
1679 {
1680         if (__kvm_cpu_uses_extended_idmap())
1681                 return virt_to_phys(merged_hyp_pgd);
1682         else
1683                 return virt_to_phys(boot_hyp_pgd);
1684 }
1685
1686 phys_addr_t kvm_get_idmap_vector(void)
1687 {
1688         return hyp_idmap_vector;
1689 }
1690
1691 int kvm_mmu_init(void)
1692 {
1693         int err;
1694
1695         hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1696         hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1697         hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1698
1699         /*
1700          * We rely on the linker script to ensure at build time that the HYP
1701          * init code does not cross a page boundary.
1702          */
1703         BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1704
1705         hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1706         boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1707
1708         if (!hyp_pgd || !boot_hyp_pgd) {
1709                 kvm_err("Hyp mode PGD not allocated\n");
1710                 err = -ENOMEM;
1711                 goto out;
1712         }
1713
1714         /* Create the idmap in the boot page tables */
1715         err =   __create_hyp_mappings(boot_hyp_pgd,
1716                                       hyp_idmap_start, hyp_idmap_end,
1717                                       __phys_to_pfn(hyp_idmap_start),
1718                                       PAGE_HYP);
1719
1720         if (err) {
1721                 kvm_err("Failed to idmap %lx-%lx\n",
1722                         hyp_idmap_start, hyp_idmap_end);
1723                 goto out;
1724         }
1725
1726         if (__kvm_cpu_uses_extended_idmap()) {
1727                 merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1728                 if (!merged_hyp_pgd) {
1729                         kvm_err("Failed to allocate extra HYP pgd\n");
1730                         goto out;
1731                 }
1732                 __kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1733                                     hyp_idmap_start);
1734                 return 0;
1735         }
1736
1737         /* Map the very same page at the trampoline VA */
1738         err =   __create_hyp_mappings(boot_hyp_pgd,
1739                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1740                                       __phys_to_pfn(hyp_idmap_start),
1741                                       PAGE_HYP);
1742         if (err) {
1743                 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1744                         TRAMPOLINE_VA);
1745                 goto out;
1746         }
1747
1748         /* Map the same page again into the runtime page tables */
1749         err =   __create_hyp_mappings(hyp_pgd,
1750                                       TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1751                                       __phys_to_pfn(hyp_idmap_start),
1752                                       PAGE_HYP);
1753         if (err) {
1754                 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1755                         TRAMPOLINE_VA);
1756                 goto out;
1757         }
1758
1759         return 0;
1760 out:
1761         free_hyp_pgds();
1762         return err;
1763 }
1764
1765 void kvm_arch_commit_memory_region(struct kvm *kvm,
1766                                    const struct kvm_userspace_memory_region *mem,
1767                                    const struct kvm_memory_slot *old,
1768                                    const struct kvm_memory_slot *new,
1769                                    enum kvm_mr_change change)
1770 {
1771         /*
1772          * At this point memslot has been committed and there is an
1773          * allocated dirty_bitmap[], dirty pages will be be tracked while the
1774          * memory slot is write protected.
1775          */
1776         if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1777                 kvm_mmu_wp_memory_region(kvm, mem->slot);
1778 }
1779
1780 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1781                                    struct kvm_memory_slot *memslot,
1782                                    const struct kvm_userspace_memory_region *mem,
1783                                    enum kvm_mr_change change)
1784 {
1785         hva_t hva = mem->userspace_addr;
1786         hva_t reg_end = hva + mem->memory_size;
1787         bool writable = !(mem->flags & KVM_MEM_READONLY);
1788         int ret = 0;
1789
1790         if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1791                         change != KVM_MR_FLAGS_ONLY)
1792                 return 0;
1793
1794         /*
1795          * Prevent userspace from creating a memory region outside of the IPA
1796          * space addressable by the KVM guest IPA space.
1797          */
1798         if (memslot->base_gfn + memslot->npages >=
1799             (KVM_PHYS_SIZE >> PAGE_SHIFT))
1800                 return -EFAULT;
1801
1802         /*
1803          * A memory region could potentially cover multiple VMAs, and any holes
1804          * between them, so iterate over all of them to find out if we can map
1805          * any of them right now.
1806          *
1807          *     +--------------------------------------------+
1808          * +---------------+----------------+   +----------------+
1809          * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1810          * +---------------+----------------+   +----------------+
1811          *     |               memory region                |
1812          *     +--------------------------------------------+
1813          */
1814         do {
1815                 struct vm_area_struct *vma = find_vma(current->mm, hva);
1816                 hva_t vm_start, vm_end;
1817
1818                 if (!vma || vma->vm_start >= reg_end)
1819                         break;
1820
1821                 /*
1822                  * Mapping a read-only VMA is only allowed if the
1823                  * memory region is configured as read-only.
1824                  */
1825                 if (writable && !(vma->vm_flags & VM_WRITE)) {
1826                         ret = -EPERM;
1827                         break;
1828                 }
1829
1830                 /*
1831                  * Take the intersection of this VMA with the memory region
1832                  */
1833                 vm_start = max(hva, vma->vm_start);
1834                 vm_end = min(reg_end, vma->vm_end);
1835
1836                 if (vma->vm_flags & VM_PFNMAP) {
1837                         gpa_t gpa = mem->guest_phys_addr +
1838                                     (vm_start - mem->userspace_addr);
1839                         phys_addr_t pa;
1840
1841                         pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1842                         pa += vm_start - vma->vm_start;
1843
1844                         /* IO region dirty page logging not allowed */
1845                         if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1846                                 return -EINVAL;
1847
1848                         ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1849                                                     vm_end - vm_start,
1850                                                     writable);
1851                         if (ret)
1852                                 break;
1853                 }
1854                 hva = vm_end;
1855         } while (hva < reg_end);
1856
1857         if (change == KVM_MR_FLAGS_ONLY)
1858                 return ret;
1859
1860         spin_lock(&kvm->mmu_lock);
1861         if (ret)
1862                 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1863         else
1864                 stage2_flush_memslot(kvm, memslot);
1865         spin_unlock(&kvm->mmu_lock);
1866         return ret;
1867 }
1868
1869 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1870                            struct kvm_memory_slot *dont)
1871 {
1872 }
1873
1874 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1875                             unsigned long npages)
1876 {
1877         /*
1878          * Readonly memslots are not incoherent with the caches by definition,
1879          * but in practice, they are used mostly to emulate ROMs or NOR flashes
1880          * that the guest may consider devices and hence map as uncached.
1881          * To prevent incoherency issues in these cases, tag all readonly
1882          * regions as incoherent.
1883          */
1884         if (slot->flags & KVM_MEM_READONLY)
1885                 slot->flags |= KVM_MEMSLOT_INCOHERENT;
1886         return 0;
1887 }
1888
1889 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1890 {
1891 }
1892
1893 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1894 {
1895 }
1896
1897 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1898                                    struct kvm_memory_slot *slot)
1899 {
1900         gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1901         phys_addr_t size = slot->npages << PAGE_SHIFT;
1902
1903         spin_lock(&kvm->mmu_lock);
1904         unmap_stage2_range(kvm, gpa, size);
1905         spin_unlock(&kvm->mmu_lock);
1906 }
1907
1908 /*
1909  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1910  *
1911  * Main problems:
1912  * - S/W ops are local to a CPU (not broadcast)
1913  * - We have line migration behind our back (speculation)
1914  * - System caches don't support S/W at all (damn!)
1915  *
1916  * In the face of the above, the best we can do is to try and convert
1917  * S/W ops to VA ops. Because the guest is not allowed to infer the
1918  * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1919  * which is a rather good thing for us.
1920  *
1921  * Also, it is only used when turning caches on/off ("The expected
1922  * usage of the cache maintenance instructions that operate by set/way
1923  * is associated with the cache maintenance instructions associated
1924  * with the powerdown and powerup of caches, if this is required by
1925  * the implementation.").
1926  *
1927  * We use the following policy:
1928  *
1929  * - If we trap a S/W operation, we enable VM trapping to detect
1930  *   caches being turned on/off, and do a full clean.
1931  *
1932  * - We flush the caches on both caches being turned on and off.
1933  *
1934  * - Once the caches are enabled, we stop trapping VM ops.
1935  */
1936 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1937 {
1938         unsigned long hcr = vcpu_get_hcr(vcpu);
1939
1940         /*
1941          * If this is the first time we do a S/W operation
1942          * (i.e. HCR_TVM not set) flush the whole memory, and set the
1943          * VM trapping.
1944          *
1945          * Otherwise, rely on the VM trapping to wait for the MMU +
1946          * Caches to be turned off. At that point, we'll be able to
1947          * clean the caches again.
1948          */
1949         if (!(hcr & HCR_TVM)) {
1950                 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1951                                         vcpu_has_cache_enabled(vcpu));
1952                 stage2_flush_vm(vcpu->kvm);
1953                 vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1954         }
1955 }
1956
1957 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1958 {
1959         bool now_enabled = vcpu_has_cache_enabled(vcpu);
1960
1961         /*
1962          * If switching the MMU+caches on, need to invalidate the caches.
1963          * If switching it off, need to clean the caches.
1964          * Clean + invalidate does the trick always.
1965          */
1966         if (now_enabled != was_enabled)
1967                 stage2_flush_vm(vcpu->kvm);
1968
1969         /* Caches are now on, stop trapping VM ops (until a S/W op) */
1970         if (now_enabled)
1971                 vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1972
1973         trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1974 }