cb02df215365d09a163f4f1d209df0bba0d6bb3c
[cascardo/linux.git] / arch / mips / kernel / smp.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/module.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cpc.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 cpumask_t cpu_callin_map;               /* Bitmask of started secondaries */
52
53 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
54 EXPORT_SYMBOL(__cpu_number_map);
55
56 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
57 EXPORT_SYMBOL(__cpu_logical_map);
58
59 /* Number of TCs (or siblings in Intel speak) per CPU core */
60 int smp_num_siblings = 1;
61 EXPORT_SYMBOL(smp_num_siblings);
62
63 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
64 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
65 EXPORT_SYMBOL(cpu_sibling_map);
66
67 /* representing the core map of multi-core chips of each logical CPU */
68 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
69 EXPORT_SYMBOL(cpu_core_map);
70
71 /*
72  * A logcal cpu mask containing only one VPE per core to
73  * reduce the number of IPIs on large MT systems.
74  */
75 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
76 EXPORT_SYMBOL(cpu_foreign_map);
77
78 /* representing cpus for which sibling maps can be computed */
79 static cpumask_t cpu_sibling_setup_map;
80
81 /* representing cpus for which core maps can be computed */
82 static cpumask_t cpu_core_setup_map;
83
84 cpumask_t cpu_coherent_mask;
85
86 #ifdef CONFIG_GENERIC_IRQ_IPI
87 static struct irq_desc *call_desc;
88 static struct irq_desc *sched_desc;
89 #endif
90
91 static inline void set_cpu_sibling_map(int cpu)
92 {
93         int i;
94
95         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
96
97         if (smp_num_siblings > 1) {
98                 for_each_cpu(i, &cpu_sibling_setup_map) {
99                         if (cpu_data[cpu].package == cpu_data[i].package &&
100                                     cpu_data[cpu].core == cpu_data[i].core) {
101                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103                         }
104                 }
105         } else
106                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111         int i;
112
113         cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115         for_each_cpu(i, &cpu_core_setup_map) {
116                 if (cpu_data[cpu].package == cpu_data[i].package) {
117                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
118                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
119                 }
120         }
121 }
122
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 void calculate_cpu_foreign_map(void)
128 {
129         int i, k, core_present;
130         cpumask_t temp_foreign_map;
131
132         /* Re-calculate the mask */
133         cpumask_clear(&temp_foreign_map);
134         for_each_online_cpu(i) {
135                 core_present = 0;
136                 for_each_cpu(k, &temp_foreign_map)
137                         if (cpu_data[i].package == cpu_data[k].package &&
138                             cpu_data[i].core == cpu_data[k].core)
139                                 core_present = 1;
140                 if (!core_present)
141                         cpumask_set_cpu(i, &temp_foreign_map);
142         }
143
144         for_each_online_cpu(i)
145                 cpumask_andnot(&cpu_foreign_map[i],
146                                &temp_foreign_map, &cpu_sibling_map[i]);
147 }
148
149 struct plat_smp_ops *mp_ops;
150 EXPORT_SYMBOL(mp_ops);
151
152 void register_smp_ops(struct plat_smp_ops *ops)
153 {
154         if (mp_ops)
155                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
156
157         mp_ops = ops;
158 }
159
160 #ifdef CONFIG_GENERIC_IRQ_IPI
161 void mips_smp_send_ipi_single(int cpu, unsigned int action)
162 {
163         mips_smp_send_ipi_mask(cpumask_of(cpu), action);
164 }
165
166 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
167 {
168         unsigned long flags;
169         unsigned int core;
170         int cpu;
171
172         local_irq_save(flags);
173
174         switch (action) {
175         case SMP_CALL_FUNCTION:
176                 __ipi_send_mask(call_desc, mask);
177                 break;
178
179         case SMP_RESCHEDULE_YOURSELF:
180                 __ipi_send_mask(sched_desc, mask);
181                 break;
182
183         default:
184                 BUG();
185         }
186
187         if (mips_cpc_present()) {
188                 for_each_cpu(cpu, mask) {
189                         core = cpu_data[cpu].core;
190
191                         if (core == current_cpu_data.core)
192                                 continue;
193
194                         while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
195                                 mips_cm_lock_other(core, 0);
196                                 mips_cpc_lock_other(core);
197                                 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
198                                 mips_cpc_unlock_other();
199                                 mips_cm_unlock_other();
200                         }
201                 }
202         }
203
204         local_irq_restore(flags);
205 }
206
207
208 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
209 {
210         scheduler_ipi();
211
212         return IRQ_HANDLED;
213 }
214
215 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
216 {
217         generic_smp_call_function_interrupt();
218
219         return IRQ_HANDLED;
220 }
221
222 static struct irqaction irq_resched = {
223         .handler        = ipi_resched_interrupt,
224         .flags          = IRQF_PERCPU,
225         .name           = "IPI resched"
226 };
227
228 static struct irqaction irq_call = {
229         .handler        = ipi_call_interrupt,
230         .flags          = IRQF_PERCPU,
231         .name           = "IPI call"
232 };
233
234 static __init void smp_ipi_init_one(unsigned int virq,
235                                     struct irqaction *action)
236 {
237         int ret;
238
239         irq_set_handler(virq, handle_percpu_irq);
240         ret = setup_irq(virq, action);
241         BUG_ON(ret);
242 }
243
244 static int __init mips_smp_ipi_init(void)
245 {
246         unsigned int call_virq, sched_virq;
247         struct irq_domain *ipidomain;
248         struct device_node *node;
249
250         node = of_irq_find_parent(of_root);
251         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
252
253         /*
254          * Some platforms have half DT setup. So if we found irq node but
255          * didn't find an ipidomain, try to search for one that is not in the
256          * DT.
257          */
258         if (node && !ipidomain)
259                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
260
261         /*
262          * There are systems which only use IPI domains some of the time,
263          * depending upon configuration we don't know until runtime. An
264          * example is Malta where we may compile in support for GIC & the
265          * MT ASE, but run on a system which has multiple VPEs in a single
266          * core and doesn't include a GIC. Until all IPI implementations
267          * have been converted to use IPI domains the best we can do here
268          * is to return & hope some other code sets up the IPIs.
269          */
270         if (!ipidomain)
271                 return 0;
272
273         call_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
274         BUG_ON(!call_virq);
275
276         sched_virq = irq_reserve_ipi(ipidomain, cpu_possible_mask);
277         BUG_ON(!sched_virq);
278
279         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
280                 int cpu;
281
282                 for_each_cpu(cpu, cpu_possible_mask) {
283                         smp_ipi_init_one(call_virq + cpu, &irq_call);
284                         smp_ipi_init_one(sched_virq + cpu, &irq_resched);
285                 }
286         } else {
287                 smp_ipi_init_one(call_virq, &irq_call);
288                 smp_ipi_init_one(sched_virq, &irq_resched);
289         }
290
291         call_desc = irq_to_desc(call_virq);
292         sched_desc = irq_to_desc(sched_virq);
293
294         return 0;
295 }
296 early_initcall(mips_smp_ipi_init);
297 #endif
298
299 /*
300  * First C code run on the secondary CPUs after being started up by
301  * the master.
302  */
303 asmlinkage void start_secondary(void)
304 {
305         unsigned int cpu;
306
307         cpu_probe();
308         per_cpu_trap_init(false);
309         mips_clockevent_init();
310         mp_ops->init_secondary();
311         cpu_report();
312         maar_init();
313
314         /*
315          * XXX parity protection should be folded in here when it's converted
316          * to an option instead of something based on .cputype
317          */
318
319         calibrate_delay();
320         preempt_disable();
321         cpu = smp_processor_id();
322         cpu_data[cpu].udelay_val = loops_per_jiffy;
323
324         cpumask_set_cpu(cpu, &cpu_coherent_mask);
325         notify_cpu_starting(cpu);
326
327         cpumask_set_cpu(cpu, &cpu_callin_map);
328         synchronise_count_slave(cpu);
329
330         set_cpu_online(cpu, true);
331
332         set_cpu_sibling_map(cpu);
333         set_cpu_core_map(cpu);
334
335         calculate_cpu_foreign_map();
336
337         /*
338          * irq will be enabled in ->smp_finish(), enabling it too early
339          * is dangerous.
340          */
341         WARN_ON_ONCE(!irqs_disabled());
342         mp_ops->smp_finish();
343
344         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
345 }
346
347 static void stop_this_cpu(void *dummy)
348 {
349         /*
350          * Remove this CPU:
351          */
352
353         set_cpu_online(smp_processor_id(), false);
354         calculate_cpu_foreign_map();
355         local_irq_disable();
356         while (1);
357 }
358
359 void smp_send_stop(void)
360 {
361         smp_call_function(stop_this_cpu, NULL, 0);
362 }
363
364 void __init smp_cpus_done(unsigned int max_cpus)
365 {
366 }
367
368 /* called from main before smp_init() */
369 void __init smp_prepare_cpus(unsigned int max_cpus)
370 {
371         init_new_context(current, &init_mm);
372         current_thread_info()->cpu = 0;
373         mp_ops->prepare_cpus(max_cpus);
374         set_cpu_sibling_map(0);
375         set_cpu_core_map(0);
376         calculate_cpu_foreign_map();
377 #ifndef CONFIG_HOTPLUG_CPU
378         init_cpu_present(cpu_possible_mask);
379 #endif
380         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
381 }
382
383 /* preload SMP state for boot cpu */
384 void smp_prepare_boot_cpu(void)
385 {
386         set_cpu_possible(0, true);
387         set_cpu_online(0, true);
388         cpumask_set_cpu(0, &cpu_callin_map);
389 }
390
391 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
392 {
393         mp_ops->boot_secondary(cpu, tidle);
394
395         /*
396          * Trust is futile.  We should really have timeouts ...
397          */
398         while (!cpumask_test_cpu(cpu, &cpu_callin_map)) {
399                 udelay(100);
400                 schedule();
401         }
402
403         synchronise_count_master(cpu);
404         return 0;
405 }
406
407 /* Not really SMP stuff ... */
408 int setup_profiling_timer(unsigned int multiplier)
409 {
410         return 0;
411 }
412
413 static void flush_tlb_all_ipi(void *info)
414 {
415         local_flush_tlb_all();
416 }
417
418 void flush_tlb_all(void)
419 {
420         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
421 }
422
423 static void flush_tlb_mm_ipi(void *mm)
424 {
425         local_flush_tlb_mm((struct mm_struct *)mm);
426 }
427
428 /*
429  * Special Variant of smp_call_function for use by TLB functions:
430  *
431  *  o No return value
432  *  o collapses to normal function call on UP kernels
433  *  o collapses to normal function call on systems with a single shared
434  *    primary cache.
435  */
436 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
437 {
438         smp_call_function(func, info, 1);
439 }
440
441 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
442 {
443         preempt_disable();
444
445         smp_on_other_tlbs(func, info);
446         func(info);
447
448         preempt_enable();
449 }
450
451 /*
452  * The following tlb flush calls are invoked when old translations are
453  * being torn down, or pte attributes are changing. For single threaded
454  * address spaces, a new context is obtained on the current cpu, and tlb
455  * context on other cpus are invalidated to force a new context allocation
456  * at switch_mm time, should the mm ever be used on other cpus. For
457  * multithreaded address spaces, intercpu interrupts have to be sent.
458  * Another case where intercpu interrupts are required is when the target
459  * mm might be active on another cpu (eg debuggers doing the flushes on
460  * behalf of debugees, kswapd stealing pages from another process etc).
461  * Kanoj 07/00.
462  */
463
464 void flush_tlb_mm(struct mm_struct *mm)
465 {
466         preempt_disable();
467
468         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
469                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
470         } else {
471                 unsigned int cpu;
472
473                 for_each_online_cpu(cpu) {
474                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
475                                 cpu_context(cpu, mm) = 0;
476                 }
477         }
478         local_flush_tlb_mm(mm);
479
480         preempt_enable();
481 }
482
483 struct flush_tlb_data {
484         struct vm_area_struct *vma;
485         unsigned long addr1;
486         unsigned long addr2;
487 };
488
489 static void flush_tlb_range_ipi(void *info)
490 {
491         struct flush_tlb_data *fd = info;
492
493         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
494 }
495
496 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
497 {
498         struct mm_struct *mm = vma->vm_mm;
499
500         preempt_disable();
501         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
502                 struct flush_tlb_data fd = {
503                         .vma = vma,
504                         .addr1 = start,
505                         .addr2 = end,
506                 };
507
508                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
509         } else {
510                 unsigned int cpu;
511                 int exec = vma->vm_flags & VM_EXEC;
512
513                 for_each_online_cpu(cpu) {
514                         /*
515                          * flush_cache_range() will only fully flush icache if
516                          * the VMA is executable, otherwise we must invalidate
517                          * ASID without it appearing to has_valid_asid() as if
518                          * mm has been completely unused by that CPU.
519                          */
520                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
521                                 cpu_context(cpu, mm) = !exec;
522                 }
523         }
524         local_flush_tlb_range(vma, start, end);
525         preempt_enable();
526 }
527
528 static void flush_tlb_kernel_range_ipi(void *info)
529 {
530         struct flush_tlb_data *fd = info;
531
532         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
533 }
534
535 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
536 {
537         struct flush_tlb_data fd = {
538                 .addr1 = start,
539                 .addr2 = end,
540         };
541
542         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
543 }
544
545 static void flush_tlb_page_ipi(void *info)
546 {
547         struct flush_tlb_data *fd = info;
548
549         local_flush_tlb_page(fd->vma, fd->addr1);
550 }
551
552 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
553 {
554         preempt_disable();
555         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
556                 struct flush_tlb_data fd = {
557                         .vma = vma,
558                         .addr1 = page,
559                 };
560
561                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
562         } else {
563                 unsigned int cpu;
564
565                 for_each_online_cpu(cpu) {
566                         /*
567                          * flush_cache_page() only does partial flushes, so
568                          * invalidate ASID without it appearing to
569                          * has_valid_asid() as if mm has been completely unused
570                          * by that CPU.
571                          */
572                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
573                                 cpu_context(cpu, vma->vm_mm) = 1;
574                 }
575         }
576         local_flush_tlb_page(vma, page);
577         preempt_enable();
578 }
579
580 static void flush_tlb_one_ipi(void *info)
581 {
582         unsigned long vaddr = (unsigned long) info;
583
584         local_flush_tlb_one(vaddr);
585 }
586
587 void flush_tlb_one(unsigned long vaddr)
588 {
589         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
590 }
591
592 EXPORT_SYMBOL(flush_tlb_page);
593 EXPORT_SYMBOL(flush_tlb_one);
594
595 #if defined(CONFIG_KEXEC)
596 void (*dump_ipi_function_ptr)(void *) = NULL;
597 void dump_send_ipi(void (*dump_ipi_callback)(void *))
598 {
599         int i;
600         int cpu = smp_processor_id();
601
602         dump_ipi_function_ptr = dump_ipi_callback;
603         smp_mb();
604         for_each_online_cpu(i)
605                 if (i != cpu)
606                         mp_ops->send_ipi_single(i, SMP_DUMP);
607
608 }
609 EXPORT_SYMBOL(dump_send_ipi);
610 #endif
611
612 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
613
614 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
615 static DEFINE_PER_CPU(struct call_single_data, tick_broadcast_csd);
616
617 void tick_broadcast(const struct cpumask *mask)
618 {
619         atomic_t *count;
620         struct call_single_data *csd;
621         int cpu;
622
623         for_each_cpu(cpu, mask) {
624                 count = &per_cpu(tick_broadcast_count, cpu);
625                 csd = &per_cpu(tick_broadcast_csd, cpu);
626
627                 if (atomic_inc_return(count) == 1)
628                         smp_call_function_single_async(cpu, csd);
629         }
630 }
631
632 static void tick_broadcast_callee(void *info)
633 {
634         int cpu = smp_processor_id();
635         tick_receive_broadcast();
636         atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
637 }
638
639 static int __init tick_broadcast_init(void)
640 {
641         struct call_single_data *csd;
642         int cpu;
643
644         for (cpu = 0; cpu < NR_CPUS; cpu++) {
645                 csd = &per_cpu(tick_broadcast_csd, cpu);
646                 csd->func = tick_broadcast_callee;
647         }
648
649         return 0;
650 }
651 early_initcall(tick_broadcast_init);
652
653 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */