Merge branch 'topic-0620/samsung-audio-3.4' into chromeos-exynos-3.4
[cascardo/linux.git] / arch / arm / mach-exynos / mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/platform_device.h>
20 #include <linux/delay.h>
21 #include <linux/percpu.h>
22
23 #include <asm/hardware/gic.h>
24 #include <asm/localtimer.h>
25
26 #include <plat/cpu.h>
27
28 #include <mach/map.h>
29 #include <mach/irqs.h>
30 #include <mach/regs-mct.h>
31 #include <asm/mach/time.h>
32
33 #define TICK_BASE_CNT   1
34
35 enum {
36         MCT_INT_SPI,
37         MCT_INT_PPI
38 };
39
40 static unsigned long clk_rate;
41 static unsigned int mct_int_type;
42
43 struct mct_clock_event_device {
44         struct clock_event_device *evt;
45         void __iomem *base;
46         char name[10];
47 };
48
49 static void exynos4_mct_write(unsigned int value, void *addr)
50 {
51         void __iomem *stat_addr;
52         u32 mask;
53         u32 i;
54
55         __raw_writel(value, addr);
56
57         if (likely(addr >= EXYNOS4_MCT_L_BASE(0))) {
58                 u32 base = (u32) addr & EXYNOS4_MCT_L_MASK;
59                 switch ((u32) addr & ~EXYNOS4_MCT_L_MASK) {
60                 case (u32) MCT_L_TCON_OFFSET:
61                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
62                         mask = 1 << 3;          /* L_TCON write status */
63                         break;
64                 case (u32) MCT_L_ICNTB_OFFSET:
65                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
66                         mask = 1 << 1;          /* L_ICNTB write status */
67                         break;
68                 case (u32) MCT_L_TCNTB_OFFSET:
69                         stat_addr = (void __iomem *) base + MCT_L_WSTAT_OFFSET;
70                         mask = 1 << 0;          /* L_TCNTB write status */
71                         break;
72                 default:
73                         return;
74                 }
75         } else {
76                 switch ((u32) addr) {
77                 case (u32) EXYNOS4_MCT_G_TCON:
78                         stat_addr = EXYNOS4_MCT_G_WSTAT;
79                         mask = 1 << 16;         /* G_TCON write status */
80                         break;
81                 case (u32) EXYNOS4_MCT_G_COMP0_L:
82                         stat_addr = EXYNOS4_MCT_G_WSTAT;
83                         mask = 1 << 0;          /* G_COMP0_L write status */
84                         break;
85                 case (u32) EXYNOS4_MCT_G_COMP0_U:
86                         stat_addr = EXYNOS4_MCT_G_WSTAT;
87                         mask = 1 << 1;          /* G_COMP0_U write status */
88                         break;
89                 case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
90                         stat_addr = EXYNOS4_MCT_G_WSTAT;
91                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
92                         break;
93                 case (u32) EXYNOS4_MCT_G_CNT_L:
94                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
95                         mask = 1 << 0;          /* G_CNT_L write status */
96                         break;
97                 case (u32) EXYNOS4_MCT_G_CNT_U:
98                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
99                         mask = 1 << 1;          /* G_CNT_U write status */
100                         break;
101                 default:
102                         return;
103                 }
104         }
105
106         /* Wait maximum 1 ms until written values are applied */
107         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
108                 if (__raw_readl(stat_addr) & mask) {
109                         __raw_writel(mask, stat_addr);
110                         return;
111                 }
112
113         panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
114 }
115
116 /* Clocksource handling */
117 static void exynos4_mct_frc_start(u32 hi, u32 lo)
118 {
119         u32 reg;
120
121         exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
122         exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
123
124         reg = __raw_readl(EXYNOS4_MCT_G_TCON);
125         reg |= MCT_G_TCON_START;
126         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
127 }
128
129 static cycle_t exynos4_frc_read(struct clocksource *cs)
130 {
131         unsigned int lo, hi;
132         u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
133
134         do {
135                 hi = hi2;
136                 lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
137                 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
138         } while (hi != hi2);
139
140         return ((cycle_t)hi << 32) | lo;
141 }
142
143 static void exynos4_frc_resume(struct clocksource *cs)
144 {
145         exynos4_mct_frc_start(0, 0);
146 }
147
148 struct clocksource mct_frc = {
149         .name           = "mct-frc",
150         .rating         = 400,
151         .read           = exynos4_frc_read,
152         .mask           = CLOCKSOURCE_MASK(64),
153         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
154         .resume         = exynos4_frc_resume,
155 };
156
157 static void __init exynos4_clocksource_init(void)
158 {
159         exynos4_mct_frc_start(0, 0);
160
161         if (clocksource_register_hz(&mct_frc, clk_rate))
162                 panic("%s: can't register clocksource\n", mct_frc.name);
163 }
164
165 static void exynos4_mct_comp0_stop(void)
166 {
167         unsigned int tcon;
168
169         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
170         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
171
172         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
173         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
174 }
175
176 static void exynos4_mct_comp0_start(enum clock_event_mode mode,
177                                     unsigned long cycles)
178 {
179         unsigned int tcon;
180         cycle_t comp_cycle;
181
182         tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
183
184         if (mode == CLOCK_EVT_MODE_PERIODIC) {
185                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
186                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
187         }
188
189         comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
190         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
191         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
192
193         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
194
195         tcon |= MCT_G_TCON_COMP0_ENABLE;
196         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
197 }
198
199 static int exynos4_comp_set_next_event(unsigned long cycles,
200                                        struct clock_event_device *evt)
201 {
202         exynos4_mct_comp0_start(evt->mode, cycles);
203
204         return 0;
205 }
206
207 static void exynos4_comp_set_mode(enum clock_event_mode mode,
208                                   struct clock_event_device *evt)
209 {
210         unsigned long cycles_per_jiffy;
211         exynos4_mct_comp0_stop();
212
213         switch (mode) {
214         case CLOCK_EVT_MODE_PERIODIC:
215                 cycles_per_jiffy =
216                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
217                 exynos4_mct_comp0_start(mode, cycles_per_jiffy);
218                 break;
219
220         case CLOCK_EVT_MODE_ONESHOT:
221         case CLOCK_EVT_MODE_UNUSED:
222         case CLOCK_EVT_MODE_SHUTDOWN:
223         case CLOCK_EVT_MODE_RESUME:
224                 break;
225         }
226 }
227
228 static struct clock_event_device mct_comp_device = {
229         .name           = "mct-comp",
230         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
231         .rating         = 250,
232         .set_next_event = exynos4_comp_set_next_event,
233         .set_mode       = exynos4_comp_set_mode,
234 };
235
236 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
237 {
238         struct clock_event_device *evt = dev_id;
239
240         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
241
242         evt->event_handler(evt);
243
244         return IRQ_HANDLED;
245 }
246
247 static struct irqaction mct_comp_event_irq = {
248         .name           = "mct_comp_irq",
249         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
250         .handler        = exynos4_mct_comp_isr,
251         .dev_id         = &mct_comp_device,
252 };
253
254 static void exynos4_clockevent_init(void)
255 {
256         clockevents_calc_mult_shift(&mct_comp_device, clk_rate, 5);
257         mct_comp_device.max_delta_ns =
258                 clockevent_delta2ns(0xffffffff, &mct_comp_device);
259         mct_comp_device.min_delta_ns =
260                 clockevent_delta2ns(0xf, &mct_comp_device);
261         mct_comp_device.cpumask = cpumask_of(0);
262         clockevents_register_device(&mct_comp_device);
263
264         if (soc_is_exynos5250())
265                 setup_irq(EXYNOS5_IRQ_MCT_G0, &mct_comp_event_irq);
266         else
267                 setup_irq(EXYNOS4_IRQ_MCT_G0, &mct_comp_event_irq);
268 }
269
270 #ifdef CONFIG_LOCAL_TIMERS
271
272 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
273
274 /* Clock event handling */
275 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
276 {
277         unsigned long tmp;
278         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
279         void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
280
281         tmp = __raw_readl(addr);
282         if (tmp & mask) {
283                 tmp &= ~mask;
284                 exynos4_mct_write(tmp, addr);
285         }
286 }
287
288 static void exynos4_mct_tick_start(unsigned long cycles,
289                                    struct mct_clock_event_device *mevt)
290 {
291         unsigned long tmp;
292
293         exynos4_mct_tick_stop(mevt);
294
295         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
296
297         /* update interrupt count buffer */
298         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
299
300         /* enable MCT tick interrupt */
301         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
302
303         tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
304         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
305                MCT_L_TCON_INTERVAL_MODE;
306         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
307 }
308
309 static int exynos4_tick_set_next_event(unsigned long cycles,
310                                        struct clock_event_device *evt)
311 {
312         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
313
314         exynos4_mct_tick_start(cycles, mevt);
315
316         return 0;
317 }
318
319 static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
320                                          struct clock_event_device *evt)
321 {
322         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
323         unsigned long cycles_per_jiffy;
324
325         exynos4_mct_tick_stop(mevt);
326
327         switch (mode) {
328         case CLOCK_EVT_MODE_PERIODIC:
329                 cycles_per_jiffy =
330                         (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
331                 exynos4_mct_tick_start(cycles_per_jiffy, mevt);
332                 break;
333
334         case CLOCK_EVT_MODE_ONESHOT:
335         case CLOCK_EVT_MODE_UNUSED:
336         case CLOCK_EVT_MODE_SHUTDOWN:
337         case CLOCK_EVT_MODE_RESUME:
338                 break;
339         }
340 }
341
342 static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
343 {
344         struct clock_event_device *evt = mevt->evt;
345
346         /*
347          * This is for supporting oneshot mode.
348          * Mct would generate interrupt periodically
349          * without explicit stopping.
350          */
351         if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
352                 exynos4_mct_tick_stop(mevt);
353
354         /* Clear the MCT tick interrupt */
355         if (__raw_readl(mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
356                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
357                 return 1;
358         } else {
359                 return 0;
360         }
361 }
362
363 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
364 {
365         struct mct_clock_event_device *mevt = dev_id;
366         struct clock_event_device *evt = mevt->evt;
367
368         exynos4_mct_tick_clear(mevt);
369
370         evt->event_handler(evt);
371
372         return IRQ_HANDLED;
373 }
374
375 static struct irqaction mct_tick0_event_irq = {
376         .name           = "mct_tick0_irq",
377         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
378         .handler        = exynos4_mct_tick_isr,
379 };
380
381 static struct irqaction mct_tick1_event_irq = {
382         .name           = "mct_tick1_irq",
383         .flags          = IRQF_TIMER | IRQF_NOBALANCING,
384         .handler        = exynos4_mct_tick_isr,
385 };
386
387 static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
388 {
389         struct mct_clock_event_device *mevt;
390         unsigned int cpu = smp_processor_id();
391         int mct_lx_irq;
392
393         mevt = this_cpu_ptr(&percpu_mct_tick);
394         mevt->evt = evt;
395
396         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
397         sprintf(mevt->name, "mct_tick%d", cpu);
398
399         evt->name = mevt->name;
400         evt->cpumask = cpumask_of(cpu);
401         evt->set_next_event = exynos4_tick_set_next_event;
402         evt->set_mode = exynos4_tick_set_mode;
403         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
404         evt->rating = 450;
405
406         clockevents_calc_mult_shift(evt, clk_rate / (TICK_BASE_CNT + 1), 5);
407         evt->max_delta_ns =
408                 clockevent_delta2ns(0x7fffffff, evt);
409         evt->min_delta_ns =
410                 clockevent_delta2ns(0xf, evt);
411
412         clockevents_register_device(evt);
413
414         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
415
416         if (mct_int_type == MCT_INT_SPI) {
417                 if (cpu == 0) {
418                         mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L0 :
419                                                 EXYNOS5_IRQ_MCT_L0;
420                         mct_tick0_event_irq.dev_id = mevt;
421                         evt->irq = mct_lx_irq;
422                         setup_irq(mct_lx_irq, &mct_tick0_event_irq);
423                 } else {
424                         mct_lx_irq = soc_is_exynos4210() ? EXYNOS4_IRQ_MCT_L1 :
425                                                 EXYNOS5_IRQ_MCT_L1;
426                         mct_tick1_event_irq.dev_id = mevt;
427                         evt->irq = mct_lx_irq;
428                         setup_irq(mct_lx_irq, &mct_tick1_event_irq);
429                         irq_set_affinity(mct_lx_irq, cpumask_of(1));
430                 }
431         } else {
432                 enable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER, 0);
433         }
434
435         return 0;
436 }
437
438 static void exynos4_local_timer_stop(struct clock_event_device *evt)
439 {
440         unsigned int cpu = smp_processor_id();
441         evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
442         if (mct_int_type == MCT_INT_SPI)
443                 if (cpu == 0)
444                         remove_irq(evt->irq, &mct_tick0_event_irq);
445                 else
446                         remove_irq(evt->irq, &mct_tick1_event_irq);
447         else
448                 disable_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER);
449 }
450
451 static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
452         .setup  = exynos4_local_timer_setup,
453         .stop   = exynos4_local_timer_stop,
454 };
455 #endif /* CONFIG_LOCAL_TIMERS */
456
457 static void __init exynos4_timer_resources(void)
458 {
459         struct clk *mct_clk;
460         mct_clk = clk_get(NULL, "xtal");
461
462         clk_rate = clk_get_rate(mct_clk);
463
464 #ifdef CONFIG_LOCAL_TIMERS
465         if (mct_int_type == MCT_INT_PPI) {
466                 int err;
467
468                 err = request_percpu_irq(EXYNOS_IRQ_MCT_LOCALTIMER,
469                                          exynos4_mct_tick_isr, "MCT",
470                                          &percpu_mct_tick);
471                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
472                      EXYNOS_IRQ_MCT_LOCALTIMER, err);
473         }
474
475         local_timer_register(&exynos4_mct_tick_ops);
476 #endif /* CONFIG_LOCAL_TIMERS */
477 }
478
479 static void __init exynos4_timer_init(void)
480 {
481         if ((soc_is_exynos4210()) || (soc_is_exynos5250()))
482                 mct_int_type = MCT_INT_SPI;
483         else
484                 mct_int_type = MCT_INT_PPI;
485
486         exynos4_timer_resources();
487         exynos4_clocksource_init();
488         exynos4_clockevent_init();
489 }
490
491 struct sys_timer exynos4_timer = {
492         .init           = exynos4_timer_init,
493 };