19253d7ca730c29f02315d8ad4a2bac6a35298e1
[cascardo/linux.git] / arch / mips / kernel / perf_event_mipsxx.c
1 /*
2  * Linux performance counter support for MIPS.
3  *
4  * Copyright (C) 2010 MIPS Technologies, Inc.
5  * Copyright (C) 2011 Cavium Networks, Inc.
6  * Author: Deng-Cheng Zhu
7  *
8  * This code is based on the implementation for ARM, which is in turn
9  * based on the sparc64 perf event code and the x86 code. Performance
10  * counter access is based on the MIPS Oprofile code. And the callchain
11  * support references the code of MIPS stacktrace.c.
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #include <linux/cpumask.h>
19 #include <linux/interrupt.h>
20 #include <linux/smp.h>
21 #include <linux/kernel.h>
22 #include <linux/perf_event.h>
23 #include <linux/uaccess.h>
24
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/stacktrace.h>
28 #include <asm/time.h> /* For perf_irq */
29
30 #define MIPS_MAX_HWEVENTS 4
31
32 struct cpu_hw_events {
33         /* Array of events on this cpu. */
34         struct perf_event       *events[MIPS_MAX_HWEVENTS];
35
36         /*
37          * Set the bit (indexed by the counter number) when the counter
38          * is used for an event.
39          */
40         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
41
42         /*
43          * Software copy of the control register for each performance counter.
44          * MIPS CPUs vary in performance counters. They use this differently,
45          * and even may not use it.
46          */
47         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
48 };
49 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
50         .saved_ctrl = {0},
51 };
52
53 /* The description of MIPS performance events. */
54 struct mips_perf_event {
55         unsigned int event_id;
56         /*
57          * MIPS performance counters are indexed starting from 0.
58          * CNTR_EVEN indicates the indexes of the counters to be used are
59          * even numbers.
60          */
61         unsigned int cntr_mask;
62         #define CNTR_EVEN       0x55555555
63         #define CNTR_ODD        0xaaaaaaaa
64         #define CNTR_ALL        0xffffffff
65 #ifdef CONFIG_MIPS_MT_SMP
66         enum {
67                 T  = 0,
68                 V  = 1,
69                 P  = 2,
70         } range;
71 #else
72         #define T
73         #define V
74         #define P
75 #endif
76 };
77
78 static struct mips_perf_event raw_event;
79 static DEFINE_MUTEX(raw_event_mutex);
80
81 #define C(x) PERF_COUNT_HW_CACHE_##x
82
83 struct mips_pmu {
84         u64             max_period;
85         u64             valid_count;
86         u64             overflow;
87         const char      *name;
88         int             irq;
89         u64             (*read_counter)(unsigned int idx);
90         void            (*write_counter)(unsigned int idx, u64 val);
91         const struct mips_perf_event *(*map_raw_event)(u64 config);
92         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
93         const struct mips_perf_event (*cache_event_map)
94                                 [PERF_COUNT_HW_CACHE_MAX]
95                                 [PERF_COUNT_HW_CACHE_OP_MAX]
96                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
97         unsigned int    num_counters;
98 };
99
100 static struct mips_pmu mipspmu;
101
102 #define M_CONFIG1_PC    (1 << 4)
103
104 #define M_PERFCTL_EXL                   (1      <<  0)
105 #define M_PERFCTL_KERNEL                (1      <<  1)
106 #define M_PERFCTL_SUPERVISOR            (1      <<  2)
107 #define M_PERFCTL_USER                  (1      <<  3)
108 #define M_PERFCTL_INTERRUPT_ENABLE      (1      <<  4)
109 #define M_PERFCTL_EVENT(event)          (((event) & 0x3ff)  << 5)
110 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << 16)
111 #define M_PERFCTL_MT_EN(filter)         ((filter) << 20)
112 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(0)
113 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(1)
114 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(2)
115 #define M_PERFCTL_TCID(tcid)            ((tcid)   << 22)
116 #define M_PERFCTL_WIDE                  (1      << 30)
117 #define M_PERFCTL_MORE                  (1      << 31)
118
119 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (M_PERFCTL_EXL |                \
120                                         M_PERFCTL_KERNEL |              \
121                                         M_PERFCTL_USER |                \
122                                         M_PERFCTL_SUPERVISOR |          \
123                                         M_PERFCTL_INTERRUPT_ENABLE)
124
125 #ifdef CONFIG_MIPS_MT_SMP
126 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
127 #else
128 #define M_PERFCTL_CONFIG_MASK           0x1f
129 #endif
130 #define M_PERFCTL_EVENT_MASK            0xfe0
131
132
133 #ifdef CONFIG_MIPS_MT_SMP
134 static int cpu_has_mipsmt_pertccounters;
135
136 static DEFINE_RWLOCK(pmuint_rwlock);
137
138 /*
139  * FIXME: For VSMP, vpe_id() is redefined for Perf-events, because
140  * cpu_data[cpuid].vpe_id reports 0 for _both_ CPUs.
141  */
142 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
143                         0 : smp_processor_id())
144
145 /* Copied from op_model_mipsxx.c */
146 static unsigned int vpe_shift(void)
147 {
148         if (num_possible_cpus() > 1)
149                 return 1;
150
151         return 0;
152 }
153
154 static unsigned int counters_total_to_per_cpu(unsigned int counters)
155 {
156         return counters >> vpe_shift();
157 }
158
159 #else /* !CONFIG_MIPS_MT_SMP */
160 #define vpe_id()        0
161
162 #endif /* CONFIG_MIPS_MT_SMP */
163
164 static void resume_local_counters(void);
165 static void pause_local_counters(void);
166 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
167 static int mipsxx_pmu_handle_shared_irq(void);
168
169 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
170 {
171         if (vpe_id() == 1)
172                 idx = (idx + 2) & 3;
173         return idx;
174 }
175
176 static u64 mipsxx_pmu_read_counter(unsigned int idx)
177 {
178         idx = mipsxx_pmu_swizzle_perf_idx(idx);
179
180         switch (idx) {
181         case 0:
182                 /*
183                  * The counters are unsigned, we must cast to truncate
184                  * off the high bits.
185                  */
186                 return (u32)read_c0_perfcntr0();
187         case 1:
188                 return (u32)read_c0_perfcntr1();
189         case 2:
190                 return (u32)read_c0_perfcntr2();
191         case 3:
192                 return (u32)read_c0_perfcntr3();
193         default:
194                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
195                 return 0;
196         }
197 }
198
199 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
200 {
201         idx = mipsxx_pmu_swizzle_perf_idx(idx);
202
203         switch (idx) {
204         case 0:
205                 return read_c0_perfcntr0_64();
206         case 1:
207                 return read_c0_perfcntr1_64();
208         case 2:
209                 return read_c0_perfcntr2_64();
210         case 3:
211                 return read_c0_perfcntr3_64();
212         default:
213                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
214                 return 0;
215         }
216 }
217
218 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
219 {
220         idx = mipsxx_pmu_swizzle_perf_idx(idx);
221
222         switch (idx) {
223         case 0:
224                 write_c0_perfcntr0(val);
225                 return;
226         case 1:
227                 write_c0_perfcntr1(val);
228                 return;
229         case 2:
230                 write_c0_perfcntr2(val);
231                 return;
232         case 3:
233                 write_c0_perfcntr3(val);
234                 return;
235         }
236 }
237
238 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
239 {
240         idx = mipsxx_pmu_swizzle_perf_idx(idx);
241
242         switch (idx) {
243         case 0:
244                 write_c0_perfcntr0_64(val);
245                 return;
246         case 1:
247                 write_c0_perfcntr1_64(val);
248                 return;
249         case 2:
250                 write_c0_perfcntr2_64(val);
251                 return;
252         case 3:
253                 write_c0_perfcntr3_64(val);
254                 return;
255         }
256 }
257
258 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
259 {
260         idx = mipsxx_pmu_swizzle_perf_idx(idx);
261
262         switch (idx) {
263         case 0:
264                 return read_c0_perfctrl0();
265         case 1:
266                 return read_c0_perfctrl1();
267         case 2:
268                 return read_c0_perfctrl2();
269         case 3:
270                 return read_c0_perfctrl3();
271         default:
272                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
273                 return 0;
274         }
275 }
276
277 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
278 {
279         idx = mipsxx_pmu_swizzle_perf_idx(idx);
280
281         switch (idx) {
282         case 0:
283                 write_c0_perfctrl0(val);
284                 return;
285         case 1:
286                 write_c0_perfctrl1(val);
287                 return;
288         case 2:
289                 write_c0_perfctrl2(val);
290                 return;
291         case 3:
292                 write_c0_perfctrl3(val);
293                 return;
294         }
295 }
296
297 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
298                                     struct hw_perf_event *hwc)
299 {
300         int i;
301
302         /*
303          * We only need to care the counter mask. The range has been
304          * checked definitely.
305          */
306         unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
307
308         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
309                 /*
310                  * Note that some MIPS perf events can be counted by both
311                  * even and odd counters, wheresas many other are only by
312                  * even _or_ odd counters. This introduces an issue that
313                  * when the former kind of event takes the counter the
314                  * latter kind of event wants to use, then the "counter
315                  * allocation" for the latter event will fail. In fact if
316                  * they can be dynamically swapped, they both feel happy.
317                  * But here we leave this issue alone for now.
318                  */
319                 if (test_bit(i, &cntr_mask) &&
320                         !test_and_set_bit(i, cpuc->used_mask))
321                         return i;
322         }
323
324         return -EAGAIN;
325 }
326
327 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
328 {
329         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
330
331         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
332
333         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
334                 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
335                 /* Make sure interrupt enabled. */
336                 M_PERFCTL_INTERRUPT_ENABLE;
337         /*
338          * We do not actually let the counter run. Leave it until start().
339          */
340 }
341
342 static void mipsxx_pmu_disable_event(int idx)
343 {
344         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
345         unsigned long flags;
346
347         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
348
349         local_irq_save(flags);
350         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
351                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
352         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
353         local_irq_restore(flags);
354 }
355
356 static int mipspmu_event_set_period(struct perf_event *event,
357                                     struct hw_perf_event *hwc,
358                                     int idx)
359 {
360         u64 left = local64_read(&hwc->period_left);
361         u64 period = hwc->sample_period;
362         int ret = 0;
363
364         if (unlikely((left + period) & (1ULL << 63))) {
365                 /* left underflowed by more than period. */
366                 left = period;
367                 local64_set(&hwc->period_left, left);
368                 hwc->last_period = period;
369                 ret = 1;
370         } else  if (unlikely((left + period) <= period)) {
371                 /* left underflowed by less than period. */
372                 left += period;
373                 local64_set(&hwc->period_left, left);
374                 hwc->last_period = period;
375                 ret = 1;
376         }
377
378         if (left > mipspmu.max_period) {
379                 left = mipspmu.max_period;
380                 local64_set(&hwc->period_left, left);
381         }
382
383         local64_set(&hwc->prev_count, mipspmu.overflow - left);
384
385         mipspmu.write_counter(idx, mipspmu.overflow - left);
386
387         perf_event_update_userpage(event);
388
389         return ret;
390 }
391
392 static void mipspmu_event_update(struct perf_event *event,
393                                  struct hw_perf_event *hwc,
394                                  int idx)
395 {
396         u64 prev_raw_count, new_raw_count;
397         u64 delta;
398
399 again:
400         prev_raw_count = local64_read(&hwc->prev_count);
401         new_raw_count = mipspmu.read_counter(idx);
402
403         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
404                                 new_raw_count) != prev_raw_count)
405                 goto again;
406
407         delta = new_raw_count - prev_raw_count;
408
409         local64_add(delta, &event->count);
410         local64_sub(delta, &hwc->period_left);
411 }
412
413 static void mipspmu_start(struct perf_event *event, int flags)
414 {
415         struct hw_perf_event *hwc = &event->hw;
416
417         if (flags & PERF_EF_RELOAD)
418                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
419
420         hwc->state = 0;
421
422         /* Set the period for the event. */
423         mipspmu_event_set_period(event, hwc, hwc->idx);
424
425         /* Enable the event. */
426         mipsxx_pmu_enable_event(hwc, hwc->idx);
427 }
428
429 static void mipspmu_stop(struct perf_event *event, int flags)
430 {
431         struct hw_perf_event *hwc = &event->hw;
432
433         if (!(hwc->state & PERF_HES_STOPPED)) {
434                 /* We are working on a local event. */
435                 mipsxx_pmu_disable_event(hwc->idx);
436                 barrier();
437                 mipspmu_event_update(event, hwc, hwc->idx);
438                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
439         }
440 }
441
442 static int mipspmu_add(struct perf_event *event, int flags)
443 {
444         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
445         struct hw_perf_event *hwc = &event->hw;
446         int idx;
447         int err = 0;
448
449         perf_pmu_disable(event->pmu);
450
451         /* To look for a free counter for this event. */
452         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
453         if (idx < 0) {
454                 err = idx;
455                 goto out;
456         }
457
458         /*
459          * If there is an event in the counter we are going to use then
460          * make sure it is disabled.
461          */
462         event->hw.idx = idx;
463         mipsxx_pmu_disable_event(idx);
464         cpuc->events[idx] = event;
465
466         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
467         if (flags & PERF_EF_START)
468                 mipspmu_start(event, PERF_EF_RELOAD);
469
470         /* Propagate our changes to the userspace mapping. */
471         perf_event_update_userpage(event);
472
473 out:
474         perf_pmu_enable(event->pmu);
475         return err;
476 }
477
478 static void mipspmu_del(struct perf_event *event, int flags)
479 {
480         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
481         struct hw_perf_event *hwc = &event->hw;
482         int idx = hwc->idx;
483
484         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
485
486         mipspmu_stop(event, PERF_EF_UPDATE);
487         cpuc->events[idx] = NULL;
488         clear_bit(idx, cpuc->used_mask);
489
490         perf_event_update_userpage(event);
491 }
492
493 static void mipspmu_read(struct perf_event *event)
494 {
495         struct hw_perf_event *hwc = &event->hw;
496
497         /* Don't read disabled counters! */
498         if (hwc->idx < 0)
499                 return;
500
501         mipspmu_event_update(event, hwc, hwc->idx);
502 }
503
504 static void mipspmu_enable(struct pmu *pmu)
505 {
506 #ifdef CONFIG_MIPS_MT_SMP
507         write_unlock(&pmuint_rwlock);
508 #endif
509         resume_local_counters();
510 }
511
512 /*
513  * MIPS performance counters can be per-TC. The control registers can
514  * not be directly accessed accross CPUs. Hence if we want to do global
515  * control, we need cross CPU calls. on_each_cpu() can help us, but we
516  * can not make sure this function is called with interrupts enabled. So
517  * here we pause local counters and then grab a rwlock and leave the
518  * counters on other CPUs alone. If any counter interrupt raises while
519  * we own the write lock, simply pause local counters on that CPU and
520  * spin in the handler. Also we know we won't be switched to another
521  * CPU after pausing local counters and before grabbing the lock.
522  */
523 static void mipspmu_disable(struct pmu *pmu)
524 {
525         pause_local_counters();
526 #ifdef CONFIG_MIPS_MT_SMP
527         write_lock(&pmuint_rwlock);
528 #endif
529 }
530
531 static atomic_t active_events = ATOMIC_INIT(0);
532 static DEFINE_MUTEX(pmu_reserve_mutex);
533 static int (*save_perf_irq)(void);
534
535 static int mipspmu_get_irq(void)
536 {
537         int err;
538
539         if (mipspmu.irq >= 0) {
540                 /* Request my own irq handler. */
541                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
542                         IRQF_PERCPU | IRQF_NOBALANCING,
543                         "mips_perf_pmu", NULL);
544                 if (err) {
545                         pr_warning("Unable to request IRQ%d for MIPS "
546                            "performance counters!\n", mipspmu.irq);
547                 }
548         } else if (cp0_perfcount_irq < 0) {
549                 /*
550                  * We are sharing the irq number with the timer interrupt.
551                  */
552                 save_perf_irq = perf_irq;
553                 perf_irq = mipsxx_pmu_handle_shared_irq;
554                 err = 0;
555         } else {
556                 pr_warning("The platform hasn't properly defined its "
557                         "interrupt controller.\n");
558                 err = -ENOENT;
559         }
560
561         return err;
562 }
563
564 static void mipspmu_free_irq(void)
565 {
566         if (mipspmu.irq >= 0)
567                 free_irq(mipspmu.irq, NULL);
568         else if (cp0_perfcount_irq < 0)
569                 perf_irq = save_perf_irq;
570 }
571
572 /*
573  * mipsxx/rm9000/loongson2 have different performance counters, they have
574  * specific low-level init routines.
575  */
576 static void reset_counters(void *arg);
577 static int __hw_perf_event_init(struct perf_event *event);
578
579 static void hw_perf_event_destroy(struct perf_event *event)
580 {
581         if (atomic_dec_and_mutex_lock(&active_events,
582                                 &pmu_reserve_mutex)) {
583                 /*
584                  * We must not call the destroy function with interrupts
585                  * disabled.
586                  */
587                 on_each_cpu(reset_counters,
588                         (void *)(long)mipspmu.num_counters, 1);
589                 mipspmu_free_irq();
590                 mutex_unlock(&pmu_reserve_mutex);
591         }
592 }
593
594 static int mipspmu_event_init(struct perf_event *event)
595 {
596         int err = 0;
597
598         /* does not support taken branch sampling */
599         if (has_branch_stack(event))
600                 return -EOPNOTSUPP;
601
602         switch (event->attr.type) {
603         case PERF_TYPE_RAW:
604         case PERF_TYPE_HARDWARE:
605         case PERF_TYPE_HW_CACHE:
606                 break;
607
608         default:
609                 return -ENOENT;
610         }
611
612         if (event->cpu >= nr_cpumask_bits ||
613             (event->cpu >= 0 && !cpu_online(event->cpu)))
614                 return -ENODEV;
615
616         if (!atomic_inc_not_zero(&active_events)) {
617                 mutex_lock(&pmu_reserve_mutex);
618                 if (atomic_read(&active_events) == 0)
619                         err = mipspmu_get_irq();
620
621                 if (!err)
622                         atomic_inc(&active_events);
623                 mutex_unlock(&pmu_reserve_mutex);
624         }
625
626         if (err)
627                 return err;
628
629         return __hw_perf_event_init(event);
630 }
631
632 static struct pmu pmu = {
633         .pmu_enable     = mipspmu_enable,
634         .pmu_disable    = mipspmu_disable,
635         .event_init     = mipspmu_event_init,
636         .add            = mipspmu_add,
637         .del            = mipspmu_del,
638         .start          = mipspmu_start,
639         .stop           = mipspmu_stop,
640         .read           = mipspmu_read,
641 };
642
643 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
644 {
645 /*
646  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
647  * event_id.
648  */
649 #ifdef CONFIG_MIPS_MT_SMP
650         return ((unsigned int)pev->range << 24) |
651                 (pev->cntr_mask & 0xffff00) |
652                 (pev->event_id & 0xff);
653 #else
654         return (pev->cntr_mask & 0xffff00) |
655                 (pev->event_id & 0xff);
656 #endif
657 }
658
659 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
660 {
661
662         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
663                 return ERR_PTR(-EOPNOTSUPP);
664         return &(*mipspmu.general_event_map)[idx];
665 }
666
667 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
668 {
669         unsigned int cache_type, cache_op, cache_result;
670         const struct mips_perf_event *pev;
671
672         cache_type = (config >> 0) & 0xff;
673         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
674                 return ERR_PTR(-EINVAL);
675
676         cache_op = (config >> 8) & 0xff;
677         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
678                 return ERR_PTR(-EINVAL);
679
680         cache_result = (config >> 16) & 0xff;
681         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
682                 return ERR_PTR(-EINVAL);
683
684         pev = &((*mipspmu.cache_event_map)
685                                         [cache_type]
686                                         [cache_op]
687                                         [cache_result]);
688
689         if (pev->cntr_mask == 0)
690                 return ERR_PTR(-EOPNOTSUPP);
691
692         return pev;
693
694 }
695
696 static int validate_group(struct perf_event *event)
697 {
698         struct perf_event *sibling, *leader = event->group_leader;
699         struct cpu_hw_events fake_cpuc;
700
701         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
702
703         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
704                 return -EINVAL;
705
706         list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
707                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
708                         return -EINVAL;
709         }
710
711         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
712                 return -EINVAL;
713
714         return 0;
715 }
716
717 /* This is needed by specific irq handlers in perf_event_*.c */
718 static void handle_associated_event(struct cpu_hw_events *cpuc,
719                                     int idx, struct perf_sample_data *data,
720                                     struct pt_regs *regs)
721 {
722         struct perf_event *event = cpuc->events[idx];
723         struct hw_perf_event *hwc = &event->hw;
724
725         mipspmu_event_update(event, hwc, idx);
726         data->period = event->hw.last_period;
727         if (!mipspmu_event_set_period(event, hwc, idx))
728                 return;
729
730         if (perf_event_overflow(event, data, regs))
731                 mipsxx_pmu_disable_event(idx);
732 }
733
734
735 static int __n_counters(void)
736 {
737         if (!(read_c0_config1() & M_CONFIG1_PC))
738                 return 0;
739         if (!(read_c0_perfctrl0() & M_PERFCTL_MORE))
740                 return 1;
741         if (!(read_c0_perfctrl1() & M_PERFCTL_MORE))
742                 return 2;
743         if (!(read_c0_perfctrl2() & M_PERFCTL_MORE))
744                 return 3;
745
746         return 4;
747 }
748
749 static int n_counters(void)
750 {
751         int counters;
752
753         switch (current_cpu_type()) {
754         case CPU_R10000:
755                 counters = 2;
756                 break;
757
758         case CPU_R12000:
759         case CPU_R14000:
760                 counters = 4;
761                 break;
762
763         default:
764                 counters = __n_counters();
765         }
766
767         return counters;
768 }
769
770 static void reset_counters(void *arg)
771 {
772         int counters = (int)(long)arg;
773         switch (counters) {
774         case 4:
775                 mipsxx_pmu_write_control(3, 0);
776                 mipspmu.write_counter(3, 0);
777         case 3:
778                 mipsxx_pmu_write_control(2, 0);
779                 mipspmu.write_counter(2, 0);
780         case 2:
781                 mipsxx_pmu_write_control(1, 0);
782                 mipspmu.write_counter(1, 0);
783         case 1:
784                 mipsxx_pmu_write_control(0, 0);
785                 mipspmu.write_counter(0, 0);
786         }
787 }
788
789 /* 24K/34K/1004K cores can share the same event map. */
790 static const struct mips_perf_event mipsxxcore_event_map
791                                 [PERF_COUNT_HW_MAX] = {
792         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
793         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
794         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
795         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
796 };
797
798 /* 74K core has different branch event code. */
799 static const struct mips_perf_event mipsxx74Kcore_event_map
800                                 [PERF_COUNT_HW_MAX] = {
801         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
802         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
803         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
804         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
805 };
806
807 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
808         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
809         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
810         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
811         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
812         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
813         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
814         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
815 };
816
817 /* 24K/34K/1004K cores can share the same cache event map. */
818 static const struct mips_perf_event mipsxxcore_cache_map
819                                 [PERF_COUNT_HW_CACHE_MAX]
820                                 [PERF_COUNT_HW_CACHE_OP_MAX]
821                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
822 [C(L1D)] = {
823         /*
824          * Like some other architectures (e.g. ARM), the performance
825          * counters don't differentiate between read and write
826          * accesses/misses, so this isn't strictly correct, but it's the
827          * best we can do. Writes and reads get combined.
828          */
829         [C(OP_READ)] = {
830                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
831                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
832         },
833         [C(OP_WRITE)] = {
834                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
835                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
836         },
837 },
838 [C(L1I)] = {
839         [C(OP_READ)] = {
840                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
841                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
842         },
843         [C(OP_WRITE)] = {
844                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
845                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
846         },
847         [C(OP_PREFETCH)] = {
848                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
849                 /*
850                  * Note that MIPS has only "hit" events countable for
851                  * the prefetch operation.
852                  */
853         },
854 },
855 [C(LL)] = {
856         [C(OP_READ)] = {
857                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
858                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
859         },
860         [C(OP_WRITE)] = {
861                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
862                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
863         },
864 },
865 [C(DTLB)] = {
866         [C(OP_READ)] = {
867                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
868                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
869         },
870         [C(OP_WRITE)] = {
871                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
872                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
873         },
874 },
875 [C(ITLB)] = {
876         [C(OP_READ)] = {
877                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
878                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
879         },
880         [C(OP_WRITE)] = {
881                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
882                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
883         },
884 },
885 [C(BPU)] = {
886         /* Using the same code for *HW_BRANCH* */
887         [C(OP_READ)] = {
888                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
889                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
890         },
891         [C(OP_WRITE)] = {
892                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
893                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
894         },
895 },
896 };
897
898 /* 74K core has completely different cache event map. */
899 static const struct mips_perf_event mipsxx74Kcore_cache_map
900                                 [PERF_COUNT_HW_CACHE_MAX]
901                                 [PERF_COUNT_HW_CACHE_OP_MAX]
902                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
903 [C(L1D)] = {
904         /*
905          * Like some other architectures (e.g. ARM), the performance
906          * counters don't differentiate between read and write
907          * accesses/misses, so this isn't strictly correct, but it's the
908          * best we can do. Writes and reads get combined.
909          */
910         [C(OP_READ)] = {
911                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
912                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
913         },
914         [C(OP_WRITE)] = {
915                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
916                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
917         },
918 },
919 [C(L1I)] = {
920         [C(OP_READ)] = {
921                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
922                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
923         },
924         [C(OP_WRITE)] = {
925                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
926                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
927         },
928         [C(OP_PREFETCH)] = {
929                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
930                 /*
931                  * Note that MIPS has only "hit" events countable for
932                  * the prefetch operation.
933                  */
934         },
935 },
936 [C(LL)] = {
937         [C(OP_READ)] = {
938                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
939                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
940         },
941         [C(OP_WRITE)] = {
942                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
943                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN | CNTR_ODD, P },
944         },
945 },
946 [C(ITLB)] = {
947         [C(OP_READ)] = {
948                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
949                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
950         },
951         [C(OP_WRITE)] = {
952                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
953                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
954         },
955 },
956 [C(BPU)] = {
957         /* Using the same code for *HW_BRANCH* */
958         [C(OP_READ)] = {
959                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
960                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
961         },
962         [C(OP_WRITE)] = {
963                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
964                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
965         },
966 },
967 };
968
969
970 static const struct mips_perf_event octeon_cache_map
971                                 [PERF_COUNT_HW_CACHE_MAX]
972                                 [PERF_COUNT_HW_CACHE_OP_MAX]
973                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
974 [C(L1D)] = {
975         [C(OP_READ)] = {
976                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
977                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
978         },
979         [C(OP_WRITE)] = {
980                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
981         },
982 },
983 [C(L1I)] = {
984         [C(OP_READ)] = {
985                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
986         },
987         [C(OP_PREFETCH)] = {
988                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
989         },
990 },
991 [C(DTLB)] = {
992         /*
993          * Only general DTLB misses are counted use the same event for
994          * read and write.
995          */
996         [C(OP_READ)] = {
997                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
998         },
999         [C(OP_WRITE)] = {
1000                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1001         },
1002 },
1003 [C(ITLB)] = {
1004         [C(OP_READ)] = {
1005                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1006         },
1007 },
1008 };
1009
1010 #ifdef CONFIG_MIPS_MT_SMP
1011 static void check_and_calc_range(struct perf_event *event,
1012                                  const struct mips_perf_event *pev)
1013 {
1014         struct hw_perf_event *hwc = &event->hw;
1015
1016         if (event->cpu >= 0) {
1017                 if (pev->range > V) {
1018                         /*
1019                          * The user selected an event that is processor
1020                          * wide, while expecting it to be VPE wide.
1021                          */
1022                         hwc->config_base |= M_TC_EN_ALL;
1023                 } else {
1024                         /*
1025                          * FIXME: cpu_data[event->cpu].vpe_id reports 0
1026                          * for both CPUs.
1027                          */
1028                         hwc->config_base |= M_PERFCTL_VPEID(event->cpu);
1029                         hwc->config_base |= M_TC_EN_VPE;
1030                 }
1031         } else
1032                 hwc->config_base |= M_TC_EN_ALL;
1033 }
1034 #else
1035 static void check_and_calc_range(struct perf_event *event,
1036                                  const struct mips_perf_event *pev)
1037 {
1038 }
1039 #endif
1040
1041 static int __hw_perf_event_init(struct perf_event *event)
1042 {
1043         struct perf_event_attr *attr = &event->attr;
1044         struct hw_perf_event *hwc = &event->hw;
1045         const struct mips_perf_event *pev;
1046         int err;
1047
1048         /* Returning MIPS event descriptor for generic perf event. */
1049         if (PERF_TYPE_HARDWARE == event->attr.type) {
1050                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1051                         return -EINVAL;
1052                 pev = mipspmu_map_general_event(event->attr.config);
1053         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1054                 pev = mipspmu_map_cache_event(event->attr.config);
1055         } else if (PERF_TYPE_RAW == event->attr.type) {
1056                 /* We are working on the global raw event. */
1057                 mutex_lock(&raw_event_mutex);
1058                 pev = mipspmu.map_raw_event(event->attr.config);
1059         } else {
1060                 /* The event type is not (yet) supported. */
1061                 return -EOPNOTSUPP;
1062         }
1063
1064         if (IS_ERR(pev)) {
1065                 if (PERF_TYPE_RAW == event->attr.type)
1066                         mutex_unlock(&raw_event_mutex);
1067                 return PTR_ERR(pev);
1068         }
1069
1070         /*
1071          * We allow max flexibility on how each individual counter shared
1072          * by the single CPU operates (the mode exclusion and the range).
1073          */
1074         hwc->config_base = M_PERFCTL_INTERRUPT_ENABLE;
1075
1076         /* Calculate range bits and validate it. */
1077         if (num_possible_cpus() > 1)
1078                 check_and_calc_range(event, pev);
1079
1080         hwc->event_base = mipspmu_perf_event_encode(pev);
1081         if (PERF_TYPE_RAW == event->attr.type)
1082                 mutex_unlock(&raw_event_mutex);
1083
1084         if (!attr->exclude_user)
1085                 hwc->config_base |= M_PERFCTL_USER;
1086         if (!attr->exclude_kernel) {
1087                 hwc->config_base |= M_PERFCTL_KERNEL;
1088                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1089                 hwc->config_base |= M_PERFCTL_EXL;
1090         }
1091         if (!attr->exclude_hv)
1092                 hwc->config_base |= M_PERFCTL_SUPERVISOR;
1093
1094         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1095         /*
1096          * The event can belong to another cpu. We do not assign a local
1097          * counter for it for now.
1098          */
1099         hwc->idx = -1;
1100         hwc->config = 0;
1101
1102         if (!hwc->sample_period) {
1103                 hwc->sample_period  = mipspmu.max_period;
1104                 hwc->last_period    = hwc->sample_period;
1105                 local64_set(&hwc->period_left, hwc->sample_period);
1106         }
1107
1108         err = 0;
1109         if (event->group_leader != event)
1110                 err = validate_group(event);
1111
1112         event->destroy = hw_perf_event_destroy;
1113
1114         if (err)
1115                 event->destroy(event);
1116
1117         return err;
1118 }
1119
1120 static void pause_local_counters(void)
1121 {
1122         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1123         int ctr = mipspmu.num_counters;
1124         unsigned long flags;
1125
1126         local_irq_save(flags);
1127         do {
1128                 ctr--;
1129                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1130                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1131                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1132         } while (ctr > 0);
1133         local_irq_restore(flags);
1134 }
1135
1136 static void resume_local_counters(void)
1137 {
1138         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1139         int ctr = mipspmu.num_counters;
1140
1141         do {
1142                 ctr--;
1143                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1144         } while (ctr > 0);
1145 }
1146
1147 static int mipsxx_pmu_handle_shared_irq(void)
1148 {
1149         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1150         struct perf_sample_data data;
1151         unsigned int counters = mipspmu.num_counters;
1152         u64 counter;
1153         int handled = IRQ_NONE;
1154         struct pt_regs *regs;
1155
1156         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1157                 return handled;
1158         /*
1159          * First we pause the local counters, so that when we are locked
1160          * here, the counters are all paused. When it gets locked due to
1161          * perf_disable(), the timer interrupt handler will be delayed.
1162          *
1163          * See also mipsxx_pmu_start().
1164          */
1165         pause_local_counters();
1166 #ifdef CONFIG_MIPS_MT_SMP
1167         read_lock(&pmuint_rwlock);
1168 #endif
1169
1170         regs = get_irq_regs();
1171
1172         perf_sample_data_init(&data, 0, 0);
1173
1174         switch (counters) {
1175 #define HANDLE_COUNTER(n)                                               \
1176         case n + 1:                                                     \
1177                 if (test_bit(n, cpuc->used_mask)) {                     \
1178                         counter = mipspmu.read_counter(n);              \
1179                         if (counter & mipspmu.overflow) {               \
1180                                 handle_associated_event(cpuc, n, &data, regs); \
1181                                 handled = IRQ_HANDLED;                  \
1182                         }                                               \
1183                 }
1184         HANDLE_COUNTER(3)
1185         HANDLE_COUNTER(2)
1186         HANDLE_COUNTER(1)
1187         HANDLE_COUNTER(0)
1188         }
1189
1190         /*
1191          * Do all the work for the pending perf events. We can do this
1192          * in here because the performance counter interrupt is a regular
1193          * interrupt, not NMI.
1194          */
1195         if (handled == IRQ_HANDLED)
1196                 irq_work_run();
1197
1198 #ifdef CONFIG_MIPS_MT_SMP
1199         read_unlock(&pmuint_rwlock);
1200 #endif
1201         resume_local_counters();
1202         return handled;
1203 }
1204
1205 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1206 {
1207         return mipsxx_pmu_handle_shared_irq();
1208 }
1209
1210 /* 24K */
1211 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1212         ((b) == 0 || (b) == 1 || (b) == 11)
1213
1214 /* 34K */
1215 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1216         ((b) == 0 || (b) == 1 || (b) == 11)
1217 #ifdef CONFIG_MIPS_MT_SMP
1218 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1219         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1220          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1221          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1222          ((b) >= 64 && (b) <= 67))
1223 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1224 #endif
1225
1226 /* 74K */
1227 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1228         ((b) == 0 || (b) == 1)
1229
1230 /* 1004K */
1231 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1232         ((b) == 0 || (b) == 1 || (b) == 11)
1233 #ifdef CONFIG_MIPS_MT_SMP
1234 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1235         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1236          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1237          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1238          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1239          ((b) >= 64 && (b) <= 67))
1240 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1241 #endif
1242
1243 /*
1244  * User can use 0-255 raw events, where 0-127 for the events of even
1245  * counters, and 128-255 for odd counters. Note that bit 7 is used to
1246  * indicate the parity. So, for example, when user wants to take the
1247  * Event Num of 15 for odd counters (by referring to the user manual),
1248  * then 128 needs to be added to 15 as the input for the event config,
1249  * i.e., 143 (0x8F) to be used.
1250  */
1251 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1252 {
1253         unsigned int raw_id = config & 0xff;
1254         unsigned int base_id = raw_id & 0x7f;
1255
1256         raw_event.event_id = base_id;
1257
1258         switch (current_cpu_type()) {
1259         case CPU_24K:
1260                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1261                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1262                 else
1263                         raw_event.cntr_mask =
1264                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1265 #ifdef CONFIG_MIPS_MT_SMP
1266                 /*
1267                  * This is actually doing nothing. Non-multithreading
1268                  * CPUs will not check and calculate the range.
1269                  */
1270                 raw_event.range = P;
1271 #endif
1272                 break;
1273         case CPU_34K:
1274                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1275                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1276                 else
1277                         raw_event.cntr_mask =
1278                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1279 #ifdef CONFIG_MIPS_MT_SMP
1280                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1281                         raw_event.range = P;
1282                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1283                         raw_event.range = V;
1284                 else
1285                         raw_event.range = T;
1286 #endif
1287                 break;
1288         case CPU_74K:
1289                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1290                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1291                 else
1292                         raw_event.cntr_mask =
1293                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1294 #ifdef CONFIG_MIPS_MT_SMP
1295                 raw_event.range = P;
1296 #endif
1297                 break;
1298         case CPU_1004K:
1299                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1300                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1301                 else
1302                         raw_event.cntr_mask =
1303                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1304 #ifdef CONFIG_MIPS_MT_SMP
1305                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1306                         raw_event.range = P;
1307                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1308                         raw_event.range = V;
1309                 else
1310                         raw_event.range = T;
1311 #endif
1312                 break;
1313         }
1314
1315         return &raw_event;
1316 }
1317
1318 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1319 {
1320         unsigned int raw_id = config & 0xff;
1321         unsigned int base_id = raw_id & 0x7f;
1322
1323
1324         raw_event.cntr_mask = CNTR_ALL;
1325         raw_event.event_id = base_id;
1326
1327         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1328                 if (base_id > 0x42)
1329                         return ERR_PTR(-EOPNOTSUPP);
1330         } else {
1331                 if (base_id > 0x3a)
1332                         return ERR_PTR(-EOPNOTSUPP);
1333         }
1334
1335         switch (base_id) {
1336         case 0x00:
1337         case 0x0f:
1338         case 0x1e:
1339         case 0x1f:
1340         case 0x2f:
1341         case 0x34:
1342         case 0x3b ... 0x3f:
1343                 return ERR_PTR(-EOPNOTSUPP);
1344         default:
1345                 break;
1346         }
1347
1348         return &raw_event;
1349 }
1350
1351 static int __init
1352 init_hw_perf_events(void)
1353 {
1354         int counters, irq;
1355         int counter_bits;
1356
1357         pr_info("Performance counters: ");
1358
1359         counters = n_counters();
1360         if (counters == 0) {
1361                 pr_cont("No available PMU.\n");
1362                 return -ENODEV;
1363         }
1364
1365 #ifdef CONFIG_MIPS_MT_SMP
1366         cpu_has_mipsmt_pertccounters = read_c0_config7() & (1<<19);
1367         if (!cpu_has_mipsmt_pertccounters)
1368                 counters = counters_total_to_per_cpu(counters);
1369 #endif
1370
1371 #ifdef MSC01E_INT_BASE
1372         if (cpu_has_veic) {
1373                 /*
1374                  * Using platform specific interrupt controller defines.
1375                  */
1376                 irq = MSC01E_INT_BASE + MSC01E_INT_PERFCTR;
1377         } else {
1378 #endif
1379                 if ((cp0_perfcount_irq >= 0) &&
1380                                 (cp0_compare_irq != cp0_perfcount_irq))
1381                         irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1382                 else
1383                         irq = -1;
1384 #ifdef MSC01E_INT_BASE
1385         }
1386 #endif
1387
1388         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1389
1390         switch (current_cpu_type()) {
1391         case CPU_24K:
1392                 mipspmu.name = "mips/24K";
1393                 mipspmu.general_event_map = &mipsxxcore_event_map;
1394                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1395                 break;
1396         case CPU_34K:
1397                 mipspmu.name = "mips/34K";
1398                 mipspmu.general_event_map = &mipsxxcore_event_map;
1399                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1400                 break;
1401         case CPU_74K:
1402                 mipspmu.name = "mips/74K";
1403                 mipspmu.general_event_map = &mipsxx74Kcore_event_map;
1404                 mipspmu.cache_event_map = &mipsxx74Kcore_cache_map;
1405                 break;
1406         case CPU_1004K:
1407                 mipspmu.name = "mips/1004K";
1408                 mipspmu.general_event_map = &mipsxxcore_event_map;
1409                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1410                 break;
1411         case CPU_LOONGSON1:
1412                 mipspmu.name = "mips/loongson1";
1413                 mipspmu.general_event_map = &mipsxxcore_event_map;
1414                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1415                 break;
1416         case CPU_CAVIUM_OCTEON:
1417         case CPU_CAVIUM_OCTEON_PLUS:
1418         case CPU_CAVIUM_OCTEON2:
1419                 mipspmu.name = "octeon";
1420                 mipspmu.general_event_map = &octeon_event_map;
1421                 mipspmu.cache_event_map = &octeon_cache_map;
1422                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1423                 break;
1424         default:
1425                 pr_cont("Either hardware does not support performance "
1426                         "counters, or not yet implemented.\n");
1427                 return -ENODEV;
1428         }
1429
1430         mipspmu.num_counters = counters;
1431         mipspmu.irq = irq;
1432
1433         if (read_c0_perfctrl0() & M_PERFCTL_WIDE) {
1434                 mipspmu.max_period = (1ULL << 63) - 1;
1435                 mipspmu.valid_count = (1ULL << 63) - 1;
1436                 mipspmu.overflow = 1ULL << 63;
1437                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1438                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1439                 counter_bits = 64;
1440         } else {
1441                 mipspmu.max_period = (1ULL << 31) - 1;
1442                 mipspmu.valid_count = (1ULL << 31) - 1;
1443                 mipspmu.overflow = 1ULL << 31;
1444                 mipspmu.read_counter = mipsxx_pmu_read_counter;
1445                 mipspmu.write_counter = mipsxx_pmu_write_counter;
1446                 counter_bits = 32;
1447         }
1448
1449         on_each_cpu(reset_counters, (void *)(long)counters, 1);
1450
1451         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1452                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1453                 irq < 0 ? " (share with timer interrupt)" : "");
1454
1455         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1456
1457         return 0;
1458 }
1459 early_initcall(init_hw_perf_events);