cfg80211: handle failed skb allocation
[cascardo/linux.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39
40 #include <trace/events/kvm.h>
41
42 #include "sys_regs.h"
43
44 #include "trace.h"
45
46 /*
47  * All of this file is extremly similar to the ARM coproc.c, but the
48  * types are different. My gut feeling is that it should be pretty
49  * easy to merge, but that would be an ABI breakage -- again. VFP
50  * would also need to be abstracted.
51  *
52  * For AArch32, we only take care of what is being trapped. Anything
53  * that has to do with init and userspace access has to go via the
54  * 64bit interface.
55  */
56
57 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
58 static u32 cache_levels;
59
60 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
61 #define CSSELR_MAX 12
62
63 /* Which cache CCSIDR represents depends on CSSELR value. */
64 static u32 get_ccsidr(u32 csselr)
65 {
66         u32 ccsidr;
67
68         /* Make sure noone else changes CSSELR during this! */
69         local_irq_disable();
70         /* Put value into CSSELR */
71         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
72         isb();
73         /* Read result out of CCSIDR */
74         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
75         local_irq_enable();
76
77         return ccsidr;
78 }
79
80 /*
81  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
82  */
83 static bool access_dcsw(struct kvm_vcpu *vcpu,
84                         struct sys_reg_params *p,
85                         const struct sys_reg_desc *r)
86 {
87         if (!p->is_write)
88                 return read_from_write_only(vcpu, p);
89
90         kvm_set_way_flush(vcpu);
91         return true;
92 }
93
94 /*
95  * Generic accessor for VM registers. Only called as long as HCR_TVM
96  * is set. If the guest enables the MMU, we stop trapping the VM
97  * sys_regs and leave it in complete control of the caches.
98  */
99 static bool access_vm_reg(struct kvm_vcpu *vcpu,
100                           struct sys_reg_params *p,
101                           const struct sys_reg_desc *r)
102 {
103         bool was_enabled = vcpu_has_cache_enabled(vcpu);
104
105         BUG_ON(!p->is_write);
106
107         if (!p->is_aarch32) {
108                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
109         } else {
110                 if (!p->is_32bit)
111                         vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
112                 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
113         }
114
115         kvm_toggle_cache(vcpu, was_enabled);
116         return true;
117 }
118
119 /*
120  * Trap handler for the GICv3 SGI generation system register.
121  * Forward the request to the VGIC emulation.
122  * The cp15_64 code makes sure this automatically works
123  * for both AArch64 and AArch32 accesses.
124  */
125 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
126                            struct sys_reg_params *p,
127                            const struct sys_reg_desc *r)
128 {
129         if (!p->is_write)
130                 return read_from_write_only(vcpu, p);
131
132         vgic_v3_dispatch_sgi(vcpu, p->regval);
133
134         return true;
135 }
136
137 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
138                         struct sys_reg_params *p,
139                         const struct sys_reg_desc *r)
140 {
141         if (p->is_write)
142                 return ignore_write(vcpu, p);
143         else
144                 return read_zero(vcpu, p);
145 }
146
147 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
148                            struct sys_reg_params *p,
149                            const struct sys_reg_desc *r)
150 {
151         if (p->is_write) {
152                 return ignore_write(vcpu, p);
153         } else {
154                 p->regval = (1 << 3);
155                 return true;
156         }
157 }
158
159 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
160                                    struct sys_reg_params *p,
161                                    const struct sys_reg_desc *r)
162 {
163         if (p->is_write) {
164                 return ignore_write(vcpu, p);
165         } else {
166                 u32 val;
167                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
168                 p->regval = val;
169                 return true;
170         }
171 }
172
173 /*
174  * We want to avoid world-switching all the DBG registers all the
175  * time:
176  * 
177  * - If we've touched any debug register, it is likely that we're
178  *   going to touch more of them. It then makes sense to disable the
179  *   traps and start doing the save/restore dance
180  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
181  *   then mandatory to save/restore the registers, as the guest
182  *   depends on them.
183  * 
184  * For this, we use a DIRTY bit, indicating the guest has modified the
185  * debug registers, used as follow:
186  *
187  * On guest entry:
188  * - If the dirty bit is set (because we're coming back from trapping),
189  *   disable the traps, save host registers, restore guest registers.
190  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
191  *   set the dirty bit, disable the traps, save host registers,
192  *   restore guest registers.
193  * - Otherwise, enable the traps
194  *
195  * On guest exit:
196  * - If the dirty bit is set, save guest registers, restore host
197  *   registers and clear the dirty bit. This ensure that the host can
198  *   now use the debug registers.
199  */
200 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
201                             struct sys_reg_params *p,
202                             const struct sys_reg_desc *r)
203 {
204         if (p->is_write) {
205                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
206                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
207         } else {
208                 p->regval = vcpu_sys_reg(vcpu, r->reg);
209         }
210
211         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
212
213         return true;
214 }
215
216 /*
217  * reg_to_dbg/dbg_to_reg
218  *
219  * A 32 bit write to a debug register leave top bits alone
220  * A 32 bit read from a debug register only returns the bottom bits
221  *
222  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
223  * hyp.S code switches between host and guest values in future.
224  */
225 static void reg_to_dbg(struct kvm_vcpu *vcpu,
226                        struct sys_reg_params *p,
227                        u64 *dbg_reg)
228 {
229         u64 val = p->regval;
230
231         if (p->is_32bit) {
232                 val &= 0xffffffffUL;
233                 val |= ((*dbg_reg >> 32) << 32);
234         }
235
236         *dbg_reg = val;
237         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
238 }
239
240 static void dbg_to_reg(struct kvm_vcpu *vcpu,
241                        struct sys_reg_params *p,
242                        u64 *dbg_reg)
243 {
244         p->regval = *dbg_reg;
245         if (p->is_32bit)
246                 p->regval &= 0xffffffffUL;
247 }
248
249 static bool trap_bvr(struct kvm_vcpu *vcpu,
250                      struct sys_reg_params *p,
251                      const struct sys_reg_desc *rd)
252 {
253         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
254
255         if (p->is_write)
256                 reg_to_dbg(vcpu, p, dbg_reg);
257         else
258                 dbg_to_reg(vcpu, p, dbg_reg);
259
260         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
261
262         return true;
263 }
264
265 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
266                 const struct kvm_one_reg *reg, void __user *uaddr)
267 {
268         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
269
270         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
271                 return -EFAULT;
272         return 0;
273 }
274
275 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
276         const struct kvm_one_reg *reg, void __user *uaddr)
277 {
278         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
279
280         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
281                 return -EFAULT;
282         return 0;
283 }
284
285 static void reset_bvr(struct kvm_vcpu *vcpu,
286                       const struct sys_reg_desc *rd)
287 {
288         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
289 }
290
291 static bool trap_bcr(struct kvm_vcpu *vcpu,
292                      struct sys_reg_params *p,
293                      const struct sys_reg_desc *rd)
294 {
295         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
296
297         if (p->is_write)
298                 reg_to_dbg(vcpu, p, dbg_reg);
299         else
300                 dbg_to_reg(vcpu, p, dbg_reg);
301
302         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
303
304         return true;
305 }
306
307 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
308                 const struct kvm_one_reg *reg, void __user *uaddr)
309 {
310         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
311
312         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
313                 return -EFAULT;
314
315         return 0;
316 }
317
318 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
319         const struct kvm_one_reg *reg, void __user *uaddr)
320 {
321         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
322
323         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
324                 return -EFAULT;
325         return 0;
326 }
327
328 static void reset_bcr(struct kvm_vcpu *vcpu,
329                       const struct sys_reg_desc *rd)
330 {
331         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
332 }
333
334 static bool trap_wvr(struct kvm_vcpu *vcpu,
335                      struct sys_reg_params *p,
336                      const struct sys_reg_desc *rd)
337 {
338         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
339
340         if (p->is_write)
341                 reg_to_dbg(vcpu, p, dbg_reg);
342         else
343                 dbg_to_reg(vcpu, p, dbg_reg);
344
345         trace_trap_reg(__func__, rd->reg, p->is_write,
346                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
347
348         return true;
349 }
350
351 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
352                 const struct kvm_one_reg *reg, void __user *uaddr)
353 {
354         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
355
356         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
357                 return -EFAULT;
358         return 0;
359 }
360
361 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
362         const struct kvm_one_reg *reg, void __user *uaddr)
363 {
364         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
365
366         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
367                 return -EFAULT;
368         return 0;
369 }
370
371 static void reset_wvr(struct kvm_vcpu *vcpu,
372                       const struct sys_reg_desc *rd)
373 {
374         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
375 }
376
377 static bool trap_wcr(struct kvm_vcpu *vcpu,
378                      struct sys_reg_params *p,
379                      const struct sys_reg_desc *rd)
380 {
381         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
382
383         if (p->is_write)
384                 reg_to_dbg(vcpu, p, dbg_reg);
385         else
386                 dbg_to_reg(vcpu, p, dbg_reg);
387
388         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
389
390         return true;
391 }
392
393 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
394                 const struct kvm_one_reg *reg, void __user *uaddr)
395 {
396         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
397
398         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
399                 return -EFAULT;
400         return 0;
401 }
402
403 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
404         const struct kvm_one_reg *reg, void __user *uaddr)
405 {
406         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
407
408         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
409                 return -EFAULT;
410         return 0;
411 }
412
413 static void reset_wcr(struct kvm_vcpu *vcpu,
414                       const struct sys_reg_desc *rd)
415 {
416         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
417 }
418
419 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
420 {
421         u64 amair;
422
423         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
424         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
425 }
426
427 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
428 {
429         u64 mpidr;
430
431         /*
432          * Map the vcpu_id into the first three affinity level fields of
433          * the MPIDR. We limit the number of VCPUs in level 0 due to a
434          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
435          * of the GICv3 to be able to address each CPU directly when
436          * sending IPIs.
437          */
438         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
439         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
440         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
441         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
442 }
443
444 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
445 {
446         u64 pmcr, val;
447
448         asm volatile("mrs %0, pmcr_el0\n" : "=r" (pmcr));
449         /* Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) is reset to UNKNOWN
450          * except PMCR.E resetting to zero.
451          */
452         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
453                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
454         vcpu_sys_reg(vcpu, PMCR_EL0) = val;
455 }
456
457 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
458 {
459         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
460
461         return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
462 }
463
464 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
465 {
466         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
467
468         return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
469                  || vcpu_mode_priv(vcpu));
470 }
471
472 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
473 {
474         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
475
476         return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
477                  || vcpu_mode_priv(vcpu));
478 }
479
480 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
481 {
482         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
483
484         return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
485                  || vcpu_mode_priv(vcpu));
486 }
487
488 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
489                         const struct sys_reg_desc *r)
490 {
491         u64 val;
492
493         if (!kvm_arm_pmu_v3_ready(vcpu))
494                 return trap_raz_wi(vcpu, p, r);
495
496         if (pmu_access_el0_disabled(vcpu))
497                 return false;
498
499         if (p->is_write) {
500                 /* Only update writeable bits of PMCR */
501                 val = vcpu_sys_reg(vcpu, PMCR_EL0);
502                 val &= ~ARMV8_PMU_PMCR_MASK;
503                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
504                 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
505                 kvm_pmu_handle_pmcr(vcpu, val);
506         } else {
507                 /* PMCR.P & PMCR.C are RAZ */
508                 val = vcpu_sys_reg(vcpu, PMCR_EL0)
509                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
510                 p->regval = val;
511         }
512
513         return true;
514 }
515
516 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
517                           const struct sys_reg_desc *r)
518 {
519         if (!kvm_arm_pmu_v3_ready(vcpu))
520                 return trap_raz_wi(vcpu, p, r);
521
522         if (pmu_access_event_counter_el0_disabled(vcpu))
523                 return false;
524
525         if (p->is_write)
526                 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
527         else
528                 /* return PMSELR.SEL field */
529                 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
530                             & ARMV8_PMU_COUNTER_MASK;
531
532         return true;
533 }
534
535 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
536                           const struct sys_reg_desc *r)
537 {
538         u64 pmceid;
539
540         if (!kvm_arm_pmu_v3_ready(vcpu))
541                 return trap_raz_wi(vcpu, p, r);
542
543         BUG_ON(p->is_write);
544
545         if (pmu_access_el0_disabled(vcpu))
546                 return false;
547
548         if (!(p->Op2 & 1))
549                 asm volatile("mrs %0, pmceid0_el0\n" : "=r" (pmceid));
550         else
551                 asm volatile("mrs %0, pmceid1_el0\n" : "=r" (pmceid));
552
553         p->regval = pmceid;
554
555         return true;
556 }
557
558 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
559 {
560         u64 pmcr, val;
561
562         pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
563         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
564         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
565                 return false;
566
567         return true;
568 }
569
570 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
571                               struct sys_reg_params *p,
572                               const struct sys_reg_desc *r)
573 {
574         u64 idx;
575
576         if (!kvm_arm_pmu_v3_ready(vcpu))
577                 return trap_raz_wi(vcpu, p, r);
578
579         if (r->CRn == 9 && r->CRm == 13) {
580                 if (r->Op2 == 2) {
581                         /* PMXEVCNTR_EL0 */
582                         if (pmu_access_event_counter_el0_disabled(vcpu))
583                                 return false;
584
585                         idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
586                               & ARMV8_PMU_COUNTER_MASK;
587                 } else if (r->Op2 == 0) {
588                         /* PMCCNTR_EL0 */
589                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
590                                 return false;
591
592                         idx = ARMV8_PMU_CYCLE_IDX;
593                 } else {
594                         BUG();
595                 }
596         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
597                 /* PMEVCNTRn_EL0 */
598                 if (pmu_access_event_counter_el0_disabled(vcpu))
599                         return false;
600
601                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
602         } else {
603                 BUG();
604         }
605
606         if (!pmu_counter_idx_valid(vcpu, idx))
607                 return false;
608
609         if (p->is_write) {
610                 if (pmu_access_el0_disabled(vcpu))
611                         return false;
612
613                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
614         } else {
615                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
616         }
617
618         return true;
619 }
620
621 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
622                                const struct sys_reg_desc *r)
623 {
624         u64 idx, reg;
625
626         if (!kvm_arm_pmu_v3_ready(vcpu))
627                 return trap_raz_wi(vcpu, p, r);
628
629         if (pmu_access_el0_disabled(vcpu))
630                 return false;
631
632         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
633                 /* PMXEVTYPER_EL0 */
634                 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
635                 reg = PMEVTYPER0_EL0 + idx;
636         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
637                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
638                 if (idx == ARMV8_PMU_CYCLE_IDX)
639                         reg = PMCCFILTR_EL0;
640                 else
641                         /* PMEVTYPERn_EL0 */
642                         reg = PMEVTYPER0_EL0 + idx;
643         } else {
644                 BUG();
645         }
646
647         if (!pmu_counter_idx_valid(vcpu, idx))
648                 return false;
649
650         if (p->is_write) {
651                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
652                 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
653         } else {
654                 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
655         }
656
657         return true;
658 }
659
660 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
661                            const struct sys_reg_desc *r)
662 {
663         u64 val, mask;
664
665         if (!kvm_arm_pmu_v3_ready(vcpu))
666                 return trap_raz_wi(vcpu, p, r);
667
668         if (pmu_access_el0_disabled(vcpu))
669                 return false;
670
671         mask = kvm_pmu_valid_counter_mask(vcpu);
672         if (p->is_write) {
673                 val = p->regval & mask;
674                 if (r->Op2 & 0x1) {
675                         /* accessing PMCNTENSET_EL0 */
676                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
677                         kvm_pmu_enable_counter(vcpu, val);
678                 } else {
679                         /* accessing PMCNTENCLR_EL0 */
680                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
681                         kvm_pmu_disable_counter(vcpu, val);
682                 }
683         } else {
684                 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
685         }
686
687         return true;
688 }
689
690 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
691                            const struct sys_reg_desc *r)
692 {
693         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
694
695         if (!kvm_arm_pmu_v3_ready(vcpu))
696                 return trap_raz_wi(vcpu, p, r);
697
698         if (!vcpu_mode_priv(vcpu))
699                 return false;
700
701         if (p->is_write) {
702                 u64 val = p->regval & mask;
703
704                 if (r->Op2 & 0x1)
705                         /* accessing PMINTENSET_EL1 */
706                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
707                 else
708                         /* accessing PMINTENCLR_EL1 */
709                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
710         } else {
711                 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
712         }
713
714         return true;
715 }
716
717 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
718                          const struct sys_reg_desc *r)
719 {
720         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
721
722         if (!kvm_arm_pmu_v3_ready(vcpu))
723                 return trap_raz_wi(vcpu, p, r);
724
725         if (pmu_access_el0_disabled(vcpu))
726                 return false;
727
728         if (p->is_write) {
729                 if (r->CRm & 0x2)
730                         /* accessing PMOVSSET_EL0 */
731                         kvm_pmu_overflow_set(vcpu, p->regval & mask);
732                 else
733                         /* accessing PMOVSCLR_EL0 */
734                         vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
735         } else {
736                 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
737         }
738
739         return true;
740 }
741
742 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
743                            const struct sys_reg_desc *r)
744 {
745         u64 mask;
746
747         if (!kvm_arm_pmu_v3_ready(vcpu))
748                 return trap_raz_wi(vcpu, p, r);
749
750         if (pmu_write_swinc_el0_disabled(vcpu))
751                 return false;
752
753         if (p->is_write) {
754                 mask = kvm_pmu_valid_counter_mask(vcpu);
755                 kvm_pmu_software_increment(vcpu, p->regval & mask);
756                 return true;
757         }
758
759         return false;
760 }
761
762 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
763                              const struct sys_reg_desc *r)
764 {
765         if (!kvm_arm_pmu_v3_ready(vcpu))
766                 return trap_raz_wi(vcpu, p, r);
767
768         if (p->is_write) {
769                 if (!vcpu_mode_priv(vcpu))
770                         return false;
771
772                 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
773                                                     & ARMV8_PMU_USERENR_MASK;
774         } else {
775                 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
776                             & ARMV8_PMU_USERENR_MASK;
777         }
778
779         return true;
780 }
781
782 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
783 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
784         /* DBGBVRn_EL1 */                                               \
785         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
786           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
787         /* DBGBCRn_EL1 */                                               \
788         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
789           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
790         /* DBGWVRn_EL1 */                                               \
791         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
792           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
793         /* DBGWCRn_EL1 */                                               \
794         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
795           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
796
797 /* Macro to expand the PMEVCNTRn_EL0 register */
798 #define PMU_PMEVCNTR_EL0(n)                                             \
799         /* PMEVCNTRn_EL0 */                                             \
800         { Op0(0b11), Op1(0b011), CRn(0b1110),                           \
801           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
802           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
803
804 /* Macro to expand the PMEVTYPERn_EL0 register */
805 #define PMU_PMEVTYPER_EL0(n)                                            \
806         /* PMEVTYPERn_EL0 */                                            \
807         { Op0(0b11), Op1(0b011), CRn(0b1110),                           \
808           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
809           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
810
811 /*
812  * Architected system registers.
813  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
814  *
815  * We could trap ID_DFR0 and tell the guest we don't support performance
816  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
817  * NAKed, so it will read the PMCR anyway.
818  *
819  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
820  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
821  * all PM registers, which doesn't crash the guest kernel at least.
822  *
823  * Debug handling: We do trap most, if not all debug related system
824  * registers. The implementation is good enough to ensure that a guest
825  * can use these with minimal performance degradation. The drawback is
826  * that we don't implement any of the external debug, none of the
827  * OSlock protocol. This should be revisited if we ever encounter a
828  * more demanding guest...
829  */
830 static const struct sys_reg_desc sys_reg_descs[] = {
831         /* DC ISW */
832         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
833           access_dcsw },
834         /* DC CSW */
835         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
836           access_dcsw },
837         /* DC CISW */
838         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
839           access_dcsw },
840
841         DBG_BCR_BVR_WCR_WVR_EL1(0),
842         DBG_BCR_BVR_WCR_WVR_EL1(1),
843         /* MDCCINT_EL1 */
844         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
845           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
846         /* MDSCR_EL1 */
847         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
848           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
849         DBG_BCR_BVR_WCR_WVR_EL1(2),
850         DBG_BCR_BVR_WCR_WVR_EL1(3),
851         DBG_BCR_BVR_WCR_WVR_EL1(4),
852         DBG_BCR_BVR_WCR_WVR_EL1(5),
853         DBG_BCR_BVR_WCR_WVR_EL1(6),
854         DBG_BCR_BVR_WCR_WVR_EL1(7),
855         DBG_BCR_BVR_WCR_WVR_EL1(8),
856         DBG_BCR_BVR_WCR_WVR_EL1(9),
857         DBG_BCR_BVR_WCR_WVR_EL1(10),
858         DBG_BCR_BVR_WCR_WVR_EL1(11),
859         DBG_BCR_BVR_WCR_WVR_EL1(12),
860         DBG_BCR_BVR_WCR_WVR_EL1(13),
861         DBG_BCR_BVR_WCR_WVR_EL1(14),
862         DBG_BCR_BVR_WCR_WVR_EL1(15),
863
864         /* MDRAR_EL1 */
865         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
866           trap_raz_wi },
867         /* OSLAR_EL1 */
868         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
869           trap_raz_wi },
870         /* OSLSR_EL1 */
871         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
872           trap_oslsr_el1 },
873         /* OSDLR_EL1 */
874         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
875           trap_raz_wi },
876         /* DBGPRCR_EL1 */
877         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
878           trap_raz_wi },
879         /* DBGCLAIMSET_EL1 */
880         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
881           trap_raz_wi },
882         /* DBGCLAIMCLR_EL1 */
883         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
884           trap_raz_wi },
885         /* DBGAUTHSTATUS_EL1 */
886         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
887           trap_dbgauthstatus_el1 },
888
889         /* MDCCSR_EL1 */
890         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
891           trap_raz_wi },
892         /* DBGDTR_EL0 */
893         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
894           trap_raz_wi },
895         /* DBGDTR[TR]X_EL0 */
896         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
897           trap_raz_wi },
898
899         /* DBGVCR32_EL2 */
900         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
901           NULL, reset_val, DBGVCR32_EL2, 0 },
902
903         /* MPIDR_EL1 */
904         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
905           NULL, reset_mpidr, MPIDR_EL1 },
906         /* SCTLR_EL1 */
907         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
908           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
909         /* CPACR_EL1 */
910         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
911           NULL, reset_val, CPACR_EL1, 0 },
912         /* TTBR0_EL1 */
913         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
914           access_vm_reg, reset_unknown, TTBR0_EL1 },
915         /* TTBR1_EL1 */
916         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
917           access_vm_reg, reset_unknown, TTBR1_EL1 },
918         /* TCR_EL1 */
919         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
920           access_vm_reg, reset_val, TCR_EL1, 0 },
921
922         /* AFSR0_EL1 */
923         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
924           access_vm_reg, reset_unknown, AFSR0_EL1 },
925         /* AFSR1_EL1 */
926         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
927           access_vm_reg, reset_unknown, AFSR1_EL1 },
928         /* ESR_EL1 */
929         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
930           access_vm_reg, reset_unknown, ESR_EL1 },
931         /* FAR_EL1 */
932         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
933           access_vm_reg, reset_unknown, FAR_EL1 },
934         /* PAR_EL1 */
935         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
936           NULL, reset_unknown, PAR_EL1 },
937
938         /* PMINTENSET_EL1 */
939         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
940           access_pminten, reset_unknown, PMINTENSET_EL1 },
941         /* PMINTENCLR_EL1 */
942         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
943           access_pminten, NULL, PMINTENSET_EL1 },
944
945         /* MAIR_EL1 */
946         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
947           access_vm_reg, reset_unknown, MAIR_EL1 },
948         /* AMAIR_EL1 */
949         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
950           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
951
952         /* VBAR_EL1 */
953         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
954           NULL, reset_val, VBAR_EL1, 0 },
955
956         /* ICC_SGI1R_EL1 */
957         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
958           access_gic_sgi },
959         /* ICC_SRE_EL1 */
960         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
961           trap_raz_wi },
962
963         /* CONTEXTIDR_EL1 */
964         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
965           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
966         /* TPIDR_EL1 */
967         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
968           NULL, reset_unknown, TPIDR_EL1 },
969
970         /* CNTKCTL_EL1 */
971         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
972           NULL, reset_val, CNTKCTL_EL1, 0},
973
974         /* CSSELR_EL1 */
975         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
976           NULL, reset_unknown, CSSELR_EL1 },
977
978         /* PMCR_EL0 */
979         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
980           access_pmcr, reset_pmcr, },
981         /* PMCNTENSET_EL0 */
982         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
983           access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
984         /* PMCNTENCLR_EL0 */
985         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
986           access_pmcnten, NULL, PMCNTENSET_EL0 },
987         /* PMOVSCLR_EL0 */
988         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
989           access_pmovs, NULL, PMOVSSET_EL0 },
990         /* PMSWINC_EL0 */
991         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
992           access_pmswinc, reset_unknown, PMSWINC_EL0 },
993         /* PMSELR_EL0 */
994         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
995           access_pmselr, reset_unknown, PMSELR_EL0 },
996         /* PMCEID0_EL0 */
997         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
998           access_pmceid },
999         /* PMCEID1_EL0 */
1000         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1001           access_pmceid },
1002         /* PMCCNTR_EL0 */
1003         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1004           access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1005         /* PMXEVTYPER_EL0 */
1006         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1007           access_pmu_evtyper },
1008         /* PMXEVCNTR_EL0 */
1009         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1010           access_pmu_evcntr },
1011         /* PMUSERENR_EL0
1012          * This register resets as unknown in 64bit mode while it resets as zero
1013          * in 32bit mode. Here we choose to reset it as zero for consistency.
1014          */
1015         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1016           access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1017         /* PMOVSSET_EL0 */
1018         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1019           access_pmovs, reset_unknown, PMOVSSET_EL0 },
1020
1021         /* TPIDR_EL0 */
1022         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1023           NULL, reset_unknown, TPIDR_EL0 },
1024         /* TPIDRRO_EL0 */
1025         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1026           NULL, reset_unknown, TPIDRRO_EL0 },
1027
1028         /* PMEVCNTRn_EL0 */
1029         PMU_PMEVCNTR_EL0(0),
1030         PMU_PMEVCNTR_EL0(1),
1031         PMU_PMEVCNTR_EL0(2),
1032         PMU_PMEVCNTR_EL0(3),
1033         PMU_PMEVCNTR_EL0(4),
1034         PMU_PMEVCNTR_EL0(5),
1035         PMU_PMEVCNTR_EL0(6),
1036         PMU_PMEVCNTR_EL0(7),
1037         PMU_PMEVCNTR_EL0(8),
1038         PMU_PMEVCNTR_EL0(9),
1039         PMU_PMEVCNTR_EL0(10),
1040         PMU_PMEVCNTR_EL0(11),
1041         PMU_PMEVCNTR_EL0(12),
1042         PMU_PMEVCNTR_EL0(13),
1043         PMU_PMEVCNTR_EL0(14),
1044         PMU_PMEVCNTR_EL0(15),
1045         PMU_PMEVCNTR_EL0(16),
1046         PMU_PMEVCNTR_EL0(17),
1047         PMU_PMEVCNTR_EL0(18),
1048         PMU_PMEVCNTR_EL0(19),
1049         PMU_PMEVCNTR_EL0(20),
1050         PMU_PMEVCNTR_EL0(21),
1051         PMU_PMEVCNTR_EL0(22),
1052         PMU_PMEVCNTR_EL0(23),
1053         PMU_PMEVCNTR_EL0(24),
1054         PMU_PMEVCNTR_EL0(25),
1055         PMU_PMEVCNTR_EL0(26),
1056         PMU_PMEVCNTR_EL0(27),
1057         PMU_PMEVCNTR_EL0(28),
1058         PMU_PMEVCNTR_EL0(29),
1059         PMU_PMEVCNTR_EL0(30),
1060         /* PMEVTYPERn_EL0 */
1061         PMU_PMEVTYPER_EL0(0),
1062         PMU_PMEVTYPER_EL0(1),
1063         PMU_PMEVTYPER_EL0(2),
1064         PMU_PMEVTYPER_EL0(3),
1065         PMU_PMEVTYPER_EL0(4),
1066         PMU_PMEVTYPER_EL0(5),
1067         PMU_PMEVTYPER_EL0(6),
1068         PMU_PMEVTYPER_EL0(7),
1069         PMU_PMEVTYPER_EL0(8),
1070         PMU_PMEVTYPER_EL0(9),
1071         PMU_PMEVTYPER_EL0(10),
1072         PMU_PMEVTYPER_EL0(11),
1073         PMU_PMEVTYPER_EL0(12),
1074         PMU_PMEVTYPER_EL0(13),
1075         PMU_PMEVTYPER_EL0(14),
1076         PMU_PMEVTYPER_EL0(15),
1077         PMU_PMEVTYPER_EL0(16),
1078         PMU_PMEVTYPER_EL0(17),
1079         PMU_PMEVTYPER_EL0(18),
1080         PMU_PMEVTYPER_EL0(19),
1081         PMU_PMEVTYPER_EL0(20),
1082         PMU_PMEVTYPER_EL0(21),
1083         PMU_PMEVTYPER_EL0(22),
1084         PMU_PMEVTYPER_EL0(23),
1085         PMU_PMEVTYPER_EL0(24),
1086         PMU_PMEVTYPER_EL0(25),
1087         PMU_PMEVTYPER_EL0(26),
1088         PMU_PMEVTYPER_EL0(27),
1089         PMU_PMEVTYPER_EL0(28),
1090         PMU_PMEVTYPER_EL0(29),
1091         PMU_PMEVTYPER_EL0(30),
1092         /* PMCCFILTR_EL0
1093          * This register resets as unknown in 64bit mode while it resets as zero
1094          * in 32bit mode. Here we choose to reset it as zero for consistency.
1095          */
1096         { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1097           access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1098
1099         /* DACR32_EL2 */
1100         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1101           NULL, reset_unknown, DACR32_EL2 },
1102         /* IFSR32_EL2 */
1103         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1104           NULL, reset_unknown, IFSR32_EL2 },
1105         /* FPEXC32_EL2 */
1106         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1107           NULL, reset_val, FPEXC32_EL2, 0x70 },
1108 };
1109
1110 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1111                         struct sys_reg_params *p,
1112                         const struct sys_reg_desc *r)
1113 {
1114         if (p->is_write) {
1115                 return ignore_write(vcpu, p);
1116         } else {
1117                 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1118                 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1119                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1120
1121                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1122                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1123                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1124                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1125                 return true;
1126         }
1127 }
1128
1129 static bool trap_debug32(struct kvm_vcpu *vcpu,
1130                          struct sys_reg_params *p,
1131                          const struct sys_reg_desc *r)
1132 {
1133         if (p->is_write) {
1134                 vcpu_cp14(vcpu, r->reg) = p->regval;
1135                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1136         } else {
1137                 p->regval = vcpu_cp14(vcpu, r->reg);
1138         }
1139
1140         return true;
1141 }
1142
1143 /* AArch32 debug register mappings
1144  *
1145  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1146  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1147  *
1148  * All control registers and watchpoint value registers are mapped to
1149  * the lower 32 bits of their AArch64 equivalents. We share the trap
1150  * handlers with the above AArch64 code which checks what mode the
1151  * system is in.
1152  */
1153
1154 static bool trap_xvr(struct kvm_vcpu *vcpu,
1155                      struct sys_reg_params *p,
1156                      const struct sys_reg_desc *rd)
1157 {
1158         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1159
1160         if (p->is_write) {
1161                 u64 val = *dbg_reg;
1162
1163                 val &= 0xffffffffUL;
1164                 val |= p->regval << 32;
1165                 *dbg_reg = val;
1166
1167                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1168         } else {
1169                 p->regval = *dbg_reg >> 32;
1170         }
1171
1172         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1173
1174         return true;
1175 }
1176
1177 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1178         /* DBGBVRn */                                                   \
1179         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1180         /* DBGBCRn */                                                   \
1181         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1182         /* DBGWVRn */                                                   \
1183         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1184         /* DBGWCRn */                                                   \
1185         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1186
1187 #define DBGBXVR(n)                                                      \
1188         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1189
1190 /*
1191  * Trapped cp14 registers. We generally ignore most of the external
1192  * debug, on the principle that they don't really make sense to a
1193  * guest. Revisit this one day, would this principle change.
1194  */
1195 static const struct sys_reg_desc cp14_regs[] = {
1196         /* DBGIDR */
1197         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1198         /* DBGDTRRXext */
1199         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1200
1201         DBG_BCR_BVR_WCR_WVR(0),
1202         /* DBGDSCRint */
1203         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1204         DBG_BCR_BVR_WCR_WVR(1),
1205         /* DBGDCCINT */
1206         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1207         /* DBGDSCRext */
1208         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1209         DBG_BCR_BVR_WCR_WVR(2),
1210         /* DBGDTR[RT]Xint */
1211         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1212         /* DBGDTR[RT]Xext */
1213         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1214         DBG_BCR_BVR_WCR_WVR(3),
1215         DBG_BCR_BVR_WCR_WVR(4),
1216         DBG_BCR_BVR_WCR_WVR(5),
1217         /* DBGWFAR */
1218         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1219         /* DBGOSECCR */
1220         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1221         DBG_BCR_BVR_WCR_WVR(6),
1222         /* DBGVCR */
1223         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1224         DBG_BCR_BVR_WCR_WVR(7),
1225         DBG_BCR_BVR_WCR_WVR(8),
1226         DBG_BCR_BVR_WCR_WVR(9),
1227         DBG_BCR_BVR_WCR_WVR(10),
1228         DBG_BCR_BVR_WCR_WVR(11),
1229         DBG_BCR_BVR_WCR_WVR(12),
1230         DBG_BCR_BVR_WCR_WVR(13),
1231         DBG_BCR_BVR_WCR_WVR(14),
1232         DBG_BCR_BVR_WCR_WVR(15),
1233
1234         /* DBGDRAR (32bit) */
1235         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1236
1237         DBGBXVR(0),
1238         /* DBGOSLAR */
1239         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1240         DBGBXVR(1),
1241         /* DBGOSLSR */
1242         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1243         DBGBXVR(2),
1244         DBGBXVR(3),
1245         /* DBGOSDLR */
1246         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1247         DBGBXVR(4),
1248         /* DBGPRCR */
1249         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1250         DBGBXVR(5),
1251         DBGBXVR(6),
1252         DBGBXVR(7),
1253         DBGBXVR(8),
1254         DBGBXVR(9),
1255         DBGBXVR(10),
1256         DBGBXVR(11),
1257         DBGBXVR(12),
1258         DBGBXVR(13),
1259         DBGBXVR(14),
1260         DBGBXVR(15),
1261
1262         /* DBGDSAR (32bit) */
1263         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1264
1265         /* DBGDEVID2 */
1266         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1267         /* DBGDEVID1 */
1268         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1269         /* DBGDEVID */
1270         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1271         /* DBGCLAIMSET */
1272         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1273         /* DBGCLAIMCLR */
1274         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1275         /* DBGAUTHSTATUS */
1276         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1277 };
1278
1279 /* Trapped cp14 64bit registers */
1280 static const struct sys_reg_desc cp14_64_regs[] = {
1281         /* DBGDRAR (64bit) */
1282         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1283
1284         /* DBGDSAR (64bit) */
1285         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1286 };
1287
1288 /* Macro to expand the PMEVCNTRn register */
1289 #define PMU_PMEVCNTR(n)                                                 \
1290         /* PMEVCNTRn */                                                 \
1291         { Op1(0), CRn(0b1110),                                          \
1292           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1293           access_pmu_evcntr }
1294
1295 /* Macro to expand the PMEVTYPERn register */
1296 #define PMU_PMEVTYPER(n)                                                \
1297         /* PMEVTYPERn */                                                \
1298         { Op1(0), CRn(0b1110),                                          \
1299           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1300           access_pmu_evtyper }
1301
1302 /*
1303  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1304  * depending on the way they are accessed (as a 32bit or a 64bit
1305  * register).
1306  */
1307 static const struct sys_reg_desc cp15_regs[] = {
1308         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1309
1310         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1311         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1312         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1313         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1314         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1315         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1316         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1317         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1318         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1319         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1320         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1321
1322         /*
1323          * DC{C,I,CI}SW operations:
1324          */
1325         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1326         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1327         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1328
1329         /* PMU */
1330         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1331         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1332         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1333         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1334         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1335         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1336         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1337         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1338         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1339         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1340         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1341         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1342         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1343         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1344         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1345
1346         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1347         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1348         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1349         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1350
1351         /* ICC_SRE */
1352         { Op1( 0), CRn(12), CRm(12), Op2( 5), trap_raz_wi },
1353
1354         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1355
1356         /* PMEVCNTRn */
1357         PMU_PMEVCNTR(0),
1358         PMU_PMEVCNTR(1),
1359         PMU_PMEVCNTR(2),
1360         PMU_PMEVCNTR(3),
1361         PMU_PMEVCNTR(4),
1362         PMU_PMEVCNTR(5),
1363         PMU_PMEVCNTR(6),
1364         PMU_PMEVCNTR(7),
1365         PMU_PMEVCNTR(8),
1366         PMU_PMEVCNTR(9),
1367         PMU_PMEVCNTR(10),
1368         PMU_PMEVCNTR(11),
1369         PMU_PMEVCNTR(12),
1370         PMU_PMEVCNTR(13),
1371         PMU_PMEVCNTR(14),
1372         PMU_PMEVCNTR(15),
1373         PMU_PMEVCNTR(16),
1374         PMU_PMEVCNTR(17),
1375         PMU_PMEVCNTR(18),
1376         PMU_PMEVCNTR(19),
1377         PMU_PMEVCNTR(20),
1378         PMU_PMEVCNTR(21),
1379         PMU_PMEVCNTR(22),
1380         PMU_PMEVCNTR(23),
1381         PMU_PMEVCNTR(24),
1382         PMU_PMEVCNTR(25),
1383         PMU_PMEVCNTR(26),
1384         PMU_PMEVCNTR(27),
1385         PMU_PMEVCNTR(28),
1386         PMU_PMEVCNTR(29),
1387         PMU_PMEVCNTR(30),
1388         /* PMEVTYPERn */
1389         PMU_PMEVTYPER(0),
1390         PMU_PMEVTYPER(1),
1391         PMU_PMEVTYPER(2),
1392         PMU_PMEVTYPER(3),
1393         PMU_PMEVTYPER(4),
1394         PMU_PMEVTYPER(5),
1395         PMU_PMEVTYPER(6),
1396         PMU_PMEVTYPER(7),
1397         PMU_PMEVTYPER(8),
1398         PMU_PMEVTYPER(9),
1399         PMU_PMEVTYPER(10),
1400         PMU_PMEVTYPER(11),
1401         PMU_PMEVTYPER(12),
1402         PMU_PMEVTYPER(13),
1403         PMU_PMEVTYPER(14),
1404         PMU_PMEVTYPER(15),
1405         PMU_PMEVTYPER(16),
1406         PMU_PMEVTYPER(17),
1407         PMU_PMEVTYPER(18),
1408         PMU_PMEVTYPER(19),
1409         PMU_PMEVTYPER(20),
1410         PMU_PMEVTYPER(21),
1411         PMU_PMEVTYPER(22),
1412         PMU_PMEVTYPER(23),
1413         PMU_PMEVTYPER(24),
1414         PMU_PMEVTYPER(25),
1415         PMU_PMEVTYPER(26),
1416         PMU_PMEVTYPER(27),
1417         PMU_PMEVTYPER(28),
1418         PMU_PMEVTYPER(29),
1419         PMU_PMEVTYPER(30),
1420         /* PMCCFILTR */
1421         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1422 };
1423
1424 static const struct sys_reg_desc cp15_64_regs[] = {
1425         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1426         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1427         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1428         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1429 };
1430
1431 /* Target specific emulation tables */
1432 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1433
1434 void kvm_register_target_sys_reg_table(unsigned int target,
1435                                        struct kvm_sys_reg_target_table *table)
1436 {
1437         target_tables[target] = table;
1438 }
1439
1440 /* Get specific register table for this target. */
1441 static const struct sys_reg_desc *get_target_table(unsigned target,
1442                                                    bool mode_is_64,
1443                                                    size_t *num)
1444 {
1445         struct kvm_sys_reg_target_table *table;
1446
1447         table = target_tables[target];
1448         if (mode_is_64) {
1449                 *num = table->table64.num;
1450                 return table->table64.table;
1451         } else {
1452                 *num = table->table32.num;
1453                 return table->table32.table;
1454         }
1455 }
1456
1457 #define reg_to_match_value(x)                                           \
1458         ({                                                              \
1459                 unsigned long val;                                      \
1460                 val  = (x)->Op0 << 14;                                  \
1461                 val |= (x)->Op1 << 11;                                  \
1462                 val |= (x)->CRn << 7;                                   \
1463                 val |= (x)->CRm << 3;                                   \
1464                 val |= (x)->Op2;                                        \
1465                 val;                                                    \
1466          })
1467
1468 static int match_sys_reg(const void *key, const void *elt)
1469 {
1470         const unsigned long pval = (unsigned long)key;
1471         const struct sys_reg_desc *r = elt;
1472
1473         return pval - reg_to_match_value(r);
1474 }
1475
1476 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1477                                          const struct sys_reg_desc table[],
1478                                          unsigned int num)
1479 {
1480         unsigned long pval = reg_to_match_value(params);
1481
1482         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1483 }
1484
1485 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1486 {
1487         kvm_inject_undefined(vcpu);
1488         return 1;
1489 }
1490
1491 /*
1492  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1493  *                call the corresponding trap handler.
1494  *
1495  * @params: pointer to the descriptor of the access
1496  * @table: array of trap descriptors
1497  * @num: size of the trap descriptor array
1498  *
1499  * Return 0 if the access has been handled, and -1 if not.
1500  */
1501 static int emulate_cp(struct kvm_vcpu *vcpu,
1502                       struct sys_reg_params *params,
1503                       const struct sys_reg_desc *table,
1504                       size_t num)
1505 {
1506         const struct sys_reg_desc *r;
1507
1508         if (!table)
1509                 return -1;      /* Not handled */
1510
1511         r = find_reg(params, table, num);
1512
1513         if (r) {
1514                 /*
1515                  * Not having an accessor means that we have
1516                  * configured a trap that we don't know how to
1517                  * handle. This certainly qualifies as a gross bug
1518                  * that should be fixed right away.
1519                  */
1520                 BUG_ON(!r->access);
1521
1522                 if (likely(r->access(vcpu, params, r))) {
1523                         /* Skip instruction, since it was emulated */
1524                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1525                         /* Handled */
1526                         return 0;
1527                 }
1528         }
1529
1530         /* Not handled */
1531         return -1;
1532 }
1533
1534 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1535                                 struct sys_reg_params *params)
1536 {
1537         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1538         int cp;
1539
1540         switch(hsr_ec) {
1541         case ESR_ELx_EC_CP15_32:
1542         case ESR_ELx_EC_CP15_64:
1543                 cp = 15;
1544                 break;
1545         case ESR_ELx_EC_CP14_MR:
1546         case ESR_ELx_EC_CP14_64:
1547                 cp = 14;
1548                 break;
1549         default:
1550                 WARN_ON((cp = -1));
1551         }
1552
1553         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1554                 cp, *vcpu_pc(vcpu));
1555         print_sys_reg_instr(params);
1556         kvm_inject_undefined(vcpu);
1557 }
1558
1559 /**
1560  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1561  * @vcpu: The VCPU pointer
1562  * @run:  The kvm_run struct
1563  */
1564 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1565                             const struct sys_reg_desc *global,
1566                             size_t nr_global,
1567                             const struct sys_reg_desc *target_specific,
1568                             size_t nr_specific)
1569 {
1570         struct sys_reg_params params;
1571         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1572         int Rt = (hsr >> 5) & 0xf;
1573         int Rt2 = (hsr >> 10) & 0xf;
1574
1575         params.is_aarch32 = true;
1576         params.is_32bit = false;
1577         params.CRm = (hsr >> 1) & 0xf;
1578         params.is_write = ((hsr & 1) == 0);
1579
1580         params.Op0 = 0;
1581         params.Op1 = (hsr >> 16) & 0xf;
1582         params.Op2 = 0;
1583         params.CRn = 0;
1584
1585         /*
1586          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1587          * backends between AArch32 and AArch64, we get away with it.
1588          */
1589         if (params.is_write) {
1590                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1591                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1592         }
1593
1594         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1595                 goto out;
1596         if (!emulate_cp(vcpu, &params, global, nr_global))
1597                 goto out;
1598
1599         unhandled_cp_access(vcpu, &params);
1600
1601 out:
1602         /* Split up the value between registers for the read side */
1603         if (!params.is_write) {
1604                 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1605                 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1606         }
1607
1608         return 1;
1609 }
1610
1611 /**
1612  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1613  * @vcpu: The VCPU pointer
1614  * @run:  The kvm_run struct
1615  */
1616 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1617                             const struct sys_reg_desc *global,
1618                             size_t nr_global,
1619                             const struct sys_reg_desc *target_specific,
1620                             size_t nr_specific)
1621 {
1622         struct sys_reg_params params;
1623         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1624         int Rt  = (hsr >> 5) & 0xf;
1625
1626         params.is_aarch32 = true;
1627         params.is_32bit = true;
1628         params.CRm = (hsr >> 1) & 0xf;
1629         params.regval = vcpu_get_reg(vcpu, Rt);
1630         params.is_write = ((hsr & 1) == 0);
1631         params.CRn = (hsr >> 10) & 0xf;
1632         params.Op0 = 0;
1633         params.Op1 = (hsr >> 14) & 0x7;
1634         params.Op2 = (hsr >> 17) & 0x7;
1635
1636         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1637             !emulate_cp(vcpu, &params, global, nr_global)) {
1638                 if (!params.is_write)
1639                         vcpu_set_reg(vcpu, Rt, params.regval);
1640                 return 1;
1641         }
1642
1643         unhandled_cp_access(vcpu, &params);
1644         return 1;
1645 }
1646
1647 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1648 {
1649         const struct sys_reg_desc *target_specific;
1650         size_t num;
1651
1652         target_specific = get_target_table(vcpu->arch.target, false, &num);
1653         return kvm_handle_cp_64(vcpu,
1654                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1655                                 target_specific, num);
1656 }
1657
1658 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1659 {
1660         const struct sys_reg_desc *target_specific;
1661         size_t num;
1662
1663         target_specific = get_target_table(vcpu->arch.target, false, &num);
1664         return kvm_handle_cp_32(vcpu,
1665                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1666                                 target_specific, num);
1667 }
1668
1669 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1670 {
1671         return kvm_handle_cp_64(vcpu,
1672                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1673                                 NULL, 0);
1674 }
1675
1676 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1677 {
1678         return kvm_handle_cp_32(vcpu,
1679                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1680                                 NULL, 0);
1681 }
1682
1683 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1684                            struct sys_reg_params *params)
1685 {
1686         size_t num;
1687         const struct sys_reg_desc *table, *r;
1688
1689         table = get_target_table(vcpu->arch.target, true, &num);
1690
1691         /* Search target-specific then generic table. */
1692         r = find_reg(params, table, num);
1693         if (!r)
1694                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1695
1696         if (likely(r)) {
1697                 /*
1698                  * Not having an accessor means that we have
1699                  * configured a trap that we don't know how to
1700                  * handle. This certainly qualifies as a gross bug
1701                  * that should be fixed right away.
1702                  */
1703                 BUG_ON(!r->access);
1704
1705                 if (likely(r->access(vcpu, params, r))) {
1706                         /* Skip instruction, since it was emulated */
1707                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1708                         return 1;
1709                 }
1710                 /* If access function fails, it should complain. */
1711         } else {
1712                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1713                         *vcpu_pc(vcpu));
1714                 print_sys_reg_instr(params);
1715         }
1716         kvm_inject_undefined(vcpu);
1717         return 1;
1718 }
1719
1720 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1721                               const struct sys_reg_desc *table, size_t num)
1722 {
1723         unsigned long i;
1724
1725         for (i = 0; i < num; i++)
1726                 if (table[i].reset)
1727                         table[i].reset(vcpu, &table[i]);
1728 }
1729
1730 /**
1731  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1732  * @vcpu: The VCPU pointer
1733  * @run:  The kvm_run struct
1734  */
1735 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1736 {
1737         struct sys_reg_params params;
1738         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1739         int Rt = (esr >> 5) & 0x1f;
1740         int ret;
1741
1742         trace_kvm_handle_sys_reg(esr);
1743
1744         params.is_aarch32 = false;
1745         params.is_32bit = false;
1746         params.Op0 = (esr >> 20) & 3;
1747         params.Op1 = (esr >> 14) & 0x7;
1748         params.CRn = (esr >> 10) & 0xf;
1749         params.CRm = (esr >> 1) & 0xf;
1750         params.Op2 = (esr >> 17) & 0x7;
1751         params.regval = vcpu_get_reg(vcpu, Rt);
1752         params.is_write = !(esr & 1);
1753
1754         ret = emulate_sys_reg(vcpu, &params);
1755
1756         if (!params.is_write)
1757                 vcpu_set_reg(vcpu, Rt, params.regval);
1758         return ret;
1759 }
1760
1761 /******************************************************************************
1762  * Userspace API
1763  *****************************************************************************/
1764
1765 static bool index_to_params(u64 id, struct sys_reg_params *params)
1766 {
1767         switch (id & KVM_REG_SIZE_MASK) {
1768         case KVM_REG_SIZE_U64:
1769                 /* Any unused index bits means it's not valid. */
1770                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1771                               | KVM_REG_ARM_COPROC_MASK
1772                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1773                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1774                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1775                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1776                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1777                         return false;
1778                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1779                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1780                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1781                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1782                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1783                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1784                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1785                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1786                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1787                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1788                 return true;
1789         default:
1790                 return false;
1791         }
1792 }
1793
1794 /* Decode an index value, and find the sys_reg_desc entry. */
1795 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1796                                                     u64 id)
1797 {
1798         size_t num;
1799         const struct sys_reg_desc *table, *r;
1800         struct sys_reg_params params;
1801
1802         /* We only do sys_reg for now. */
1803         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1804                 return NULL;
1805
1806         if (!index_to_params(id, &params))
1807                 return NULL;
1808
1809         table = get_target_table(vcpu->arch.target, true, &num);
1810         r = find_reg(&params, table, num);
1811         if (!r)
1812                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1813
1814         /* Not saved in the sys_reg array? */
1815         if (r && !r->reg)
1816                 r = NULL;
1817
1818         return r;
1819 }
1820
1821 /*
1822  * These are the invariant sys_reg registers: we let the guest see the
1823  * host versions of these, so they're part of the guest state.
1824  *
1825  * A future CPU may provide a mechanism to present different values to
1826  * the guest, or a future kvm may trap them.
1827  */
1828
1829 #define FUNCTION_INVARIANT(reg)                                         \
1830         static void get_##reg(struct kvm_vcpu *v,                       \
1831                               const struct sys_reg_desc *r)             \
1832         {                                                               \
1833                 u64 val;                                                \
1834                                                                         \
1835                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1836                              : "=r" (val));                             \
1837                 ((struct sys_reg_desc *)r)->val = val;                  \
1838         }
1839
1840 FUNCTION_INVARIANT(midr_el1)
1841 FUNCTION_INVARIANT(ctr_el0)
1842 FUNCTION_INVARIANT(revidr_el1)
1843 FUNCTION_INVARIANT(id_pfr0_el1)
1844 FUNCTION_INVARIANT(id_pfr1_el1)
1845 FUNCTION_INVARIANT(id_dfr0_el1)
1846 FUNCTION_INVARIANT(id_afr0_el1)
1847 FUNCTION_INVARIANT(id_mmfr0_el1)
1848 FUNCTION_INVARIANT(id_mmfr1_el1)
1849 FUNCTION_INVARIANT(id_mmfr2_el1)
1850 FUNCTION_INVARIANT(id_mmfr3_el1)
1851 FUNCTION_INVARIANT(id_isar0_el1)
1852 FUNCTION_INVARIANT(id_isar1_el1)
1853 FUNCTION_INVARIANT(id_isar2_el1)
1854 FUNCTION_INVARIANT(id_isar3_el1)
1855 FUNCTION_INVARIANT(id_isar4_el1)
1856 FUNCTION_INVARIANT(id_isar5_el1)
1857 FUNCTION_INVARIANT(clidr_el1)
1858 FUNCTION_INVARIANT(aidr_el1)
1859
1860 /* ->val is filled in by kvm_sys_reg_table_init() */
1861 static struct sys_reg_desc invariant_sys_regs[] = {
1862         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1863           NULL, get_midr_el1 },
1864         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1865           NULL, get_revidr_el1 },
1866         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1867           NULL, get_id_pfr0_el1 },
1868         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1869           NULL, get_id_pfr1_el1 },
1870         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1871           NULL, get_id_dfr0_el1 },
1872         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1873           NULL, get_id_afr0_el1 },
1874         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1875           NULL, get_id_mmfr0_el1 },
1876         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1877           NULL, get_id_mmfr1_el1 },
1878         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1879           NULL, get_id_mmfr2_el1 },
1880         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1881           NULL, get_id_mmfr3_el1 },
1882         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1883           NULL, get_id_isar0_el1 },
1884         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1885           NULL, get_id_isar1_el1 },
1886         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1887           NULL, get_id_isar2_el1 },
1888         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1889           NULL, get_id_isar3_el1 },
1890         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1891           NULL, get_id_isar4_el1 },
1892         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1893           NULL, get_id_isar5_el1 },
1894         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1895           NULL, get_clidr_el1 },
1896         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1897           NULL, get_aidr_el1 },
1898         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1899           NULL, get_ctr_el0 },
1900 };
1901
1902 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1903 {
1904         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1905                 return -EFAULT;
1906         return 0;
1907 }
1908
1909 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1910 {
1911         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1912                 return -EFAULT;
1913         return 0;
1914 }
1915
1916 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1917 {
1918         struct sys_reg_params params;
1919         const struct sys_reg_desc *r;
1920
1921         if (!index_to_params(id, &params))
1922                 return -ENOENT;
1923
1924         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1925         if (!r)
1926                 return -ENOENT;
1927
1928         return reg_to_user(uaddr, &r->val, id);
1929 }
1930
1931 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1932 {
1933         struct sys_reg_params params;
1934         const struct sys_reg_desc *r;
1935         int err;
1936         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1937
1938         if (!index_to_params(id, &params))
1939                 return -ENOENT;
1940         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1941         if (!r)
1942                 return -ENOENT;
1943
1944         err = reg_from_user(&val, uaddr, id);
1945         if (err)
1946                 return err;
1947
1948         /* This is what we mean by invariant: you can't change it. */
1949         if (r->val != val)
1950                 return -EINVAL;
1951
1952         return 0;
1953 }
1954
1955 static bool is_valid_cache(u32 val)
1956 {
1957         u32 level, ctype;
1958
1959         if (val >= CSSELR_MAX)
1960                 return false;
1961
1962         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1963         level = (val >> 1);
1964         ctype = (cache_levels >> (level * 3)) & 7;
1965
1966         switch (ctype) {
1967         case 0: /* No cache */
1968                 return false;
1969         case 1: /* Instruction cache only */
1970                 return (val & 1);
1971         case 2: /* Data cache only */
1972         case 4: /* Unified cache */
1973                 return !(val & 1);
1974         case 3: /* Separate instruction and data caches */
1975                 return true;
1976         default: /* Reserved: we can't know instruction or data. */
1977                 return false;
1978         }
1979 }
1980
1981 static int demux_c15_get(u64 id, void __user *uaddr)
1982 {
1983         u32 val;
1984         u32 __user *uval = uaddr;
1985
1986         /* Fail if we have unknown bits set. */
1987         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1988                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1989                 return -ENOENT;
1990
1991         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1992         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1993                 if (KVM_REG_SIZE(id) != 4)
1994                         return -ENOENT;
1995                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1996                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1997                 if (!is_valid_cache(val))
1998                         return -ENOENT;
1999
2000                 return put_user(get_ccsidr(val), uval);
2001         default:
2002                 return -ENOENT;
2003         }
2004 }
2005
2006 static int demux_c15_set(u64 id, void __user *uaddr)
2007 {
2008         u32 val, newval;
2009         u32 __user *uval = uaddr;
2010
2011         /* Fail if we have unknown bits set. */
2012         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2013                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2014                 return -ENOENT;
2015
2016         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2017         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2018                 if (KVM_REG_SIZE(id) != 4)
2019                         return -ENOENT;
2020                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2021                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2022                 if (!is_valid_cache(val))
2023                         return -ENOENT;
2024
2025                 if (get_user(newval, uval))
2026                         return -EFAULT;
2027
2028                 /* This is also invariant: you can't change it. */
2029                 if (newval != get_ccsidr(val))
2030                         return -EINVAL;
2031                 return 0;
2032         default:
2033                 return -ENOENT;
2034         }
2035 }
2036
2037 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2038 {
2039         const struct sys_reg_desc *r;
2040         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2041
2042         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2043                 return demux_c15_get(reg->id, uaddr);
2044
2045         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2046                 return -ENOENT;
2047
2048         r = index_to_sys_reg_desc(vcpu, reg->id);
2049         if (!r)
2050                 return get_invariant_sys_reg(reg->id, uaddr);
2051
2052         if (r->get_user)
2053                 return (r->get_user)(vcpu, r, reg, uaddr);
2054
2055         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2056 }
2057
2058 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2059 {
2060         const struct sys_reg_desc *r;
2061         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2062
2063         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2064                 return demux_c15_set(reg->id, uaddr);
2065
2066         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2067                 return -ENOENT;
2068
2069         r = index_to_sys_reg_desc(vcpu, reg->id);
2070         if (!r)
2071                 return set_invariant_sys_reg(reg->id, uaddr);
2072
2073         if (r->set_user)
2074                 return (r->set_user)(vcpu, r, reg, uaddr);
2075
2076         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2077 }
2078
2079 static unsigned int num_demux_regs(void)
2080 {
2081         unsigned int i, count = 0;
2082
2083         for (i = 0; i < CSSELR_MAX; i++)
2084                 if (is_valid_cache(i))
2085                         count++;
2086
2087         return count;
2088 }
2089
2090 static int write_demux_regids(u64 __user *uindices)
2091 {
2092         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2093         unsigned int i;
2094
2095         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2096         for (i = 0; i < CSSELR_MAX; i++) {
2097                 if (!is_valid_cache(i))
2098                         continue;
2099                 if (put_user(val | i, uindices))
2100                         return -EFAULT;
2101                 uindices++;
2102         }
2103         return 0;
2104 }
2105
2106 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2107 {
2108         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2109                 KVM_REG_ARM64_SYSREG |
2110                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2111                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2112                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2113                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2114                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2115 }
2116
2117 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2118 {
2119         if (!*uind)
2120                 return true;
2121
2122         if (put_user(sys_reg_to_index(reg), *uind))
2123                 return false;
2124
2125         (*uind)++;
2126         return true;
2127 }
2128
2129 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2130 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2131 {
2132         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2133         unsigned int total = 0;
2134         size_t num;
2135
2136         /* We check for duplicates here, to allow arch-specific overrides. */
2137         i1 = get_target_table(vcpu->arch.target, true, &num);
2138         end1 = i1 + num;
2139         i2 = sys_reg_descs;
2140         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2141
2142         BUG_ON(i1 == end1 || i2 == end2);
2143
2144         /* Walk carefully, as both tables may refer to the same register. */
2145         while (i1 || i2) {
2146                 int cmp = cmp_sys_reg(i1, i2);
2147                 /* target-specific overrides generic entry. */
2148                 if (cmp <= 0) {
2149                         /* Ignore registers we trap but don't save. */
2150                         if (i1->reg) {
2151                                 if (!copy_reg_to_user(i1, &uind))
2152                                         return -EFAULT;
2153                                 total++;
2154                         }
2155                 } else {
2156                         /* Ignore registers we trap but don't save. */
2157                         if (i2->reg) {
2158                                 if (!copy_reg_to_user(i2, &uind))
2159                                         return -EFAULT;
2160                                 total++;
2161                         }
2162                 }
2163
2164                 if (cmp <= 0 && ++i1 == end1)
2165                         i1 = NULL;
2166                 if (cmp >= 0 && ++i2 == end2)
2167                         i2 = NULL;
2168         }
2169         return total;
2170 }
2171
2172 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2173 {
2174         return ARRAY_SIZE(invariant_sys_regs)
2175                 + num_demux_regs()
2176                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2177 }
2178
2179 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2180 {
2181         unsigned int i;
2182         int err;
2183
2184         /* Then give them all the invariant registers' indices. */
2185         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2186                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2187                         return -EFAULT;
2188                 uindices++;
2189         }
2190
2191         err = walk_sys_regs(vcpu, uindices);
2192         if (err < 0)
2193                 return err;
2194         uindices += err;
2195
2196         return write_demux_regids(uindices);
2197 }
2198
2199 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2200 {
2201         unsigned int i;
2202
2203         for (i = 1; i < n; i++) {
2204                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2205                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2206                         return 1;
2207                 }
2208         }
2209
2210         return 0;
2211 }
2212
2213 void kvm_sys_reg_table_init(void)
2214 {
2215         unsigned int i;
2216         struct sys_reg_desc clidr;
2217
2218         /* Make sure tables are unique and in order. */
2219         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2220         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2221         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2222         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2223         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2224         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2225
2226         /* We abuse the reset function to overwrite the table itself. */
2227         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2228                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2229
2230         /*
2231          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2232          *
2233          *   If software reads the Cache Type fields from Ctype1
2234          *   upwards, once it has seen a value of 0b000, no caches
2235          *   exist at further-out levels of the hierarchy. So, for
2236          *   example, if Ctype3 is the first Cache Type field with a
2237          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2238          *   ignored.
2239          */
2240         get_clidr_el1(NULL, &clidr); /* Ugly... */
2241         cache_levels = clidr.val;
2242         for (i = 0; i < 7; i++)
2243                 if (((cache_levels >> (i*3)) & 7) == 0)
2244                         break;
2245         /* Clear all higher bits. */
2246         cache_levels &= (1 << (i*3))-1;
2247 }
2248
2249 /**
2250  * kvm_reset_sys_regs - sets system registers to reset value
2251  * @vcpu: The VCPU pointer
2252  *
2253  * This function finds the right table above and sets the registers on the
2254  * virtual CPU struct to their architecturally defined reset values.
2255  */
2256 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2257 {
2258         size_t num;
2259         const struct sys_reg_desc *table;
2260
2261         /* Catch someone adding a register without putting in reset entry. */
2262         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2263
2264         /* Generic chip reset first (so target could override). */
2265         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2266
2267         table = get_target_table(vcpu->arch.target, true, &num);
2268         reset_sys_reg_descs(vcpu, table, num);
2269
2270         for (num = 1; num < NR_SYS_REGS; num++)
2271                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2272                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
2273 }