MIPS: KVM: Dynamically choose scratch registers
[cascardo/linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <asm/fpu.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/pgtable.h>
25
26 #include <linux/kvm_host.h>
27
28 #include "interrupt.h"
29 #include "commpage.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #ifndef VECTORSPACING
35 #define VECTORSPACING 0x100     /* for EI/VI mode */
36 #endif
37
38 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
39 struct kvm_stats_debugfs_item debugfs_entries[] = {
40         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
41         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
42         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
43         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
44         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
45         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
46         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
47         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
49         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
50         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
51         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
52         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
53         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
54         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
55         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
56         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
57         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
58         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
59         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
60         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
61         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
62         {NULL}
63 };
64
65 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
66 {
67         int i;
68
69         for_each_possible_cpu(i) {
70                 vcpu->arch.guest_kernel_asid[i] = 0;
71                 vcpu->arch.guest_user_asid[i] = 0;
72         }
73
74         return 0;
75 }
76
77 /*
78  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
79  * Config7, so we are "runnable" if interrupts are pending
80  */
81 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
82 {
83         return !!(vcpu->arch.pending_exceptions);
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88         return 1;
89 }
90
91 int kvm_arch_hardware_enable(void)
92 {
93         return 0;
94 }
95
96 int kvm_arch_hardware_setup(void)
97 {
98         return 0;
99 }
100
101 void kvm_arch_check_processor_compat(void *rtn)
102 {
103         *(int *)rtn = 0;
104 }
105
106 static void kvm_mips_init_tlbs(struct kvm *kvm)
107 {
108         unsigned long wired;
109
110         /*
111          * Add a wired entry to the TLB, it is used to map the commpage to
112          * the Guest kernel
113          */
114         wired = read_c0_wired();
115         write_c0_wired(wired + 1);
116         mtc0_tlbw_hazard();
117         kvm->arch.commpage_tlb = wired;
118
119         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
120                   kvm->arch.commpage_tlb);
121 }
122
123 static void kvm_mips_init_vm_percpu(void *arg)
124 {
125         struct kvm *kvm = (struct kvm *)arg;
126
127         kvm_mips_init_tlbs(kvm);
128         kvm_mips_callbacks->vm_init(kvm);
129
130 }
131
132 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
133 {
134         if (atomic_inc_return(&kvm_mips_instance) == 1) {
135                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
136                           __func__);
137                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
138         }
139
140         return 0;
141 }
142
143 void kvm_mips_free_vcpus(struct kvm *kvm)
144 {
145         unsigned int i;
146         struct kvm_vcpu *vcpu;
147
148         /* Put the pages we reserved for the guest pmap */
149         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
150                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
151                         kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
152         }
153         kfree(kvm->arch.guest_pmap);
154
155         kvm_for_each_vcpu(i, vcpu, kvm) {
156                 kvm_arch_vcpu_free(vcpu);
157         }
158
159         mutex_lock(&kvm->lock);
160
161         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
162                 kvm->vcpus[i] = NULL;
163
164         atomic_set(&kvm->online_vcpus, 0);
165
166         mutex_unlock(&kvm->lock);
167 }
168
169 static void kvm_mips_uninit_tlbs(void *arg)
170 {
171         /* Restore wired count */
172         write_c0_wired(0);
173         mtc0_tlbw_hazard();
174         /* Clear out all the TLBs */
175         kvm_local_flush_tlb_all();
176 }
177
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180         kvm_mips_free_vcpus(kvm);
181
182         /* If this is the last instance, restore wired count */
183         if (atomic_dec_return(&kvm_mips_instance) == 0) {
184                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
185                           __func__);
186                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
187         }
188 }
189
190 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
191                         unsigned long arg)
192 {
193         return -ENOIOCTLCMD;
194 }
195
196 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
197                             unsigned long npages)
198 {
199         return 0;
200 }
201
202 int kvm_arch_prepare_memory_region(struct kvm *kvm,
203                                    struct kvm_memory_slot *memslot,
204                                    const struct kvm_userspace_memory_region *mem,
205                                    enum kvm_mr_change change)
206 {
207         return 0;
208 }
209
210 void kvm_arch_commit_memory_region(struct kvm *kvm,
211                                    const struct kvm_userspace_memory_region *mem,
212                                    const struct kvm_memory_slot *old,
213                                    const struct kvm_memory_slot *new,
214                                    enum kvm_mr_change change)
215 {
216         unsigned long npages = 0;
217         int i;
218
219         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
220                   __func__, kvm, mem->slot, mem->guest_phys_addr,
221                   mem->memory_size, mem->userspace_addr);
222
223         /* Setup Guest PMAP table */
224         if (!kvm->arch.guest_pmap) {
225                 if (mem->slot == 0)
226                         npages = mem->memory_size >> PAGE_SHIFT;
227
228                 if (npages) {
229                         kvm->arch.guest_pmap_npages = npages;
230                         kvm->arch.guest_pmap =
231                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
232
233                         if (!kvm->arch.guest_pmap) {
234                                 kvm_err("Failed to allocate guest PMAP\n");
235                                 return;
236                         }
237
238                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
239                                   npages, kvm->arch.guest_pmap);
240
241                         /* Now setup the page table */
242                         for (i = 0; i < npages; i++)
243                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
244                 }
245         }
246 }
247
248 static inline void dump_handler(const char *symbol, void *start, void *end)
249 {
250         u32 *p;
251
252         pr_debug("LEAF(%s)\n", symbol);
253
254         pr_debug("\t.set push\n");
255         pr_debug("\t.set noreorder\n");
256
257         for (p = start; p < (u32 *)end; ++p)
258                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
259
260         pr_debug("\t.set\tpop\n");
261
262         pr_debug("\tEND(%s)\n", symbol);
263 }
264
265 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
266 {
267         int err, size;
268         void *gebase, *p;
269         int i;
270
271         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
272
273         if (!vcpu) {
274                 err = -ENOMEM;
275                 goto out;
276         }
277
278         err = kvm_vcpu_init(vcpu, kvm, id);
279
280         if (err)
281                 goto out_free_cpu;
282
283         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
284
285         /*
286          * Allocate space for host mode exception handlers that handle
287          * guest mode exits
288          */
289         if (cpu_has_veic || cpu_has_vint)
290                 size = 0x200 + VECTORSPACING * 64;
291         else
292                 size = 0x4000;
293
294         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
295
296         if (!gebase) {
297                 err = -ENOMEM;
298                 goto out_uninit_cpu;
299         }
300         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
301                   ALIGN(size, PAGE_SIZE), gebase);
302
303         /* Save new ebase */
304         vcpu->arch.guest_ebase = gebase;
305
306         /* Build guest exception vectors dynamically in unmapped memory */
307
308         /* TLB Refill, EXL = 0 */
309         kvm_mips_build_exception(gebase);
310
311         /* General Exception Entry point */
312         kvm_mips_build_exception(gebase + 0x180);
313
314         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
315         for (i = 0; i < 8; i++) {
316                 kvm_debug("L1 Vectored handler @ %p\n",
317                           gebase + 0x200 + (i * VECTORSPACING));
318                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING);
319         }
320
321         /* General exit handler */
322         p = gebase + 0x2000;
323         p = kvm_mips_build_exit(p);
324
325         /* Guest entry routine */
326         vcpu->arch.vcpu_run = p;
327         p = kvm_mips_build_vcpu_run(p);
328
329         /* Dump the generated code */
330         pr_debug("#include <asm/asm.h>\n");
331         pr_debug("#include <asm/regdef.h>\n");
332         pr_debug("\n");
333         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
334         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
335         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
336
337         /* Invalidate the icache for these ranges */
338         local_flush_icache_range((unsigned long)gebase,
339                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
340
341         /*
342          * Allocate comm page for guest kernel, a TLB will be reserved for
343          * mapping GVA @ 0xFFFF8000 to this page
344          */
345         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
346
347         if (!vcpu->arch.kseg0_commpage) {
348                 err = -ENOMEM;
349                 goto out_free_gebase;
350         }
351
352         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
353         kvm_mips_commpage_init(vcpu);
354
355         /* Init */
356         vcpu->arch.last_sched_cpu = -1;
357
358         /* Start off the timer */
359         kvm_mips_init_count(vcpu);
360
361         return vcpu;
362
363 out_free_gebase:
364         kfree(gebase);
365
366 out_uninit_cpu:
367         kvm_vcpu_uninit(vcpu);
368
369 out_free_cpu:
370         kfree(vcpu);
371
372 out:
373         return ERR_PTR(err);
374 }
375
376 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
377 {
378         hrtimer_cancel(&vcpu->arch.comparecount_timer);
379
380         kvm_vcpu_uninit(vcpu);
381
382         kvm_mips_dump_stats(vcpu);
383
384         kfree(vcpu->arch.guest_ebase);
385         kfree(vcpu->arch.kseg0_commpage);
386         kfree(vcpu);
387 }
388
389 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
390 {
391         kvm_arch_vcpu_free(vcpu);
392 }
393
394 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
395                                         struct kvm_guest_debug *dbg)
396 {
397         return -ENOIOCTLCMD;
398 }
399
400 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
401 {
402         int r = 0;
403         sigset_t sigsaved;
404
405         if (vcpu->sigset_active)
406                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
407
408         if (vcpu->mmio_needed) {
409                 if (!vcpu->mmio_is_write)
410                         kvm_mips_complete_mmio_load(vcpu, run);
411                 vcpu->mmio_needed = 0;
412         }
413
414         lose_fpu(1);
415
416         local_irq_disable();
417         /* Check if we have any exceptions/interrupts pending */
418         kvm_mips_deliver_interrupts(vcpu,
419                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
420
421         guest_enter_irqoff();
422
423         /* Disable hardware page table walking while in guest */
424         htw_stop();
425
426         trace_kvm_enter(vcpu);
427         r = vcpu->arch.vcpu_run(run, vcpu);
428         trace_kvm_out(vcpu);
429
430         /* Re-enable HTW before enabling interrupts */
431         htw_start();
432
433         guest_exit_irqoff();
434         local_irq_enable();
435
436         if (vcpu->sigset_active)
437                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
438
439         return r;
440 }
441
442 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
443                              struct kvm_mips_interrupt *irq)
444 {
445         int intr = (int)irq->irq;
446         struct kvm_vcpu *dvcpu = NULL;
447
448         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
449                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
450                           (int)intr);
451
452         if (irq->cpu == -1)
453                 dvcpu = vcpu;
454         else
455                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
456
457         if (intr == 2 || intr == 3 || intr == 4) {
458                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
459
460         } else if (intr == -2 || intr == -3 || intr == -4) {
461                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
462         } else {
463                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
464                         irq->cpu, irq->irq);
465                 return -EINVAL;
466         }
467
468         dvcpu->arch.wait = 0;
469
470         if (swait_active(&dvcpu->wq))
471                 swake_up(&dvcpu->wq);
472
473         return 0;
474 }
475
476 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
477                                     struct kvm_mp_state *mp_state)
478 {
479         return -ENOIOCTLCMD;
480 }
481
482 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
483                                     struct kvm_mp_state *mp_state)
484 {
485         return -ENOIOCTLCMD;
486 }
487
488 static u64 kvm_mips_get_one_regs[] = {
489         KVM_REG_MIPS_R0,
490         KVM_REG_MIPS_R1,
491         KVM_REG_MIPS_R2,
492         KVM_REG_MIPS_R3,
493         KVM_REG_MIPS_R4,
494         KVM_REG_MIPS_R5,
495         KVM_REG_MIPS_R6,
496         KVM_REG_MIPS_R7,
497         KVM_REG_MIPS_R8,
498         KVM_REG_MIPS_R9,
499         KVM_REG_MIPS_R10,
500         KVM_REG_MIPS_R11,
501         KVM_REG_MIPS_R12,
502         KVM_REG_MIPS_R13,
503         KVM_REG_MIPS_R14,
504         KVM_REG_MIPS_R15,
505         KVM_REG_MIPS_R16,
506         KVM_REG_MIPS_R17,
507         KVM_REG_MIPS_R18,
508         KVM_REG_MIPS_R19,
509         KVM_REG_MIPS_R20,
510         KVM_REG_MIPS_R21,
511         KVM_REG_MIPS_R22,
512         KVM_REG_MIPS_R23,
513         KVM_REG_MIPS_R24,
514         KVM_REG_MIPS_R25,
515         KVM_REG_MIPS_R26,
516         KVM_REG_MIPS_R27,
517         KVM_REG_MIPS_R28,
518         KVM_REG_MIPS_R29,
519         KVM_REG_MIPS_R30,
520         KVM_REG_MIPS_R31,
521
522         KVM_REG_MIPS_HI,
523         KVM_REG_MIPS_LO,
524         KVM_REG_MIPS_PC,
525
526         KVM_REG_MIPS_CP0_INDEX,
527         KVM_REG_MIPS_CP0_CONTEXT,
528         KVM_REG_MIPS_CP0_USERLOCAL,
529         KVM_REG_MIPS_CP0_PAGEMASK,
530         KVM_REG_MIPS_CP0_WIRED,
531         KVM_REG_MIPS_CP0_HWRENA,
532         KVM_REG_MIPS_CP0_BADVADDR,
533         KVM_REG_MIPS_CP0_COUNT,
534         KVM_REG_MIPS_CP0_ENTRYHI,
535         KVM_REG_MIPS_CP0_COMPARE,
536         KVM_REG_MIPS_CP0_STATUS,
537         KVM_REG_MIPS_CP0_CAUSE,
538         KVM_REG_MIPS_CP0_EPC,
539         KVM_REG_MIPS_CP0_PRID,
540         KVM_REG_MIPS_CP0_CONFIG,
541         KVM_REG_MIPS_CP0_CONFIG1,
542         KVM_REG_MIPS_CP0_CONFIG2,
543         KVM_REG_MIPS_CP0_CONFIG3,
544         KVM_REG_MIPS_CP0_CONFIG4,
545         KVM_REG_MIPS_CP0_CONFIG5,
546         KVM_REG_MIPS_CP0_CONFIG7,
547         KVM_REG_MIPS_CP0_ERROREPC,
548
549         KVM_REG_MIPS_COUNT_CTL,
550         KVM_REG_MIPS_COUNT_RESUME,
551         KVM_REG_MIPS_COUNT_HZ,
552 };
553
554 static u64 kvm_mips_get_one_regs_fpu[] = {
555         KVM_REG_MIPS_FCR_IR,
556         KVM_REG_MIPS_FCR_CSR,
557 };
558
559 static u64 kvm_mips_get_one_regs_msa[] = {
560         KVM_REG_MIPS_MSA_IR,
561         KVM_REG_MIPS_MSA_CSR,
562 };
563
564 static u64 kvm_mips_get_one_regs_kscratch[] = {
565         KVM_REG_MIPS_CP0_KSCRATCH1,
566         KVM_REG_MIPS_CP0_KSCRATCH2,
567         KVM_REG_MIPS_CP0_KSCRATCH3,
568         KVM_REG_MIPS_CP0_KSCRATCH4,
569         KVM_REG_MIPS_CP0_KSCRATCH5,
570         KVM_REG_MIPS_CP0_KSCRATCH6,
571 };
572
573 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
574 {
575         unsigned long ret;
576
577         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
578         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
579                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
580                 /* odd doubles */
581                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
582                         ret += 16;
583         }
584         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
585                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
586         ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
587         ret += kvm_mips_callbacks->num_regs(vcpu);
588
589         return ret;
590 }
591
592 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
593 {
594         u64 index;
595         unsigned int i;
596
597         if (copy_to_user(indices, kvm_mips_get_one_regs,
598                          sizeof(kvm_mips_get_one_regs)))
599                 return -EFAULT;
600         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
601
602         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
603                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
604                                  sizeof(kvm_mips_get_one_regs_fpu)))
605                         return -EFAULT;
606                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
607
608                 for (i = 0; i < 32; ++i) {
609                         index = KVM_REG_MIPS_FPR_32(i);
610                         if (copy_to_user(indices, &index, sizeof(index)))
611                                 return -EFAULT;
612                         ++indices;
613
614                         /* skip odd doubles if no F64 */
615                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
616                                 continue;
617
618                         index = KVM_REG_MIPS_FPR_64(i);
619                         if (copy_to_user(indices, &index, sizeof(index)))
620                                 return -EFAULT;
621                         ++indices;
622                 }
623         }
624
625         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
626                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
627                                  sizeof(kvm_mips_get_one_regs_msa)))
628                         return -EFAULT;
629                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
630
631                 for (i = 0; i < 32; ++i) {
632                         index = KVM_REG_MIPS_VEC_128(i);
633                         if (copy_to_user(indices, &index, sizeof(index)))
634                                 return -EFAULT;
635                         ++indices;
636                 }
637         }
638
639         for (i = 0; i < 6; ++i) {
640                 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
641                         continue;
642
643                 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
644                                  sizeof(kvm_mips_get_one_regs_kscratch[i])))
645                         return -EFAULT;
646                 ++indices;
647         }
648
649         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
650 }
651
652 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
653                             const struct kvm_one_reg *reg)
654 {
655         struct mips_coproc *cop0 = vcpu->arch.cop0;
656         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
657         int ret;
658         s64 v;
659         s64 vs[2];
660         unsigned int idx;
661
662         switch (reg->id) {
663         /* General purpose registers */
664         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
665                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
666                 break;
667         case KVM_REG_MIPS_HI:
668                 v = (long)vcpu->arch.hi;
669                 break;
670         case KVM_REG_MIPS_LO:
671                 v = (long)vcpu->arch.lo;
672                 break;
673         case KVM_REG_MIPS_PC:
674                 v = (long)vcpu->arch.pc;
675                 break;
676
677         /* Floating point registers */
678         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
679                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
680                         return -EINVAL;
681                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
682                 /* Odd singles in top of even double when FR=0 */
683                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
684                         v = get_fpr32(&fpu->fpr[idx], 0);
685                 else
686                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
687                 break;
688         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
689                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
690                         return -EINVAL;
691                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
692                 /* Can't access odd doubles in FR=0 mode */
693                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
694                         return -EINVAL;
695                 v = get_fpr64(&fpu->fpr[idx], 0);
696                 break;
697         case KVM_REG_MIPS_FCR_IR:
698                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
699                         return -EINVAL;
700                 v = boot_cpu_data.fpu_id;
701                 break;
702         case KVM_REG_MIPS_FCR_CSR:
703                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
704                         return -EINVAL;
705                 v = fpu->fcr31;
706                 break;
707
708         /* MIPS SIMD Architecture (MSA) registers */
709         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
710                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
711                         return -EINVAL;
712                 /* Can't access MSA registers in FR=0 mode */
713                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
714                         return -EINVAL;
715                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
716 #ifdef CONFIG_CPU_LITTLE_ENDIAN
717                 /* least significant byte first */
718                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
719                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
720 #else
721                 /* most significant byte first */
722                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
723                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
724 #endif
725                 break;
726         case KVM_REG_MIPS_MSA_IR:
727                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
728                         return -EINVAL;
729                 v = boot_cpu_data.msa_id;
730                 break;
731         case KVM_REG_MIPS_MSA_CSR:
732                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
733                         return -EINVAL;
734                 v = fpu->msacsr;
735                 break;
736
737         /* Co-processor 0 registers */
738         case KVM_REG_MIPS_CP0_INDEX:
739                 v = (long)kvm_read_c0_guest_index(cop0);
740                 break;
741         case KVM_REG_MIPS_CP0_CONTEXT:
742                 v = (long)kvm_read_c0_guest_context(cop0);
743                 break;
744         case KVM_REG_MIPS_CP0_USERLOCAL:
745                 v = (long)kvm_read_c0_guest_userlocal(cop0);
746                 break;
747         case KVM_REG_MIPS_CP0_PAGEMASK:
748                 v = (long)kvm_read_c0_guest_pagemask(cop0);
749                 break;
750         case KVM_REG_MIPS_CP0_WIRED:
751                 v = (long)kvm_read_c0_guest_wired(cop0);
752                 break;
753         case KVM_REG_MIPS_CP0_HWRENA:
754                 v = (long)kvm_read_c0_guest_hwrena(cop0);
755                 break;
756         case KVM_REG_MIPS_CP0_BADVADDR:
757                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
758                 break;
759         case KVM_REG_MIPS_CP0_ENTRYHI:
760                 v = (long)kvm_read_c0_guest_entryhi(cop0);
761                 break;
762         case KVM_REG_MIPS_CP0_COMPARE:
763                 v = (long)kvm_read_c0_guest_compare(cop0);
764                 break;
765         case KVM_REG_MIPS_CP0_STATUS:
766                 v = (long)kvm_read_c0_guest_status(cop0);
767                 break;
768         case KVM_REG_MIPS_CP0_CAUSE:
769                 v = (long)kvm_read_c0_guest_cause(cop0);
770                 break;
771         case KVM_REG_MIPS_CP0_EPC:
772                 v = (long)kvm_read_c0_guest_epc(cop0);
773                 break;
774         case KVM_REG_MIPS_CP0_PRID:
775                 v = (long)kvm_read_c0_guest_prid(cop0);
776                 break;
777         case KVM_REG_MIPS_CP0_CONFIG:
778                 v = (long)kvm_read_c0_guest_config(cop0);
779                 break;
780         case KVM_REG_MIPS_CP0_CONFIG1:
781                 v = (long)kvm_read_c0_guest_config1(cop0);
782                 break;
783         case KVM_REG_MIPS_CP0_CONFIG2:
784                 v = (long)kvm_read_c0_guest_config2(cop0);
785                 break;
786         case KVM_REG_MIPS_CP0_CONFIG3:
787                 v = (long)kvm_read_c0_guest_config3(cop0);
788                 break;
789         case KVM_REG_MIPS_CP0_CONFIG4:
790                 v = (long)kvm_read_c0_guest_config4(cop0);
791                 break;
792         case KVM_REG_MIPS_CP0_CONFIG5:
793                 v = (long)kvm_read_c0_guest_config5(cop0);
794                 break;
795         case KVM_REG_MIPS_CP0_CONFIG7:
796                 v = (long)kvm_read_c0_guest_config7(cop0);
797                 break;
798         case KVM_REG_MIPS_CP0_ERROREPC:
799                 v = (long)kvm_read_c0_guest_errorepc(cop0);
800                 break;
801         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
802                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
803                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
804                         return -EINVAL;
805                 switch (idx) {
806                 case 2:
807                         v = (long)kvm_read_c0_guest_kscratch1(cop0);
808                         break;
809                 case 3:
810                         v = (long)kvm_read_c0_guest_kscratch2(cop0);
811                         break;
812                 case 4:
813                         v = (long)kvm_read_c0_guest_kscratch3(cop0);
814                         break;
815                 case 5:
816                         v = (long)kvm_read_c0_guest_kscratch4(cop0);
817                         break;
818                 case 6:
819                         v = (long)kvm_read_c0_guest_kscratch5(cop0);
820                         break;
821                 case 7:
822                         v = (long)kvm_read_c0_guest_kscratch6(cop0);
823                         break;
824                 }
825                 break;
826         /* registers to be handled specially */
827         default:
828                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
829                 if (ret)
830                         return ret;
831                 break;
832         }
833         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
834                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
835
836                 return put_user(v, uaddr64);
837         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
838                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
839                 u32 v32 = (u32)v;
840
841                 return put_user(v32, uaddr32);
842         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
843                 void __user *uaddr = (void __user *)(long)reg->addr;
844
845                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
846         } else {
847                 return -EINVAL;
848         }
849 }
850
851 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
852                             const struct kvm_one_reg *reg)
853 {
854         struct mips_coproc *cop0 = vcpu->arch.cop0;
855         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
856         s64 v;
857         s64 vs[2];
858         unsigned int idx;
859
860         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
861                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
862
863                 if (get_user(v, uaddr64) != 0)
864                         return -EFAULT;
865         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
866                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
867                 s32 v32;
868
869                 if (get_user(v32, uaddr32) != 0)
870                         return -EFAULT;
871                 v = (s64)v32;
872         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
873                 void __user *uaddr = (void __user *)(long)reg->addr;
874
875                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
876         } else {
877                 return -EINVAL;
878         }
879
880         switch (reg->id) {
881         /* General purpose registers */
882         case KVM_REG_MIPS_R0:
883                 /* Silently ignore requests to set $0 */
884                 break;
885         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
886                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
887                 break;
888         case KVM_REG_MIPS_HI:
889                 vcpu->arch.hi = v;
890                 break;
891         case KVM_REG_MIPS_LO:
892                 vcpu->arch.lo = v;
893                 break;
894         case KVM_REG_MIPS_PC:
895                 vcpu->arch.pc = v;
896                 break;
897
898         /* Floating point registers */
899         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
900                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
901                         return -EINVAL;
902                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
903                 /* Odd singles in top of even double when FR=0 */
904                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
905                         set_fpr32(&fpu->fpr[idx], 0, v);
906                 else
907                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
908                 break;
909         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
910                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
911                         return -EINVAL;
912                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
913                 /* Can't access odd doubles in FR=0 mode */
914                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
915                         return -EINVAL;
916                 set_fpr64(&fpu->fpr[idx], 0, v);
917                 break;
918         case KVM_REG_MIPS_FCR_IR:
919                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
920                         return -EINVAL;
921                 /* Read-only */
922                 break;
923         case KVM_REG_MIPS_FCR_CSR:
924                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
925                         return -EINVAL;
926                 fpu->fcr31 = v;
927                 break;
928
929         /* MIPS SIMD Architecture (MSA) registers */
930         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
931                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
932                         return -EINVAL;
933                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
934 #ifdef CONFIG_CPU_LITTLE_ENDIAN
935                 /* least significant byte first */
936                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
937                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
938 #else
939                 /* most significant byte first */
940                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
941                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
942 #endif
943                 break;
944         case KVM_REG_MIPS_MSA_IR:
945                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
946                         return -EINVAL;
947                 /* Read-only */
948                 break;
949         case KVM_REG_MIPS_MSA_CSR:
950                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
951                         return -EINVAL;
952                 fpu->msacsr = v;
953                 break;
954
955         /* Co-processor 0 registers */
956         case KVM_REG_MIPS_CP0_INDEX:
957                 kvm_write_c0_guest_index(cop0, v);
958                 break;
959         case KVM_REG_MIPS_CP0_CONTEXT:
960                 kvm_write_c0_guest_context(cop0, v);
961                 break;
962         case KVM_REG_MIPS_CP0_USERLOCAL:
963                 kvm_write_c0_guest_userlocal(cop0, v);
964                 break;
965         case KVM_REG_MIPS_CP0_PAGEMASK:
966                 kvm_write_c0_guest_pagemask(cop0, v);
967                 break;
968         case KVM_REG_MIPS_CP0_WIRED:
969                 kvm_write_c0_guest_wired(cop0, v);
970                 break;
971         case KVM_REG_MIPS_CP0_HWRENA:
972                 kvm_write_c0_guest_hwrena(cop0, v);
973                 break;
974         case KVM_REG_MIPS_CP0_BADVADDR:
975                 kvm_write_c0_guest_badvaddr(cop0, v);
976                 break;
977         case KVM_REG_MIPS_CP0_ENTRYHI:
978                 kvm_write_c0_guest_entryhi(cop0, v);
979                 break;
980         case KVM_REG_MIPS_CP0_STATUS:
981                 kvm_write_c0_guest_status(cop0, v);
982                 break;
983         case KVM_REG_MIPS_CP0_EPC:
984                 kvm_write_c0_guest_epc(cop0, v);
985                 break;
986         case KVM_REG_MIPS_CP0_PRID:
987                 kvm_write_c0_guest_prid(cop0, v);
988                 break;
989         case KVM_REG_MIPS_CP0_ERROREPC:
990                 kvm_write_c0_guest_errorepc(cop0, v);
991                 break;
992         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
993                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
994                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
995                         return -EINVAL;
996                 switch (idx) {
997                 case 2:
998                         kvm_write_c0_guest_kscratch1(cop0, v);
999                         break;
1000                 case 3:
1001                         kvm_write_c0_guest_kscratch2(cop0, v);
1002                         break;
1003                 case 4:
1004                         kvm_write_c0_guest_kscratch3(cop0, v);
1005                         break;
1006                 case 5:
1007                         kvm_write_c0_guest_kscratch4(cop0, v);
1008                         break;
1009                 case 6:
1010                         kvm_write_c0_guest_kscratch5(cop0, v);
1011                         break;
1012                 case 7:
1013                         kvm_write_c0_guest_kscratch6(cop0, v);
1014                         break;
1015                 }
1016                 break;
1017         /* registers to be handled specially */
1018         default:
1019                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1020         }
1021         return 0;
1022 }
1023
1024 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1025                                      struct kvm_enable_cap *cap)
1026 {
1027         int r = 0;
1028
1029         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1030                 return -EINVAL;
1031         if (cap->flags)
1032                 return -EINVAL;
1033         if (cap->args[0])
1034                 return -EINVAL;
1035
1036         switch (cap->cap) {
1037         case KVM_CAP_MIPS_FPU:
1038                 vcpu->arch.fpu_enabled = true;
1039                 break;
1040         case KVM_CAP_MIPS_MSA:
1041                 vcpu->arch.msa_enabled = true;
1042                 break;
1043         default:
1044                 r = -EINVAL;
1045                 break;
1046         }
1047
1048         return r;
1049 }
1050
1051 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1052                          unsigned long arg)
1053 {
1054         struct kvm_vcpu *vcpu = filp->private_data;
1055         void __user *argp = (void __user *)arg;
1056         long r;
1057
1058         switch (ioctl) {
1059         case KVM_SET_ONE_REG:
1060         case KVM_GET_ONE_REG: {
1061                 struct kvm_one_reg reg;
1062
1063                 if (copy_from_user(&reg, argp, sizeof(reg)))
1064                         return -EFAULT;
1065                 if (ioctl == KVM_SET_ONE_REG)
1066                         return kvm_mips_set_reg(vcpu, &reg);
1067                 else
1068                         return kvm_mips_get_reg(vcpu, &reg);
1069         }
1070         case KVM_GET_REG_LIST: {
1071                 struct kvm_reg_list __user *user_list = argp;
1072                 struct kvm_reg_list reg_list;
1073                 unsigned n;
1074
1075                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1076                         return -EFAULT;
1077                 n = reg_list.n;
1078                 reg_list.n = kvm_mips_num_regs(vcpu);
1079                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1080                         return -EFAULT;
1081                 if (n < reg_list.n)
1082                         return -E2BIG;
1083                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1084         }
1085         case KVM_NMI:
1086                 /* Treat the NMI as a CPU reset */
1087                 r = kvm_mips_reset_vcpu(vcpu);
1088                 break;
1089         case KVM_INTERRUPT:
1090                 {
1091                         struct kvm_mips_interrupt irq;
1092
1093                         r = -EFAULT;
1094                         if (copy_from_user(&irq, argp, sizeof(irq)))
1095                                 goto out;
1096
1097                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1098                                   irq.irq);
1099
1100                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1101                         break;
1102                 }
1103         case KVM_ENABLE_CAP: {
1104                 struct kvm_enable_cap cap;
1105
1106                 r = -EFAULT;
1107                 if (copy_from_user(&cap, argp, sizeof(cap)))
1108                         goto out;
1109                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1110                 break;
1111         }
1112         default:
1113                 r = -ENOIOCTLCMD;
1114         }
1115
1116 out:
1117         return r;
1118 }
1119
1120 /* Get (and clear) the dirty memory log for a memory slot. */
1121 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1122 {
1123         struct kvm_memslots *slots;
1124         struct kvm_memory_slot *memslot;
1125         unsigned long ga, ga_end;
1126         int is_dirty = 0;
1127         int r;
1128         unsigned long n;
1129
1130         mutex_lock(&kvm->slots_lock);
1131
1132         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1133         if (r)
1134                 goto out;
1135
1136         /* If nothing is dirty, don't bother messing with page tables. */
1137         if (is_dirty) {
1138                 slots = kvm_memslots(kvm);
1139                 memslot = id_to_memslot(slots, log->slot);
1140
1141                 ga = memslot->base_gfn << PAGE_SHIFT;
1142                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1143
1144                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1145                          ga_end);
1146
1147                 n = kvm_dirty_bitmap_bytes(memslot);
1148                 memset(memslot->dirty_bitmap, 0, n);
1149         }
1150
1151         r = 0;
1152 out:
1153         mutex_unlock(&kvm->slots_lock);
1154         return r;
1155
1156 }
1157
1158 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1159 {
1160         long r;
1161
1162         switch (ioctl) {
1163         default:
1164                 r = -ENOIOCTLCMD;
1165         }
1166
1167         return r;
1168 }
1169
1170 int kvm_arch_init(void *opaque)
1171 {
1172         if (kvm_mips_callbacks) {
1173                 kvm_err("kvm: module already exists\n");
1174                 return -EEXIST;
1175         }
1176
1177         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1178 }
1179
1180 void kvm_arch_exit(void)
1181 {
1182         kvm_mips_callbacks = NULL;
1183 }
1184
1185 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1186                                   struct kvm_sregs *sregs)
1187 {
1188         return -ENOIOCTLCMD;
1189 }
1190
1191 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1192                                   struct kvm_sregs *sregs)
1193 {
1194         return -ENOIOCTLCMD;
1195 }
1196
1197 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1198 {
1199 }
1200
1201 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1202 {
1203         return -ENOIOCTLCMD;
1204 }
1205
1206 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1207 {
1208         return -ENOIOCTLCMD;
1209 }
1210
1211 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1212 {
1213         return VM_FAULT_SIGBUS;
1214 }
1215
1216 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1217 {
1218         int r;
1219
1220         switch (ext) {
1221         case KVM_CAP_ONE_REG:
1222         case KVM_CAP_ENABLE_CAP:
1223                 r = 1;
1224                 break;
1225         case KVM_CAP_COALESCED_MMIO:
1226                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1227                 break;
1228         case KVM_CAP_MIPS_FPU:
1229                 /* We don't handle systems with inconsistent cpu_has_fpu */
1230                 r = !!raw_cpu_has_fpu;
1231                 break;
1232         case KVM_CAP_MIPS_MSA:
1233                 /*
1234                  * We don't support MSA vector partitioning yet:
1235                  * 1) It would require explicit support which can't be tested
1236                  *    yet due to lack of support in current hardware.
1237                  * 2) It extends the state that would need to be saved/restored
1238                  *    by e.g. QEMU for migration.
1239                  *
1240                  * When vector partitioning hardware becomes available, support
1241                  * could be added by requiring a flag when enabling
1242                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1243                  * to save/restore the appropriate extra state.
1244                  */
1245                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1246                 break;
1247         default:
1248                 r = 0;
1249                 break;
1250         }
1251         return r;
1252 }
1253
1254 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1255 {
1256         return kvm_mips_pending_timer(vcpu);
1257 }
1258
1259 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1260 {
1261         int i;
1262         struct mips_coproc *cop0;
1263
1264         if (!vcpu)
1265                 return -1;
1266
1267         kvm_debug("VCPU Register Dump:\n");
1268         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1269         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1270
1271         for (i = 0; i < 32; i += 4) {
1272                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1273                        vcpu->arch.gprs[i],
1274                        vcpu->arch.gprs[i + 1],
1275                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1276         }
1277         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1278         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1279
1280         cop0 = vcpu->arch.cop0;
1281         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1282                   kvm_read_c0_guest_status(cop0),
1283                   kvm_read_c0_guest_cause(cop0));
1284
1285         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1286
1287         return 0;
1288 }
1289
1290 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1291 {
1292         int i;
1293
1294         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1295                 vcpu->arch.gprs[i] = regs->gpr[i];
1296         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1297         vcpu->arch.hi = regs->hi;
1298         vcpu->arch.lo = regs->lo;
1299         vcpu->arch.pc = regs->pc;
1300
1301         return 0;
1302 }
1303
1304 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1305 {
1306         int i;
1307
1308         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1309                 regs->gpr[i] = vcpu->arch.gprs[i];
1310
1311         regs->hi = vcpu->arch.hi;
1312         regs->lo = vcpu->arch.lo;
1313         regs->pc = vcpu->arch.pc;
1314
1315         return 0;
1316 }
1317
1318 static void kvm_mips_comparecount_func(unsigned long data)
1319 {
1320         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1321
1322         kvm_mips_callbacks->queue_timer_int(vcpu);
1323
1324         vcpu->arch.wait = 0;
1325         if (swait_active(&vcpu->wq))
1326                 swake_up(&vcpu->wq);
1327 }
1328
1329 /* low level hrtimer wake routine */
1330 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1331 {
1332         struct kvm_vcpu *vcpu;
1333
1334         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1335         kvm_mips_comparecount_func((unsigned long) vcpu);
1336         return kvm_mips_count_timeout(vcpu);
1337 }
1338
1339 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1340 {
1341         kvm_mips_callbacks->vcpu_init(vcpu);
1342         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1343                      HRTIMER_MODE_REL);
1344         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1345         return 0;
1346 }
1347
1348 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1349                                   struct kvm_translation *tr)
1350 {
1351         return 0;
1352 }
1353
1354 /* Initial guest state */
1355 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1356 {
1357         return kvm_mips_callbacks->vcpu_setup(vcpu);
1358 }
1359
1360 static void kvm_mips_set_c0_status(void)
1361 {
1362         u32 status = read_c0_status();
1363
1364         if (cpu_has_dsp)
1365                 status |= (ST0_MX);
1366
1367         write_c0_status(status);
1368         ehb();
1369 }
1370
1371 /*
1372  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1373  */
1374 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1375 {
1376         u32 cause = vcpu->arch.host_cp0_cause;
1377         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1378         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1379         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1380         enum emulation_result er = EMULATE_DONE;
1381         int ret = RESUME_GUEST;
1382
1383         /* re-enable HTW before enabling interrupts */
1384         htw_start();
1385
1386         /* Set a default exit reason */
1387         run->exit_reason = KVM_EXIT_UNKNOWN;
1388         run->ready_for_interrupt_injection = 1;
1389
1390         /*
1391          * Set the appropriate status bits based on host CPU features,
1392          * before we hit the scheduler
1393          */
1394         kvm_mips_set_c0_status();
1395
1396         local_irq_enable();
1397
1398         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1399                         cause, opc, run, vcpu);
1400         trace_kvm_exit(vcpu, exccode);
1401
1402         /*
1403          * Do a privilege check, if in UM most of these exit conditions end up
1404          * causing an exception to be delivered to the Guest Kernel
1405          */
1406         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1407         if (er == EMULATE_PRIV_FAIL) {
1408                 goto skip_emul;
1409         } else if (er == EMULATE_FAIL) {
1410                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1411                 ret = RESUME_HOST;
1412                 goto skip_emul;
1413         }
1414
1415         switch (exccode) {
1416         case EXCCODE_INT:
1417                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1418
1419                 ++vcpu->stat.int_exits;
1420
1421                 if (need_resched())
1422                         cond_resched();
1423
1424                 ret = RESUME_GUEST;
1425                 break;
1426
1427         case EXCCODE_CPU:
1428                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1429
1430                 ++vcpu->stat.cop_unusable_exits;
1431                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1432                 /* XXXKYMA: Might need to return to user space */
1433                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1434                         ret = RESUME_HOST;
1435                 break;
1436
1437         case EXCCODE_MOD:
1438                 ++vcpu->stat.tlbmod_exits;
1439                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1440                 break;
1441
1442         case EXCCODE_TLBS:
1443                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1444                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1445                           badvaddr);
1446
1447                 ++vcpu->stat.tlbmiss_st_exits;
1448                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1449                 break;
1450
1451         case EXCCODE_TLBL:
1452                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1453                           cause, opc, badvaddr);
1454
1455                 ++vcpu->stat.tlbmiss_ld_exits;
1456                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1457                 break;
1458
1459         case EXCCODE_ADES:
1460                 ++vcpu->stat.addrerr_st_exits;
1461                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1462                 break;
1463
1464         case EXCCODE_ADEL:
1465                 ++vcpu->stat.addrerr_ld_exits;
1466                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1467                 break;
1468
1469         case EXCCODE_SYS:
1470                 ++vcpu->stat.syscall_exits;
1471                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1472                 break;
1473
1474         case EXCCODE_RI:
1475                 ++vcpu->stat.resvd_inst_exits;
1476                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1477                 break;
1478
1479         case EXCCODE_BP:
1480                 ++vcpu->stat.break_inst_exits;
1481                 ret = kvm_mips_callbacks->handle_break(vcpu);
1482                 break;
1483
1484         case EXCCODE_TR:
1485                 ++vcpu->stat.trap_inst_exits;
1486                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1487                 break;
1488
1489         case EXCCODE_MSAFPE:
1490                 ++vcpu->stat.msa_fpe_exits;
1491                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1492                 break;
1493
1494         case EXCCODE_FPE:
1495                 ++vcpu->stat.fpe_exits;
1496                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1497                 break;
1498
1499         case EXCCODE_MSADIS:
1500                 ++vcpu->stat.msa_disabled_exits;
1501                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1502                 break;
1503
1504         default:
1505                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1506                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1507                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1508                 kvm_arch_vcpu_dump_regs(vcpu);
1509                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1510                 ret = RESUME_HOST;
1511                 break;
1512
1513         }
1514
1515 skip_emul:
1516         local_irq_disable();
1517
1518         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1519                 kvm_mips_deliver_interrupts(vcpu, cause);
1520
1521         if (!(ret & RESUME_HOST)) {
1522                 /* Only check for signals if not already exiting to userspace */
1523                 if (signal_pending(current)) {
1524                         run->exit_reason = KVM_EXIT_INTR;
1525                         ret = (-EINTR << 2) | RESUME_HOST;
1526                         ++vcpu->stat.signal_exits;
1527                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1528                 }
1529         }
1530
1531         if (ret == RESUME_GUEST) {
1532                 trace_kvm_reenter(vcpu);
1533
1534                 /*
1535                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1536                  * is live), restore FCR31 / MSACSR.
1537                  *
1538                  * This should be before returning to the guest exception
1539                  * vector, as it may well cause an [MSA] FP exception if there
1540                  * are pending exception bits unmasked. (see
1541                  * kvm_mips_csr_die_notifier() for how that is handled).
1542                  */
1543                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1544                     read_c0_status() & ST0_CU1)
1545                         __kvm_restore_fcsr(&vcpu->arch);
1546
1547                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1548                     read_c0_config5() & MIPS_CONF5_MSAEN)
1549                         __kvm_restore_msacsr(&vcpu->arch);
1550         }
1551
1552         /* Disable HTW before returning to guest or host */
1553         htw_stop();
1554
1555         return ret;
1556 }
1557
1558 /* Enable FPU for guest and restore context */
1559 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1560 {
1561         struct mips_coproc *cop0 = vcpu->arch.cop0;
1562         unsigned int sr, cfg5;
1563
1564         preempt_disable();
1565
1566         sr = kvm_read_c0_guest_status(cop0);
1567
1568         /*
1569          * If MSA state is already live, it is undefined how it interacts with
1570          * FR=0 FPU state, and we don't want to hit reserved instruction
1571          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1572          * play it safe and save it first.
1573          *
1574          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1575          * get called when guest CU1 is set, however we can't trust the guest
1576          * not to clobber the status register directly via the commpage.
1577          */
1578         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1579             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1580                 kvm_lose_fpu(vcpu);
1581
1582         /*
1583          * Enable FPU for guest
1584          * We set FR and FRE according to guest context
1585          */
1586         change_c0_status(ST0_CU1 | ST0_FR, sr);
1587         if (cpu_has_fre) {
1588                 cfg5 = kvm_read_c0_guest_config5(cop0);
1589                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1590         }
1591         enable_fpu_hazard();
1592
1593         /* If guest FPU state not active, restore it now */
1594         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1595                 __kvm_restore_fpu(&vcpu->arch);
1596                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1597                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1598         } else {
1599                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1600         }
1601
1602         preempt_enable();
1603 }
1604
1605 #ifdef CONFIG_CPU_HAS_MSA
1606 /* Enable MSA for guest and restore context */
1607 void kvm_own_msa(struct kvm_vcpu *vcpu)
1608 {
1609         struct mips_coproc *cop0 = vcpu->arch.cop0;
1610         unsigned int sr, cfg5;
1611
1612         preempt_disable();
1613
1614         /*
1615          * Enable FPU if enabled in guest, since we're restoring FPU context
1616          * anyway. We set FR and FRE according to guest context.
1617          */
1618         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1619                 sr = kvm_read_c0_guest_status(cop0);
1620
1621                 /*
1622                  * If FR=0 FPU state is already live, it is undefined how it
1623                  * interacts with MSA state, so play it safe and save it first.
1624                  */
1625                 if (!(sr & ST0_FR) &&
1626                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1627                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1628                         kvm_lose_fpu(vcpu);
1629
1630                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1631                 if (sr & ST0_CU1 && cpu_has_fre) {
1632                         cfg5 = kvm_read_c0_guest_config5(cop0);
1633                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1634                 }
1635         }
1636
1637         /* Enable MSA for guest */
1638         set_c0_config5(MIPS_CONF5_MSAEN);
1639         enable_fpu_hazard();
1640
1641         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1642         case KVM_MIPS_AUX_FPU:
1643                 /*
1644                  * Guest FPU state already loaded, only restore upper MSA state
1645                  */
1646                 __kvm_restore_msa_upper(&vcpu->arch);
1647                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1648                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1649                 break;
1650         case 0:
1651                 /* Neither FPU or MSA already active, restore full MSA state */
1652                 __kvm_restore_msa(&vcpu->arch);
1653                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1654                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1655                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1656                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1657                               KVM_TRACE_AUX_FPU_MSA);
1658                 break;
1659         default:
1660                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1661                 break;
1662         }
1663
1664         preempt_enable();
1665 }
1666 #endif
1667
1668 /* Drop FPU & MSA without saving it */
1669 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1670 {
1671         preempt_disable();
1672         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1673                 disable_msa();
1674                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1675                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1676         }
1677         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1678                 clear_c0_status(ST0_CU1 | ST0_FR);
1679                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1680                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1681         }
1682         preempt_enable();
1683 }
1684
1685 /* Save and disable FPU & MSA */
1686 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1687 {
1688         /*
1689          * FPU & MSA get disabled in root context (hardware) when it is disabled
1690          * in guest context (software), but the register state in the hardware
1691          * may still be in use. This is why we explicitly re-enable the hardware
1692          * before saving.
1693          */
1694
1695         preempt_disable();
1696         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1697                 set_c0_config5(MIPS_CONF5_MSAEN);
1698                 enable_fpu_hazard();
1699
1700                 __kvm_save_msa(&vcpu->arch);
1701                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1702
1703                 /* Disable MSA & FPU */
1704                 disable_msa();
1705                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1706                         clear_c0_status(ST0_CU1 | ST0_FR);
1707                         disable_fpu_hazard();
1708                 }
1709                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1710         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1711                 set_c0_status(ST0_CU1);
1712                 enable_fpu_hazard();
1713
1714                 __kvm_save_fpu(&vcpu->arch);
1715                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1716                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1717
1718                 /* Disable FPU */
1719                 clear_c0_status(ST0_CU1 | ST0_FR);
1720                 disable_fpu_hazard();
1721         }
1722         preempt_enable();
1723 }
1724
1725 /*
1726  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1727  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1728  * exception if cause bits are set in the value being written.
1729  */
1730 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1731                                    unsigned long cmd, void *ptr)
1732 {
1733         struct die_args *args = (struct die_args *)ptr;
1734         struct pt_regs *regs = args->regs;
1735         unsigned long pc;
1736
1737         /* Only interested in FPE and MSAFPE */
1738         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1739                 return NOTIFY_DONE;
1740
1741         /* Return immediately if guest context isn't active */
1742         if (!(current->flags & PF_VCPU))
1743                 return NOTIFY_DONE;
1744
1745         /* Should never get here from user mode */
1746         BUG_ON(user_mode(regs));
1747
1748         pc = instruction_pointer(regs);
1749         switch (cmd) {
1750         case DIE_FP:
1751                 /* match 2nd instruction in __kvm_restore_fcsr */
1752                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1753                         return NOTIFY_DONE;
1754                 break;
1755         case DIE_MSAFP:
1756                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1757                 if (!cpu_has_msa ||
1758                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1759                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1760                         return NOTIFY_DONE;
1761                 break;
1762         }
1763
1764         /* Move PC forward a little and continue executing */
1765         instruction_pointer(regs) += 4;
1766
1767         return NOTIFY_STOP;
1768 }
1769
1770 static struct notifier_block kvm_mips_csr_die_notifier = {
1771         .notifier_call = kvm_mips_csr_die_notify,
1772 };
1773
1774 static int __init kvm_mips_init(void)
1775 {
1776         int ret;
1777
1778         ret = kvm_mips_entry_setup();
1779         if (ret)
1780                 return ret;
1781
1782         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1783
1784         if (ret)
1785                 return ret;
1786
1787         register_die_notifier(&kvm_mips_csr_die_notifier);
1788
1789         return 0;
1790 }
1791
1792 static void __exit kvm_mips_exit(void)
1793 {
1794         kvm_exit();
1795
1796         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1797 }
1798
1799 module_init(kvm_mips_init);
1800 module_exit(kvm_mips_exit);
1801
1802 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);