Merge branch 'work.uaccess' into for-linus
[cascardo/linux.git] / arch / mips / kvm / emulate.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: Instruction/Exception emulation
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/ktime.h>
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <linux/random.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/cacheops.h>
24 #include <asm/cpu-info.h>
25 #include <asm/mmu_context.h>
26 #include <asm/tlbflush.h>
27 #include <asm/inst.h>
28
29 #undef CONFIG_MIPS_MT
30 #include <asm/r4kcache.h>
31 #define CONFIG_MIPS_MT
32
33 #include "interrupt.h"
34 #include "commpage.h"
35
36 #include "trace.h"
37
38 /*
39  * Compute the return address and do emulate branch simulation, if required.
40  * This function should be called only in branch delay slot active.
41  */
42 unsigned long kvm_compute_return_epc(struct kvm_vcpu *vcpu,
43         unsigned long instpc)
44 {
45         unsigned int dspcontrol;
46         union mips_instruction insn;
47         struct kvm_vcpu_arch *arch = &vcpu->arch;
48         long epc = instpc;
49         long nextpc = KVM_INVALID_INST;
50
51         if (epc & 3)
52                 goto unaligned;
53
54         /* Read the instruction */
55         insn.word = kvm_get_inst((u32 *) epc, vcpu);
56
57         if (insn.word == KVM_INVALID_INST)
58                 return KVM_INVALID_INST;
59
60         switch (insn.i_format.opcode) {
61                 /* jr and jalr are in r_format format. */
62         case spec_op:
63                 switch (insn.r_format.func) {
64                 case jalr_op:
65                         arch->gprs[insn.r_format.rd] = epc + 8;
66                         /* Fall through */
67                 case jr_op:
68                         nextpc = arch->gprs[insn.r_format.rs];
69                         break;
70                 }
71                 break;
72
73                 /*
74                  * This group contains:
75                  * bltz_op, bgez_op, bltzl_op, bgezl_op,
76                  * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77                  */
78         case bcond_op:
79                 switch (insn.i_format.rt) {
80                 case bltz_op:
81                 case bltzl_op:
82                         if ((long)arch->gprs[insn.i_format.rs] < 0)
83                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
84                         else
85                                 epc += 8;
86                         nextpc = epc;
87                         break;
88
89                 case bgez_op:
90                 case bgezl_op:
91                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
92                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
93                         else
94                                 epc += 8;
95                         nextpc = epc;
96                         break;
97
98                 case bltzal_op:
99                 case bltzall_op:
100                         arch->gprs[31] = epc + 8;
101                         if ((long)arch->gprs[insn.i_format.rs] < 0)
102                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
103                         else
104                                 epc += 8;
105                         nextpc = epc;
106                         break;
107
108                 case bgezal_op:
109                 case bgezall_op:
110                         arch->gprs[31] = epc + 8;
111                         if ((long)arch->gprs[insn.i_format.rs] >= 0)
112                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
113                         else
114                                 epc += 8;
115                         nextpc = epc;
116                         break;
117                 case bposge32_op:
118                         if (!cpu_has_dsp)
119                                 goto sigill;
120
121                         dspcontrol = rddsp(0x01);
122
123                         if (dspcontrol >= 32)
124                                 epc = epc + 4 + (insn.i_format.simmediate << 2);
125                         else
126                                 epc += 8;
127                         nextpc = epc;
128                         break;
129                 }
130                 break;
131
132                 /* These are unconditional and in j_format. */
133         case jal_op:
134                 arch->gprs[31] = instpc + 8;
135         case j_op:
136                 epc += 4;
137                 epc >>= 28;
138                 epc <<= 28;
139                 epc |= (insn.j_format.target << 2);
140                 nextpc = epc;
141                 break;
142
143                 /* These are conditional and in i_format. */
144         case beq_op:
145         case beql_op:
146                 if (arch->gprs[insn.i_format.rs] ==
147                     arch->gprs[insn.i_format.rt])
148                         epc = epc + 4 + (insn.i_format.simmediate << 2);
149                 else
150                         epc += 8;
151                 nextpc = epc;
152                 break;
153
154         case bne_op:
155         case bnel_op:
156                 if (arch->gprs[insn.i_format.rs] !=
157                     arch->gprs[insn.i_format.rt])
158                         epc = epc + 4 + (insn.i_format.simmediate << 2);
159                 else
160                         epc += 8;
161                 nextpc = epc;
162                 break;
163
164         case blez_op:   /* POP06 */
165 #ifndef CONFIG_CPU_MIPSR6
166         case blezl_op:  /* removed in R6 */
167 #endif
168                 if (insn.i_format.rt != 0)
169                         goto compact_branch;
170                 if ((long)arch->gprs[insn.i_format.rs] <= 0)
171                         epc = epc + 4 + (insn.i_format.simmediate << 2);
172                 else
173                         epc += 8;
174                 nextpc = epc;
175                 break;
176
177         case bgtz_op:   /* POP07 */
178 #ifndef CONFIG_CPU_MIPSR6
179         case bgtzl_op:  /* removed in R6 */
180 #endif
181                 if (insn.i_format.rt != 0)
182                         goto compact_branch;
183                 if ((long)arch->gprs[insn.i_format.rs] > 0)
184                         epc = epc + 4 + (insn.i_format.simmediate << 2);
185                 else
186                         epc += 8;
187                 nextpc = epc;
188                 break;
189
190                 /* And now the FPA/cp1 branch instructions. */
191         case cop1_op:
192                 kvm_err("%s: unsupported cop1_op\n", __func__);
193                 break;
194
195 #ifdef CONFIG_CPU_MIPSR6
196         /* R6 added the following compact branches with forbidden slots */
197         case blezl_op:  /* POP26 */
198         case bgtzl_op:  /* POP27 */
199                 /* only rt == 0 isn't compact branch */
200                 if (insn.i_format.rt != 0)
201                         goto compact_branch;
202                 break;
203         case pop10_op:
204         case pop30_op:
205                 /* only rs == rt == 0 is reserved, rest are compact branches */
206                 if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
207                         goto compact_branch;
208                 break;
209         case pop66_op:
210         case pop76_op:
211                 /* only rs == 0 isn't compact branch */
212                 if (insn.i_format.rs != 0)
213                         goto compact_branch;
214                 break;
215 compact_branch:
216                 /*
217                  * If we've hit an exception on the forbidden slot, then
218                  * the branch must not have been taken.
219                  */
220                 epc += 8;
221                 nextpc = epc;
222                 break;
223 #else
224 compact_branch:
225                 /* Compact branches not supported before R6 */
226                 break;
227 #endif
228         }
229
230         return nextpc;
231
232 unaligned:
233         kvm_err("%s: unaligned epc\n", __func__);
234         return nextpc;
235
236 sigill:
237         kvm_err("%s: DSP branch but not DSP ASE\n", __func__);
238         return nextpc;
239 }
240
241 enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
242 {
243         unsigned long branch_pc;
244         enum emulation_result er = EMULATE_DONE;
245
246         if (cause & CAUSEF_BD) {
247                 branch_pc = kvm_compute_return_epc(vcpu, vcpu->arch.pc);
248                 if (branch_pc == KVM_INVALID_INST) {
249                         er = EMULATE_FAIL;
250                 } else {
251                         vcpu->arch.pc = branch_pc;
252                         kvm_debug("BD update_pc(): New PC: %#lx\n",
253                                   vcpu->arch.pc);
254                 }
255         } else
256                 vcpu->arch.pc += 4;
257
258         kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
259
260         return er;
261 }
262
263 /**
264  * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
265  * @vcpu:       Virtual CPU.
266  *
267  * Returns:     1 if the CP0_Count timer is disabled by either the guest
268  *              CP0_Cause.DC bit or the count_ctl.DC bit.
269  *              0 otherwise (in which case CP0_Count timer is running).
270  */
271 static inline int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
272 {
273         struct mips_coproc *cop0 = vcpu->arch.cop0;
274
275         return  (vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
276                 (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
277 }
278
279 /**
280  * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
281  *
282  * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
283  *
284  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
285  */
286 static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
287 {
288         s64 now_ns, periods;
289         u64 delta;
290
291         now_ns = ktime_to_ns(now);
292         delta = now_ns + vcpu->arch.count_dyn_bias;
293
294         if (delta >= vcpu->arch.count_period) {
295                 /* If delta is out of safe range the bias needs adjusting */
296                 periods = div64_s64(now_ns, vcpu->arch.count_period);
297                 vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
298                 /* Recalculate delta with new bias */
299                 delta = now_ns + vcpu->arch.count_dyn_bias;
300         }
301
302         /*
303          * We've ensured that:
304          *   delta < count_period
305          *
306          * Therefore the intermediate delta*count_hz will never overflow since
307          * at the boundary condition:
308          *   delta = count_period
309          *   delta = NSEC_PER_SEC * 2^32 / count_hz
310          *   delta * count_hz = NSEC_PER_SEC * 2^32
311          */
312         return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
313 }
314
315 /**
316  * kvm_mips_count_time() - Get effective current time.
317  * @vcpu:       Virtual CPU.
318  *
319  * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
320  * except when the master disable bit is set in count_ctl, in which case it is
321  * count_resume, i.e. the time that the count was disabled.
322  *
323  * Returns:     Effective monotonic ktime for CP0_Count.
324  */
325 static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
326 {
327         if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
328                 return vcpu->arch.count_resume;
329
330         return ktime_get();
331 }
332
333 /**
334  * kvm_mips_read_count_running() - Read the current count value as if running.
335  * @vcpu:       Virtual CPU.
336  * @now:        Kernel time to read CP0_Count at.
337  *
338  * Returns the current guest CP0_Count register at time @now and handles if the
339  * timer interrupt is pending and hasn't been handled yet.
340  *
341  * Returns:     The current value of the guest CP0_Count register.
342  */
343 static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
344 {
345         struct mips_coproc *cop0 = vcpu->arch.cop0;
346         ktime_t expires, threshold;
347         u32 count, compare;
348         int running;
349
350         /* Calculate the biased and scaled guest CP0_Count */
351         count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
352         compare = kvm_read_c0_guest_compare(cop0);
353
354         /*
355          * Find whether CP0_Count has reached the closest timer interrupt. If
356          * not, we shouldn't inject it.
357          */
358         if ((s32)(count - compare) < 0)
359                 return count;
360
361         /*
362          * The CP0_Count we're going to return has already reached the closest
363          * timer interrupt. Quickly check if it really is a new interrupt by
364          * looking at whether the interval until the hrtimer expiry time is
365          * less than 1/4 of the timer period.
366          */
367         expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
368         threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
369         if (ktime_before(expires, threshold)) {
370                 /*
371                  * Cancel it while we handle it so there's no chance of
372                  * interference with the timeout handler.
373                  */
374                 running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
375
376                 /* Nothing should be waiting on the timeout */
377                 kvm_mips_callbacks->queue_timer_int(vcpu);
378
379                 /*
380                  * Restart the timer if it was running based on the expiry time
381                  * we read, so that we don't push it back 2 periods.
382                  */
383                 if (running) {
384                         expires = ktime_add_ns(expires,
385                                                vcpu->arch.count_period);
386                         hrtimer_start(&vcpu->arch.comparecount_timer, expires,
387                                       HRTIMER_MODE_ABS);
388                 }
389         }
390
391         return count;
392 }
393
394 /**
395  * kvm_mips_read_count() - Read the current count value.
396  * @vcpu:       Virtual CPU.
397  *
398  * Read the current guest CP0_Count value, taking into account whether the timer
399  * is stopped.
400  *
401  * Returns:     The current guest CP0_Count value.
402  */
403 u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
404 {
405         struct mips_coproc *cop0 = vcpu->arch.cop0;
406
407         /* If count disabled just read static copy of count */
408         if (kvm_mips_count_disabled(vcpu))
409                 return kvm_read_c0_guest_count(cop0);
410
411         return kvm_mips_read_count_running(vcpu, ktime_get());
412 }
413
414 /**
415  * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
416  * @vcpu:       Virtual CPU.
417  * @count:      Output pointer for CP0_Count value at point of freeze.
418  *
419  * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
420  * at the point it was frozen. It is guaranteed that any pending interrupts at
421  * the point it was frozen are handled, and none after that point.
422  *
423  * This is useful where the time/CP0_Count is needed in the calculation of the
424  * new parameters.
425  *
426  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
427  *
428  * Returns:     The ktime at the point of freeze.
429  */
430 static ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
431 {
432         ktime_t now;
433
434         /* stop hrtimer before finding time */
435         hrtimer_cancel(&vcpu->arch.comparecount_timer);
436         now = ktime_get();
437
438         /* find count at this point and handle pending hrtimer */
439         *count = kvm_mips_read_count_running(vcpu, now);
440
441         return now;
442 }
443
444 /**
445  * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
446  * @vcpu:       Virtual CPU.
447  * @now:        ktime at point of resume.
448  * @count:      CP0_Count at point of resume.
449  *
450  * Resumes the timer and updates the timer expiry based on @now and @count.
451  * This can be used in conjunction with kvm_mips_freeze_timer() when timer
452  * parameters need to be changed.
453  *
454  * It is guaranteed that a timer interrupt immediately after resume will be
455  * handled, but not if CP_Compare is exactly at @count. That case is already
456  * handled by kvm_mips_freeze_timer().
457  *
458  * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
459  */
460 static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
461                                     ktime_t now, u32 count)
462 {
463         struct mips_coproc *cop0 = vcpu->arch.cop0;
464         u32 compare;
465         u64 delta;
466         ktime_t expire;
467
468         /* Calculate timeout (wrap 0 to 2^32) */
469         compare = kvm_read_c0_guest_compare(cop0);
470         delta = (u64)(u32)(compare - count - 1) + 1;
471         delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
472         expire = ktime_add_ns(now, delta);
473
474         /* Update hrtimer to use new timeout */
475         hrtimer_cancel(&vcpu->arch.comparecount_timer);
476         hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
477 }
478
479 /**
480  * kvm_mips_write_count() - Modify the count and update timer.
481  * @vcpu:       Virtual CPU.
482  * @count:      Guest CP0_Count value to set.
483  *
484  * Sets the CP0_Count value and updates the timer accordingly.
485  */
486 void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
487 {
488         struct mips_coproc *cop0 = vcpu->arch.cop0;
489         ktime_t now;
490
491         /* Calculate bias */
492         now = kvm_mips_count_time(vcpu);
493         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
494
495         if (kvm_mips_count_disabled(vcpu))
496                 /* The timer's disabled, adjust the static count */
497                 kvm_write_c0_guest_count(cop0, count);
498         else
499                 /* Update timeout */
500                 kvm_mips_resume_hrtimer(vcpu, now, count);
501 }
502
503 /**
504  * kvm_mips_init_count() - Initialise timer.
505  * @vcpu:       Virtual CPU.
506  *
507  * Initialise the timer to a sensible frequency, namely 100MHz, zero it, and set
508  * it going if it's enabled.
509  */
510 void kvm_mips_init_count(struct kvm_vcpu *vcpu)
511 {
512         /* 100 MHz */
513         vcpu->arch.count_hz = 100*1000*1000;
514         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32,
515                                           vcpu->arch.count_hz);
516         vcpu->arch.count_dyn_bias = 0;
517
518         /* Starting at 0 */
519         kvm_mips_write_count(vcpu, 0);
520 }
521
522 /**
523  * kvm_mips_set_count_hz() - Update the frequency of the timer.
524  * @vcpu:       Virtual CPU.
525  * @count_hz:   Frequency of CP0_Count timer in Hz.
526  *
527  * Change the frequency of the CP0_Count timer. This is done atomically so that
528  * CP0_Count is continuous and no timer interrupt is lost.
529  *
530  * Returns:     -EINVAL if @count_hz is out of range.
531  *              0 on success.
532  */
533 int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
534 {
535         struct mips_coproc *cop0 = vcpu->arch.cop0;
536         int dc;
537         ktime_t now;
538         u32 count;
539
540         /* ensure the frequency is in a sensible range... */
541         if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
542                 return -EINVAL;
543         /* ... and has actually changed */
544         if (vcpu->arch.count_hz == count_hz)
545                 return 0;
546
547         /* Safely freeze timer so we can keep it continuous */
548         dc = kvm_mips_count_disabled(vcpu);
549         if (dc) {
550                 now = kvm_mips_count_time(vcpu);
551                 count = kvm_read_c0_guest_count(cop0);
552         } else {
553                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
554         }
555
556         /* Update the frequency */
557         vcpu->arch.count_hz = count_hz;
558         vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
559         vcpu->arch.count_dyn_bias = 0;
560
561         /* Calculate adjusted bias so dynamic count is unchanged */
562         vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
563
564         /* Update and resume hrtimer */
565         if (!dc)
566                 kvm_mips_resume_hrtimer(vcpu, now, count);
567         return 0;
568 }
569
570 /**
571  * kvm_mips_write_compare() - Modify compare and update timer.
572  * @vcpu:       Virtual CPU.
573  * @compare:    New CP0_Compare value.
574  * @ack:        Whether to acknowledge timer interrupt.
575  *
576  * Update CP0_Compare to a new value and update the timeout.
577  * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
578  * any pending timer interrupt is preserved.
579  */
580 void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
581 {
582         struct mips_coproc *cop0 = vcpu->arch.cop0;
583         int dc;
584         u32 old_compare = kvm_read_c0_guest_compare(cop0);
585         ktime_t now;
586         u32 count;
587
588         /* if unchanged, must just be an ack */
589         if (old_compare == compare) {
590                 if (!ack)
591                         return;
592                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
593                 kvm_write_c0_guest_compare(cop0, compare);
594                 return;
595         }
596
597         /* freeze_hrtimer() takes care of timer interrupts <= count */
598         dc = kvm_mips_count_disabled(vcpu);
599         if (!dc)
600                 now = kvm_mips_freeze_hrtimer(vcpu, &count);
601
602         if (ack)
603                 kvm_mips_callbacks->dequeue_timer_int(vcpu);
604
605         kvm_write_c0_guest_compare(cop0, compare);
606
607         /* resume_hrtimer() takes care of timer interrupts > count */
608         if (!dc)
609                 kvm_mips_resume_hrtimer(vcpu, now, count);
610 }
611
612 /**
613  * kvm_mips_count_disable() - Disable count.
614  * @vcpu:       Virtual CPU.
615  *
616  * Disable the CP0_Count timer. A timer interrupt on or before the final stop
617  * time will be handled but not after.
618  *
619  * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
620  * count_ctl.DC has been set (count disabled).
621  *
622  * Returns:     The time that the timer was stopped.
623  */
624 static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
625 {
626         struct mips_coproc *cop0 = vcpu->arch.cop0;
627         u32 count;
628         ktime_t now;
629
630         /* Stop hrtimer */
631         hrtimer_cancel(&vcpu->arch.comparecount_timer);
632
633         /* Set the static count from the dynamic count, handling pending TI */
634         now = ktime_get();
635         count = kvm_mips_read_count_running(vcpu, now);
636         kvm_write_c0_guest_count(cop0, count);
637
638         return now;
639 }
640
641 /**
642  * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
643  * @vcpu:       Virtual CPU.
644  *
645  * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
646  * before the final stop time will be handled if the timer isn't disabled by
647  * count_ctl.DC, but not after.
648  *
649  * Assumes CP0_Cause.DC is clear (count enabled).
650  */
651 void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
652 {
653         struct mips_coproc *cop0 = vcpu->arch.cop0;
654
655         kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
656         if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
657                 kvm_mips_count_disable(vcpu);
658 }
659
660 /**
661  * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
662  * @vcpu:       Virtual CPU.
663  *
664  * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
665  * the start time will be handled if the timer isn't disabled by count_ctl.DC,
666  * potentially before even returning, so the caller should be careful with
667  * ordering of CP0_Cause modifications so as not to lose it.
668  *
669  * Assumes CP0_Cause.DC is set (count disabled).
670  */
671 void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
672 {
673         struct mips_coproc *cop0 = vcpu->arch.cop0;
674         u32 count;
675
676         kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
677
678         /*
679          * Set the dynamic count to match the static count.
680          * This starts the hrtimer if count_ctl.DC allows it.
681          * Otherwise it conveniently updates the biases.
682          */
683         count = kvm_read_c0_guest_count(cop0);
684         kvm_mips_write_count(vcpu, count);
685 }
686
687 /**
688  * kvm_mips_set_count_ctl() - Update the count control KVM register.
689  * @vcpu:       Virtual CPU.
690  * @count_ctl:  Count control register new value.
691  *
692  * Set the count control KVM register. The timer is updated accordingly.
693  *
694  * Returns:     -EINVAL if reserved bits are set.
695  *              0 on success.
696  */
697 int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
698 {
699         struct mips_coproc *cop0 = vcpu->arch.cop0;
700         s64 changed = count_ctl ^ vcpu->arch.count_ctl;
701         s64 delta;
702         ktime_t expire, now;
703         u32 count, compare;
704
705         /* Only allow defined bits to be changed */
706         if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
707                 return -EINVAL;
708
709         /* Apply new value */
710         vcpu->arch.count_ctl = count_ctl;
711
712         /* Master CP0_Count disable */
713         if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
714                 /* Is CP0_Cause.DC already disabling CP0_Count? */
715                 if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
716                         if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
717                                 /* Just record the current time */
718                                 vcpu->arch.count_resume = ktime_get();
719                 } else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
720                         /* disable timer and record current time */
721                         vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
722                 } else {
723                         /*
724                          * Calculate timeout relative to static count at resume
725                          * time (wrap 0 to 2^32).
726                          */
727                         count = kvm_read_c0_guest_count(cop0);
728                         compare = kvm_read_c0_guest_compare(cop0);
729                         delta = (u64)(u32)(compare - count - 1) + 1;
730                         delta = div_u64(delta * NSEC_PER_SEC,
731                                         vcpu->arch.count_hz);
732                         expire = ktime_add_ns(vcpu->arch.count_resume, delta);
733
734                         /* Handle pending interrupt */
735                         now = ktime_get();
736                         if (ktime_compare(now, expire) >= 0)
737                                 /* Nothing should be waiting on the timeout */
738                                 kvm_mips_callbacks->queue_timer_int(vcpu);
739
740                         /* Resume hrtimer without changing bias */
741                         count = kvm_mips_read_count_running(vcpu, now);
742                         kvm_mips_resume_hrtimer(vcpu, now, count);
743                 }
744         }
745
746         return 0;
747 }
748
749 /**
750  * kvm_mips_set_count_resume() - Update the count resume KVM register.
751  * @vcpu:               Virtual CPU.
752  * @count_resume:       Count resume register new value.
753  *
754  * Set the count resume KVM register.
755  *
756  * Returns:     -EINVAL if out of valid range (0..now).
757  *              0 on success.
758  */
759 int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
760 {
761         /*
762          * It doesn't make sense for the resume time to be in the future, as it
763          * would be possible for the next interrupt to be more than a full
764          * period in the future.
765          */
766         if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
767                 return -EINVAL;
768
769         vcpu->arch.count_resume = ns_to_ktime(count_resume);
770         return 0;
771 }
772
773 /**
774  * kvm_mips_count_timeout() - Push timer forward on timeout.
775  * @vcpu:       Virtual CPU.
776  *
777  * Handle an hrtimer event by push the hrtimer forward a period.
778  *
779  * Returns:     The hrtimer_restart value to return to the hrtimer subsystem.
780  */
781 enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
782 {
783         /* Add the Count period to the current expiry time */
784         hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
785                                vcpu->arch.count_period);
786         return HRTIMER_RESTART;
787 }
788
789 enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
790 {
791         struct mips_coproc *cop0 = vcpu->arch.cop0;
792         enum emulation_result er = EMULATE_DONE;
793
794         if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
795                 kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
796                           kvm_read_c0_guest_epc(cop0));
797                 kvm_clear_c0_guest_status(cop0, ST0_EXL);
798                 vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
799
800         } else if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
801                 kvm_clear_c0_guest_status(cop0, ST0_ERL);
802                 vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
803         } else {
804                 kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
805                         vcpu->arch.pc);
806                 er = EMULATE_FAIL;
807         }
808
809         return er;
810 }
811
812 enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
813 {
814         kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
815                   vcpu->arch.pending_exceptions);
816
817         ++vcpu->stat.wait_exits;
818         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
819         if (!vcpu->arch.pending_exceptions) {
820                 vcpu->arch.wait = 1;
821                 kvm_vcpu_block(vcpu);
822
823                 /*
824                  * We we are runnable, then definitely go off to user space to
825                  * check if any I/O interrupts are pending.
826                  */
827                 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
828                         clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
829                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
830                 }
831         }
832
833         return EMULATE_DONE;
834 }
835
836 /*
837  * XXXKYMA: Linux doesn't seem to use TLBR, return EMULATE_FAIL for now so that
838  * we can catch this, if things ever change
839  */
840 enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
841 {
842         struct mips_coproc *cop0 = vcpu->arch.cop0;
843         unsigned long pc = vcpu->arch.pc;
844
845         kvm_err("[%#lx] COP0_TLBR [%ld]\n", pc, kvm_read_c0_guest_index(cop0));
846         return EMULATE_FAIL;
847 }
848
849 /**
850  * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
851  * @vcpu:       VCPU with changed mappings.
852  * @tlb:        TLB entry being removed.
853  *
854  * This is called to indicate a single change in guest MMU mappings, so that we
855  * can arrange TLB flushes on this and other CPUs.
856  */
857 static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
858                                           struct kvm_mips_tlb *tlb)
859 {
860         int cpu, i;
861         bool user;
862
863         /* No need to flush for entries which are already invalid */
864         if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
865                 return;
866         /* User address space doesn't need flushing for KSeg2/3 changes */
867         user = tlb->tlb_hi < KVM_GUEST_KSEG0;
868
869         preempt_disable();
870
871         /*
872          * Probe the shadow host TLB for the entry being overwritten, if one
873          * matches, invalidate it
874          */
875         kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi);
876
877         /* Invalidate the whole ASID on other CPUs */
878         cpu = smp_processor_id();
879         for_each_possible_cpu(i) {
880                 if (i == cpu)
881                         continue;
882                 if (user)
883                         vcpu->arch.guest_user_asid[i] = 0;
884                 vcpu->arch.guest_kernel_asid[i] = 0;
885         }
886
887         preempt_enable();
888 }
889
890 /* Write Guest TLB Entry @ Index */
891 enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
892 {
893         struct mips_coproc *cop0 = vcpu->arch.cop0;
894         int index = kvm_read_c0_guest_index(cop0);
895         struct kvm_mips_tlb *tlb = NULL;
896         unsigned long pc = vcpu->arch.pc;
897
898         if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
899                 kvm_debug("%s: illegal index: %d\n", __func__, index);
900                 kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
901                           pc, index, kvm_read_c0_guest_entryhi(cop0),
902                           kvm_read_c0_guest_entrylo0(cop0),
903                           kvm_read_c0_guest_entrylo1(cop0),
904                           kvm_read_c0_guest_pagemask(cop0));
905                 index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
906         }
907
908         tlb = &vcpu->arch.guest_tlb[index];
909
910         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
911
912         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
913         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
914         tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
915         tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
916
917         kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
918                   pc, index, kvm_read_c0_guest_entryhi(cop0),
919                   kvm_read_c0_guest_entrylo0(cop0),
920                   kvm_read_c0_guest_entrylo1(cop0),
921                   kvm_read_c0_guest_pagemask(cop0));
922
923         return EMULATE_DONE;
924 }
925
926 /* Write Guest TLB Entry @ Random Index */
927 enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
928 {
929         struct mips_coproc *cop0 = vcpu->arch.cop0;
930         struct kvm_mips_tlb *tlb = NULL;
931         unsigned long pc = vcpu->arch.pc;
932         int index;
933
934         get_random_bytes(&index, sizeof(index));
935         index &= (KVM_MIPS_GUEST_TLB_SIZE - 1);
936
937         tlb = &vcpu->arch.guest_tlb[index];
938
939         kvm_mips_invalidate_guest_tlb(vcpu, tlb);
940
941         tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
942         tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
943         tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
944         tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
945
946         kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
947                   pc, index, kvm_read_c0_guest_entryhi(cop0),
948                   kvm_read_c0_guest_entrylo0(cop0),
949                   kvm_read_c0_guest_entrylo1(cop0));
950
951         return EMULATE_DONE;
952 }
953
954 enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
955 {
956         struct mips_coproc *cop0 = vcpu->arch.cop0;
957         long entryhi = kvm_read_c0_guest_entryhi(cop0);
958         unsigned long pc = vcpu->arch.pc;
959         int index = -1;
960
961         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
962
963         kvm_write_c0_guest_index(cop0, index);
964
965         kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
966                   index);
967
968         return EMULATE_DONE;
969 }
970
971 /**
972  * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
973  * @vcpu:       Virtual CPU.
974  *
975  * Finds the mask of bits which are writable in the guest's Config1 CP0
976  * register, by userland (currently read-only to the guest).
977  */
978 unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
979 {
980         unsigned int mask = 0;
981
982         /* Permit FPU to be present if FPU is supported */
983         if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
984                 mask |= MIPS_CONF1_FP;
985
986         return mask;
987 }
988
989 /**
990  * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
991  * @vcpu:       Virtual CPU.
992  *
993  * Finds the mask of bits which are writable in the guest's Config3 CP0
994  * register, by userland (currently read-only to the guest).
995  */
996 unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
997 {
998         /* Config4 and ULRI are optional */
999         unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1000
1001         /* Permit MSA to be present if MSA is supported */
1002         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1003                 mask |= MIPS_CONF3_MSA;
1004
1005         return mask;
1006 }
1007
1008 /**
1009  * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1010  * @vcpu:       Virtual CPU.
1011  *
1012  * Finds the mask of bits which are writable in the guest's Config4 CP0
1013  * register, by userland (currently read-only to the guest).
1014  */
1015 unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1016 {
1017         /* Config5 is optional */
1018         unsigned int mask = MIPS_CONF_M;
1019
1020         /* KScrExist */
1021         mask |= (unsigned int)vcpu->arch.kscratch_enabled << 16;
1022
1023         return mask;
1024 }
1025
1026 /**
1027  * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1028  * @vcpu:       Virtual CPU.
1029  *
1030  * Finds the mask of bits which are writable in the guest's Config5 CP0
1031  * register, by the guest itself.
1032  */
1033 unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1034 {
1035         unsigned int mask = 0;
1036
1037         /* Permit MSAEn changes if MSA supported and enabled */
1038         if (kvm_mips_guest_has_msa(&vcpu->arch))
1039                 mask |= MIPS_CONF5_MSAEN;
1040
1041         /*
1042          * Permit guest FPU mode changes if FPU is enabled and the relevant
1043          * feature exists according to FIR register.
1044          */
1045         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1046                 if (cpu_has_fre)
1047                         mask |= MIPS_CONF5_FRE;
1048                 /* We don't support UFR or UFE */
1049         }
1050
1051         return mask;
1052 }
1053
1054 enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1055                                            u32 *opc, u32 cause,
1056                                            struct kvm_run *run,
1057                                            struct kvm_vcpu *vcpu)
1058 {
1059         struct mips_coproc *cop0 = vcpu->arch.cop0;
1060         enum emulation_result er = EMULATE_DONE;
1061         u32 rt, rd, sel;
1062         unsigned long curr_pc;
1063         int cpu, i;
1064
1065         /*
1066          * Update PC and hold onto current PC in case there is
1067          * an error and we want to rollback the PC
1068          */
1069         curr_pc = vcpu->arch.pc;
1070         er = update_pc(vcpu, cause);
1071         if (er == EMULATE_FAIL)
1072                 return er;
1073
1074         if (inst.co_format.co) {
1075                 switch (inst.co_format.func) {
1076                 case tlbr_op:   /*  Read indexed TLB entry  */
1077                         er = kvm_mips_emul_tlbr(vcpu);
1078                         break;
1079                 case tlbwi_op:  /*  Write indexed  */
1080                         er = kvm_mips_emul_tlbwi(vcpu);
1081                         break;
1082                 case tlbwr_op:  /*  Write random  */
1083                         er = kvm_mips_emul_tlbwr(vcpu);
1084                         break;
1085                 case tlbp_op:   /* TLB Probe */
1086                         er = kvm_mips_emul_tlbp(vcpu);
1087                         break;
1088                 case rfe_op:
1089                         kvm_err("!!!COP0_RFE!!!\n");
1090                         break;
1091                 case eret_op:
1092                         er = kvm_mips_emul_eret(vcpu);
1093                         goto dont_update_pc;
1094                 case wait_op:
1095                         er = kvm_mips_emul_wait(vcpu);
1096                         break;
1097                 }
1098         } else {
1099                 rt = inst.c0r_format.rt;
1100                 rd = inst.c0r_format.rd;
1101                 sel = inst.c0r_format.sel;
1102
1103                 switch (inst.c0r_format.rs) {
1104                 case mfc_op:
1105 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1106                         cop0->stat[rd][sel]++;
1107 #endif
1108                         /* Get reg */
1109                         if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1110                                 vcpu->arch.gprs[rt] =
1111                                     (s32)kvm_mips_read_count(vcpu);
1112                         } else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1113                                 vcpu->arch.gprs[rt] = 0x0;
1114 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1115                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1116 #endif
1117                         } else {
1118                                 vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1119
1120 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1121                                 kvm_mips_trans_mfc0(inst, opc, vcpu);
1122 #endif
1123                         }
1124
1125                         trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1126                                       KVM_TRACE_COP0(rd, sel),
1127                                       vcpu->arch.gprs[rt]);
1128                         break;
1129
1130                 case dmfc_op:
1131                         vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1132
1133                         trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1134                                       KVM_TRACE_COP0(rd, sel),
1135                                       vcpu->arch.gprs[rt]);
1136                         break;
1137
1138                 case mtc_op:
1139 #ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1140                         cop0->stat[rd][sel]++;
1141 #endif
1142                         trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1143                                       KVM_TRACE_COP0(rd, sel),
1144                                       vcpu->arch.gprs[rt]);
1145
1146                         if ((rd == MIPS_CP0_TLB_INDEX)
1147                             && (vcpu->arch.gprs[rt] >=
1148                                 KVM_MIPS_GUEST_TLB_SIZE)) {
1149                                 kvm_err("Invalid TLB Index: %ld",
1150                                         vcpu->arch.gprs[rt]);
1151                                 er = EMULATE_FAIL;
1152                                 break;
1153                         }
1154 #define C0_EBASE_CORE_MASK 0xff
1155                         if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1156                                 /* Preserve CORE number */
1157                                 kvm_change_c0_guest_ebase(cop0,
1158                                                           ~(C0_EBASE_CORE_MASK),
1159                                                           vcpu->arch.gprs[rt]);
1160                                 kvm_err("MTCz, cop0->reg[EBASE]: %#lx\n",
1161                                         kvm_read_c0_guest_ebase(cop0));
1162                         } else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1163                                 u32 nasid =
1164                                         vcpu->arch.gprs[rt] & KVM_ENTRYHI_ASID;
1165                                 if (((kvm_read_c0_guest_entryhi(cop0) &
1166                                       KVM_ENTRYHI_ASID) != nasid)) {
1167                                         trace_kvm_asid_change(vcpu,
1168                                                 kvm_read_c0_guest_entryhi(cop0)
1169                                                         & KVM_ENTRYHI_ASID,
1170                                                 nasid);
1171
1172                                         /*
1173                                          * Regenerate/invalidate kernel MMU
1174                                          * context.
1175                                          * The user MMU context will be
1176                                          * regenerated lazily on re-entry to
1177                                          * guest user if the guest ASID actually
1178                                          * changes.
1179                                          */
1180                                         preempt_disable();
1181                                         cpu = smp_processor_id();
1182                                         kvm_get_new_mmu_context(&vcpu->arch.guest_kernel_mm,
1183                                                                 cpu, vcpu);
1184                                         vcpu->arch.guest_kernel_asid[cpu] =
1185                                                 vcpu->arch.guest_kernel_mm.context.asid[cpu];
1186                                         for_each_possible_cpu(i)
1187                                                 if (i != cpu)
1188                                                         vcpu->arch.guest_kernel_asid[i] = 0;
1189                                         preempt_enable();
1190                                 }
1191                                 kvm_write_c0_guest_entryhi(cop0,
1192                                                            vcpu->arch.gprs[rt]);
1193                         }
1194                         /* Are we writing to COUNT */
1195                         else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1196                                 kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1197                                 goto done;
1198                         } else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1199                                 /* If we are writing to COMPARE */
1200                                 /* Clear pending timer interrupt, if any */
1201                                 kvm_mips_write_compare(vcpu,
1202                                                        vcpu->arch.gprs[rt],
1203                                                        true);
1204                         } else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1205                                 unsigned int old_val, val, change;
1206
1207                                 old_val = kvm_read_c0_guest_status(cop0);
1208                                 val = vcpu->arch.gprs[rt];
1209                                 change = val ^ old_val;
1210
1211                                 /* Make sure that the NMI bit is never set */
1212                                 val &= ~ST0_NMI;
1213
1214                                 /*
1215                                  * Don't allow CU1 or FR to be set unless FPU
1216                                  * capability enabled and exists in guest
1217                                  * configuration.
1218                                  */
1219                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1220                                         val &= ~(ST0_CU1 | ST0_FR);
1221
1222                                 /*
1223                                  * Also don't allow FR to be set if host doesn't
1224                                  * support it.
1225                                  */
1226                                 if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1227                                         val &= ~ST0_FR;
1228
1229
1230                                 /* Handle changes in FPU mode */
1231                                 preempt_disable();
1232
1233                                 /*
1234                                  * FPU and Vector register state is made
1235                                  * UNPREDICTABLE by a change of FR, so don't
1236                                  * even bother saving it.
1237                                  */
1238                                 if (change & ST0_FR)
1239                                         kvm_drop_fpu(vcpu);
1240
1241                                 /*
1242                                  * If MSA state is already live, it is undefined
1243                                  * how it interacts with FR=0 FPU state, and we
1244                                  * don't want to hit reserved instruction
1245                                  * exceptions trying to save the MSA state later
1246                                  * when CU=1 && FR=1, so play it safe and save
1247                                  * it first.
1248                                  */
1249                                 if (change & ST0_CU1 && !(val & ST0_FR) &&
1250                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1251                                         kvm_lose_fpu(vcpu);
1252
1253                                 /*
1254                                  * Propagate CU1 (FPU enable) changes
1255                                  * immediately if the FPU context is already
1256                                  * loaded. When disabling we leave the context
1257                                  * loaded so it can be quickly enabled again in
1258                                  * the near future.
1259                                  */
1260                                 if (change & ST0_CU1 &&
1261                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1262                                         change_c0_status(ST0_CU1, val);
1263
1264                                 preempt_enable();
1265
1266                                 kvm_write_c0_guest_status(cop0, val);
1267
1268 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1269                                 /*
1270                                  * If FPU present, we need CU1/FR bits to take
1271                                  * effect fairly soon.
1272                                  */
1273                                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1274                                         kvm_mips_trans_mtc0(inst, opc, vcpu);
1275 #endif
1276                         } else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1277                                 unsigned int old_val, val, change, wrmask;
1278
1279                                 old_val = kvm_read_c0_guest_config5(cop0);
1280                                 val = vcpu->arch.gprs[rt];
1281
1282                                 /* Only a few bits are writable in Config5 */
1283                                 wrmask = kvm_mips_config5_wrmask(vcpu);
1284                                 change = (val ^ old_val) & wrmask;
1285                                 val = old_val ^ change;
1286
1287
1288                                 /* Handle changes in FPU/MSA modes */
1289                                 preempt_disable();
1290
1291                                 /*
1292                                  * Propagate FRE changes immediately if the FPU
1293                                  * context is already loaded.
1294                                  */
1295                                 if (change & MIPS_CONF5_FRE &&
1296                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1297                                         change_c0_config5(MIPS_CONF5_FRE, val);
1298
1299                                 /*
1300                                  * Propagate MSAEn changes immediately if the
1301                                  * MSA context is already loaded. When disabling
1302                                  * we leave the context loaded so it can be
1303                                  * quickly enabled again in the near future.
1304                                  */
1305                                 if (change & MIPS_CONF5_MSAEN &&
1306                                     vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1307                                         change_c0_config5(MIPS_CONF5_MSAEN,
1308                                                           val);
1309
1310                                 preempt_enable();
1311
1312                                 kvm_write_c0_guest_config5(cop0, val);
1313                         } else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1314                                 u32 old_cause, new_cause;
1315
1316                                 old_cause = kvm_read_c0_guest_cause(cop0);
1317                                 new_cause = vcpu->arch.gprs[rt];
1318                                 /* Update R/W bits */
1319                                 kvm_change_c0_guest_cause(cop0, 0x08800300,
1320                                                           new_cause);
1321                                 /* DC bit enabling/disabling timer? */
1322                                 if ((old_cause ^ new_cause) & CAUSEF_DC) {
1323                                         if (new_cause & CAUSEF_DC)
1324                                                 kvm_mips_count_disable_cause(vcpu);
1325                                         else
1326                                                 kvm_mips_count_enable_cause(vcpu);
1327                                 }
1328                         } else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1329                                 u32 mask = MIPS_HWRENA_CPUNUM |
1330                                            MIPS_HWRENA_SYNCISTEP |
1331                                            MIPS_HWRENA_CC |
1332                                            MIPS_HWRENA_CCRES;
1333
1334                                 if (kvm_read_c0_guest_config3(cop0) &
1335                                     MIPS_CONF3_ULRI)
1336                                         mask |= MIPS_HWRENA_ULR;
1337                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1338                         } else {
1339                                 cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1340 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1341                                 kvm_mips_trans_mtc0(inst, opc, vcpu);
1342 #endif
1343                         }
1344                         break;
1345
1346                 case dmtc_op:
1347                         kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1348                                 vcpu->arch.pc, rt, rd, sel);
1349                         trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1350                                       KVM_TRACE_COP0(rd, sel),
1351                                       vcpu->arch.gprs[rt]);
1352                         er = EMULATE_FAIL;
1353                         break;
1354
1355                 case mfmc0_op:
1356 #ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1357                         cop0->stat[MIPS_CP0_STATUS][0]++;
1358 #endif
1359                         if (rt != 0)
1360                                 vcpu->arch.gprs[rt] =
1361                                     kvm_read_c0_guest_status(cop0);
1362                         /* EI */
1363                         if (inst.mfmc0_format.sc) {
1364                                 kvm_debug("[%#lx] mfmc0_op: EI\n",
1365                                           vcpu->arch.pc);
1366                                 kvm_set_c0_guest_status(cop0, ST0_IE);
1367                         } else {
1368                                 kvm_debug("[%#lx] mfmc0_op: DI\n",
1369                                           vcpu->arch.pc);
1370                                 kvm_clear_c0_guest_status(cop0, ST0_IE);
1371                         }
1372
1373                         break;
1374
1375                 case wrpgpr_op:
1376                         {
1377                                 u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1378                                 u32 pss =
1379                                     (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1380                                 /*
1381                                  * We don't support any shadow register sets, so
1382                                  * SRSCtl[PSS] == SRSCtl[CSS] = 0
1383                                  */
1384                                 if (css || pss) {
1385                                         er = EMULATE_FAIL;
1386                                         break;
1387                                 }
1388                                 kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1389                                           vcpu->arch.gprs[rt]);
1390                                 vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1391                         }
1392                         break;
1393                 default:
1394                         kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1395                                 vcpu->arch.pc, inst.c0r_format.rs);
1396                         er = EMULATE_FAIL;
1397                         break;
1398                 }
1399         }
1400
1401 done:
1402         /* Rollback PC only if emulation was unsuccessful */
1403         if (er == EMULATE_FAIL)
1404                 vcpu->arch.pc = curr_pc;
1405
1406 dont_update_pc:
1407         /*
1408          * This is for special instructions whose emulation
1409          * updates the PC, so do not overwrite the PC under
1410          * any circumstances
1411          */
1412
1413         return er;
1414 }
1415
1416 enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1417                                              u32 cause,
1418                                              struct kvm_run *run,
1419                                              struct kvm_vcpu *vcpu)
1420 {
1421         enum emulation_result er = EMULATE_DO_MMIO;
1422         u32 rt;
1423         u32 bytes;
1424         void *data = run->mmio.data;
1425         unsigned long curr_pc;
1426
1427         /*
1428          * Update PC and hold onto current PC in case there is
1429          * an error and we want to rollback the PC
1430          */
1431         curr_pc = vcpu->arch.pc;
1432         er = update_pc(vcpu, cause);
1433         if (er == EMULATE_FAIL)
1434                 return er;
1435
1436         rt = inst.i_format.rt;
1437
1438         switch (inst.i_format.opcode) {
1439         case sb_op:
1440                 bytes = 1;
1441                 if (bytes > sizeof(run->mmio.data)) {
1442                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1443                                run->mmio.len);
1444                 }
1445                 run->mmio.phys_addr =
1446                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1447                                                    host_cp0_badvaddr);
1448                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1449                         er = EMULATE_FAIL;
1450                         break;
1451                 }
1452                 run->mmio.len = bytes;
1453                 run->mmio.is_write = 1;
1454                 vcpu->mmio_needed = 1;
1455                 vcpu->mmio_is_write = 1;
1456                 *(u8 *) data = vcpu->arch.gprs[rt];
1457                 kvm_debug("OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1458                           vcpu->arch.host_cp0_badvaddr, vcpu->arch.gprs[rt],
1459                           *(u8 *) data);
1460
1461                 break;
1462
1463         case sw_op:
1464                 bytes = 4;
1465                 if (bytes > sizeof(run->mmio.data)) {
1466                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1467                                run->mmio.len);
1468                 }
1469                 run->mmio.phys_addr =
1470                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1471                                                    host_cp0_badvaddr);
1472                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1473                         er = EMULATE_FAIL;
1474                         break;
1475                 }
1476
1477                 run->mmio.len = bytes;
1478                 run->mmio.is_write = 1;
1479                 vcpu->mmio_needed = 1;
1480                 vcpu->mmio_is_write = 1;
1481                 *(u32 *) data = vcpu->arch.gprs[rt];
1482
1483                 kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1484                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1485                           vcpu->arch.gprs[rt], *(u32 *) data);
1486                 break;
1487
1488         case sh_op:
1489                 bytes = 2;
1490                 if (bytes > sizeof(run->mmio.data)) {
1491                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1492                                run->mmio.len);
1493                 }
1494                 run->mmio.phys_addr =
1495                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1496                                                    host_cp0_badvaddr);
1497                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1498                         er = EMULATE_FAIL;
1499                         break;
1500                 }
1501
1502                 run->mmio.len = bytes;
1503                 run->mmio.is_write = 1;
1504                 vcpu->mmio_needed = 1;
1505                 vcpu->mmio_is_write = 1;
1506                 *(u16 *) data = vcpu->arch.gprs[rt];
1507
1508                 kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1509                           vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1510                           vcpu->arch.gprs[rt], *(u32 *) data);
1511                 break;
1512
1513         default:
1514                 kvm_err("Store not yet supported (inst=0x%08x)\n",
1515                         inst.word);
1516                 er = EMULATE_FAIL;
1517                 break;
1518         }
1519
1520         /* Rollback PC if emulation was unsuccessful */
1521         if (er == EMULATE_FAIL)
1522                 vcpu->arch.pc = curr_pc;
1523
1524         return er;
1525 }
1526
1527 enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1528                                             u32 cause, struct kvm_run *run,
1529                                             struct kvm_vcpu *vcpu)
1530 {
1531         enum emulation_result er = EMULATE_DO_MMIO;
1532         u32 op, rt;
1533         u32 bytes;
1534
1535         rt = inst.i_format.rt;
1536         op = inst.i_format.opcode;
1537
1538         vcpu->arch.pending_load_cause = cause;
1539         vcpu->arch.io_gpr = rt;
1540
1541         switch (op) {
1542         case lw_op:
1543                 bytes = 4;
1544                 if (bytes > sizeof(run->mmio.data)) {
1545                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1546                                run->mmio.len);
1547                         er = EMULATE_FAIL;
1548                         break;
1549                 }
1550                 run->mmio.phys_addr =
1551                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1552                                                    host_cp0_badvaddr);
1553                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1554                         er = EMULATE_FAIL;
1555                         break;
1556                 }
1557
1558                 run->mmio.len = bytes;
1559                 run->mmio.is_write = 0;
1560                 vcpu->mmio_needed = 1;
1561                 vcpu->mmio_is_write = 0;
1562                 break;
1563
1564         case lh_op:
1565         case lhu_op:
1566                 bytes = 2;
1567                 if (bytes > sizeof(run->mmio.data)) {
1568                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1569                                run->mmio.len);
1570                         er = EMULATE_FAIL;
1571                         break;
1572                 }
1573                 run->mmio.phys_addr =
1574                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1575                                                    host_cp0_badvaddr);
1576                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1577                         er = EMULATE_FAIL;
1578                         break;
1579                 }
1580
1581                 run->mmio.len = bytes;
1582                 run->mmio.is_write = 0;
1583                 vcpu->mmio_needed = 1;
1584                 vcpu->mmio_is_write = 0;
1585
1586                 if (op == lh_op)
1587                         vcpu->mmio_needed = 2;
1588                 else
1589                         vcpu->mmio_needed = 1;
1590
1591                 break;
1592
1593         case lbu_op:
1594         case lb_op:
1595                 bytes = 1;
1596                 if (bytes > sizeof(run->mmio.data)) {
1597                         kvm_err("%s: bad MMIO length: %d\n", __func__,
1598                                run->mmio.len);
1599                         er = EMULATE_FAIL;
1600                         break;
1601                 }
1602                 run->mmio.phys_addr =
1603                     kvm_mips_callbacks->gva_to_gpa(vcpu->arch.
1604                                                    host_cp0_badvaddr);
1605                 if (run->mmio.phys_addr == KVM_INVALID_ADDR) {
1606                         er = EMULATE_FAIL;
1607                         break;
1608                 }
1609
1610                 run->mmio.len = bytes;
1611                 run->mmio.is_write = 0;
1612                 vcpu->mmio_is_write = 0;
1613
1614                 if (op == lb_op)
1615                         vcpu->mmio_needed = 2;
1616                 else
1617                         vcpu->mmio_needed = 1;
1618
1619                 break;
1620
1621         default:
1622                 kvm_err("Load not yet supported (inst=0x%08x)\n",
1623                         inst.word);
1624                 er = EMULATE_FAIL;
1625                 break;
1626         }
1627
1628         return er;
1629 }
1630
1631 enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
1632                                              u32 *opc, u32 cause,
1633                                              struct kvm_run *run,
1634                                              struct kvm_vcpu *vcpu)
1635 {
1636         struct mips_coproc *cop0 = vcpu->arch.cop0;
1637         enum emulation_result er = EMULATE_DONE;
1638         u32 cache, op_inst, op, base;
1639         s16 offset;
1640         struct kvm_vcpu_arch *arch = &vcpu->arch;
1641         unsigned long va;
1642         unsigned long curr_pc;
1643
1644         /*
1645          * Update PC and hold onto current PC in case there is
1646          * an error and we want to rollback the PC
1647          */
1648         curr_pc = vcpu->arch.pc;
1649         er = update_pc(vcpu, cause);
1650         if (er == EMULATE_FAIL)
1651                 return er;
1652
1653         base = inst.i_format.rs;
1654         op_inst = inst.i_format.rt;
1655         if (cpu_has_mips_r6)
1656                 offset = inst.spec3_format.simmediate;
1657         else
1658                 offset = inst.i_format.simmediate;
1659         cache = op_inst & CacheOp_Cache;
1660         op = op_inst & CacheOp_Op;
1661
1662         va = arch->gprs[base] + offset;
1663
1664         kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1665                   cache, op, base, arch->gprs[base], offset);
1666
1667         /*
1668          * Treat INDEX_INV as a nop, basically issued by Linux on startup to
1669          * invalidate the caches entirely by stepping through all the
1670          * ways/indexes
1671          */
1672         if (op == Index_Writeback_Inv) {
1673                 kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1674                           vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
1675                           arch->gprs[base], offset);
1676
1677                 if (cache == Cache_D)
1678                         r4k_blast_dcache();
1679                 else if (cache == Cache_I)
1680                         r4k_blast_icache();
1681                 else {
1682                         kvm_err("%s: unsupported CACHE INDEX operation\n",
1683                                 __func__);
1684                         return EMULATE_FAIL;
1685                 }
1686
1687 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1688                 kvm_mips_trans_cache_index(inst, opc, vcpu);
1689 #endif
1690                 goto done;
1691         }
1692
1693         preempt_disable();
1694         if (KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG0) {
1695                 if (kvm_mips_host_tlb_lookup(vcpu, va) < 0 &&
1696                     kvm_mips_handle_kseg0_tlb_fault(va, vcpu)) {
1697                         kvm_err("%s: handling mapped kseg0 tlb fault for %lx, vcpu: %p, ASID: %#lx\n",
1698                                 __func__, va, vcpu, read_c0_entryhi());
1699                         er = EMULATE_FAIL;
1700                         preempt_enable();
1701                         goto done;
1702                 }
1703         } else if ((KVM_GUEST_KSEGX(va) < KVM_GUEST_KSEG0) ||
1704                    KVM_GUEST_KSEGX(va) == KVM_GUEST_KSEG23) {
1705                 int index;
1706
1707                 /* If an entry already exists then skip */
1708                 if (kvm_mips_host_tlb_lookup(vcpu, va) >= 0)
1709                         goto skip_fault;
1710
1711                 /*
1712                  * If address not in the guest TLB, then give the guest a fault,
1713                  * the resulting handler will do the right thing
1714                  */
1715                 index = kvm_mips_guest_tlb_lookup(vcpu, (va & VPN2_MASK) |
1716                                                   (kvm_read_c0_guest_entryhi
1717                                                    (cop0) & KVM_ENTRYHI_ASID));
1718
1719                 if (index < 0) {
1720                         vcpu->arch.host_cp0_badvaddr = va;
1721                         vcpu->arch.pc = curr_pc;
1722                         er = kvm_mips_emulate_tlbmiss_ld(cause, NULL, run,
1723                                                          vcpu);
1724                         preempt_enable();
1725                         goto dont_update_pc;
1726                 } else {
1727                         struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
1728                         /*
1729                          * Check if the entry is valid, if not then setup a TLB
1730                          * invalid exception to the guest
1731                          */
1732                         if (!TLB_IS_VALID(*tlb, va)) {
1733                                 vcpu->arch.host_cp0_badvaddr = va;
1734                                 vcpu->arch.pc = curr_pc;
1735                                 er = kvm_mips_emulate_tlbinv_ld(cause, NULL,
1736                                                                 run, vcpu);
1737                                 preempt_enable();
1738                                 goto dont_update_pc;
1739                         }
1740                         /*
1741                          * We fault an entry from the guest tlb to the
1742                          * shadow host TLB
1743                          */
1744                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
1745                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
1746                                         __func__, va, index, vcpu,
1747                                         read_c0_entryhi());
1748                                 er = EMULATE_FAIL;
1749                                 preempt_enable();
1750                                 goto done;
1751                         }
1752                 }
1753         } else {
1754                 kvm_err("INVALID CACHE INDEX/ADDRESS (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1755                         cache, op, base, arch->gprs[base], offset);
1756                 er = EMULATE_FAIL;
1757                 preempt_enable();
1758                 goto done;
1759
1760         }
1761
1762 skip_fault:
1763         /* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
1764         if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
1765                 flush_dcache_line(va);
1766
1767 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1768                 /*
1769                  * Replace the CACHE instruction, with a SYNCI, not the same,
1770                  * but avoids a trap
1771                  */
1772                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1773 #endif
1774         } else if (op_inst == Hit_Invalidate_I) {
1775                 flush_dcache_line(va);
1776                 flush_icache_line(va);
1777
1778 #ifdef CONFIG_KVM_MIPS_DYN_TRANS
1779                 /* Replace the CACHE instruction, with a SYNCI */
1780                 kvm_mips_trans_cache_va(inst, opc, vcpu);
1781 #endif
1782         } else {
1783                 kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1784                         cache, op, base, arch->gprs[base], offset);
1785                 er = EMULATE_FAIL;
1786         }
1787
1788         preempt_enable();
1789 done:
1790         /* Rollback PC only if emulation was unsuccessful */
1791         if (er == EMULATE_FAIL)
1792                 vcpu->arch.pc = curr_pc;
1793
1794 dont_update_pc:
1795         /*
1796          * This is for exceptions whose emulation updates the PC, so do not
1797          * overwrite the PC under any circumstances
1798          */
1799
1800         return er;
1801 }
1802
1803 enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
1804                                             struct kvm_run *run,
1805                                             struct kvm_vcpu *vcpu)
1806 {
1807         union mips_instruction inst;
1808         enum emulation_result er = EMULATE_DONE;
1809
1810         /* Fetch the instruction. */
1811         if (cause & CAUSEF_BD)
1812                 opc += 1;
1813
1814         inst.word = kvm_get_inst(opc, vcpu);
1815
1816         switch (inst.r_format.opcode) {
1817         case cop0_op:
1818                 er = kvm_mips_emulate_CP0(inst, opc, cause, run, vcpu);
1819                 break;
1820         case sb_op:
1821         case sh_op:
1822         case sw_op:
1823                 er = kvm_mips_emulate_store(inst, cause, run, vcpu);
1824                 break;
1825         case lb_op:
1826         case lbu_op:
1827         case lhu_op:
1828         case lh_op:
1829         case lw_op:
1830                 er = kvm_mips_emulate_load(inst, cause, run, vcpu);
1831                 break;
1832
1833 #ifndef CONFIG_CPU_MIPSR6
1834         case cache_op:
1835                 ++vcpu->stat.cache_exits;
1836                 trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1837                 er = kvm_mips_emulate_cache(inst, opc, cause, run, vcpu);
1838                 break;
1839 #else
1840         case spec3_op:
1841                 switch (inst.spec3_format.func) {
1842                 case cache6_op:
1843                         ++vcpu->stat.cache_exits;
1844                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1845                         er = kvm_mips_emulate_cache(inst, opc, cause, run,
1846                                                     vcpu);
1847                         break;
1848                 default:
1849                         goto unknown;
1850                 };
1851                 break;
1852 unknown:
1853 #endif
1854
1855         default:
1856                 kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
1857                         inst.word);
1858                 kvm_arch_vcpu_dump_regs(vcpu);
1859                 er = EMULATE_FAIL;
1860                 break;
1861         }
1862
1863         return er;
1864 }
1865
1866 enum emulation_result kvm_mips_emulate_syscall(u32 cause,
1867                                                u32 *opc,
1868                                                struct kvm_run *run,
1869                                                struct kvm_vcpu *vcpu)
1870 {
1871         struct mips_coproc *cop0 = vcpu->arch.cop0;
1872         struct kvm_vcpu_arch *arch = &vcpu->arch;
1873         enum emulation_result er = EMULATE_DONE;
1874
1875         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1876                 /* save old pc */
1877                 kvm_write_c0_guest_epc(cop0, arch->pc);
1878                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1879
1880                 if (cause & CAUSEF_BD)
1881                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1882                 else
1883                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1884
1885                 kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
1886
1887                 kvm_change_c0_guest_cause(cop0, (0xff),
1888                                           (EXCCODE_SYS << CAUSEB_EXCCODE));
1889
1890                 /* Set PC to the exception entry point */
1891                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1892
1893         } else {
1894                 kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
1895                 er = EMULATE_FAIL;
1896         }
1897
1898         return er;
1899 }
1900
1901 enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
1902                                                   u32 *opc,
1903                                                   struct kvm_run *run,
1904                                                   struct kvm_vcpu *vcpu)
1905 {
1906         struct mips_coproc *cop0 = vcpu->arch.cop0;
1907         struct kvm_vcpu_arch *arch = &vcpu->arch;
1908         unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
1909                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1910
1911         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1912                 /* save old pc */
1913                 kvm_write_c0_guest_epc(cop0, arch->pc);
1914                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1915
1916                 if (cause & CAUSEF_BD)
1917                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1918                 else
1919                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1920
1921                 kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
1922                           arch->pc);
1923
1924                 /* set pc to the exception entry point */
1925                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
1926
1927         } else {
1928                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1929                           arch->pc);
1930
1931                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1932         }
1933
1934         kvm_change_c0_guest_cause(cop0, (0xff),
1935                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
1936
1937         /* setup badvaddr, context and entryhi registers for the guest */
1938         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1939         /* XXXKYMA: is the context register used by linux??? */
1940         kvm_write_c0_guest_entryhi(cop0, entryhi);
1941         /* Blow away the shadow host TLBs */
1942         kvm_mips_flush_host_tlb(1);
1943
1944         return EMULATE_DONE;
1945 }
1946
1947 enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
1948                                                  u32 *opc,
1949                                                  struct kvm_run *run,
1950                                                  struct kvm_vcpu *vcpu)
1951 {
1952         struct mips_coproc *cop0 = vcpu->arch.cop0;
1953         struct kvm_vcpu_arch *arch = &vcpu->arch;
1954         unsigned long entryhi =
1955                 (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
1956                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
1957
1958         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
1959                 /* save old pc */
1960                 kvm_write_c0_guest_epc(cop0, arch->pc);
1961                 kvm_set_c0_guest_status(cop0, ST0_EXL);
1962
1963                 if (cause & CAUSEF_BD)
1964                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
1965                 else
1966                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
1967
1968                 kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
1969                           arch->pc);
1970
1971                 /* set pc to the exception entry point */
1972                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1973
1974         } else {
1975                 kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
1976                           arch->pc);
1977                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
1978         }
1979
1980         kvm_change_c0_guest_cause(cop0, (0xff),
1981                                   (EXCCODE_TLBL << CAUSEB_EXCCODE));
1982
1983         /* setup badvaddr, context and entryhi registers for the guest */
1984         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
1985         /* XXXKYMA: is the context register used by linux??? */
1986         kvm_write_c0_guest_entryhi(cop0, entryhi);
1987         /* Blow away the shadow host TLBs */
1988         kvm_mips_flush_host_tlb(1);
1989
1990         return EMULATE_DONE;
1991 }
1992
1993 enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
1994                                                   u32 *opc,
1995                                                   struct kvm_run *run,
1996                                                   struct kvm_vcpu *vcpu)
1997 {
1998         struct mips_coproc *cop0 = vcpu->arch.cop0;
1999         struct kvm_vcpu_arch *arch = &vcpu->arch;
2000         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2001                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2002
2003         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2004                 /* save old pc */
2005                 kvm_write_c0_guest_epc(cop0, arch->pc);
2006                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2007
2008                 if (cause & CAUSEF_BD)
2009                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2010                 else
2011                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2012
2013                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2014                           arch->pc);
2015
2016                 /* Set PC to the exception entry point */
2017                 arch->pc = KVM_GUEST_KSEG0 + 0x0;
2018         } else {
2019                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2020                           arch->pc);
2021                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2022         }
2023
2024         kvm_change_c0_guest_cause(cop0, (0xff),
2025                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
2026
2027         /* setup badvaddr, context and entryhi registers for the guest */
2028         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2029         /* XXXKYMA: is the context register used by linux??? */
2030         kvm_write_c0_guest_entryhi(cop0, entryhi);
2031         /* Blow away the shadow host TLBs */
2032         kvm_mips_flush_host_tlb(1);
2033
2034         return EMULATE_DONE;
2035 }
2036
2037 enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2038                                                  u32 *opc,
2039                                                  struct kvm_run *run,
2040                                                  struct kvm_vcpu *vcpu)
2041 {
2042         struct mips_coproc *cop0 = vcpu->arch.cop0;
2043         struct kvm_vcpu_arch *arch = &vcpu->arch;
2044         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2045                 (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2046
2047         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2048                 /* save old pc */
2049                 kvm_write_c0_guest_epc(cop0, arch->pc);
2050                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2051
2052                 if (cause & CAUSEF_BD)
2053                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2054                 else
2055                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2056
2057                 kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2058                           arch->pc);
2059
2060                 /* Set PC to the exception entry point */
2061                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2062         } else {
2063                 kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2064                           arch->pc);
2065                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2066         }
2067
2068         kvm_change_c0_guest_cause(cop0, (0xff),
2069                                   (EXCCODE_TLBS << CAUSEB_EXCCODE));
2070
2071         /* setup badvaddr, context and entryhi registers for the guest */
2072         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2073         /* XXXKYMA: is the context register used by linux??? */
2074         kvm_write_c0_guest_entryhi(cop0, entryhi);
2075         /* Blow away the shadow host TLBs */
2076         kvm_mips_flush_host_tlb(1);
2077
2078         return EMULATE_DONE;
2079 }
2080
2081 /* TLBMOD: store into address matching TLB with Dirty bit off */
2082 enum emulation_result kvm_mips_handle_tlbmod(u32 cause, u32 *opc,
2083                                              struct kvm_run *run,
2084                                              struct kvm_vcpu *vcpu)
2085 {
2086         enum emulation_result er = EMULATE_DONE;
2087 #ifdef DEBUG
2088         struct mips_coproc *cop0 = vcpu->arch.cop0;
2089         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2090                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2091         int index;
2092
2093         /* If address not in the guest TLB, then we are in trouble */
2094         index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
2095         if (index < 0) {
2096                 /* XXXKYMA Invalidate and retry */
2097                 kvm_mips_host_tlb_inv(vcpu, vcpu->arch.host_cp0_badvaddr);
2098                 kvm_err("%s: host got TLBMOD for %#lx but entry not present in Guest TLB\n",
2099                      __func__, entryhi);
2100                 kvm_mips_dump_guest_tlbs(vcpu);
2101                 kvm_mips_dump_host_tlbs();
2102                 return EMULATE_FAIL;
2103         }
2104 #endif
2105
2106         er = kvm_mips_emulate_tlbmod(cause, opc, run, vcpu);
2107         return er;
2108 }
2109
2110 enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2111                                               u32 *opc,
2112                                               struct kvm_run *run,
2113                                               struct kvm_vcpu *vcpu)
2114 {
2115         struct mips_coproc *cop0 = vcpu->arch.cop0;
2116         unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2117                         (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2118         struct kvm_vcpu_arch *arch = &vcpu->arch;
2119
2120         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2121                 /* save old pc */
2122                 kvm_write_c0_guest_epc(cop0, arch->pc);
2123                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2124
2125                 if (cause & CAUSEF_BD)
2126                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2127                 else
2128                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2129
2130                 kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2131                           arch->pc);
2132
2133                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2134         } else {
2135                 kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2136                           arch->pc);
2137                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2138         }
2139
2140         kvm_change_c0_guest_cause(cop0, (0xff),
2141                                   (EXCCODE_MOD << CAUSEB_EXCCODE));
2142
2143         /* setup badvaddr, context and entryhi registers for the guest */
2144         kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2145         /* XXXKYMA: is the context register used by linux??? */
2146         kvm_write_c0_guest_entryhi(cop0, entryhi);
2147         /* Blow away the shadow host TLBs */
2148         kvm_mips_flush_host_tlb(1);
2149
2150         return EMULATE_DONE;
2151 }
2152
2153 enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2154                                                u32 *opc,
2155                                                struct kvm_run *run,
2156                                                struct kvm_vcpu *vcpu)
2157 {
2158         struct mips_coproc *cop0 = vcpu->arch.cop0;
2159         struct kvm_vcpu_arch *arch = &vcpu->arch;
2160
2161         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2162                 /* save old pc */
2163                 kvm_write_c0_guest_epc(cop0, arch->pc);
2164                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2165
2166                 if (cause & CAUSEF_BD)
2167                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2168                 else
2169                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2170
2171         }
2172
2173         arch->pc = KVM_GUEST_KSEG0 + 0x180;
2174
2175         kvm_change_c0_guest_cause(cop0, (0xff),
2176                                   (EXCCODE_CPU << CAUSEB_EXCCODE));
2177         kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2178
2179         return EMULATE_DONE;
2180 }
2181
2182 enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2183                                               u32 *opc,
2184                                               struct kvm_run *run,
2185                                               struct kvm_vcpu *vcpu)
2186 {
2187         struct mips_coproc *cop0 = vcpu->arch.cop0;
2188         struct kvm_vcpu_arch *arch = &vcpu->arch;
2189         enum emulation_result er = EMULATE_DONE;
2190
2191         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2192                 /* save old pc */
2193                 kvm_write_c0_guest_epc(cop0, arch->pc);
2194                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2195
2196                 if (cause & CAUSEF_BD)
2197                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2198                 else
2199                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2200
2201                 kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2202
2203                 kvm_change_c0_guest_cause(cop0, (0xff),
2204                                           (EXCCODE_RI << CAUSEB_EXCCODE));
2205
2206                 /* Set PC to the exception entry point */
2207                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2208
2209         } else {
2210                 kvm_err("Trying to deliver RI when EXL is already set\n");
2211                 er = EMULATE_FAIL;
2212         }
2213
2214         return er;
2215 }
2216
2217 enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2218                                               u32 *opc,
2219                                               struct kvm_run *run,
2220                                               struct kvm_vcpu *vcpu)
2221 {
2222         struct mips_coproc *cop0 = vcpu->arch.cop0;
2223         struct kvm_vcpu_arch *arch = &vcpu->arch;
2224         enum emulation_result er = EMULATE_DONE;
2225
2226         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2227                 /* save old pc */
2228                 kvm_write_c0_guest_epc(cop0, arch->pc);
2229                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2230
2231                 if (cause & CAUSEF_BD)
2232                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2233                 else
2234                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2235
2236                 kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2237
2238                 kvm_change_c0_guest_cause(cop0, (0xff),
2239                                           (EXCCODE_BP << CAUSEB_EXCCODE));
2240
2241                 /* Set PC to the exception entry point */
2242                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2243
2244         } else {
2245                 kvm_err("Trying to deliver BP when EXL is already set\n");
2246                 er = EMULATE_FAIL;
2247         }
2248
2249         return er;
2250 }
2251
2252 enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2253                                                 u32 *opc,
2254                                                 struct kvm_run *run,
2255                                                 struct kvm_vcpu *vcpu)
2256 {
2257         struct mips_coproc *cop0 = vcpu->arch.cop0;
2258         struct kvm_vcpu_arch *arch = &vcpu->arch;
2259         enum emulation_result er = EMULATE_DONE;
2260
2261         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2262                 /* save old pc */
2263                 kvm_write_c0_guest_epc(cop0, arch->pc);
2264                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2265
2266                 if (cause & CAUSEF_BD)
2267                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2268                 else
2269                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2270
2271                 kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2272
2273                 kvm_change_c0_guest_cause(cop0, (0xff),
2274                                           (EXCCODE_TR << CAUSEB_EXCCODE));
2275
2276                 /* Set PC to the exception entry point */
2277                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2278
2279         } else {
2280                 kvm_err("Trying to deliver TRAP when EXL is already set\n");
2281                 er = EMULATE_FAIL;
2282         }
2283
2284         return er;
2285 }
2286
2287 enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2288                                                   u32 *opc,
2289                                                   struct kvm_run *run,
2290                                                   struct kvm_vcpu *vcpu)
2291 {
2292         struct mips_coproc *cop0 = vcpu->arch.cop0;
2293         struct kvm_vcpu_arch *arch = &vcpu->arch;
2294         enum emulation_result er = EMULATE_DONE;
2295
2296         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2297                 /* save old pc */
2298                 kvm_write_c0_guest_epc(cop0, arch->pc);
2299                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2300
2301                 if (cause & CAUSEF_BD)
2302                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2303                 else
2304                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2305
2306                 kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2307
2308                 kvm_change_c0_guest_cause(cop0, (0xff),
2309                                           (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2310
2311                 /* Set PC to the exception entry point */
2312                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2313
2314         } else {
2315                 kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2316                 er = EMULATE_FAIL;
2317         }
2318
2319         return er;
2320 }
2321
2322 enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2323                                                u32 *opc,
2324                                                struct kvm_run *run,
2325                                                struct kvm_vcpu *vcpu)
2326 {
2327         struct mips_coproc *cop0 = vcpu->arch.cop0;
2328         struct kvm_vcpu_arch *arch = &vcpu->arch;
2329         enum emulation_result er = EMULATE_DONE;
2330
2331         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2332                 /* save old pc */
2333                 kvm_write_c0_guest_epc(cop0, arch->pc);
2334                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2335
2336                 if (cause & CAUSEF_BD)
2337                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2338                 else
2339                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2340
2341                 kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2342
2343                 kvm_change_c0_guest_cause(cop0, (0xff),
2344                                           (EXCCODE_FPE << CAUSEB_EXCCODE));
2345
2346                 /* Set PC to the exception entry point */
2347                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2348
2349         } else {
2350                 kvm_err("Trying to deliver FPE when EXL is already set\n");
2351                 er = EMULATE_FAIL;
2352         }
2353
2354         return er;
2355 }
2356
2357 enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2358                                                   u32 *opc,
2359                                                   struct kvm_run *run,
2360                                                   struct kvm_vcpu *vcpu)
2361 {
2362         struct mips_coproc *cop0 = vcpu->arch.cop0;
2363         struct kvm_vcpu_arch *arch = &vcpu->arch;
2364         enum emulation_result er = EMULATE_DONE;
2365
2366         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2367                 /* save old pc */
2368                 kvm_write_c0_guest_epc(cop0, arch->pc);
2369                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2370
2371                 if (cause & CAUSEF_BD)
2372                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2373                 else
2374                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2375
2376                 kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2377
2378                 kvm_change_c0_guest_cause(cop0, (0xff),
2379                                           (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2380
2381                 /* Set PC to the exception entry point */
2382                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2383
2384         } else {
2385                 kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2386                 er = EMULATE_FAIL;
2387         }
2388
2389         return er;
2390 }
2391
2392 enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2393                                          struct kvm_run *run,
2394                                          struct kvm_vcpu *vcpu)
2395 {
2396         struct mips_coproc *cop0 = vcpu->arch.cop0;
2397         struct kvm_vcpu_arch *arch = &vcpu->arch;
2398         enum emulation_result er = EMULATE_DONE;
2399         unsigned long curr_pc;
2400         union mips_instruction inst;
2401
2402         /*
2403          * Update PC and hold onto current PC in case there is
2404          * an error and we want to rollback the PC
2405          */
2406         curr_pc = vcpu->arch.pc;
2407         er = update_pc(vcpu, cause);
2408         if (er == EMULATE_FAIL)
2409                 return er;
2410
2411         /* Fetch the instruction. */
2412         if (cause & CAUSEF_BD)
2413                 opc += 1;
2414
2415         inst.word = kvm_get_inst(opc, vcpu);
2416
2417         if (inst.word == KVM_INVALID_INST) {
2418                 kvm_err("%s: Cannot get inst @ %p\n", __func__, opc);
2419                 return EMULATE_FAIL;
2420         }
2421
2422         if (inst.r_format.opcode == spec3_op &&
2423             inst.r_format.func == rdhwr_op &&
2424             inst.r_format.rs == 0 &&
2425             (inst.r_format.re >> 3) == 0) {
2426                 int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2427                 int rd = inst.r_format.rd;
2428                 int rt = inst.r_format.rt;
2429                 int sel = inst.r_format.re & 0x7;
2430
2431                 /* If usermode, check RDHWR rd is allowed by guest HWREna */
2432                 if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2433                         kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2434                                   rd, opc);
2435                         goto emulate_ri;
2436                 }
2437                 switch (rd) {
2438                 case MIPS_HWR_CPUNUM:           /* CPU number */
2439                         arch->gprs[rt] = vcpu->vcpu_id;
2440                         break;
2441                 case MIPS_HWR_SYNCISTEP:        /* SYNCI length */
2442                         arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2443                                              current_cpu_data.icache.linesz);
2444                         break;
2445                 case MIPS_HWR_CC:               /* Read count register */
2446                         arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2447                         break;
2448                 case MIPS_HWR_CCRES:            /* Count register resolution */
2449                         switch (current_cpu_data.cputype) {
2450                         case CPU_20KC:
2451                         case CPU_25KF:
2452                                 arch->gprs[rt] = 1;
2453                                 break;
2454                         default:
2455                                 arch->gprs[rt] = 2;
2456                         }
2457                         break;
2458                 case MIPS_HWR_ULR:              /* Read UserLocal register */
2459                         arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2460                         break;
2461
2462                 default:
2463                         kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2464                         goto emulate_ri;
2465                 }
2466
2467                 trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2468                               vcpu->arch.gprs[rt]);
2469         } else {
2470                 kvm_debug("Emulate RI not supported @ %p: %#x\n",
2471                           opc, inst.word);
2472                 goto emulate_ri;
2473         }
2474
2475         return EMULATE_DONE;
2476
2477 emulate_ri:
2478         /*
2479          * Rollback PC (if in branch delay slot then the PC already points to
2480          * branch target), and pass the RI exception to the guest OS.
2481          */
2482         vcpu->arch.pc = curr_pc;
2483         return kvm_mips_emulate_ri_exc(cause, opc, run, vcpu);
2484 }
2485
2486 enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu,
2487                                                   struct kvm_run *run)
2488 {
2489         unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2490         enum emulation_result er = EMULATE_DONE;
2491
2492         if (run->mmio.len > sizeof(*gpr)) {
2493                 kvm_err("Bad MMIO length: %d", run->mmio.len);
2494                 er = EMULATE_FAIL;
2495                 goto done;
2496         }
2497
2498         er = update_pc(vcpu, vcpu->arch.pending_load_cause);
2499         if (er == EMULATE_FAIL)
2500                 return er;
2501
2502         switch (run->mmio.len) {
2503         case 4:
2504                 *gpr = *(s32 *) run->mmio.data;
2505                 break;
2506
2507         case 2:
2508                 if (vcpu->mmio_needed == 2)
2509                         *gpr = *(s16 *) run->mmio.data;
2510                 else
2511                         *gpr = *(u16 *)run->mmio.data;
2512
2513                 break;
2514         case 1:
2515                 if (vcpu->mmio_needed == 2)
2516                         *gpr = *(s8 *) run->mmio.data;
2517                 else
2518                         *gpr = *(u8 *) run->mmio.data;
2519                 break;
2520         }
2521
2522         if (vcpu->arch.pending_load_cause & CAUSEF_BD)
2523                 kvm_debug("[%#lx] Completing %d byte BD Load to gpr %d (0x%08lx) type %d\n",
2524                           vcpu->arch.pc, run->mmio.len, vcpu->arch.io_gpr, *gpr,
2525                           vcpu->mmio_needed);
2526
2527 done:
2528         return er;
2529 }
2530
2531 static enum emulation_result kvm_mips_emulate_exc(u32 cause,
2532                                                   u32 *opc,
2533                                                   struct kvm_run *run,
2534                                                   struct kvm_vcpu *vcpu)
2535 {
2536         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2537         struct mips_coproc *cop0 = vcpu->arch.cop0;
2538         struct kvm_vcpu_arch *arch = &vcpu->arch;
2539         enum emulation_result er = EMULATE_DONE;
2540
2541         if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2542                 /* save old pc */
2543                 kvm_write_c0_guest_epc(cop0, arch->pc);
2544                 kvm_set_c0_guest_status(cop0, ST0_EXL);
2545
2546                 if (cause & CAUSEF_BD)
2547                         kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2548                 else
2549                         kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2550
2551                 kvm_change_c0_guest_cause(cop0, (0xff),
2552                                           (exccode << CAUSEB_EXCCODE));
2553
2554                 /* Set PC to the exception entry point */
2555                 arch->pc = KVM_GUEST_KSEG0 + 0x180;
2556                 kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2557
2558                 kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
2559                           exccode, kvm_read_c0_guest_epc(cop0),
2560                           kvm_read_c0_guest_badvaddr(cop0));
2561         } else {
2562                 kvm_err("Trying to deliver EXC when EXL is already set\n");
2563                 er = EMULATE_FAIL;
2564         }
2565
2566         return er;
2567 }
2568
2569 enum emulation_result kvm_mips_check_privilege(u32 cause,
2570                                                u32 *opc,
2571                                                struct kvm_run *run,
2572                                                struct kvm_vcpu *vcpu)
2573 {
2574         enum emulation_result er = EMULATE_DONE;
2575         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2576         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
2577
2578         int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2579
2580         if (usermode) {
2581                 switch (exccode) {
2582                 case EXCCODE_INT:
2583                 case EXCCODE_SYS:
2584                 case EXCCODE_BP:
2585                 case EXCCODE_RI:
2586                 case EXCCODE_TR:
2587                 case EXCCODE_MSAFPE:
2588                 case EXCCODE_FPE:
2589                 case EXCCODE_MSADIS:
2590                         break;
2591
2592                 case EXCCODE_CPU:
2593                         if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
2594                                 er = EMULATE_PRIV_FAIL;
2595                         break;
2596
2597                 case EXCCODE_MOD:
2598                         break;
2599
2600                 case EXCCODE_TLBL:
2601                         /*
2602                          * We we are accessing Guest kernel space, then send an
2603                          * address error exception to the guest
2604                          */
2605                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2606                                 kvm_debug("%s: LD MISS @ %#lx\n", __func__,
2607                                           badvaddr);
2608                                 cause &= ~0xff;
2609                                 cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
2610                                 er = EMULATE_PRIV_FAIL;
2611                         }
2612                         break;
2613
2614                 case EXCCODE_TLBS:
2615                         /*
2616                          * We we are accessing Guest kernel space, then send an
2617                          * address error exception to the guest
2618                          */
2619                         if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
2620                                 kvm_debug("%s: ST MISS @ %#lx\n", __func__,
2621                                           badvaddr);
2622                                 cause &= ~0xff;
2623                                 cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
2624                                 er = EMULATE_PRIV_FAIL;
2625                         }
2626                         break;
2627
2628                 case EXCCODE_ADES:
2629                         kvm_debug("%s: address error ST @ %#lx\n", __func__,
2630                                   badvaddr);
2631                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2632                                 cause &= ~0xff;
2633                                 cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
2634                         }
2635                         er = EMULATE_PRIV_FAIL;
2636                         break;
2637                 case EXCCODE_ADEL:
2638                         kvm_debug("%s: address error LD @ %#lx\n", __func__,
2639                                   badvaddr);
2640                         if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
2641                                 cause &= ~0xff;
2642                                 cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
2643                         }
2644                         er = EMULATE_PRIV_FAIL;
2645                         break;
2646                 default:
2647                         er = EMULATE_PRIV_FAIL;
2648                         break;
2649                 }
2650         }
2651
2652         if (er == EMULATE_PRIV_FAIL)
2653                 kvm_mips_emulate_exc(cause, opc, run, vcpu);
2654
2655         return er;
2656 }
2657
2658 /*
2659  * User Address (UA) fault, this could happen if
2660  * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
2661  *     case we pass on the fault to the guest kernel and let it handle it.
2662  * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
2663  *     case we inject the TLB from the Guest TLB into the shadow host TLB
2664  */
2665 enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
2666                                               u32 *opc,
2667                                               struct kvm_run *run,
2668                                               struct kvm_vcpu *vcpu)
2669 {
2670         enum emulation_result er = EMULATE_DONE;
2671         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
2672         unsigned long va = vcpu->arch.host_cp0_badvaddr;
2673         int index;
2674
2675         kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
2676                   vcpu->arch.host_cp0_badvaddr);
2677
2678         /*
2679          * KVM would not have got the exception if this entry was valid in the
2680          * shadow host TLB. Check the Guest TLB, if the entry is not there then
2681          * send the guest an exception. The guest exc handler should then inject
2682          * an entry into the guest TLB.
2683          */
2684         index = kvm_mips_guest_tlb_lookup(vcpu,
2685                       (va & VPN2_MASK) |
2686                       (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
2687                        KVM_ENTRYHI_ASID));
2688         if (index < 0) {
2689                 if (exccode == EXCCODE_TLBL) {
2690                         er = kvm_mips_emulate_tlbmiss_ld(cause, opc, run, vcpu);
2691                 } else if (exccode == EXCCODE_TLBS) {
2692                         er = kvm_mips_emulate_tlbmiss_st(cause, opc, run, vcpu);
2693                 } else {
2694                         kvm_err("%s: invalid exc code: %d\n", __func__,
2695                                 exccode);
2696                         er = EMULATE_FAIL;
2697                 }
2698         } else {
2699                 struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
2700
2701                 /*
2702                  * Check if the entry is valid, if not then setup a TLB invalid
2703                  * exception to the guest
2704                  */
2705                 if (!TLB_IS_VALID(*tlb, va)) {
2706                         if (exccode == EXCCODE_TLBL) {
2707                                 er = kvm_mips_emulate_tlbinv_ld(cause, opc, run,
2708                                                                 vcpu);
2709                         } else if (exccode == EXCCODE_TLBS) {
2710                                 er = kvm_mips_emulate_tlbinv_st(cause, opc, run,
2711                                                                 vcpu);
2712                         } else {
2713                                 kvm_err("%s: invalid exc code: %d\n", __func__,
2714                                         exccode);
2715                                 er = EMULATE_FAIL;
2716                         }
2717                 } else {
2718                         kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
2719                                   tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
2720                         /*
2721                          * OK we have a Guest TLB entry, now inject it into the
2722                          * shadow host TLB
2723                          */
2724                         if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb)) {
2725                                 kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
2726                                         __func__, va, index, vcpu,
2727                                         read_c0_entryhi());
2728                                 er = EMULATE_FAIL;
2729                         }
2730                 }
2731         }
2732
2733         return er;
2734 }