spi: rockchip: Signal unfinished DMA transfers
[cascardo/linux.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cacheops.h>
24 #include <asm/cpu-info.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 #include <asm/inst.h>
28
29 #undef CONFIG_MIPS_MT
30 #include <asm/r4kcache.h>
31 #define CONFIG_MIPS_MT
32
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43         unsigned long instpc)
44 {
45         unsigned int dspcontrol;
46         union mips_instruction insn;
47         struct kvm_vcpu_arch *arch = &vcpu->arch;
48         long epc = instpc;
49         long nextpc = KVM_INVALID_INST;
50
51         if (epc & 3)
52                 goto unaligned;
53
54         /* Read the instruction */
55         insn.word = kvm_get_inst((uint32_t *) epc, vcpu);
56
57         if (insn.word == KVM_INVALID_INST)
58                 return KVM_INVALID_INST;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         /* Fall through */
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 }
71                 break;
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79                 switch (insn.i_format.rt) {
80                 case bltz_op:
81                 case bltzl_op:
82                         if ((long)arch->gprs[insn.i_format.rs] < 0)
83                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
84                         else
85                                 epc += 8;
86                         nextpc = epc;
87                         break;
88
89                 case bgez_op:
90                 case bgezl_op:
91                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
92                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
93                         else
94                                 epc += 8;
95                         nextpc = epc;
96                         break;
97
98                 case bltzal_op:
99                 case bltzall_op:
100                         arch->gprs[31] = epc + 8;
101                         if ((long)arch->gprs[insn.i_format.rs] < 0)
102                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
103                         else
104                                 epc += 8;
105                         nextpc = epc;
106                         break;
107
108                 case bgezal_op:
109                 case bgezall_op:
110                         arch->gprs[31] = epc + 8;
111                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
112                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
113                         else
114                                 epc += 8;
115                         nextpc = epc;
116                         break;
117                 case bposge32_op:
118                         if (!cpu_has_dsp)
119                                 goto sigill;
120
121                         dspcontrol = rddsp(0x01);
122
123                         if (dspcontrol >= 32)
124                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
125                         else
126                                 epc += 8;
127                         nextpc = epc;
128                         break;
129                 }
130                 break;
131
132                 /* These are unconditional and in j_format. */
133         case jal_op:
134                 arch->gprs[31] = instpc + 8;
135         case j_op:
136                 epc += 4;
137                 epc >>= 28;
138                 epc <<= 28;
139                 epc |= (insn.j_format.target << 2);
140                 nextpc = epc;
141                 break;
142
143                 /* These are conditional and in i_format. */
144         case beq_op:
145         case beql_op:
146                 if (arch->gprs[insn.i_format.rs] ==
147                     arch->gprs[insn.i_format.rt])
148                         epc = epc + 4 + (insn.i_format.simmediate << 2);
149                 else
150                         epc += 8;
151                 nextpc = epc;
152                 break;
153
154         case bne_op:
155         case bnel_op:
156                 if (arch->gprs[insn.i_format.rs] !=
157                     arch->gprs[insn.i_format.rt])
158                         epc = epc + 4 + (insn.i_format.simmediate << 2);
159                 else
160                         epc += 8;
161                 nextpc = epc;
162                 break;
163
164         case blez_op:           /* not really i_format */
165         case blezl_op:
166                 /* rt field assumed to be zero */
167                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
168                         epc = epc + 4 + (insn.i_format.simmediate << 2);
169                 else
170                         epc += 8;
171                 nextpc = epc;
172                 break;
173
174         case bgtz_op:
175         case bgtzl_op:
176                 /* rt field assumed to be zero */
177                 if ((long)arch->gprs[insn.i_format.rs] > 0)
178                         epc = epc + 4 + (insn.i_format.simmediate << 2);
179                 else
180                         epc += 8;
181                 nextpc = epc;
182                 break;
183
184                 /* And now the FPA/cp1 branch instructions. */
185         case cop1_op:
186                 kvm_err("%s: unsupported cop1_op\n", __func__);
187                 break;
188         }
189
190         return nextpc;
191
192 unaligned:
193         kvm_err("%s: unaligned epc\n", __func__);
194         return nextpc;
195
196 sigill:
197         kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
198         return nextpc;
199 }
200
201 enum emulation_result update_pc(struct kvm_vcpu *vcpu, uint32_t cause)
202 {
203         unsigned long branch_pc;
204         enum emulation_result er = EMULATE_DONE;
205
206         if (cause & CAUSEF_BD) {
207                 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
208                 if (branch_pc == KVM_INVALID_INST) {
209                         er = EMULATE_FAIL;
210                 } else {
211                         vcpu->arch.pc = branch_pc;
212                         kvm_debug("BD update_pc(): New PC: %#lx\n",
213                                   vcpu->arch.pc);
214                 }
215         } else
216                 vcpu->arch.pc += 4;
217
218         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
219
220         return er;
221 }
222
223 /**
224  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
225  * @vcpu:       Virtual CPU.
226  *
227  * Returns:     1 if the CP0_Count timer is disabled by either the guest
228  *              CP0_Cause.DC bit or the count_ctl.DC bit.
229  *              0 otherwise (in which case CP0_Count timer is running).
230  */
231 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
232 {
233         struct mips_coproc *cop0 = vcpu->arch.cop0;
234
235         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
236                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
237 }
238
239 /**
240  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
241  *
242  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
243  *
244  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
245  */
246 static uint32_t kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
247 {
248         s64 now_ns, periods;
249         u64 delta;
250
251         now_ns = ktime_to_ns(now);
252         delta = now_ns + vcpu->arch.count_dyn_bias;
253
254         if (delta >= vcpu->arch.count_period) {
255                 /* If delta is out of safe range the bias needs adjusting */
256                 periods = div64_s64(now_ns, vcpu->arch.count_period);
257                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
258                 /* Recalculate delta with new bias */
259                 delta = now_ns + vcpu->arch.count_dyn_bias;
260         }
261
262         /*
263          * We've ensured that:
264          *   delta < count_period
265          *
266          * Therefore the intermediate delta*count_hz will never overflow since
267          * at the boundary condition:
268          *   delta = count_period
269          *   delta = NSEC_PER_SEC * 2^32 / count_hz
270          *   delta * count_hz = NSEC_PER_SEC * 2^32
271          */
272         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
273 }
274
275 /**
276  * kvm_mips_count_time() - Get effective current time.
277  * @vcpu:       Virtual CPU.
278  *
279  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
280  * except when the master disable bit is set in count_ctl, in which case it is
281  * count_resume, i.e. the time that the count was disabled.
282  *
283  * Returns:     Effective monotonic ktime for CP0_Count.
284  */
285 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
286 {
287         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
288                 return vcpu->arch.count_resume;
289
290         return ktime_get();
291 }
292
293 /**
294  * kvm_mips_read_count_running() - Read the current count value as if running.
295  * @vcpu:       Virtual CPU.
296  * @now:        Kernel time to read CP0_Count at.
297  *
298  * Returns the current guest CP0_Count register at time @now and handles if the
299  * timer interrupt is pending and hasn't been handled yet.
300  *
301  * Returns:     The current value of the guest CP0_Count register.
302  */
303 static uint32_t kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
304 {
305         struct mips_coproc *cop0 = vcpu->arch.cop0;
306         ktime_t expires, threshold;
307         uint32_t count, compare;
308         int running;
309
310         /* Calculate the biased and scaled guest CP0_Count */
311         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
312         compare = kvm_read_c0_guest_compare(cop0);
313
314         /*
315          * Find whether CP0_Count has reached the closest timer interrupt. If
316          * not, we shouldn't inject it.
317          */
318         if ((int32_t)(count - compare) < 0)
319                 return count;
320
321         /*
322          * The CP0_Count we're going to return has already reached the closest
323          * timer interrupt. Quickly check if it really is a new interrupt by
324          * looking at whether the interval until the hrtimer expiry time is
325          * less than 1/4 of the timer period.
326          */
327         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
328         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
329         if (ktime_before(expires, threshold)) {
330                 /*
331                  * Cancel it while we handle it so there's no chance of
332                  * interference with the timeout handler.
333                  */
334                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
335
336                 /* Nothing should be waiting on the timeout */
337                 kvm_mips_callbacks->queue_timer_int(vcpu);
338
339                 /*
340                  * Restart the timer if it was running based on the expiry time
341                  * we read, so that we don't push it back 2 periods.
342                  */
343                 if (running) {
344                         expires = ktime_add_ns(expires,
345                                                vcpu->arch.count_period);
346                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
347                                       HRTIMER_MODE_ABS);
348                 }
349         }
350
351         return count;
352 }
353
354 /**
355  * kvm_mips_read_count() - Read the current count value.
356  * @vcpu:       Virtual CPU.
357  *
358  * Read the current guest CP0_Count value, taking into account whether the timer
359  * is stopped.
360  *
361  * Returns:     The current guest CP0_Count value.
362  */
363 uint32_t kvm_mips_read_count(struct kvm_vcpu *vcpu)
364 {
365         struct mips_coproc *cop0 = vcpu->arch.cop0;
366
367         /* If count disabled just read static copy of count */
368         if (kvm_mips_count_disabled(vcpu))
369                 return kvm_read_c0_guest_count(cop0);
370
371         return kvm_mips_read_count_running(vcpu, ktime_get());
372 }
373
374 /**
375  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
376  * @vcpu:       Virtual CPU.
377  * @count:      Output pointer for CP0_Count value at point of freeze.
378  *
379  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
380  * at the point it was frozen. It is guaranteed that any pending interrupts at
381  * the point it was frozen are handled, and none after that point.
382  *
383  * This is useful where the time/CP0_Count is needed in the calculation of the
384  * new parameters.
385  *
386  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
387  *
388  * Returns:     The ktime at the point of freeze.
389  */
390 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu,
391                                        uint32_t *count)
392 {
393         ktime_t now;
394
395         /* stop hrtimer before finding time */
396         hrtimer_cancel(&vcpu->arch.comparecount_timer);
397         now = ktime_get();
398
399         /* find count at this point and handle pending hrtimer */
400         *count = kvm_mips_read_count_running(vcpu, now);
401
402         return now;
403 }
404
405 /**
406  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
407  * @vcpu:       Virtual CPU.
408  * @now:        ktime at point of resume.
409  * @count:      CP0_Count at point of resume.
410  *
411  * Resumes the timer and updates the timer expiry based on @now and @count.
412  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
413  * parameters need to be changed.
414  *
415  * It is guaranteed that a timer interrupt immediately after resume will be
416  * handled, but not if CP_Compare is exactly at @count. That case is already
417  * handled by kvm_mips_freeze_timer().
418  *
419  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
420  */
421 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
422                                     ktime_t now, uint32_t count)
423 {
424         struct mips_coproc *cop0 = vcpu->arch.cop0;
425         uint32_t compare;
426         u64 delta;
427         ktime_t expire;
428
429         /* Calculate timeout (wrap 0 to 2^32) */
430         compare = kvm_read_c0_guest_compare(cop0);
431         delta = (u64)(uint32_t)(compare - count - 1) + 1;
432         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
433         expire = ktime_add_ns(now, delta);
434
435         /* Update hrtimer to use new timeout */
436         hrtimer_cancel(&vcpu->arch.comparecount_timer);
437         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
438 }
439
440 /**
441  * kvm_mips_write_count() - Modify the count and update timer.
442  * @vcpu:       Virtual CPU.
443  * @count:      Guest CP0_Count value to set.
444  *
445  * Sets the CP0_Count value and updates the timer accordingly.
446  */
447 void kvm_mips_write_count(struct kvm_vcpu *vcpu, uint32_t count)
448 {
449         struct mips_coproc *cop0 = vcpu->arch.cop0;
450         ktime_t now;
451
452         /* Calculate bias */
453         now = kvm_mips_count_time(vcpu);
454         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
455
456         if (kvm_mips_count_disabled(vcpu))
457                 /* The timer's disabled, adjust the static count */
458                 kvm_write_c0_guest_count(cop0, count);
459         else
460                 /* Update timeout */
461                 kvm_mips_resume_hrtimer(vcpu, now, count);
462 }
463
464 /**
465  * kvm_mips_init_count() - Initialise timer.
466  * @vcpu:       Virtual CPU.
467  *
468  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
469  * it going if it's enabled.
470  */
471 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
472 {
473         /* 100 MHz */
474         vcpu->arch.count_hz = 100*1000*1000;
475         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
476                                           vcpu->arch.count_hz);
477         vcpu->arch.count_dyn_bias = 0;
478
479         /* Starting at 0 */
480         kvm_mips_write_count(vcpu, 0);
481 }
482
483 /**
484  * kvm_mips_set_count_hz() - Update the frequency of the timer.
485  * @vcpu:       Virtual CPU.
486  * @count_hz:   Frequency of CP0_Count timer in Hz.
487  *
488  * Change the frequency of the CP0_Count timer. This is done atomically so that
489  * CP0_Count is continuous and no timer interrupt is lost.
490  *
491  * Returns:     -EINVAL if @count_hz is out of range.
492  *              0 on success.
493  */
494 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
495 {
496         struct mips_coproc *cop0 = vcpu->arch.cop0;
497         int dc;
498         ktime_t now;
499         u32 count;
500
501         /* ensure the frequency is in a sensible range... */
502         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
503                 return -EINVAL;
504         /* ... and has actually changed */
505         if (vcpu->arch.count_hz == count_hz)
506                 return 0;
507
508         /* Safely freeze timer so we can keep it continuous */
509         dc = kvm_mips_count_disabled(vcpu);
510         if (dc) {
511                 now = kvm_mips_count_time(vcpu);
512                 count = kvm_read_c0_guest_count(cop0);
513         } else {
514                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
515         }
516
517         /* Update the frequency */
518         vcpu->arch.count_hz = count_hz;
519         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
520         vcpu->arch.count_dyn_bias = 0;
521
522         /* Calculate adjusted bias so dynamic count is unchanged */
523         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
524
525         /* Update and resume hrtimer */
526         if (!dc)
527                 kvm_mips_resume_hrtimer(vcpu, now, count);
528         return 0;
529 }
530
531 /**
532  * kvm_mips_write_compare() - Modify compare and update timer.
533  * @vcpu:       Virtual CPU.
534  * @compare:    New CP0_Compare value.
535  * @ack:        Whether to acknowledge timer interrupt.
536  *
537  * Update CP0_Compare to a new value and update the timeout.
538  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
539  * any pending timer interrupt is preserved.
540  */
541 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, uint32_t compare, bool ack)
542 {
543         struct mips_coproc *cop0 = vcpu->arch.cop0;
544         int dc;
545         u32 old_compare = kvm_read_c0_guest_compare(cop0);
546         ktime_t now;
547         uint32_t count;
548
549         /* if unchanged, must just be an ack */
550         if (old_compare == compare) {
551                 if (!ack)
552                         return;
553                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
554                 kvm_write_c0_guest_compare(cop0, compare);
555                 return;
556         }
557
558         /* freeze_hrtimer() takes care of timer interrupts <= count */
559         dc = kvm_mips_count_disabled(vcpu);
560         if (!dc)
561                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
562
563         if (ack)
564                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
565
566         kvm_write_c0_guest_compare(cop0, compare);
567
568         /* resume_hrtimer() takes care of timer interrupts > count */
569         if (!dc)
570                 kvm_mips_resume_hrtimer(vcpu, now, count);
571 }
572
573 /**
574  * kvm_mips_count_disable() - Disable count.
575  * @vcpu:       Virtual CPU.
576  *
577  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
578  * time will be handled but not after.
579  *
580  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
581  * count_ctl.DC has been set (count disabled).
582  *
583  * Returns:     The time that the timer was stopped.
584  */
585 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
586 {
587         struct mips_coproc *cop0 = vcpu->arch.cop0;
588         uint32_t count;
589         ktime_t now;
590
591         /* Stop hrtimer */
592         hrtimer_cancel(&vcpu->arch.comparecount_timer);
593
594         /* Set the static count from the dynamic count, handling pending TI */
595         now = ktime_get();
596         count = kvm_mips_read_count_running(vcpu, now);
597         kvm_write_c0_guest_count(cop0, count);
598
599         return now;
600 }
601
602 /**
603  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
604  * @vcpu:       Virtual CPU.
605  *
606  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
607  * before the final stop time will be handled if the timer isn't disabled by
608  * count_ctl.DC, but not after.
609  *
610  * Assumes CP0_Cause.DC is clear (count enabled).
611  */
612 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
613 {
614         struct mips_coproc *cop0 = vcpu->arch.cop0;
615
616         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
617         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
618                 kvm_mips_count_disable(vcpu);
619 }
620
621 /**
622  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
623  * @vcpu:       Virtual CPU.
624  *
625  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
626  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
627  * potentially before even returning, so the caller should be careful with
628  * ordering of CP0_Cause modifications so as not to lose it.
629  *
630  * Assumes CP0_Cause.DC is set (count disabled).
631  */
632 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
633 {
634         struct mips_coproc *cop0 = vcpu->arch.cop0;
635         uint32_t count;
636
637         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
638
639         /*
640          * Set the dynamic count to match the static count.
641          * This starts the hrtimer if count_ctl.DC allows it.
642          * Otherwise it conveniently updates the biases.
643          */
644         count = kvm_read_c0_guest_count(cop0);
645         kvm_mips_write_count(vcpu, count);
646 }
647
648 /**
649  * kvm_mips_set_count_ctl() - Update the count control KVM register.
650  * @vcpu:       Virtual CPU.
651  * @count_ctl:  Count control register new value.
652  *
653  * Set the count control KVM register. The timer is updated accordingly.
654  *
655  * Returns:     -EINVAL if reserved bits are set.
656  *              0 on success.
657  */
658 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
659 {
660         struct mips_coproc *cop0 = vcpu->arch.cop0;
661         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
662         s64 delta;
663         ktime_t expire, now;
664         uint32_t count, compare;
665
666         /* Only allow defined bits to be changed */
667         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
668                 return -EINVAL;
669
670         /* Apply new value */
671         vcpu->arch.count_ctl = count_ctl;
672
673         /* Master CP0_Count disable */
674         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
675                 /* Is CP0_Cause.DC already disabling CP0_Count? */
676                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
677                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
678                                 /* Just record the current time */
679                                 vcpu->arch.count_resume = ktime_get();
680                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
681                         /* disable timer and record current time */
682                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
683                 } else {
684                         /*
685                          * Calculate timeout relative to static count at resume
686                          * time (wrap 0 to 2^32).
687                          */
688                         count = kvm_read_c0_guest_count(cop0);
689                         compare = kvm_read_c0_guest_compare(cop0);
690                         delta = (u64)(uint32_t)(compare - count - 1) + 1;
691                         delta = div_u64(delta * NSEC_PER_SEC,
692                                         vcpu->arch.count_hz);
693                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
694
695                         /* Handle pending interrupt */
696                         now = ktime_get();
697                         if (ktime_compare(now, expire) >= 0)
698                                 /* Nothing should be waiting on the timeout */
699                                 kvm_mips_callbacks->queue_timer_int(vcpu);
700
701                         /* Resume hrtimer without changing bias */
702                         count = kvm_mips_read_count_running(vcpu, now);
703                         kvm_mips_resume_hrtimer(vcpu, now, count);
704                 }
705         }
706
707         return 0;
708 }
709
710 /**
711  * kvm_mips_set_count_resume() - Update the count resume KVM register.
712  * @vcpu:               Virtual CPU.
713  * @count_resume:       Count resume register new value.
714  *
715  * Set the count resume KVM register.
716  *
717  * Returns:     -EINVAL if out of valid range (0..now).
718  *              0 on success.
719  */
720 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
721 {
722         /*
723          * It doesn't make sense for the resume time to be in the future, as it
724          * would be possible for the next interrupt to be more than a full
725          * period in the future.
726          */
727         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
728                 return -EINVAL;
729
730         vcpu->arch.count_resume = ns_to_ktime(count_resume);
731         return 0;
732 }
733
734 /**
735  * kvm_mips_count_timeout() - Push timer forward on timeout.
736  * @vcpu:       Virtual CPU.
737  *
738  * Handle an hrtimer event by push the hrtimer forward a period.
739  *
740  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
741  */
742 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
743 {
744         /* Add the Count period to the current expiry time */
745         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
746                                vcpu->arch.count_period);
747         return HRTIMER_RESTART;
748 }
749
750 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
751 {
752         struct mips_coproc *cop0 = vcpu->arch.cop0;
753         enum emulation_result er = EMULATE_DONE;
754
755         if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
756                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
757                           kvm_read_c0_guest_epc(cop0));
758                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
759                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
760
761         } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
762                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
763                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
764         } else {
765                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
766                         vcpu->arch.pc);
767                 er = EMULATE_FAIL;
768         }
769
770         return er;
771 }
772
773 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
774 {
775         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
776                   vcpu->arch.pending_exceptions);
777
778         ++vcpu->stat.wait_exits;
779         trace_kvm_exit(vcpu, WAIT_EXITS);
780         if (!vcpu->arch.pending_exceptions) {
781                 vcpu->arch.wait = 1;
782                 kvm_vcpu_block(vcpu);
783
784                 /*
785                  * We we are runnable, then definitely go off to user space to
786                  * check if any I/O interrupts are pending.
787                  */
788                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
789                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
790                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
791                 }
792         }
793
794         return EMULATE_DONE;
795 }
796
797 /*
798  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
799  * we can catch this, if things ever change
800  */
801 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
802 {
803         struct mips_coproc *cop0 = vcpu->arch.cop0;
804         uint32_t pc = vcpu->arch.pc;
805
806         kvm_err("[%#x] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
807         return EMULATE_FAIL;
808 }
809
810 /* Write Guest TLB Entry @ Index */
811 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
812 {
813         struct mips_coproc *cop0 = vcpu->arch.cop0;
814         int index = kvm_read_c0_guest_index(cop0);
815         struct kvm_mips_tlb *tlb = NULL;
816         uint32_t pc = vcpu->arch.pc;
817
818         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
819                 kvm_debug("%s: illegal index: %d\n", __func__, index);
820                 kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
821                           pc, index, kvm_read_c0_guest_entryhi(cop0),
822                           kvm_read_c0_guest_entrylo0(cop0),
823                           kvm_read_c0_guest_entrylo1(cop0),
824                           kvm_read_c0_guest_pagemask(cop0));
825                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
826         }
827
828         tlb = &vcpu->arch.guest_tlb[index];
829         /*
830          * Probe the shadow host TLB for the entry being overwritten, if one
831          * matches, invalidate it
832          */
833         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
834
835         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
836         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
837         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
838         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
839
840         kvm_debug("[%#x] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
841                   pc, index, kvm_read_c0_guest_entryhi(cop0),
842                   kvm_read_c0_guest_entrylo0(cop0),
843                   kvm_read_c0_guest_entrylo1(cop0),
844                   kvm_read_c0_guest_pagemask(cop0));
845
846         return EMULATE_DONE;
847 }
848
849 /* Write Guest TLB Entry @ Random Index */
850 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
851 {
852         struct mips_coproc *cop0 = vcpu->arch.cop0;
853         struct kvm_mips_tlb *tlb = NULL;
854         uint32_t pc = vcpu->arch.pc;
855         int index;
856
857         get_random_bytes(&index, sizeof(index));
858         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
859
860         tlb = &vcpu->arch.guest_tlb[index];
861
862         /*
863          * Probe the shadow host TLB for the entry being overwritten, if one
864          * matches, invalidate it
865          */
866         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
867
868         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
869         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
870         tlb->tlb_lo0 = kvm_read_c0_guest_entrylo0(cop0);
871         tlb->tlb_lo1 = kvm_read_c0_guest_entrylo1(cop0);
872
873         kvm_debug("[%#x] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
874                   pc, index, kvm_read_c0_guest_entryhi(cop0),
875                   kvm_read_c0_guest_entrylo0(cop0),
876                   kvm_read_c0_guest_entrylo1(cop0));
877
878         return EMULATE_DONE;
879 }
880
881 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
882 {
883         struct mips_coproc *cop0 = vcpu->arch.cop0;
884         long entryhi = kvm_read_c0_guest_entryhi(cop0);
885         uint32_t pc = vcpu->arch.pc;
886         int index = -1;
887
888         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
889
890         kvm_write_c0_guest_index(cop0, index);
891
892         kvm_debug("[%#x] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
893                   index);
894
895         return EMULATE_DONE;
896 }
897
898 /**
899  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
900  * @vcpu:       Virtual CPU.
901  *
902  * Finds the mask of bits which are writable in the guest's Config1 CP0
903  * register, by userland (currently read-only to the guest).
904  */
905 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
906 {
907         unsigned int mask = 0;
908
909         /* Permit FPU to be present if FPU is supported */
910         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
911                 mask |= MIPS_CONF1_FP;
912
913         return mask;
914 }
915
916 /**
917  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
918  * @vcpu:       Virtual CPU.
919  *
920  * Finds the mask of bits which are writable in the guest's Config3 CP0
921  * register, by userland (currently read-only to the guest).
922  */
923 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
924 {
925         /* Config4 is optional */
926         unsigned int mask = MIPS_CONF_M;
927
928         /* Permit MSA to be present if MSA is supported */
929         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
930                 mask |= MIPS_CONF3_MSA;
931
932         return mask;
933 }
934
935 /**
936  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
937  * @vcpu:       Virtual CPU.
938  *
939  * Finds the mask of bits which are writable in the guest's Config4 CP0
940  * register, by userland (currently read-only to the guest).
941  */
942 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
943 {
944         /* Config5 is optional */
945         return MIPS_CONF_M;
946 }
947
948 /**
949  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
950  * @vcpu:       Virtual CPU.
951  *
952  * Finds the mask of bits which are writable in the guest's Config5 CP0
953  * register, by the guest itself.
954  */
955 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
956 {
957         unsigned int mask = 0;
958
959         /* Permit MSAEn changes if MSA supported and enabled */
960         if (kvm_mips_guest_has_msa(&vcpu->arch))
961                 mask |= MIPS_CONF5_MSAEN;
962
963         /*
964          * Permit guest FPU mode changes if FPU is enabled and the relevant
965          * feature exists according to FIR register.
966          */
967         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
968                 if (cpu_has_fre)
969                         mask |= MIPS_CONF5_FRE;
970                 /* We don't support UFR or UFE */
971         }
972
973         return mask;
974 }
975
976 enum emulation_result kvm_mips_emulate_CP0(uint32_t inst, uint32_t *opc,
977                                            uint32_t cause, struct kvm_run *run,
978                                            struct kvm_vcpu *vcpu)
979 {
980         struct mips_coproc *cop0 = vcpu->arch.cop0;
981         enum emulation_result er = EMULATE_DONE;
982         int32_t rt, rd, copz, sel, co_bit, op;
983         uint32_t pc = vcpu->arch.pc;
984         unsigned long curr_pc;
985
986         /*
987          * Update PC and hold onto current PC in case there is
988          * an error and we want to rollback the PC
989          */
990         curr_pc = vcpu->arch.pc;
991         er = update_pc(vcpu, cause);
992         if (er == EMULATE_FAIL)
993                 return er;
994
995         copz = (inst >> 21) & 0x1f;
996         rt = (inst >> 16) & 0x1f;
997         rd = (inst >> 11) & 0x1f;
998         sel = inst & 0x7;
999         co_bit = (inst >> 25) & 1;
1000
1001         if (co_bit) {
1002                 op = (inst) & 0xff;
1003
1004                 switch (op) {
1005                 case tlbr_op:   /*  Read indexed TLB entry  */
1006                         er = kvm_mips_emul_tlbr(vcpu);
1007                         break;
1008                 case tlbwi_op:  /*  Write indexed  */
1009                         er = kvm_mips_emul_tlbwi(vcpu);
1010                         break;
1011                 case tlbwr_op:  /*  Write random  */
1012                         er = kvm_mips_emul_tlbwr(vcpu);
1013                         break;
1014                 case tlbp_op:   /* TLB Probe */
1015                         er = kvm_mips_emul_tlbp(vcpu);
1016                         break;
1017                 case rfe_op:
1018                         kvm_err("!!!COP0_RFE!!!\n");
1019                         break;
1020                 case eret_op:
1021                         er = kvm_mips_emul_eret(vcpu);
1022                         goto dont_update_pc;
1023                         break;
1024                 case wait_op:
1025                         er = kvm_mips_emul_wait(vcpu);
1026                         break;
1027                 }
1028         } else {
1029                 switch (copz) {
1030                 case mfc_op:
1031 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1032                         cop0->stat[rd][sel]++;
1033 #endif
1034                         /* Get reg */
1035                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1036                                 vcpu->arch.gprs[rt] = kvm_mips_read_count(vcpu);
1037                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1038                                 vcpu->arch.gprs[rt] = 0x0;
1039 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1040                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1041 #endif
1042                         } else {
1043                                 vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1044
1045 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1046                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1047 #endif
1048                         }
1049
1050                         kvm_debug
1051                             ("[%#x] MFCz[%d][%d], vcpu->arch.gprs[%d]: %#lx\n",
1052                              pc, rd, sel, rt, vcpu->arch.gprs[rt]);
1053
1054                         break;
1055
1056                 case dmfc_op:
1057                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1058                         break;
1059
1060                 case mtc_op:
1061 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1062                         cop0->stat[rd][sel]++;
1063 #endif
1064                         if ((rd == MIPS_CP0_TLB_INDEX)
1065                             && (vcpu->arch.gprs[rt] >=
1066                                 KVM_MIPS_GUEST_TLB_SIZE)) {
1067                                 kvm_err("Invalid TLB Index: %ld",
1068                                         vcpu->arch.gprs[rt]);
1069                                 er = EMULATE_FAIL;
1070                                 break;
1071                         }
1072 #define C0_EBASE_CORE_MASK 0xff
1073                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1074                                 /* Preserve CORE number */
1075                                 kvm_change_c0_guest_ebase(cop0,
1076                                                           ~(C0_EBASE_CORE_MASK),
1077                                                           vcpu->arch.gprs[rt]);
1078                                 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1079                                         kvm_read_c0_guest_ebase(cop0));
1080                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1081                                 uint32_t nasid =
1082                                         vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1083                                 if ((KSEGX(vcpu->arch.gprs[rt]) != CKSEG0) &&
1084                                     ((kvm_read_c0_guest_entryhi(cop0) &
1085                                       KVM_ENTRYHI_ASID) != nasid)) {
1086                                         kvm_debug("MTCz, change ASID from %#lx to %#lx\n",
1087                                                 kvm_read_c0_guest_entryhi(cop0)
1088                                                 & KVM_ENTRYHI_ASID,
1089                                                 vcpu->arch.gprs[rt]
1090                                                 & KVM_ENTRYHI_ASID);
1091
1092                                         /* Blow away the shadow host TLBs */
1093                                         kvm_mips_flush_host_tlb(1);
1094                                 }
1095                                 kvm_write_c0_guest_entryhi(cop0,
1096                                                            vcpu->arch.gprs[rt]);
1097                         }
1098                         /* Are we writing to COUNT */
1099                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1100                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1101                                 goto done;
1102                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1103                                 kvm_debug("[%#x] MTCz, COMPARE %#lx <- %#lx\n",
1104                                           pc, kvm_read_c0_guest_compare(cop0),
1105                                           vcpu->arch.gprs[rt]);
1106
1107                                 /* If we are writing to COMPARE */
1108                                 /* Clear pending timer interrupt, if any */
1109                                 kvm_mips_write_compare(vcpu,
1110                                                        vcpu->arch.gprs[rt],
1111                                                        true);
1112                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1113                                 unsigned int old_val, val, change;
1114
1115                                 old_val = kvm_read_c0_guest_status(cop0);
1116                                 val = vcpu->arch.gprs[rt];
1117                                 change = val ^ old_val;
1118
1119                                 /* Make sure that the NMI bit is never set */
1120                                 val &= ~ST0_NMI;
1121
1122                                 /*
1123                                  * Don't allow CU1 or FR to be set unless FPU
1124                                  * capability enabled and exists in guest
1125                                  * configuration.
1126                                  */
1127                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1128                                         val &= ~(ST0_CU1 | ST0_FR);
1129
1130                                 /*
1131                                  * Also don't allow FR to be set if host doesn't
1132                                  * support it.
1133                                  */
1134                                 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1135                                         val &= ~ST0_FR;
1136
1137
1138                                 /* Handle changes in FPU mode */
1139                                 preempt_disable();
1140
1141                                 /*
1142                                  * FPU and Vector register state is made
1143                                  * UNPREDICTABLE by a change of FR, so don't
1144                                  * even bother saving it.
1145                                  */
1146                                 if (change & ST0_FR)
1147                                         kvm_drop_fpu(vcpu);
1148
1149                                 /*
1150                                  * If MSA state is already live, it is undefined
1151                                  * how it interacts with FR=0 FPU state, and we
1152                                  * don't want to hit reserved instruction
1153                                  * exceptions trying to save the MSA state later
1154                                  * when CU=1 && FR=1, so play it safe and save
1155                                  * it first.
1156                                  */
1157                                 if (change & ST0_CU1 && !(val & ST0_FR) &&
1158                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1159                                         kvm_lose_fpu(vcpu);
1160
1161                                 /*
1162                                  * Propagate CU1 (FPU enable) changes
1163                                  * immediately if the FPU context is already
1164                                  * loaded. When disabling we leave the context
1165                                  * loaded so it can be quickly enabled again in
1166                                  * the near future.
1167                                  */
1168                                 if (change & ST0_CU1 &&
1169                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1170                                         change_c0_status(ST0_CU1, val);
1171
1172                                 preempt_enable();
1173
1174                                 kvm_write_c0_guest_status(cop0, val);
1175
1176 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1177                                 /*
1178                                  * If FPU present, we need CU1/FR bits to take
1179                                  * effect fairly soon.
1180                                  */
1181                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1182                                         kvm_mips_trans_mtc0(inst, opc, vcpu);
1183 #endif
1184                         } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1185                                 unsigned int old_val, val, change, wrmask;
1186
1187                                 old_val = kvm_read_c0_guest_config5(cop0);
1188                                 val = vcpu->arch.gprs[rt];
1189
1190                                 /* Only a few bits are writable in Config5 */
1191                                 wrmask = kvm_mips_config5_wrmask(vcpu);
1192                                 change = (val ^ old_val) & wrmask;
1193                                 val = old_val ^ change;
1194
1195
1196                                 /* Handle changes in FPU/MSA modes */
1197                                 preempt_disable();
1198
1199                                 /*
1200                                  * Propagate FRE changes immediately if the FPU
1201                                  * context is already loaded.
1202                                  */
1203                                 if (change & MIPS_CONF5_FRE &&
1204                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1205                                         change_c0_config5(MIPS_CONF5_FRE, val);
1206
1207                                 /*
1208                                  * Propagate MSAEn changes immediately if the
1209                                  * MSA context is already loaded. When disabling
1210                                  * we leave the context loaded so it can be
1211                                  * quickly enabled again in the near future.
1212                                  */
1213                                 if (change & MIPS_CONF5_MSAEN &&
1214                                     vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1215                                         change_c0_config5(MIPS_CONF5_MSAEN,
1216                                                           val);
1217
1218                                 preempt_enable();
1219
1220                                 kvm_write_c0_guest_config5(cop0, val);
1221                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1222                                 uint32_t old_cause, new_cause;
1223
1224                                 old_cause = kvm_read_c0_guest_cause(cop0);
1225                                 new_cause = vcpu->arch.gprs[rt];
1226                                 /* Update R/W bits */
1227                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1228                                                           new_cause);
1229                                 /* DC bit enabling/disabling timer? */
1230                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1231                                         if (new_cause & CAUSEF_DC)
1232                                                 kvm_mips_count_disable_cause(vcpu);
1233                                         else
1234                                                 kvm_mips_count_enable_cause(vcpu);
1235                                 }
1236                         } else {
1237                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1238 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1239                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1240 #endif
1241                         }
1242
1243                         kvm_debug("[%#x] MTCz, cop0->reg[%d][%d]: %#lx\n", pc,
1244                                   rd, sel, cop0->reg[rd][sel]);
1245                         break;
1246
1247                 case dmtc_op:
1248                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1249                                 vcpu->arch.pc, rt, rd, sel);
1250                         er = EMULATE_FAIL;
1251                         break;
1252
1253                 case mfmc0_op:
1254 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1255                         cop0->stat[MIPS_CP0_STATUS][0]++;
1256 #endif
1257                         if (rt != 0)
1258                                 vcpu->arch.gprs[rt] =
1259                                     kvm_read_c0_guest_status(cop0);
1260                         /* EI */
1261                         if (inst & 0x20) {
1262                                 kvm_debug("[%#lx] mfmc0_op: EI\n",
1263                                           vcpu->arch.pc);
1264                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1265                         } else {
1266                                 kvm_debug("[%#lx] mfmc0_op: DI\n",
1267                                           vcpu->arch.pc);
1268                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1269                         }
1270
1271                         break;
1272
1273                 case wrpgpr_op:
1274                         {
1275                                 uint32_t css =
1276                                     cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1277                                 uint32_t pss =
1278                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1279                                 /*
1280                                  * We don't support any shadow register sets, so
1281                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1282                                  */
1283                                 if (css || pss) {
1284                                         er = EMULATE_FAIL;
1285                                         break;
1286                                 }
1287                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1288                                           vcpu->arch.gprs[rt]);
1289                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1290                         }
1291                         break;
1292                 default:
1293                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1294                                 vcpu->arch.pc, copz);
1295                         er = EMULATE_FAIL;
1296                         break;
1297                 }
1298         }
1299
1300 done:
1301         /* Rollback PC only if emulation was unsuccessful */
1302         if (er == EMULATE_FAIL)
1303                 vcpu->arch.pc = curr_pc;
1304
1305 dont_update_pc:
1306         /*
1307          * This is for special instructions whose emulation
1308          * updates the PC, so do not overwrite the PC under
1309          * any circumstances
1310          */
1311
1312         return er;
1313 }
1314
1315 enum emulation_result kvm_mips_emulate_store(uint32_t inst, uint32_t cause,
1316                                              struct kvm_run *run,
1317                                              struct kvm_vcpu *vcpu)
1318 {
1319         enum emulation_result er = EMULATE_DO_MMIO;
1320         int32_t op, base, rt, offset;
1321         uint32_t bytes;
1322         void *data = run->mmio.data;
1323         unsigned long curr_pc;
1324
1325         /*
1326          * Update PC and hold onto current PC in case there is
1327          * an error and we want to rollback the PC
1328          */
1329         curr_pc = vcpu->arch.pc;
1330         er = update_pc(vcpu, cause);
1331         if (er == EMULATE_FAIL)
1332                 return er;
1333
1334         rt = (inst >> 16) & 0x1f;
1335         base = (inst >> 21) & 0x1f;
1336         offset = inst & 0xffff;
1337         op = (inst >> 26) & 0x3f;
1338
1339         switch (op) {
1340         case sb_op:
1341                 bytes = 1;
1342                 if (bytes > sizeof(run->mmio.data)) {
1343                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1344                                run->mmio.len);
1345                 }
1346                 run->mmio.phys_addr =
1347                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1348                                                    host_cp0_badvaddr);
1349                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1350                         er = EMULATE_FAIL;
1351                         break;
1352                 }
1353                 run->mmio.len = bytes;
1354                 run->mmio.is_write = 1;
1355                 vcpu->mmio_needed = 1;
1356                 vcpu->mmio_is_write = 1;
1357                 *(u8 *) data = vcpu->arch.gprs[rt];
1358                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1359                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1360                           *(uint8_t *) data);
1361
1362                 break;
1363
1364         case sw_op:
1365                 bytes = 4;
1366                 if (bytes > sizeof(run->mmio.data)) {
1367                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1368                                run->mmio.len);
1369                 }
1370                 run->mmio.phys_addr =
1371                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1372                                                    host_cp0_badvaddr);
1373                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1374                         er = EMULATE_FAIL;
1375                         break;
1376                 }
1377
1378                 run->mmio.len = bytes;
1379                 run->mmio.is_write = 1;
1380                 vcpu->mmio_needed = 1;
1381                 vcpu->mmio_is_write = 1;
1382                 *(uint32_t *) data = vcpu->arch.gprs[rt];
1383
1384                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1385                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1386                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1387                 break;
1388
1389         case sh_op:
1390                 bytes = 2;
1391                 if (bytes > sizeof(run->mmio.data)) {
1392                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1393                                run->mmio.len);
1394                 }
1395                 run->mmio.phys_addr =
1396                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1397                                                    host_cp0_badvaddr);
1398                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1399                         er = EMULATE_FAIL;
1400                         break;
1401                 }
1402
1403                 run->mmio.len = bytes;
1404                 run->mmio.is_write = 1;
1405                 vcpu->mmio_needed = 1;
1406                 vcpu->mmio_is_write = 1;
1407                 *(uint16_t *) data = vcpu->arch.gprs[rt];
1408
1409                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1410                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1411                           vcpu->arch.gprs[rt], *(uint32_t *) data);
1412                 break;
1413
1414         default:
1415                 kvm_err("Store not yet supported");
1416                 er = EMULATE_FAIL;
1417                 break;
1418         }
1419
1420         /* Rollback PC if emulation was unsuccessful */
1421         if (er == EMULATE_FAIL)
1422                 vcpu->arch.pc = curr_pc;
1423
1424         return er;
1425 }
1426
1427 enum emulation_result kvm_mips_emulate_load(uint32_t inst, uint32_t cause,
1428                                             struct kvm_run *run,
1429                                             struct kvm_vcpu *vcpu)
1430 {
1431         enum emulation_result er = EMULATE_DO_MMIO;
1432         int32_t op, base, rt, offset;
1433         uint32_t bytes;
1434
1435         rt = (inst >> 16) & 0x1f;
1436         base = (inst >> 21) & 0x1f;
1437         offset = inst & 0xffff;
1438         op = (inst >> 26) & 0x3f;
1439
1440         vcpu->arch.pending_load_cause = cause;
1441         vcpu->arch.io_gpr = rt;
1442
1443         switch (op) {
1444         case lw_op:
1445                 bytes = 4;
1446                 if (bytes > sizeof(run->mmio.data)) {
1447                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1448                                run->mmio.len);
1449                         er = EMULATE_FAIL;
1450                         break;
1451                 }
1452                 run->mmio.phys_addr =
1453                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1454                                                    host_cp0_badvaddr);
1455                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1456                         er = EMULATE_FAIL;
1457                         break;
1458                 }
1459
1460                 run->mmio.len = bytes;
1461                 run->mmio.is_write = 0;
1462                 vcpu->mmio_needed = 1;
1463                 vcpu->mmio_is_write = 0;
1464                 break;
1465
1466         case lh_op:
1467         case lhu_op:
1468                 bytes = 2;
1469                 if (bytes > sizeof(run->mmio.data)) {
1470                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1471                                run->mmio.len);
1472                         er = EMULATE_FAIL;
1473                         break;
1474                 }
1475                 run->mmio.phys_addr =
1476                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1477                                                    host_cp0_badvaddr);
1478                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1479                         er = EMULATE_FAIL;
1480                         break;
1481                 }
1482
1483                 run->mmio.len = bytes;
1484                 run->mmio.is_write = 0;
1485                 vcpu->mmio_needed = 1;
1486                 vcpu->mmio_is_write = 0;
1487
1488                 if (op == lh_op)
1489                         vcpu->mmio_needed = 2;
1490                 else
1491                         vcpu->mmio_needed = 1;
1492
1493                 break;
1494
1495         case lbu_op:
1496         case lb_op:
1497                 bytes = 1;
1498                 if (bytes > sizeof(run->mmio.data)) {
1499                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1500                                run->mmio.len);
1501                         er = EMULATE_FAIL;
1502                         break;
1503                 }
1504                 run->mmio.phys_addr =
1505                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1506                                                    host_cp0_badvaddr);
1507                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1508                         er = EMULATE_FAIL;
1509                         break;
1510                 }
1511
1512                 run->mmio.len = bytes;
1513                 run->mmio.is_write = 0;
1514                 vcpu->mmio_is_write = 0;
1515
1516                 if (op == lb_op)
1517                         vcpu->mmio_needed = 2;
1518                 else
1519                         vcpu->mmio_needed = 1;
1520
1521                 break;
1522
1523         default:
1524                 kvm_err("Load not yet supported");
1525                 er = EMULATE_FAIL;
1526                 break;
1527         }
1528
1529         return er;
1530 }
1531
1532 int kvm_mips_sync_icache(unsigned long va, struct kvm_vcpu *vcpu)
1533 {
1534         unsigned long offset = (va & ~PAGE_MASK);
1535         struct kvm *kvm = vcpu->kvm;
1536         unsigned long pa;
1537         gfn_t gfn;
1538         kvm_pfn_t pfn;
1539
1540         gfn = va >> PAGE_SHIFT;
1541
1542         if (gfn >= kvm->arch.guest_pmap_npages) {
1543                 kvm_err("%s: Invalid gfn: %#llx\n", __func__, gfn);
1544                 kvm_mips_dump_host_tlbs();
1545                 kvm_arch_vcpu_dump_regs(vcpu);
1546                 return -1;
1547         }
1548         pfn = kvm->arch.guest_pmap[gfn];
1549         pa = (pfn << PAGE_SHIFT) | offset;
1550
1551         kvm_debug("%s: va: %#lx, unmapped: %#x\n", __func__, va,
1552                   CKSEG0ADDR(pa));
1553
1554         local_flush_icache_range(CKSEG0ADDR(pa), 32);
1555         return 0;
1556 }
1557
1558 enum emulation_result kvm_mips_emulate_cache(uint32_t inst, uint32_t *opc,
1559                                              uint32_t cause,
1560                                              struct kvm_run *run,
1561                                              struct kvm_vcpu *vcpu)
1562 {
1563         struct mips_coproc *cop0 = vcpu->arch.cop0;
1564         enum emulation_result er = EMULATE_DONE;
1565         int32_t offset, cache, op_inst, op, base;
1566         struct kvm_vcpu_arch *arch = &vcpu->arch;
1567         unsigned long va;
1568         unsigned long curr_pc;
1569
1570         /*
1571          * Update PC and hold onto current PC in case there is
1572          * an error and we want to rollback the PC
1573          */
1574         curr_pc = vcpu->arch.pc;
1575         er = update_pc(vcpu, cause);
1576         if (er == EMULATE_FAIL)
1577                 return er;
1578
1579         base = (inst >> 21) & 0x1f;
1580         op_inst = (inst >> 16) & 0x1f;
1581         offset = (int16_t)inst;
1582         cache = op_inst & CacheOp_Cache;
1583         op = op_inst & CacheOp_Op;
1584
1585         va = arch->gprs[base] + offset;
1586
1587         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1588                   cache, op, base, arch->gprs[base], offset);
1589
1590         /*
1591          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1592          * invalidate the caches entirely by stepping through all the
1593          * ways/indexes
1594          */
1595         if (op == Index_Writeback_Inv) {
1596                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1597                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1598                           arch->gprs[base], offset);
1599
1600                 if (cache == Cache_D)
1601                         r4k_blast_dcache();
1602                 else if (cache == Cache_I)
1603                         r4k_blast_icache();
1604                 else {
1605                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1606                                 __func__);
1607                         return EMULATE_FAIL;
1608                 }
1609
1610 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1611                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1612 #endif
1613                 goto done;
1614         }
1615
1616         preempt_disable();
1617         if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1618                 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0)
1619                         kvm_mips_handle_kseg0_tlb_fault(va, vcpu);
1620         } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1621                    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1622                 int index;
1623
1624                 /* If an entry already exists then skip */
1625                 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1626                         goto skip_fault;
1627
1628                 /*
1629                  * If address not in the guest TLB, then give the guest a fault,
1630                  * the resulting handler will do the right thing
1631                  */
1632                 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1633                                                   (kvm_read_c0_guest_entryhi
1634                                                    (cop0) & KVM_ENTRYHI_ASID));
1635
1636                 if (index < 0) {
1637                         vcpu->arch.host_cp0_entryhi = (va & VPN2_MASK);
1638                         vcpu->arch.host_cp0_badvaddr = va;
1639                         er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1640                                                          vcpu);
1641                         preempt_enable();
1642                         goto dont_update_pc;
1643                 } else {
1644                         struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1645                         /*
1646                          * Check if the entry is valid, if not then setup a TLB
1647                          * invalid exception to the guest
1648                          */
1649                         if (!TLB_IS_VALID(*tlb, va)) {
1650                                 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1651                                                                 run, vcpu);
1652                                 preempt_enable();
1653                                 goto dont_update_pc;
1654                         } else {
1655                                 /*
1656                                  * We fault an entry from the guest tlb to the
1657                                  * shadow host TLB
1658                                  */
1659                                 kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb,
1660                                                                      NULL,
1661                                                                      NULL);
1662                         }
1663                 }
1664         } else {
1665                 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1666                         cache, op, base, arch->gprs[base], offset);
1667                 er = EMULATE_FAIL;
1668                 preempt_enable();
1669                 goto dont_update_pc;
1670
1671         }
1672
1673 skip_fault:
1674         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1675         if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1676                 flush_dcache_line(va);
1677
1678 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1679                 /*
1680                  * Replace the CACHE instruction, with a SYNCI, not the same,
1681                  * but avoids a trap
1682                  */
1683                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1684 #endif
1685         } else if (op_inst == Hit_Invalidate_I) {
1686                 flush_dcache_line(va);
1687                 flush_icache_line(va);
1688
1689 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1690                 /* Replace the CACHE instruction, with a SYNCI */
1691                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1692 #endif
1693         } else {
1694                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1695                         cache, op, base, arch->gprs[base], offset);
1696                 er = EMULATE_FAIL;
1697                 preempt_enable();
1698                 goto dont_update_pc;
1699         }
1700
1701         preempt_enable();
1702
1703 dont_update_pc:
1704         /* Rollback PC */
1705         vcpu->arch.pc = curr_pc;
1706 done:
1707         return er;
1708 }
1709
1710 enum emulation_result kvm_mips_emulate_inst(unsigned long cause, uint32_t *opc,
1711                                             struct kvm_run *run,
1712                                             struct kvm_vcpu *vcpu)
1713 {
1714         enum emulation_result er = EMULATE_DONE;
1715         uint32_t inst;
1716
1717         /* Fetch the instruction. */
1718         if (cause & CAUSEF_BD)
1719                 opc += 1;
1720
1721         inst = kvm_get_inst(opc, vcpu);
1722
1723         switch (((union mips_instruction)inst).r_format.opcode) {
1724         case cop0_op:
1725                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1726                 break;
1727         case sb_op:
1728         case sh_op:
1729         case sw_op:
1730                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1731                 break;
1732         case lb_op:
1733         case lbu_op:
1734         case lhu_op:
1735         case lh_op:
1736         case lw_op:
1737                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1738                 break;
1739
1740         case cache_op:
1741                 ++vcpu->stat.cache_exits;
1742                 trace_kvm_exit(vcpu, CACHE_EXITS);
1743                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1744                 break;
1745
1746         default:
1747                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1748                         inst);
1749                 kvm_arch_vcpu_dump_regs(vcpu);
1750                 er = EMULATE_FAIL;
1751                 break;
1752         }
1753
1754         return er;
1755 }
1756
1757 enum emulation_result kvm_mips_emulate_syscall(unsigned long cause,
1758                                                uint32_t *opc,
1759                                                struct kvm_run *run,
1760                                                struct kvm_vcpu *vcpu)
1761 {
1762         struct mips_coproc *cop0 = vcpu->arch.cop0;
1763         struct kvm_vcpu_arch *arch = &vcpu->arch;
1764         enum emulation_result er = EMULATE_DONE;
1765
1766         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1767                 /* save old pc */
1768                 kvm_write_c0_guest_epc(cop0, arch->pc);
1769                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1770
1771                 if (cause & CAUSEF_BD)
1772                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1773                 else
1774                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1775
1776                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1777
1778                 kvm_change_c0_guest_cause(cop0, (0xff),
1779                                           (EXCCODE_SYS << CAUSEB_EXCCODE));
1780
1781                 /* Set PC to the exception entry point */
1782                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1783
1784         } else {
1785                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1786                 er = EMULATE_FAIL;
1787         }
1788
1789         return er;
1790 }
1791
1792 enum emulation_result kvm_mips_emulate_tlbmiss_ld(unsigned long cause,
1793                                                   uint32_t *opc,
1794                                                   struct kvm_run *run,
1795                                                   struct kvm_vcpu *vcpu)
1796 {
1797         struct mips_coproc *cop0 = vcpu->arch.cop0;
1798         struct kvm_vcpu_arch *arch = &vcpu->arch;
1799         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1800                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1801
1802         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1803                 /* save old pc */
1804                 kvm_write_c0_guest_epc(cop0, arch->pc);
1805                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1806
1807                 if (cause & CAUSEF_BD)
1808                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1809                 else
1810                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1811
1812                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1813                           arch->pc);
1814
1815                 /* set pc to the exception entry point */
1816                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1817
1818         } else {
1819                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1820                           arch->pc);
1821
1822                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1823         }
1824
1825         kvm_change_c0_guest_cause(cop0, (0xff),
1826                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
1827
1828         /* setup badvaddr, context and entryhi registers for the guest */
1829         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1830         /* XXXKYMA: is the context register used by linux??? */
1831         kvm_write_c0_guest_entryhi(cop0, entryhi);
1832         /* Blow away the shadow host TLBs */
1833         kvm_mips_flush_host_tlb(1);
1834
1835         return EMULATE_DONE;
1836 }
1837
1838 enum emulation_result kvm_mips_emulate_tlbinv_ld(unsigned long cause,
1839                                                  uint32_t *opc,
1840                                                  struct kvm_run *run,
1841                                                  struct kvm_vcpu *vcpu)
1842 {
1843         struct mips_coproc *cop0 = vcpu->arch.cop0;
1844         struct kvm_vcpu_arch *arch = &vcpu->arch;
1845         unsigned long entryhi =
1846                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1847                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1848
1849         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1850                 /* save old pc */
1851                 kvm_write_c0_guest_epc(cop0, arch->pc);
1852                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1853
1854                 if (cause & CAUSEF_BD)
1855                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1856                 else
1857                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1858
1859                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1860                           arch->pc);
1861
1862                 /* set pc to the exception entry point */
1863                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1864
1865         } else {
1866                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1867                           arch->pc);
1868                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1869         }
1870
1871         kvm_change_c0_guest_cause(cop0, (0xff),
1872                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
1873
1874         /* setup badvaddr, context and entryhi registers for the guest */
1875         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1876         /* XXXKYMA: is the context register used by linux??? */
1877         kvm_write_c0_guest_entryhi(cop0, entryhi);
1878         /* Blow away the shadow host TLBs */
1879         kvm_mips_flush_host_tlb(1);
1880
1881         return EMULATE_DONE;
1882 }
1883
1884 enum emulation_result kvm_mips_emulate_tlbmiss_st(unsigned long cause,
1885                                                   uint32_t *opc,
1886                                                   struct kvm_run *run,
1887                                                   struct kvm_vcpu *vcpu)
1888 {
1889         struct mips_coproc *cop0 = vcpu->arch.cop0;
1890         struct kvm_vcpu_arch *arch = &vcpu->arch;
1891         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1892                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1893
1894         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1895                 /* save old pc */
1896                 kvm_write_c0_guest_epc(cop0, arch->pc);
1897                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1898
1899                 if (cause & CAUSEF_BD)
1900                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1901                 else
1902                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1903
1904                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1905                           arch->pc);
1906
1907                 /* Set PC to the exception entry point */
1908                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1909         } else {
1910                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1911                           arch->pc);
1912                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1913         }
1914
1915         kvm_change_c0_guest_cause(cop0, (0xff),
1916                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
1917
1918         /* setup badvaddr, context and entryhi registers for the guest */
1919         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1920         /* XXXKYMA: is the context register used by linux??? */
1921         kvm_write_c0_guest_entryhi(cop0, entryhi);
1922         /* Blow away the shadow host TLBs */
1923         kvm_mips_flush_host_tlb(1);
1924
1925         return EMULATE_DONE;
1926 }
1927
1928 enum emulation_result kvm_mips_emulate_tlbinv_st(unsigned long cause,
1929                                                  uint32_t *opc,
1930                                                  struct kvm_run *run,
1931                                                  struct kvm_vcpu *vcpu)
1932 {
1933         struct mips_coproc *cop0 = vcpu->arch.cop0;
1934         struct kvm_vcpu_arch *arch = &vcpu->arch;
1935         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1936                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1937
1938         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1939                 /* save old pc */
1940                 kvm_write_c0_guest_epc(cop0, arch->pc);
1941                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1942
1943                 if (cause & CAUSEF_BD)
1944                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1945                 else
1946                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1947
1948                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
1949                           arch->pc);
1950
1951                 /* Set PC to the exception entry point */
1952                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1953         } else {
1954                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
1955                           arch->pc);
1956                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1957         }
1958
1959         kvm_change_c0_guest_cause(cop0, (0xff),
1960                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
1961
1962         /* setup badvaddr, context and entryhi registers for the guest */
1963         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1964         /* XXXKYMA: is the context register used by linux??? */
1965         kvm_write_c0_guest_entryhi(cop0, entryhi);
1966         /* Blow away the shadow host TLBs */
1967         kvm_mips_flush_host_tlb(1);
1968
1969         return EMULATE_DONE;
1970 }
1971
1972 /* TLBMOD: store into address matching TLB with Dirty bit off */
1973 enum emulation_result kvm_mips_handle_tlbmod(unsigned long cause, uint32_t *opc,
1974                                              struct kvm_run *run,
1975                                              struct kvm_vcpu *vcpu)
1976 {
1977         enum emulation_result er = EMULATE_DONE;
1978 #ifdef DEBUG
1979         struct mips_coproc *cop0 = vcpu->arch.cop0;
1980         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1981                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1982         int index;
1983
1984         /* If address not in the guest TLB, then we are in trouble */
1985         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1986         if (index < 0) {
1987                 /* XXXKYMA Invalidate and retry */
1988                 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
1989                 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
1990                      __func__, entryhi);
1991                 kvm_mips_dump_guest_tlbs(vcpu);
1992                 kvm_mips_dump_host_tlbs();
1993                 return EMULATE_FAIL;
1994         }
1995 #endif
1996
1997         er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
1998         return er;
1999 }
2000
2001 enum emulation_result kvm_mips_emulate_tlbmod(unsigned long cause,
2002                                               uint32_t *opc,
2003                                               struct kvm_run *run,
2004                                               struct kvm_vcpu *vcpu)
2005 {
2006         struct mips_coproc *cop0 = vcpu->arch.cop0;
2007         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2008                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2009         struct kvm_vcpu_arch *arch = &vcpu->arch;
2010
2011         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2012                 /* save old pc */
2013                 kvm_write_c0_guest_epc(cop0, arch->pc);
2014                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2015
2016                 if (cause & CAUSEF_BD)
2017                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2018                 else
2019                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2020
2021                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2022                           arch->pc);
2023
2024                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2025         } else {
2026                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2027                           arch->pc);
2028                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2029         }
2030
2031         kvm_change_c0_guest_cause(cop0, (0xff),
2032                                   (EXCCODE_MOD << CAUSEB_EXCCODE));
2033
2034         /* setup badvaddr, context and entryhi registers for the guest */
2035         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2036         /* XXXKYMA: is the context register used by linux??? */
2037         kvm_write_c0_guest_entryhi(cop0, entryhi);
2038         /* Blow away the shadow host TLBs */
2039         kvm_mips_flush_host_tlb(1);
2040
2041         return EMULATE_DONE;
2042 }
2043
2044 enum emulation_result kvm_mips_emulate_fpu_exc(unsigned long cause,
2045                                                uint32_t *opc,
2046                                                struct kvm_run *run,
2047                                                struct kvm_vcpu *vcpu)
2048 {
2049         struct mips_coproc *cop0 = vcpu->arch.cop0;
2050         struct kvm_vcpu_arch *arch = &vcpu->arch;
2051
2052         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2053                 /* save old pc */
2054                 kvm_write_c0_guest_epc(cop0, arch->pc);
2055                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2056
2057                 if (cause & CAUSEF_BD)
2058                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2059                 else
2060                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2061
2062         }
2063
2064         arch->pc = KVM_GUEST_KSEG0 + 0x180;
2065
2066         kvm_change_c0_guest_cause(cop0, (0xff),
2067                                   (EXCCODE_CPU << CAUSEB_EXCCODE));
2068         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2069
2070         return EMULATE_DONE;
2071 }
2072
2073 enum emulation_result kvm_mips_emulate_ri_exc(unsigned long cause,
2074                                               uint32_t *opc,
2075                                               struct kvm_run *run,
2076                                               struct kvm_vcpu *vcpu)
2077 {
2078         struct mips_coproc *cop0 = vcpu->arch.cop0;
2079         struct kvm_vcpu_arch *arch = &vcpu->arch;
2080         enum emulation_result er = EMULATE_DONE;
2081
2082         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2083                 /* save old pc */
2084                 kvm_write_c0_guest_epc(cop0, arch->pc);
2085                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2086
2087                 if (cause & CAUSEF_BD)
2088                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2089                 else
2090                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2091
2092                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2093
2094                 kvm_change_c0_guest_cause(cop0, (0xff),
2095                                           (EXCCODE_RI << CAUSEB_EXCCODE));
2096
2097                 /* Set PC to the exception entry point */
2098                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2099
2100         } else {
2101                 kvm_err("Trying to deliver RI when EXL is already set\n");
2102                 er = EMULATE_FAIL;
2103         }
2104
2105         return er;
2106 }
2107
2108 enum emulation_result kvm_mips_emulate_bp_exc(unsigned long cause,
2109                                               uint32_t *opc,
2110                                               struct kvm_run *run,
2111                                               struct kvm_vcpu *vcpu)
2112 {
2113         struct mips_coproc *cop0 = vcpu->arch.cop0;
2114         struct kvm_vcpu_arch *arch = &vcpu->arch;
2115         enum emulation_result er = EMULATE_DONE;
2116
2117         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2118                 /* save old pc */
2119                 kvm_write_c0_guest_epc(cop0, arch->pc);
2120                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2121
2122                 if (cause & CAUSEF_BD)
2123                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2124                 else
2125                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2126
2127                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2128
2129                 kvm_change_c0_guest_cause(cop0, (0xff),
2130                                           (EXCCODE_BP << CAUSEB_EXCCODE));
2131
2132                 /* Set PC to the exception entry point */
2133                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2134
2135         } else {
2136                 kvm_err("Trying to deliver BP when EXL is already set\n");
2137                 er = EMULATE_FAIL;
2138         }
2139
2140         return er;
2141 }
2142
2143 enum emulation_result kvm_mips_emulate_trap_exc(unsigned long cause,
2144                                                 uint32_t *opc,
2145                                                 struct kvm_run *run,
2146                                                 struct kvm_vcpu *vcpu)
2147 {
2148         struct mips_coproc *cop0 = vcpu->arch.cop0;
2149         struct kvm_vcpu_arch *arch = &vcpu->arch;
2150         enum emulation_result er = EMULATE_DONE;
2151
2152         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2153                 /* save old pc */
2154                 kvm_write_c0_guest_epc(cop0, arch->pc);
2155                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2156
2157                 if (cause & CAUSEF_BD)
2158                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2159                 else
2160                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2161
2162                 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2163
2164                 kvm_change_c0_guest_cause(cop0, (0xff),
2165                                           (EXCCODE_TR << CAUSEB_EXCCODE));
2166
2167                 /* Set PC to the exception entry point */
2168                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2169
2170         } else {
2171                 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2172                 er = EMULATE_FAIL;
2173         }
2174
2175         return er;
2176 }
2177
2178 enum emulation_result kvm_mips_emulate_msafpe_exc(unsigned long cause,
2179                                                   uint32_t *opc,
2180                                                   struct kvm_run *run,
2181                                                   struct kvm_vcpu *vcpu)
2182 {
2183         struct mips_coproc *cop0 = vcpu->arch.cop0;
2184         struct kvm_vcpu_arch *arch = &vcpu->arch;
2185         enum emulation_result er = EMULATE_DONE;
2186
2187         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2188                 /* save old pc */
2189                 kvm_write_c0_guest_epc(cop0, arch->pc);
2190                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2191
2192                 if (cause & CAUSEF_BD)
2193                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2194                 else
2195                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2196
2197                 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2198
2199                 kvm_change_c0_guest_cause(cop0, (0xff),
2200                                           (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2201
2202                 /* Set PC to the exception entry point */
2203                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2204
2205         } else {
2206                 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2207                 er = EMULATE_FAIL;
2208         }
2209
2210         return er;
2211 }
2212
2213 enum emulation_result kvm_mips_emulate_fpe_exc(unsigned long cause,
2214                                                uint32_t *opc,
2215                                                struct kvm_run *run,
2216                                                struct kvm_vcpu *vcpu)
2217 {
2218         struct mips_coproc *cop0 = vcpu->arch.cop0;
2219         struct kvm_vcpu_arch *arch = &vcpu->arch;
2220         enum emulation_result er = EMULATE_DONE;
2221
2222         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2223                 /* save old pc */
2224                 kvm_write_c0_guest_epc(cop0, arch->pc);
2225                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2226
2227                 if (cause & CAUSEF_BD)
2228                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2229                 else
2230                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2231
2232                 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2233
2234                 kvm_change_c0_guest_cause(cop0, (0xff),
2235                                           (EXCCODE_FPE << CAUSEB_EXCCODE));
2236
2237                 /* Set PC to the exception entry point */
2238                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2239
2240         } else {
2241                 kvm_err("Trying to deliver FPE when EXL is already set\n");
2242                 er = EMULATE_FAIL;
2243         }
2244
2245         return er;
2246 }
2247
2248 enum emulation_result kvm_mips_emulate_msadis_exc(unsigned long cause,
2249                                                   uint32_t *opc,
2250                                                   struct kvm_run *run,
2251                                                   struct kvm_vcpu *vcpu)
2252 {
2253         struct mips_coproc *cop0 = vcpu->arch.cop0;
2254         struct kvm_vcpu_arch *arch = &vcpu->arch;
2255         enum emulation_result er = EMULATE_DONE;
2256
2257         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2258                 /* save old pc */
2259                 kvm_write_c0_guest_epc(cop0, arch->pc);
2260                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2261
2262                 if (cause & CAUSEF_BD)
2263                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2264                 else
2265                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2266
2267                 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2268
2269                 kvm_change_c0_guest_cause(cop0, (0xff),
2270                                           (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2271
2272                 /* Set PC to the exception entry point */
2273                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2274
2275         } else {
2276                 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2277                 er = EMULATE_FAIL;
2278         }
2279
2280         return er;
2281 }
2282
2283 /* ll/sc, rdhwr, sync emulation */
2284
2285 #define OPCODE 0xfc000000
2286 #define BASE   0x03e00000
2287 #define RT     0x001f0000
2288 #define OFFSET 0x0000ffff
2289 #define LL     0xc0000000
2290 #define SC     0xe0000000
2291 #define SPEC0  0x00000000
2292 #define SPEC3  0x7c000000
2293 #define RD     0x0000f800
2294 #define FUNC   0x0000003f
2295 #define SYNC   0x0000000f
2296 #define RDHWR  0x0000003b
2297
2298 enum emulation_result kvm_mips_handle_ri(unsigned long cause, uint32_t *opc,
2299                                          struct kvm_run *run,
2300                                          struct kvm_vcpu *vcpu)
2301 {
2302         struct mips_coproc *cop0 = vcpu->arch.cop0;
2303         struct kvm_vcpu_arch *arch = &vcpu->arch;
2304         enum emulation_result er = EMULATE_DONE;
2305         unsigned long curr_pc;
2306         uint32_t inst;
2307
2308         /*
2309          * Update PC and hold onto current PC in case there is
2310          * an error and we want to rollback the PC
2311          */
2312         curr_pc = vcpu->arch.pc;
2313         er = update_pc(vcpu, cause);
2314         if (er == EMULATE_FAIL)
2315                 return er;
2316
2317         /* Fetch the instruction. */
2318         if (cause & CAUSEF_BD)
2319                 opc += 1;
2320
2321         inst = kvm_get_inst(opc, vcpu);
2322
2323         if (inst == KVM_INVALID_INST) {
2324                 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2325                 return EMULATE_FAIL;
2326         }
2327
2328         if ((inst & OPCODE) == SPEC3 && (inst & FUNC) == RDHWR) {
2329                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2330                 int rd = (inst & RD) >> 11;
2331                 int rt = (inst & RT) >> 16;
2332                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2333                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2334                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2335                                   rd, opc);
2336                         goto emulate_ri;
2337                 }
2338                 switch (rd) {
2339                 case 0: /* CPU number */
2340                         arch->gprs[rt] = 0;
2341                         break;
2342                 case 1: /* SYNCI length */
2343                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2344                                              current_cpu_data.icache.linesz);
2345                         break;
2346                 case 2: /* Read count register */
2347                         arch->gprs[rt] = kvm_mips_read_count(vcpu);
2348                         break;
2349                 case 3: /* Count register resolution */
2350                         switch (current_cpu_data.cputype) {
2351                         case CPU_20KC:
2352                         case CPU_25KF:
2353                                 arch->gprs[rt] = 1;
2354                                 break;
2355                         default:
2356                                 arch->gprs[rt] = 2;
2357                         }
2358                         break;
2359                 case 29:
2360                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2361                         break;
2362
2363                 default:
2364                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2365                         goto emulate_ri;
2366                 }
2367         } else {
2368                 kvm_debug("Emulate RI not supported @ %p: %#x\n", opc, inst);
2369                 goto emulate_ri;
2370         }
2371
2372         return EMULATE_DONE;
2373
2374 emulate_ri:
2375         /*
2376          * Rollback PC (if in branch delay slot then the PC already points to
2377          * branch target), and pass the RI exception to the guest OS.
2378          */
2379         vcpu->arch.pc = curr_pc;
2380         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2381 }
2382
2383 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2384                                                   struct kvm_run *run)
2385 {
2386         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2387         enum emulation_result er = EMULATE_DONE;
2388
2389         if (run->mmio.len > sizeof(*gpr)) {
2390                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2391                 er = EMULATE_FAIL;
2392                 goto done;
2393         }
2394
2395         er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2396         if (er == EMULATE_FAIL)
2397                 return er;
2398
2399         switch (run->mmio.len) {
2400         case 4:
2401                 *gpr = *(int32_t *) run->mmio.data;
2402                 break;
2403
2404         case 2:
2405                 if (vcpu->mmio_needed == 2)
2406                         *gpr = *(int16_t *) run->mmio.data;
2407                 else
2408                         *gpr = *(uint16_t *)run->mmio.data;
2409
2410                 break;
2411         case 1:
2412                 if (vcpu->mmio_needed == 2)
2413                         *gpr = *(int8_t *) run->mmio.data;
2414                 else
2415                         *gpr = *(u8 *) run->mmio.data;
2416                 break;
2417         }
2418
2419         if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2420                 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2421                           vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2422                           vcpu->mmio_needed);
2423
2424 done:
2425         return er;
2426 }
2427
2428 static enum emulation_result kvm_mips_emulate_exc(unsigned long cause,
2429                                                   uint32_t *opc,
2430                                                   struct kvm_run *run,
2431                                                   struct kvm_vcpu *vcpu)
2432 {
2433         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2434         struct mips_coproc *cop0 = vcpu->arch.cop0;
2435         struct kvm_vcpu_arch *arch = &vcpu->arch;
2436         enum emulation_result er = EMULATE_DONE;
2437
2438         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2439                 /* save old pc */
2440                 kvm_write_c0_guest_epc(cop0, arch->pc);
2441                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2442
2443                 if (cause & CAUSEF_BD)
2444                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2445                 else
2446                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2447
2448                 kvm_change_c0_guest_cause(cop0, (0xff),
2449                                           (exccode << CAUSEB_EXCCODE));
2450
2451                 /* Set PC to the exception entry point */
2452                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2453                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2454
2455                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2456                           exccode, kvm_read_c0_guest_epc(cop0),
2457                           kvm_read_c0_guest_badvaddr(cop0));
2458         } else {
2459                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2460                 er = EMULATE_FAIL;
2461         }
2462
2463         return er;
2464 }
2465
2466 enum emulation_result kvm_mips_check_privilege(unsigned long cause,
2467                                                uint32_t *opc,
2468                                                struct kvm_run *run,
2469                                                struct kvm_vcpu *vcpu)
2470 {
2471         enum emulation_result er = EMULATE_DONE;
2472         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2473         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2474
2475         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2476
2477         if (usermode) {
2478                 switch (exccode) {
2479                 case EXCCODE_INT:
2480                 case EXCCODE_SYS:
2481                 case EXCCODE_BP:
2482                 case EXCCODE_RI:
2483                 case EXCCODE_TR:
2484                 case EXCCODE_MSAFPE:
2485                 case EXCCODE_FPE:
2486                 case EXCCODE_MSADIS:
2487                         break;
2488
2489                 case EXCCODE_CPU:
2490                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2491                                 er = EMULATE_PRIV_FAIL;
2492                         break;
2493
2494                 case EXCCODE_MOD:
2495                         break;
2496
2497                 case EXCCODE_TLBL:
2498                         /*
2499                          * We we are accessing Guest kernel space, then send an
2500                          * address error exception to the guest
2501                          */
2502                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2503                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2504                                           badvaddr);
2505                                 cause &= ~0xff;
2506                                 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2507                                 er = EMULATE_PRIV_FAIL;
2508                         }
2509                         break;
2510
2511                 case EXCCODE_TLBS:
2512                         /*
2513                          * We we are accessing Guest kernel space, then send an
2514                          * address error exception to the guest
2515                          */
2516                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2517                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2518                                           badvaddr);
2519                                 cause &= ~0xff;
2520                                 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2521                                 er = EMULATE_PRIV_FAIL;
2522                         }
2523                         break;
2524
2525                 case EXCCODE_ADES:
2526                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2527                                   badvaddr);
2528                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2529                                 cause &= ~0xff;
2530                                 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2531                         }
2532                         er = EMULATE_PRIV_FAIL;
2533                         break;
2534                 case EXCCODE_ADEL:
2535                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2536                                   badvaddr);
2537                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2538                                 cause &= ~0xff;
2539                                 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2540                         }
2541                         er = EMULATE_PRIV_FAIL;
2542                         break;
2543                 default:
2544                         er = EMULATE_PRIV_FAIL;
2545                         break;
2546                 }
2547         }
2548
2549         if (er == EMULATE_PRIV_FAIL)
2550                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2551
2552         return er;
2553 }
2554
2555 /*
2556  * User Address (UA) fault, this could happen if
2557  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2558  *     case we pass on the fault to the guest kernel and let it handle it.
2559  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2560  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2561  */
2562 enum emulation_result kvm_mips_handle_tlbmiss(unsigned long cause,
2563                                               uint32_t *opc,
2564                                               struct kvm_run *run,
2565                                               struct kvm_vcpu *vcpu)
2566 {
2567         enum emulation_result er = EMULATE_DONE;
2568         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2569         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2570         int index;
2571
2572         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx, entryhi: %#lx\n",
2573                   vcpu->arch.host_cp0_badvaddr, vcpu->arch.host_cp0_entryhi);
2574
2575         /*
2576          * KVM would not have got the exception if this entry was valid in the
2577          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2578          * send the guest an exception. The guest exc handler should then inject
2579          * an entry into the guest TLB.
2580          */
2581         index = kvm_mips_guest_tlb_lookup(vcpu,
2582                       (va & VPN2_MASK) |
2583                       (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2584                        KVM_ENTRYHI_ASID));
2585         if (index < 0) {
2586                 if (exccode == EXCCODE_TLBL) {
2587                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2588                 } else if (exccode == EXCCODE_TLBS) {
2589                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2590                 } else {
2591                         kvm_err("%s: invalid exc code: %d\n", __func__,
2592                                 exccode);
2593                         er = EMULATE_FAIL;
2594                 }
2595         } else {
2596                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2597
2598                 /*
2599                  * Check if the entry is valid, if not then setup a TLB invalid
2600                  * exception to the guest
2601                  */
2602                 if (!TLB_IS_VALID(*tlb, va)) {
2603                         if (exccode == EXCCODE_TLBL) {
2604                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2605                                                                 vcpu);
2606                         } else if (exccode == EXCCODE_TLBS) {
2607                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2608                                                                 vcpu);
2609                         } else {
2610                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2611                                         exccode);
2612                                 er = EMULATE_FAIL;
2613                         }
2614                 } else {
2615                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2616                                   tlb->tlb_hi, tlb->tlb_lo0, tlb->tlb_lo1);
2617                         /*
2618                          * OK we have a Guest TLB entry, now inject it into the
2619                          * shadow host TLB
2620                          */
2621                         kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, NULL,
2622                                                              NULL);
2623                 }
2624         }
2625
2626         return er;
2627 }