wext: Fix 32 bit iwpriv compatibility issue with 64 bit Kernel
[cascardo/linux.git] / arch / mips / kernel / smp-cps.c
1 /*
2  * Copyright (C) 2013 Imagination Technologies
3  * Author: Paul Burton <paul.burton@imgtec.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License as published by the
7  * Free Software Foundation;  either version 2 of the  License, or (at your
8  * option) any later version.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/io.h>
13 #include <linux/irqchip/mips-gic.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/smp.h>
17 #include <linux/types.h>
18
19 #include <asm/bcache.h>
20 #include <asm/mips-cm.h>
21 #include <asm/mips-cpc.h>
22 #include <asm/mips_mt.h>
23 #include <asm/mipsregs.h>
24 #include <asm/pm-cps.h>
25 #include <asm/r4kcache.h>
26 #include <asm/smp-cps.h>
27 #include <asm/time.h>
28 #include <asm/uasm.h>
29
30 static bool threads_disabled;
31 static DECLARE_BITMAP(core_power, NR_CPUS);
32
33 struct core_boot_config *mips_cps_core_bootcfg;
34
35 static int __init setup_nothreads(char *s)
36 {
37         threads_disabled = true;
38         return 0;
39 }
40 early_param("nothreads", setup_nothreads);
41
42 static unsigned core_vpe_count(unsigned core)
43 {
44         unsigned cfg;
45
46         if (threads_disabled)
47                 return 1;
48
49         if ((!config_enabled(CONFIG_MIPS_MT_SMP) || !cpu_has_mipsmt)
50                 && (!config_enabled(CONFIG_CPU_MIPSR6) || !cpu_has_vp))
51                 return 1;
52
53         mips_cm_lock_other(core, 0);
54         cfg = read_gcr_co_config() & CM_GCR_Cx_CONFIG_PVPE_MSK;
55         mips_cm_unlock_other();
56         return (cfg >> CM_GCR_Cx_CONFIG_PVPE_SHF) + 1;
57 }
58
59 static void __init cps_smp_setup(void)
60 {
61         unsigned int ncores, nvpes, core_vpes;
62         unsigned long core_entry;
63         int c, v;
64
65         /* Detect & record VPE topology */
66         ncores = mips_cm_numcores();
67         pr_info("%s topology ", cpu_has_mips_r6 ? "VP" : "VPE");
68         for (c = nvpes = 0; c < ncores; c++) {
69                 core_vpes = core_vpe_count(c);
70                 pr_cont("%c%u", c ? ',' : '{', core_vpes);
71
72                 /* Use the number of VPEs in core 0 for smp_num_siblings */
73                 if (!c)
74                         smp_num_siblings = core_vpes;
75
76                 for (v = 0; v < min_t(int, core_vpes, NR_CPUS - nvpes); v++) {
77                         cpu_data[nvpes + v].core = c;
78 #if defined(CONFIG_MIPS_MT_SMP) || defined(CONFIG_CPU_MIPSR6)
79                         cpu_data[nvpes + v].vpe_id = v;
80 #endif
81                 }
82
83                 nvpes += core_vpes;
84         }
85         pr_cont("} total %u\n", nvpes);
86
87         /* Indicate present CPUs (CPU being synonymous with VPE) */
88         for (v = 0; v < min_t(unsigned, nvpes, NR_CPUS); v++) {
89                 set_cpu_possible(v, true);
90                 set_cpu_present(v, true);
91                 __cpu_number_map[v] = v;
92                 __cpu_logical_map[v] = v;
93         }
94
95         /* Set a coherent default CCA (CWB) */
96         change_c0_config(CONF_CM_CMASK, 0x5);
97
98         /* Core 0 is powered up (we're running on it) */
99         bitmap_set(core_power, 0, 1);
100
101         /* Initialise core 0 */
102         mips_cps_core_init();
103
104         /* Make core 0 coherent with everything */
105         write_gcr_cl_coherence(0xff);
106
107         if (mips_cm_revision() >= CM_REV_CM3) {
108                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
109                 write_gcr_bev_base(core_entry);
110         }
111
112 #ifdef CONFIG_MIPS_MT_FPAFF
113         /* If we have an FPU, enroll ourselves in the FPU-full mask */
114         if (cpu_has_fpu)
115                 cpumask_set_cpu(0, &mt_fpu_cpumask);
116 #endif /* CONFIG_MIPS_MT_FPAFF */
117 }
118
119 static void __init cps_prepare_cpus(unsigned int max_cpus)
120 {
121         unsigned ncores, core_vpes, c, cca;
122         bool cca_unsuitable;
123         u32 *entry_code;
124
125         mips_mt_set_cpuoptions();
126
127         /* Detect whether the CCA is unsuited to multi-core SMP */
128         cca = read_c0_config() & CONF_CM_CMASK;
129         switch (cca) {
130         case 0x4: /* CWBE */
131         case 0x5: /* CWB */
132                 /* The CCA is coherent, multi-core is fine */
133                 cca_unsuitable = false;
134                 break;
135
136         default:
137                 /* CCA is not coherent, multi-core is not usable */
138                 cca_unsuitable = true;
139         }
140
141         /* Warn the user if the CCA prevents multi-core */
142         ncores = mips_cm_numcores();
143         if (cca_unsuitable && ncores > 1) {
144                 pr_warn("Using only one core due to unsuitable CCA 0x%x\n",
145                         cca);
146
147                 for_each_present_cpu(c) {
148                         if (cpu_data[c].core)
149                                 set_cpu_present(c, false);
150                 }
151         }
152
153         /*
154          * Patch the start of mips_cps_core_entry to provide:
155          *
156          * s0 = kseg0 CCA
157          */
158         entry_code = (u32 *)&mips_cps_core_entry;
159         uasm_i_addiu(&entry_code, 16, 0, cca);
160         blast_dcache_range((unsigned long)&mips_cps_core_entry,
161                            (unsigned long)entry_code);
162         bc_wback_inv((unsigned long)&mips_cps_core_entry,
163                      (void *)entry_code - (void *)&mips_cps_core_entry);
164         __sync();
165
166         /* Allocate core boot configuration structs */
167         mips_cps_core_bootcfg = kcalloc(ncores, sizeof(*mips_cps_core_bootcfg),
168                                         GFP_KERNEL);
169         if (!mips_cps_core_bootcfg) {
170                 pr_err("Failed to allocate boot config for %u cores\n", ncores);
171                 goto err_out;
172         }
173
174         /* Allocate VPE boot configuration structs */
175         for (c = 0; c < ncores; c++) {
176                 core_vpes = core_vpe_count(c);
177                 mips_cps_core_bootcfg[c].vpe_config = kcalloc(core_vpes,
178                                 sizeof(*mips_cps_core_bootcfg[c].vpe_config),
179                                 GFP_KERNEL);
180                 if (!mips_cps_core_bootcfg[c].vpe_config) {
181                         pr_err("Failed to allocate %u VPE boot configs\n",
182                                core_vpes);
183                         goto err_out;
184                 }
185         }
186
187         /* Mark this CPU as booted */
188         atomic_set(&mips_cps_core_bootcfg[current_cpu_data.core].vpe_mask,
189                    1 << cpu_vpe_id(&current_cpu_data));
190
191         return;
192 err_out:
193         /* Clean up allocations */
194         if (mips_cps_core_bootcfg) {
195                 for (c = 0; c < ncores; c++)
196                         kfree(mips_cps_core_bootcfg[c].vpe_config);
197                 kfree(mips_cps_core_bootcfg);
198                 mips_cps_core_bootcfg = NULL;
199         }
200
201         /* Effectively disable SMP by declaring CPUs not present */
202         for_each_possible_cpu(c) {
203                 if (c == 0)
204                         continue;
205                 set_cpu_present(c, false);
206         }
207 }
208
209 static void boot_core(unsigned core)
210 {
211         u32 access, stat, seq_state;
212         unsigned timeout;
213
214         /* Select the appropriate core */
215         mips_cm_lock_other(core, 0);
216
217         /* Set its reset vector */
218         write_gcr_co_reset_base(CKSEG1ADDR((unsigned long)mips_cps_core_entry));
219
220         /* Ensure its coherency is disabled */
221         write_gcr_co_coherence(0);
222
223         /* Start it with the legacy memory map and exception base */
224         write_gcr_co_reset_ext_base(CM_GCR_RESET_EXT_BASE_UEB);
225
226         /* Ensure the core can access the GCRs */
227         access = read_gcr_access();
228         access |= 1 << (CM_GCR_ACCESS_ACCESSEN_SHF + core);
229         write_gcr_access(access);
230
231         if (mips_cpc_present()) {
232                 /* Reset the core */
233                 mips_cpc_lock_other(core);
234
235                 if (mips_cm_revision() >= CM_REV_CM3) {
236                         /* Run VP0 following the reset */
237                         write_cpc_co_vp_run(0x1);
238
239                         /*
240                          * Ensure that the VP_RUN register is written before the
241                          * core leaves reset.
242                          */
243                         wmb();
244                 }
245
246                 write_cpc_co_cmd(CPC_Cx_CMD_RESET);
247
248                 timeout = 100;
249                 while (true) {
250                         stat = read_cpc_co_stat_conf();
251                         seq_state = stat & CPC_Cx_STAT_CONF_SEQSTATE_MSK;
252
253                         /* U6 == coherent execution, ie. the core is up */
254                         if (seq_state == CPC_Cx_STAT_CONF_SEQSTATE_U6)
255                                 break;
256
257                         /* Delay a little while before we start warning */
258                         if (timeout) {
259                                 timeout--;
260                                 mdelay(10);
261                                 continue;
262                         }
263
264                         pr_warn("Waiting for core %u to start... STAT_CONF=0x%x\n",
265                                 core, stat);
266                         mdelay(1000);
267                 }
268
269                 mips_cpc_unlock_other();
270         } else {
271                 /* Take the core out of reset */
272                 write_gcr_co_reset_release(0);
273         }
274
275         mips_cm_unlock_other();
276
277         /* The core is now powered up */
278         bitmap_set(core_power, core, 1);
279 }
280
281 static void remote_vpe_boot(void *dummy)
282 {
283         unsigned core = current_cpu_data.core;
284         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
285
286         mips_cps_boot_vpes(core_cfg, cpu_vpe_id(&current_cpu_data));
287 }
288
289 static void cps_boot_secondary(int cpu, struct task_struct *idle)
290 {
291         unsigned core = cpu_data[cpu].core;
292         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
293         struct core_boot_config *core_cfg = &mips_cps_core_bootcfg[core];
294         struct vpe_boot_config *vpe_cfg = &core_cfg->vpe_config[vpe_id];
295         unsigned long core_entry;
296         unsigned int remote;
297         int err;
298
299         vpe_cfg->pc = (unsigned long)&smp_bootstrap;
300         vpe_cfg->sp = __KSTK_TOS(idle);
301         vpe_cfg->gp = (unsigned long)task_thread_info(idle);
302
303         atomic_or(1 << cpu_vpe_id(&cpu_data[cpu]), &core_cfg->vpe_mask);
304
305         preempt_disable();
306
307         if (!test_bit(core, core_power)) {
308                 /* Boot a VPE on a powered down core */
309                 boot_core(core);
310                 goto out;
311         }
312
313         if (cpu_has_vp) {
314                 mips_cm_lock_other(core, vpe_id);
315                 core_entry = CKSEG1ADDR((unsigned long)mips_cps_core_entry);
316                 write_gcr_co_reset_base(core_entry);
317                 mips_cm_unlock_other();
318         }
319
320         if (core != current_cpu_data.core) {
321                 /* Boot a VPE on another powered up core */
322                 for (remote = 0; remote < NR_CPUS; remote++) {
323                         if (cpu_data[remote].core != core)
324                                 continue;
325                         if (cpu_online(remote))
326                                 break;
327                 }
328                 BUG_ON(remote >= NR_CPUS);
329
330                 err = smp_call_function_single(remote, remote_vpe_boot,
331                                                NULL, 1);
332                 if (err)
333                         panic("Failed to call remote CPU\n");
334                 goto out;
335         }
336
337         BUG_ON(!cpu_has_mipsmt && !cpu_has_vp);
338
339         /* Boot a VPE on this core */
340         mips_cps_boot_vpes(core_cfg, vpe_id);
341 out:
342         preempt_enable();
343 }
344
345 static void cps_init_secondary(void)
346 {
347         /* Disable MT - we only want to run 1 TC per VPE */
348         if (cpu_has_mipsmt)
349                 dmt();
350
351         if (mips_cm_revision() >= CM_REV_CM3) {
352                 unsigned ident = gic_read_local_vp_id();
353
354                 /*
355                  * Ensure that our calculation of the VP ID matches up with
356                  * what the GIC reports, otherwise we'll have configured
357                  * interrupts incorrectly.
358                  */
359                 BUG_ON(ident != mips_cm_vp_id(smp_processor_id()));
360         }
361
362         change_c0_status(ST0_IM, STATUSF_IP2 | STATUSF_IP3 | STATUSF_IP4 |
363                                  STATUSF_IP5 | STATUSF_IP6 | STATUSF_IP7);
364 }
365
366 static void cps_smp_finish(void)
367 {
368         write_c0_compare(read_c0_count() + (8 * mips_hpt_frequency / HZ));
369
370 #ifdef CONFIG_MIPS_MT_FPAFF
371         /* If we have an FPU, enroll ourselves in the FPU-full mask */
372         if (cpu_has_fpu)
373                 cpumask_set_cpu(smp_processor_id(), &mt_fpu_cpumask);
374 #endif /* CONFIG_MIPS_MT_FPAFF */
375
376         local_irq_enable();
377 }
378
379 #ifdef CONFIG_HOTPLUG_CPU
380
381 static int cps_cpu_disable(void)
382 {
383         unsigned cpu = smp_processor_id();
384         struct core_boot_config *core_cfg;
385
386         if (!cpu)
387                 return -EBUSY;
388
389         if (!cps_pm_support_state(CPS_PM_POWER_GATED))
390                 return -EINVAL;
391
392         core_cfg = &mips_cps_core_bootcfg[current_cpu_data.core];
393         atomic_sub(1 << cpu_vpe_id(&current_cpu_data), &core_cfg->vpe_mask);
394         smp_mb__after_atomic();
395         set_cpu_online(cpu, false);
396         cpumask_clear_cpu(cpu, &cpu_callin_map);
397
398         return 0;
399 }
400
401 static DECLARE_COMPLETION(cpu_death_chosen);
402 static unsigned cpu_death_sibling;
403 static enum {
404         CPU_DEATH_HALT,
405         CPU_DEATH_POWER,
406 } cpu_death;
407
408 void play_dead(void)
409 {
410         unsigned cpu, core;
411
412         local_irq_disable();
413         idle_task_exit();
414         cpu = smp_processor_id();
415         cpu_death = CPU_DEATH_POWER;
416
417         if (cpu_has_mipsmt) {
418                 core = cpu_data[cpu].core;
419
420                 /* Look for another online VPE within the core */
421                 for_each_online_cpu(cpu_death_sibling) {
422                         if (cpu_data[cpu_death_sibling].core != core)
423                                 continue;
424
425                         /*
426                          * There is an online VPE within the core. Just halt
427                          * this TC and leave the core alone.
428                          */
429                         cpu_death = CPU_DEATH_HALT;
430                         break;
431                 }
432         }
433
434         /* This CPU has chosen its way out */
435         complete(&cpu_death_chosen);
436
437         if (cpu_death == CPU_DEATH_HALT) {
438                 /* Halt this TC */
439                 write_c0_tchalt(TCHALT_H);
440                 instruction_hazard();
441         } else {
442                 /* Power down the core */
443                 cps_pm_enter_state(CPS_PM_POWER_GATED);
444         }
445
446         /* This should never be reached */
447         panic("Failed to offline CPU %u", cpu);
448 }
449
450 static void wait_for_sibling_halt(void *ptr_cpu)
451 {
452         unsigned cpu = (unsigned long)ptr_cpu;
453         unsigned vpe_id = cpu_vpe_id(&cpu_data[cpu]);
454         unsigned halted;
455         unsigned long flags;
456
457         do {
458                 local_irq_save(flags);
459                 settc(vpe_id);
460                 halted = read_tc_c0_tchalt();
461                 local_irq_restore(flags);
462         } while (!(halted & TCHALT_H));
463 }
464
465 static void cps_cpu_die(unsigned int cpu)
466 {
467         unsigned core = cpu_data[cpu].core;
468         unsigned stat;
469         int err;
470
471         /* Wait for the cpu to choose its way out */
472         if (!wait_for_completion_timeout(&cpu_death_chosen,
473                                          msecs_to_jiffies(5000))) {
474                 pr_err("CPU%u: didn't offline\n", cpu);
475                 return;
476         }
477
478         /*
479          * Now wait for the CPU to actually offline. Without doing this that
480          * offlining may race with one or more of:
481          *
482          *   - Onlining the CPU again.
483          *   - Powering down the core if another VPE within it is offlined.
484          *   - A sibling VPE entering a non-coherent state.
485          *
486          * In the non-MT halt case (ie. infinite loop) the CPU is doing nothing
487          * with which we could race, so do nothing.
488          */
489         if (cpu_death == CPU_DEATH_POWER) {
490                 /*
491                  * Wait for the core to enter a powered down or clock gated
492                  * state, the latter happening when a JTAG probe is connected
493                  * in which case the CPC will refuse to power down the core.
494                  */
495                 do {
496                         mips_cpc_lock_other(core);
497                         stat = read_cpc_co_stat_conf();
498                         stat &= CPC_Cx_STAT_CONF_SEQSTATE_MSK;
499                         mips_cpc_unlock_other();
500                 } while (stat != CPC_Cx_STAT_CONF_SEQSTATE_D0 &&
501                          stat != CPC_Cx_STAT_CONF_SEQSTATE_D2 &&
502                          stat != CPC_Cx_STAT_CONF_SEQSTATE_U2);
503
504                 /* Indicate the core is powered off */
505                 bitmap_clear(core_power, core, 1);
506         } else if (cpu_has_mipsmt) {
507                 /*
508                  * Have a CPU with access to the offlined CPUs registers wait
509                  * for its TC to halt.
510                  */
511                 err = smp_call_function_single(cpu_death_sibling,
512                                                wait_for_sibling_halt,
513                                                (void *)(unsigned long)cpu, 1);
514                 if (err)
515                         panic("Failed to call remote sibling CPU\n");
516         }
517 }
518
519 #endif /* CONFIG_HOTPLUG_CPU */
520
521 static struct plat_smp_ops cps_smp_ops = {
522         .smp_setup              = cps_smp_setup,
523         .prepare_cpus           = cps_prepare_cpus,
524         .boot_secondary         = cps_boot_secondary,
525         .init_secondary         = cps_init_secondary,
526         .smp_finish             = cps_smp_finish,
527         .send_ipi_single        = mips_smp_send_ipi_single,
528         .send_ipi_mask          = mips_smp_send_ipi_mask,
529 #ifdef CONFIG_HOTPLUG_CPU
530         .cpu_disable            = cps_cpu_disable,
531         .cpu_die                = cps_cpu_die,
532 #endif
533 };
534
535 bool mips_cps_smp_in_use(void)
536 {
537         extern struct plat_smp_ops *mp_ops;
538         return mp_ops == &cps_smp_ops;
539 }
540
541 int register_cps_smp_ops(void)
542 {
543         if (!mips_cm_present()) {
544                 pr_warn("MIPS CPS SMP unable to proceed without a CM\n");
545                 return -ENODEV;
546         }
547
548         /* check we have a GIC - we need one for IPIs */
549         if (!(read_gcr_gic_status() & CM_GCR_GIC_STATUS_EX_MSK)) {
550                 pr_warn("MIPS CPS SMP unable to proceed without a GIC\n");
551                 return -ENODEV;
552         }
553
554         register_smp_ops(&cps_smp_ops);
555         return 0;
556 }