Merge tag 'powerpc-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[cascardo/linux.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/fs.h>
19 #include <linux/bootmem.h>
20 #include <asm/fpu.h>
21 #include <asm/page.h>
22 #include <asm/cacheflush.h>
23 #include <asm/mmu_context.h>
24 #include <asm/pgtable.h>
25
26 #include <linux/kvm_host.h>
27
28 #include "interrupt.h"
29 #include "commpage.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #ifndef VECTORSPACING
35 #define VECTORSPACING 0x100     /* for EI/VI mode */
36 #endif
37
38 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
39 struct kvm_stats_debugfs_item debugfs_entries[] = {
40         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
41         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
42         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
43         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
44         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
45         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
46         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
47         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
49         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
50         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
51         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
52         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
53         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
54         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
55         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
56         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
57         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
58         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
59         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
60         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
61         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
62         {NULL}
63 };
64
65 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
66 {
67         int i;
68
69         for_each_possible_cpu(i) {
70                 vcpu->arch.guest_kernel_asid[i] = 0;
71                 vcpu->arch.guest_user_asid[i] = 0;
72         }
73
74         return 0;
75 }
76
77 /*
78  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
79  * Config7, so we are "runnable" if interrupts are pending
80  */
81 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
82 {
83         return !!(vcpu->arch.pending_exceptions);
84 }
85
86 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
87 {
88         return 1;
89 }
90
91 int kvm_arch_hardware_enable(void)
92 {
93         return 0;
94 }
95
96 int kvm_arch_hardware_setup(void)
97 {
98         return 0;
99 }
100
101 void kvm_arch_check_processor_compat(void *rtn)
102 {
103         *(int *)rtn = 0;
104 }
105
106 static void kvm_mips_init_tlbs(struct kvm *kvm)
107 {
108         unsigned long wired;
109
110         /*
111          * Add a wired entry to the TLB, it is used to map the commpage to
112          * the Guest kernel
113          */
114         wired = read_c0_wired();
115         write_c0_wired(wired + 1);
116         mtc0_tlbw_hazard();
117         kvm->arch.commpage_tlb = wired;
118
119         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
120                   kvm->arch.commpage_tlb);
121 }
122
123 static void kvm_mips_init_vm_percpu(void *arg)
124 {
125         struct kvm *kvm = (struct kvm *)arg;
126
127         kvm_mips_init_tlbs(kvm);
128         kvm_mips_callbacks->vm_init(kvm);
129
130 }
131
132 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
133 {
134         if (atomic_inc_return(&kvm_mips_instance) == 1) {
135                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
136                           __func__);
137                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
138         }
139
140         return 0;
141 }
142
143 void kvm_mips_free_vcpus(struct kvm *kvm)
144 {
145         unsigned int i;
146         struct kvm_vcpu *vcpu;
147
148         /* Put the pages we reserved for the guest pmap */
149         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
150                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
151                         kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
152         }
153         kfree(kvm->arch.guest_pmap);
154
155         kvm_for_each_vcpu(i, vcpu, kvm) {
156                 kvm_arch_vcpu_free(vcpu);
157         }
158
159         mutex_lock(&kvm->lock);
160
161         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
162                 kvm->vcpus[i] = NULL;
163
164         atomic_set(&kvm->online_vcpus, 0);
165
166         mutex_unlock(&kvm->lock);
167 }
168
169 static void kvm_mips_uninit_tlbs(void *arg)
170 {
171         /* Restore wired count */
172         write_c0_wired(0);
173         mtc0_tlbw_hazard();
174         /* Clear out all the TLBs */
175         kvm_local_flush_tlb_all();
176 }
177
178 void kvm_arch_destroy_vm(struct kvm *kvm)
179 {
180         kvm_mips_free_vcpus(kvm);
181
182         /* If this is the last instance, restore wired count */
183         if (atomic_dec_return(&kvm_mips_instance) == 0) {
184                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
185                           __func__);
186                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
187         }
188 }
189
190 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
191                         unsigned long arg)
192 {
193         return -ENOIOCTLCMD;
194 }
195
196 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
197                             unsigned long npages)
198 {
199         return 0;
200 }
201
202 int kvm_arch_prepare_memory_region(struct kvm *kvm,
203                                    struct kvm_memory_slot *memslot,
204                                    const struct kvm_userspace_memory_region *mem,
205                                    enum kvm_mr_change change)
206 {
207         return 0;
208 }
209
210 void kvm_arch_commit_memory_region(struct kvm *kvm,
211                                    const struct kvm_userspace_memory_region *mem,
212                                    const struct kvm_memory_slot *old,
213                                    const struct kvm_memory_slot *new,
214                                    enum kvm_mr_change change)
215 {
216         unsigned long npages = 0;
217         int i;
218
219         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
220                   __func__, kvm, mem->slot, mem->guest_phys_addr,
221                   mem->memory_size, mem->userspace_addr);
222
223         /* Setup Guest PMAP table */
224         if (!kvm->arch.guest_pmap) {
225                 if (mem->slot == 0)
226                         npages = mem->memory_size >> PAGE_SHIFT;
227
228                 if (npages) {
229                         kvm->arch.guest_pmap_npages = npages;
230                         kvm->arch.guest_pmap =
231                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
232
233                         if (!kvm->arch.guest_pmap) {
234                                 kvm_err("Failed to allocate guest PMAP\n");
235                                 return;
236                         }
237
238                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
239                                   npages, kvm->arch.guest_pmap);
240
241                         /* Now setup the page table */
242                         for (i = 0; i < npages; i++)
243                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
244                 }
245         }
246 }
247
248 static inline void dump_handler(const char *symbol, void *start, void *end)
249 {
250         u32 *p;
251
252         pr_debug("LEAF(%s)\n", symbol);
253
254         pr_debug("\t.set push\n");
255         pr_debug("\t.set noreorder\n");
256
257         for (p = start; p < (u32 *)end; ++p)
258                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
259
260         pr_debug("\t.set\tpop\n");
261
262         pr_debug("\tEND(%s)\n", symbol);
263 }
264
265 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
266 {
267         int err, size;
268         void *gebase, *p, *handler;
269         int i;
270
271         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
272
273         if (!vcpu) {
274                 err = -ENOMEM;
275                 goto out;
276         }
277
278         err = kvm_vcpu_init(vcpu, kvm, id);
279
280         if (err)
281                 goto out_free_cpu;
282
283         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
284
285         /*
286          * Allocate space for host mode exception handlers that handle
287          * guest mode exits
288          */
289         if (cpu_has_veic || cpu_has_vint)
290                 size = 0x200 + VECTORSPACING * 64;
291         else
292                 size = 0x4000;
293
294         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
295
296         if (!gebase) {
297                 err = -ENOMEM;
298                 goto out_uninit_cpu;
299         }
300         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
301                   ALIGN(size, PAGE_SIZE), gebase);
302
303         /*
304          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
305          * limits us to the low 512MB of physical address space. If the memory
306          * we allocate is out of range, just give up now.
307          */
308         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
309                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
310                         gebase);
311                 err = -ENOMEM;
312                 goto out_free_gebase;
313         }
314
315         /* Save new ebase */
316         vcpu->arch.guest_ebase = gebase;
317
318         /* Build guest exception vectors dynamically in unmapped memory */
319         handler = gebase + 0x2000;
320
321         /* TLB Refill, EXL = 0 */
322         kvm_mips_build_exception(gebase, handler);
323
324         /* General Exception Entry point */
325         kvm_mips_build_exception(gebase + 0x180, handler);
326
327         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
328         for (i = 0; i < 8; i++) {
329                 kvm_debug("L1 Vectored handler @ %p\n",
330                           gebase + 0x200 + (i * VECTORSPACING));
331                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
332                                          handler);
333         }
334
335         /* General exit handler */
336         p = handler;
337         p = kvm_mips_build_exit(p);
338
339         /* Guest entry routine */
340         vcpu->arch.vcpu_run = p;
341         p = kvm_mips_build_vcpu_run(p);
342
343         /* Dump the generated code */
344         pr_debug("#include <asm/asm.h>\n");
345         pr_debug("#include <asm/regdef.h>\n");
346         pr_debug("\n");
347         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
348         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
349         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
350
351         /* Invalidate the icache for these ranges */
352         local_flush_icache_range((unsigned long)gebase,
353                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
354
355         /*
356          * Allocate comm page for guest kernel, a TLB will be reserved for
357          * mapping GVA @ 0xFFFF8000 to this page
358          */
359         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
360
361         if (!vcpu->arch.kseg0_commpage) {
362                 err = -ENOMEM;
363                 goto out_free_gebase;
364         }
365
366         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
367         kvm_mips_commpage_init(vcpu);
368
369         /* Init */
370         vcpu->arch.last_sched_cpu = -1;
371
372         /* Start off the timer */
373         kvm_mips_init_count(vcpu);
374
375         return vcpu;
376
377 out_free_gebase:
378         kfree(gebase);
379
380 out_uninit_cpu:
381         kvm_vcpu_uninit(vcpu);
382
383 out_free_cpu:
384         kfree(vcpu);
385
386 out:
387         return ERR_PTR(err);
388 }
389
390 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
391 {
392         hrtimer_cancel(&vcpu->arch.comparecount_timer);
393
394         kvm_vcpu_uninit(vcpu);
395
396         kvm_mips_dump_stats(vcpu);
397
398         kfree(vcpu->arch.guest_ebase);
399         kfree(vcpu->arch.kseg0_commpage);
400         kfree(vcpu);
401 }
402
403 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
404 {
405         kvm_arch_vcpu_free(vcpu);
406 }
407
408 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
409                                         struct kvm_guest_debug *dbg)
410 {
411         return -ENOIOCTLCMD;
412 }
413
414 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
415 {
416         int r = 0;
417         sigset_t sigsaved;
418
419         if (vcpu->sigset_active)
420                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
421
422         if (vcpu->mmio_needed) {
423                 if (!vcpu->mmio_is_write)
424                         kvm_mips_complete_mmio_load(vcpu, run);
425                 vcpu->mmio_needed = 0;
426         }
427
428         lose_fpu(1);
429
430         local_irq_disable();
431         /* Check if we have any exceptions/interrupts pending */
432         kvm_mips_deliver_interrupts(vcpu,
433                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
434
435         guest_enter_irqoff();
436
437         /* Disable hardware page table walking while in guest */
438         htw_stop();
439
440         trace_kvm_enter(vcpu);
441         r = vcpu->arch.vcpu_run(run, vcpu);
442         trace_kvm_out(vcpu);
443
444         /* Re-enable HTW before enabling interrupts */
445         htw_start();
446
447         guest_exit_irqoff();
448         local_irq_enable();
449
450         if (vcpu->sigset_active)
451                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
452
453         return r;
454 }
455
456 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
457                              struct kvm_mips_interrupt *irq)
458 {
459         int intr = (int)irq->irq;
460         struct kvm_vcpu *dvcpu = NULL;
461
462         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
463                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
464                           (int)intr);
465
466         if (irq->cpu == -1)
467                 dvcpu = vcpu;
468         else
469                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
470
471         if (intr == 2 || intr == 3 || intr == 4) {
472                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
473
474         } else if (intr == -2 || intr == -3 || intr == -4) {
475                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
476         } else {
477                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
478                         irq->cpu, irq->irq);
479                 return -EINVAL;
480         }
481
482         dvcpu->arch.wait = 0;
483
484         if (swait_active(&dvcpu->wq))
485                 swake_up(&dvcpu->wq);
486
487         return 0;
488 }
489
490 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
491                                     struct kvm_mp_state *mp_state)
492 {
493         return -ENOIOCTLCMD;
494 }
495
496 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
497                                     struct kvm_mp_state *mp_state)
498 {
499         return -ENOIOCTLCMD;
500 }
501
502 static u64 kvm_mips_get_one_regs[] = {
503         KVM_REG_MIPS_R0,
504         KVM_REG_MIPS_R1,
505         KVM_REG_MIPS_R2,
506         KVM_REG_MIPS_R3,
507         KVM_REG_MIPS_R4,
508         KVM_REG_MIPS_R5,
509         KVM_REG_MIPS_R6,
510         KVM_REG_MIPS_R7,
511         KVM_REG_MIPS_R8,
512         KVM_REG_MIPS_R9,
513         KVM_REG_MIPS_R10,
514         KVM_REG_MIPS_R11,
515         KVM_REG_MIPS_R12,
516         KVM_REG_MIPS_R13,
517         KVM_REG_MIPS_R14,
518         KVM_REG_MIPS_R15,
519         KVM_REG_MIPS_R16,
520         KVM_REG_MIPS_R17,
521         KVM_REG_MIPS_R18,
522         KVM_REG_MIPS_R19,
523         KVM_REG_MIPS_R20,
524         KVM_REG_MIPS_R21,
525         KVM_REG_MIPS_R22,
526         KVM_REG_MIPS_R23,
527         KVM_REG_MIPS_R24,
528         KVM_REG_MIPS_R25,
529         KVM_REG_MIPS_R26,
530         KVM_REG_MIPS_R27,
531         KVM_REG_MIPS_R28,
532         KVM_REG_MIPS_R29,
533         KVM_REG_MIPS_R30,
534         KVM_REG_MIPS_R31,
535
536 #ifndef CONFIG_CPU_MIPSR6
537         KVM_REG_MIPS_HI,
538         KVM_REG_MIPS_LO,
539 #endif
540         KVM_REG_MIPS_PC,
541
542         KVM_REG_MIPS_CP0_INDEX,
543         KVM_REG_MIPS_CP0_CONTEXT,
544         KVM_REG_MIPS_CP0_USERLOCAL,
545         KVM_REG_MIPS_CP0_PAGEMASK,
546         KVM_REG_MIPS_CP0_WIRED,
547         KVM_REG_MIPS_CP0_HWRENA,
548         KVM_REG_MIPS_CP0_BADVADDR,
549         KVM_REG_MIPS_CP0_COUNT,
550         KVM_REG_MIPS_CP0_ENTRYHI,
551         KVM_REG_MIPS_CP0_COMPARE,
552         KVM_REG_MIPS_CP0_STATUS,
553         KVM_REG_MIPS_CP0_CAUSE,
554         KVM_REG_MIPS_CP0_EPC,
555         KVM_REG_MIPS_CP0_PRID,
556         KVM_REG_MIPS_CP0_CONFIG,
557         KVM_REG_MIPS_CP0_CONFIG1,
558         KVM_REG_MIPS_CP0_CONFIG2,
559         KVM_REG_MIPS_CP0_CONFIG3,
560         KVM_REG_MIPS_CP0_CONFIG4,
561         KVM_REG_MIPS_CP0_CONFIG5,
562         KVM_REG_MIPS_CP0_CONFIG7,
563         KVM_REG_MIPS_CP0_ERROREPC,
564
565         KVM_REG_MIPS_COUNT_CTL,
566         KVM_REG_MIPS_COUNT_RESUME,
567         KVM_REG_MIPS_COUNT_HZ,
568 };
569
570 static u64 kvm_mips_get_one_regs_fpu[] = {
571         KVM_REG_MIPS_FCR_IR,
572         KVM_REG_MIPS_FCR_CSR,
573 };
574
575 static u64 kvm_mips_get_one_regs_msa[] = {
576         KVM_REG_MIPS_MSA_IR,
577         KVM_REG_MIPS_MSA_CSR,
578 };
579
580 static u64 kvm_mips_get_one_regs_kscratch[] = {
581         KVM_REG_MIPS_CP0_KSCRATCH1,
582         KVM_REG_MIPS_CP0_KSCRATCH2,
583         KVM_REG_MIPS_CP0_KSCRATCH3,
584         KVM_REG_MIPS_CP0_KSCRATCH4,
585         KVM_REG_MIPS_CP0_KSCRATCH5,
586         KVM_REG_MIPS_CP0_KSCRATCH6,
587 };
588
589 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
590 {
591         unsigned long ret;
592
593         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
594         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
595                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
596                 /* odd doubles */
597                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
598                         ret += 16;
599         }
600         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
601                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
602         ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
603         ret += kvm_mips_callbacks->num_regs(vcpu);
604
605         return ret;
606 }
607
608 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
609 {
610         u64 index;
611         unsigned int i;
612
613         if (copy_to_user(indices, kvm_mips_get_one_regs,
614                          sizeof(kvm_mips_get_one_regs)))
615                 return -EFAULT;
616         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
617
618         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
619                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
620                                  sizeof(kvm_mips_get_one_regs_fpu)))
621                         return -EFAULT;
622                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
623
624                 for (i = 0; i < 32; ++i) {
625                         index = KVM_REG_MIPS_FPR_32(i);
626                         if (copy_to_user(indices, &index, sizeof(index)))
627                                 return -EFAULT;
628                         ++indices;
629
630                         /* skip odd doubles if no F64 */
631                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
632                                 continue;
633
634                         index = KVM_REG_MIPS_FPR_64(i);
635                         if (copy_to_user(indices, &index, sizeof(index)))
636                                 return -EFAULT;
637                         ++indices;
638                 }
639         }
640
641         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
642                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
643                                  sizeof(kvm_mips_get_one_regs_msa)))
644                         return -EFAULT;
645                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
646
647                 for (i = 0; i < 32; ++i) {
648                         index = KVM_REG_MIPS_VEC_128(i);
649                         if (copy_to_user(indices, &index, sizeof(index)))
650                                 return -EFAULT;
651                         ++indices;
652                 }
653         }
654
655         for (i = 0; i < 6; ++i) {
656                 if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
657                         continue;
658
659                 if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
660                                  sizeof(kvm_mips_get_one_regs_kscratch[i])))
661                         return -EFAULT;
662                 ++indices;
663         }
664
665         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
666 }
667
668 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
669                             const struct kvm_one_reg *reg)
670 {
671         struct mips_coproc *cop0 = vcpu->arch.cop0;
672         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
673         int ret;
674         s64 v;
675         s64 vs[2];
676         unsigned int idx;
677
678         switch (reg->id) {
679         /* General purpose registers */
680         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
681                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
682                 break;
683 #ifndef CONFIG_CPU_MIPSR6
684         case KVM_REG_MIPS_HI:
685                 v = (long)vcpu->arch.hi;
686                 break;
687         case KVM_REG_MIPS_LO:
688                 v = (long)vcpu->arch.lo;
689                 break;
690 #endif
691         case KVM_REG_MIPS_PC:
692                 v = (long)vcpu->arch.pc;
693                 break;
694
695         /* Floating point registers */
696         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
697                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
698                         return -EINVAL;
699                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
700                 /* Odd singles in top of even double when FR=0 */
701                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
702                         v = get_fpr32(&fpu->fpr[idx], 0);
703                 else
704                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
705                 break;
706         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
707                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
708                         return -EINVAL;
709                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
710                 /* Can't access odd doubles in FR=0 mode */
711                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
712                         return -EINVAL;
713                 v = get_fpr64(&fpu->fpr[idx], 0);
714                 break;
715         case KVM_REG_MIPS_FCR_IR:
716                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
717                         return -EINVAL;
718                 v = boot_cpu_data.fpu_id;
719                 break;
720         case KVM_REG_MIPS_FCR_CSR:
721                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
722                         return -EINVAL;
723                 v = fpu->fcr31;
724                 break;
725
726         /* MIPS SIMD Architecture (MSA) registers */
727         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
728                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
729                         return -EINVAL;
730                 /* Can't access MSA registers in FR=0 mode */
731                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
732                         return -EINVAL;
733                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
734 #ifdef CONFIG_CPU_LITTLE_ENDIAN
735                 /* least significant byte first */
736                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
737                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
738 #else
739                 /* most significant byte first */
740                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
741                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
742 #endif
743                 break;
744         case KVM_REG_MIPS_MSA_IR:
745                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
746                         return -EINVAL;
747                 v = boot_cpu_data.msa_id;
748                 break;
749         case KVM_REG_MIPS_MSA_CSR:
750                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
751                         return -EINVAL;
752                 v = fpu->msacsr;
753                 break;
754
755         /* Co-processor 0 registers */
756         case KVM_REG_MIPS_CP0_INDEX:
757                 v = (long)kvm_read_c0_guest_index(cop0);
758                 break;
759         case KVM_REG_MIPS_CP0_CONTEXT:
760                 v = (long)kvm_read_c0_guest_context(cop0);
761                 break;
762         case KVM_REG_MIPS_CP0_USERLOCAL:
763                 v = (long)kvm_read_c0_guest_userlocal(cop0);
764                 break;
765         case KVM_REG_MIPS_CP0_PAGEMASK:
766                 v = (long)kvm_read_c0_guest_pagemask(cop0);
767                 break;
768         case KVM_REG_MIPS_CP0_WIRED:
769                 v = (long)kvm_read_c0_guest_wired(cop0);
770                 break;
771         case KVM_REG_MIPS_CP0_HWRENA:
772                 v = (long)kvm_read_c0_guest_hwrena(cop0);
773                 break;
774         case KVM_REG_MIPS_CP0_BADVADDR:
775                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
776                 break;
777         case KVM_REG_MIPS_CP0_ENTRYHI:
778                 v = (long)kvm_read_c0_guest_entryhi(cop0);
779                 break;
780         case KVM_REG_MIPS_CP0_COMPARE:
781                 v = (long)kvm_read_c0_guest_compare(cop0);
782                 break;
783         case KVM_REG_MIPS_CP0_STATUS:
784                 v = (long)kvm_read_c0_guest_status(cop0);
785                 break;
786         case KVM_REG_MIPS_CP0_CAUSE:
787                 v = (long)kvm_read_c0_guest_cause(cop0);
788                 break;
789         case KVM_REG_MIPS_CP0_EPC:
790                 v = (long)kvm_read_c0_guest_epc(cop0);
791                 break;
792         case KVM_REG_MIPS_CP0_PRID:
793                 v = (long)kvm_read_c0_guest_prid(cop0);
794                 break;
795         case KVM_REG_MIPS_CP0_CONFIG:
796                 v = (long)kvm_read_c0_guest_config(cop0);
797                 break;
798         case KVM_REG_MIPS_CP0_CONFIG1:
799                 v = (long)kvm_read_c0_guest_config1(cop0);
800                 break;
801         case KVM_REG_MIPS_CP0_CONFIG2:
802                 v = (long)kvm_read_c0_guest_config2(cop0);
803                 break;
804         case KVM_REG_MIPS_CP0_CONFIG3:
805                 v = (long)kvm_read_c0_guest_config3(cop0);
806                 break;
807         case KVM_REG_MIPS_CP0_CONFIG4:
808                 v = (long)kvm_read_c0_guest_config4(cop0);
809                 break;
810         case KVM_REG_MIPS_CP0_CONFIG5:
811                 v = (long)kvm_read_c0_guest_config5(cop0);
812                 break;
813         case KVM_REG_MIPS_CP0_CONFIG7:
814                 v = (long)kvm_read_c0_guest_config7(cop0);
815                 break;
816         case KVM_REG_MIPS_CP0_ERROREPC:
817                 v = (long)kvm_read_c0_guest_errorepc(cop0);
818                 break;
819         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
820                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
821                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
822                         return -EINVAL;
823                 switch (idx) {
824                 case 2:
825                         v = (long)kvm_read_c0_guest_kscratch1(cop0);
826                         break;
827                 case 3:
828                         v = (long)kvm_read_c0_guest_kscratch2(cop0);
829                         break;
830                 case 4:
831                         v = (long)kvm_read_c0_guest_kscratch3(cop0);
832                         break;
833                 case 5:
834                         v = (long)kvm_read_c0_guest_kscratch4(cop0);
835                         break;
836                 case 6:
837                         v = (long)kvm_read_c0_guest_kscratch5(cop0);
838                         break;
839                 case 7:
840                         v = (long)kvm_read_c0_guest_kscratch6(cop0);
841                         break;
842                 }
843                 break;
844         /* registers to be handled specially */
845         default:
846                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
847                 if (ret)
848                         return ret;
849                 break;
850         }
851         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
852                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
853
854                 return put_user(v, uaddr64);
855         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
856                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
857                 u32 v32 = (u32)v;
858
859                 return put_user(v32, uaddr32);
860         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
861                 void __user *uaddr = (void __user *)(long)reg->addr;
862
863                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
864         } else {
865                 return -EINVAL;
866         }
867 }
868
869 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
870                             const struct kvm_one_reg *reg)
871 {
872         struct mips_coproc *cop0 = vcpu->arch.cop0;
873         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
874         s64 v;
875         s64 vs[2];
876         unsigned int idx;
877
878         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
879                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
880
881                 if (get_user(v, uaddr64) != 0)
882                         return -EFAULT;
883         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
884                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
885                 s32 v32;
886
887                 if (get_user(v32, uaddr32) != 0)
888                         return -EFAULT;
889                 v = (s64)v32;
890         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
891                 void __user *uaddr = (void __user *)(long)reg->addr;
892
893                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
894         } else {
895                 return -EINVAL;
896         }
897
898         switch (reg->id) {
899         /* General purpose registers */
900         case KVM_REG_MIPS_R0:
901                 /* Silently ignore requests to set $0 */
902                 break;
903         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
904                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
905                 break;
906 #ifndef CONFIG_CPU_MIPSR6
907         case KVM_REG_MIPS_HI:
908                 vcpu->arch.hi = v;
909                 break;
910         case KVM_REG_MIPS_LO:
911                 vcpu->arch.lo = v;
912                 break;
913 #endif
914         case KVM_REG_MIPS_PC:
915                 vcpu->arch.pc = v;
916                 break;
917
918         /* Floating point registers */
919         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
920                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
921                         return -EINVAL;
922                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
923                 /* Odd singles in top of even double when FR=0 */
924                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
925                         set_fpr32(&fpu->fpr[idx], 0, v);
926                 else
927                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
928                 break;
929         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
930                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
931                         return -EINVAL;
932                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
933                 /* Can't access odd doubles in FR=0 mode */
934                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
935                         return -EINVAL;
936                 set_fpr64(&fpu->fpr[idx], 0, v);
937                 break;
938         case KVM_REG_MIPS_FCR_IR:
939                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
940                         return -EINVAL;
941                 /* Read-only */
942                 break;
943         case KVM_REG_MIPS_FCR_CSR:
944                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
945                         return -EINVAL;
946                 fpu->fcr31 = v;
947                 break;
948
949         /* MIPS SIMD Architecture (MSA) registers */
950         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
951                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
952                         return -EINVAL;
953                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
954 #ifdef CONFIG_CPU_LITTLE_ENDIAN
955                 /* least significant byte first */
956                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
957                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
958 #else
959                 /* most significant byte first */
960                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
961                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
962 #endif
963                 break;
964         case KVM_REG_MIPS_MSA_IR:
965                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
966                         return -EINVAL;
967                 /* Read-only */
968                 break;
969         case KVM_REG_MIPS_MSA_CSR:
970                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
971                         return -EINVAL;
972                 fpu->msacsr = v;
973                 break;
974
975         /* Co-processor 0 registers */
976         case KVM_REG_MIPS_CP0_INDEX:
977                 kvm_write_c0_guest_index(cop0, v);
978                 break;
979         case KVM_REG_MIPS_CP0_CONTEXT:
980                 kvm_write_c0_guest_context(cop0, v);
981                 break;
982         case KVM_REG_MIPS_CP0_USERLOCAL:
983                 kvm_write_c0_guest_userlocal(cop0, v);
984                 break;
985         case KVM_REG_MIPS_CP0_PAGEMASK:
986                 kvm_write_c0_guest_pagemask(cop0, v);
987                 break;
988         case KVM_REG_MIPS_CP0_WIRED:
989                 kvm_write_c0_guest_wired(cop0, v);
990                 break;
991         case KVM_REG_MIPS_CP0_HWRENA:
992                 kvm_write_c0_guest_hwrena(cop0, v);
993                 break;
994         case KVM_REG_MIPS_CP0_BADVADDR:
995                 kvm_write_c0_guest_badvaddr(cop0, v);
996                 break;
997         case KVM_REG_MIPS_CP0_ENTRYHI:
998                 kvm_write_c0_guest_entryhi(cop0, v);
999                 break;
1000         case KVM_REG_MIPS_CP0_STATUS:
1001                 kvm_write_c0_guest_status(cop0, v);
1002                 break;
1003         case KVM_REG_MIPS_CP0_EPC:
1004                 kvm_write_c0_guest_epc(cop0, v);
1005                 break;
1006         case KVM_REG_MIPS_CP0_PRID:
1007                 kvm_write_c0_guest_prid(cop0, v);
1008                 break;
1009         case KVM_REG_MIPS_CP0_ERROREPC:
1010                 kvm_write_c0_guest_errorepc(cop0, v);
1011                 break;
1012         case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1013                 idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1014                 if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1015                         return -EINVAL;
1016                 switch (idx) {
1017                 case 2:
1018                         kvm_write_c0_guest_kscratch1(cop0, v);
1019                         break;
1020                 case 3:
1021                         kvm_write_c0_guest_kscratch2(cop0, v);
1022                         break;
1023                 case 4:
1024                         kvm_write_c0_guest_kscratch3(cop0, v);
1025                         break;
1026                 case 5:
1027                         kvm_write_c0_guest_kscratch4(cop0, v);
1028                         break;
1029                 case 6:
1030                         kvm_write_c0_guest_kscratch5(cop0, v);
1031                         break;
1032                 case 7:
1033                         kvm_write_c0_guest_kscratch6(cop0, v);
1034                         break;
1035                 }
1036                 break;
1037         /* registers to be handled specially */
1038         default:
1039                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1040         }
1041         return 0;
1042 }
1043
1044 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1045                                      struct kvm_enable_cap *cap)
1046 {
1047         int r = 0;
1048
1049         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1050                 return -EINVAL;
1051         if (cap->flags)
1052                 return -EINVAL;
1053         if (cap->args[0])
1054                 return -EINVAL;
1055
1056         switch (cap->cap) {
1057         case KVM_CAP_MIPS_FPU:
1058                 vcpu->arch.fpu_enabled = true;
1059                 break;
1060         case KVM_CAP_MIPS_MSA:
1061                 vcpu->arch.msa_enabled = true;
1062                 break;
1063         default:
1064                 r = -EINVAL;
1065                 break;
1066         }
1067
1068         return r;
1069 }
1070
1071 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1072                          unsigned long arg)
1073 {
1074         struct kvm_vcpu *vcpu = filp->private_data;
1075         void __user *argp = (void __user *)arg;
1076         long r;
1077
1078         switch (ioctl) {
1079         case KVM_SET_ONE_REG:
1080         case KVM_GET_ONE_REG: {
1081                 struct kvm_one_reg reg;
1082
1083                 if (copy_from_user(&reg, argp, sizeof(reg)))
1084                         return -EFAULT;
1085                 if (ioctl == KVM_SET_ONE_REG)
1086                         return kvm_mips_set_reg(vcpu, &reg);
1087                 else
1088                         return kvm_mips_get_reg(vcpu, &reg);
1089         }
1090         case KVM_GET_REG_LIST: {
1091                 struct kvm_reg_list __user *user_list = argp;
1092                 struct kvm_reg_list reg_list;
1093                 unsigned n;
1094
1095                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1096                         return -EFAULT;
1097                 n = reg_list.n;
1098                 reg_list.n = kvm_mips_num_regs(vcpu);
1099                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1100                         return -EFAULT;
1101                 if (n < reg_list.n)
1102                         return -E2BIG;
1103                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1104         }
1105         case KVM_NMI:
1106                 /* Treat the NMI as a CPU reset */
1107                 r = kvm_mips_reset_vcpu(vcpu);
1108                 break;
1109         case KVM_INTERRUPT:
1110                 {
1111                         struct kvm_mips_interrupt irq;
1112
1113                         r = -EFAULT;
1114                         if (copy_from_user(&irq, argp, sizeof(irq)))
1115                                 goto out;
1116
1117                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1118                                   irq.irq);
1119
1120                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1121                         break;
1122                 }
1123         case KVM_ENABLE_CAP: {
1124                 struct kvm_enable_cap cap;
1125
1126                 r = -EFAULT;
1127                 if (copy_from_user(&cap, argp, sizeof(cap)))
1128                         goto out;
1129                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1130                 break;
1131         }
1132         default:
1133                 r = -ENOIOCTLCMD;
1134         }
1135
1136 out:
1137         return r;
1138 }
1139
1140 /* Get (and clear) the dirty memory log for a memory slot. */
1141 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1142 {
1143         struct kvm_memslots *slots;
1144         struct kvm_memory_slot *memslot;
1145         unsigned long ga, ga_end;
1146         int is_dirty = 0;
1147         int r;
1148         unsigned long n;
1149
1150         mutex_lock(&kvm->slots_lock);
1151
1152         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1153         if (r)
1154                 goto out;
1155
1156         /* If nothing is dirty, don't bother messing with page tables. */
1157         if (is_dirty) {
1158                 slots = kvm_memslots(kvm);
1159                 memslot = id_to_memslot(slots, log->slot);
1160
1161                 ga = memslot->base_gfn << PAGE_SHIFT;
1162                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
1163
1164                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1165                          ga_end);
1166
1167                 n = kvm_dirty_bitmap_bytes(memslot);
1168                 memset(memslot->dirty_bitmap, 0, n);
1169         }
1170
1171         r = 0;
1172 out:
1173         mutex_unlock(&kvm->slots_lock);
1174         return r;
1175
1176 }
1177
1178 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1179 {
1180         long r;
1181
1182         switch (ioctl) {
1183         default:
1184                 r = -ENOIOCTLCMD;
1185         }
1186
1187         return r;
1188 }
1189
1190 int kvm_arch_init(void *opaque)
1191 {
1192         if (kvm_mips_callbacks) {
1193                 kvm_err("kvm: module already exists\n");
1194                 return -EEXIST;
1195         }
1196
1197         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1198 }
1199
1200 void kvm_arch_exit(void)
1201 {
1202         kvm_mips_callbacks = NULL;
1203 }
1204
1205 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1206                                   struct kvm_sregs *sregs)
1207 {
1208         return -ENOIOCTLCMD;
1209 }
1210
1211 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1212                                   struct kvm_sregs *sregs)
1213 {
1214         return -ENOIOCTLCMD;
1215 }
1216
1217 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1218 {
1219 }
1220
1221 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1222 {
1223         return -ENOIOCTLCMD;
1224 }
1225
1226 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1227 {
1228         return -ENOIOCTLCMD;
1229 }
1230
1231 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1232 {
1233         return VM_FAULT_SIGBUS;
1234 }
1235
1236 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1237 {
1238         int r;
1239
1240         switch (ext) {
1241         case KVM_CAP_ONE_REG:
1242         case KVM_CAP_ENABLE_CAP:
1243                 r = 1;
1244                 break;
1245         case KVM_CAP_COALESCED_MMIO:
1246                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1247                 break;
1248         case KVM_CAP_MIPS_FPU:
1249                 /* We don't handle systems with inconsistent cpu_has_fpu */
1250                 r = !!raw_cpu_has_fpu;
1251                 break;
1252         case KVM_CAP_MIPS_MSA:
1253                 /*
1254                  * We don't support MSA vector partitioning yet:
1255                  * 1) It would require explicit support which can't be tested
1256                  *    yet due to lack of support in current hardware.
1257                  * 2) It extends the state that would need to be saved/restored
1258                  *    by e.g. QEMU for migration.
1259                  *
1260                  * When vector partitioning hardware becomes available, support
1261                  * could be added by requiring a flag when enabling
1262                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1263                  * to save/restore the appropriate extra state.
1264                  */
1265                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1266                 break;
1267         default:
1268                 r = 0;
1269                 break;
1270         }
1271         return r;
1272 }
1273
1274 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1275 {
1276         return kvm_mips_pending_timer(vcpu);
1277 }
1278
1279 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1280 {
1281         int i;
1282         struct mips_coproc *cop0;
1283
1284         if (!vcpu)
1285                 return -1;
1286
1287         kvm_debug("VCPU Register Dump:\n");
1288         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1289         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1290
1291         for (i = 0; i < 32; i += 4) {
1292                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1293                        vcpu->arch.gprs[i],
1294                        vcpu->arch.gprs[i + 1],
1295                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1296         }
1297         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1298         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1299
1300         cop0 = vcpu->arch.cop0;
1301         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1302                   kvm_read_c0_guest_status(cop0),
1303                   kvm_read_c0_guest_cause(cop0));
1304
1305         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1306
1307         return 0;
1308 }
1309
1310 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1311 {
1312         int i;
1313
1314         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1315                 vcpu->arch.gprs[i] = regs->gpr[i];
1316         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1317         vcpu->arch.hi = regs->hi;
1318         vcpu->arch.lo = regs->lo;
1319         vcpu->arch.pc = regs->pc;
1320
1321         return 0;
1322 }
1323
1324 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1325 {
1326         int i;
1327
1328         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1329                 regs->gpr[i] = vcpu->arch.gprs[i];
1330
1331         regs->hi = vcpu->arch.hi;
1332         regs->lo = vcpu->arch.lo;
1333         regs->pc = vcpu->arch.pc;
1334
1335         return 0;
1336 }
1337
1338 static void kvm_mips_comparecount_func(unsigned long data)
1339 {
1340         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1341
1342         kvm_mips_callbacks->queue_timer_int(vcpu);
1343
1344         vcpu->arch.wait = 0;
1345         if (swait_active(&vcpu->wq))
1346                 swake_up(&vcpu->wq);
1347 }
1348
1349 /* low level hrtimer wake routine */
1350 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1351 {
1352         struct kvm_vcpu *vcpu;
1353
1354         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1355         kvm_mips_comparecount_func((unsigned long) vcpu);
1356         return kvm_mips_count_timeout(vcpu);
1357 }
1358
1359 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1360 {
1361         kvm_mips_callbacks->vcpu_init(vcpu);
1362         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1363                      HRTIMER_MODE_REL);
1364         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1365         return 0;
1366 }
1367
1368 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1369                                   struct kvm_translation *tr)
1370 {
1371         return 0;
1372 }
1373
1374 /* Initial guest state */
1375 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1376 {
1377         return kvm_mips_callbacks->vcpu_setup(vcpu);
1378 }
1379
1380 static void kvm_mips_set_c0_status(void)
1381 {
1382         u32 status = read_c0_status();
1383
1384         if (cpu_has_dsp)
1385                 status |= (ST0_MX);
1386
1387         write_c0_status(status);
1388         ehb();
1389 }
1390
1391 /*
1392  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1393  */
1394 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1395 {
1396         u32 cause = vcpu->arch.host_cp0_cause;
1397         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1398         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1399         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1400         enum emulation_result er = EMULATE_DONE;
1401         int ret = RESUME_GUEST;
1402
1403         /* re-enable HTW before enabling interrupts */
1404         htw_start();
1405
1406         /* Set a default exit reason */
1407         run->exit_reason = KVM_EXIT_UNKNOWN;
1408         run->ready_for_interrupt_injection = 1;
1409
1410         /*
1411          * Set the appropriate status bits based on host CPU features,
1412          * before we hit the scheduler
1413          */
1414         kvm_mips_set_c0_status();
1415
1416         local_irq_enable();
1417
1418         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1419                         cause, opc, run, vcpu);
1420         trace_kvm_exit(vcpu, exccode);
1421
1422         /*
1423          * Do a privilege check, if in UM most of these exit conditions end up
1424          * causing an exception to be delivered to the Guest Kernel
1425          */
1426         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1427         if (er == EMULATE_PRIV_FAIL) {
1428                 goto skip_emul;
1429         } else if (er == EMULATE_FAIL) {
1430                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1431                 ret = RESUME_HOST;
1432                 goto skip_emul;
1433         }
1434
1435         switch (exccode) {
1436         case EXCCODE_INT:
1437                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1438
1439                 ++vcpu->stat.int_exits;
1440
1441                 if (need_resched())
1442                         cond_resched();
1443
1444                 ret = RESUME_GUEST;
1445                 break;
1446
1447         case EXCCODE_CPU:
1448                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1449
1450                 ++vcpu->stat.cop_unusable_exits;
1451                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1452                 /* XXXKYMA: Might need to return to user space */
1453                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1454                         ret = RESUME_HOST;
1455                 break;
1456
1457         case EXCCODE_MOD:
1458                 ++vcpu->stat.tlbmod_exits;
1459                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1460                 break;
1461
1462         case EXCCODE_TLBS:
1463                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1464                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1465                           badvaddr);
1466
1467                 ++vcpu->stat.tlbmiss_st_exits;
1468                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1469                 break;
1470
1471         case EXCCODE_TLBL:
1472                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1473                           cause, opc, badvaddr);
1474
1475                 ++vcpu->stat.tlbmiss_ld_exits;
1476                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1477                 break;
1478
1479         case EXCCODE_ADES:
1480                 ++vcpu->stat.addrerr_st_exits;
1481                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1482                 break;
1483
1484         case EXCCODE_ADEL:
1485                 ++vcpu->stat.addrerr_ld_exits;
1486                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1487                 break;
1488
1489         case EXCCODE_SYS:
1490                 ++vcpu->stat.syscall_exits;
1491                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1492                 break;
1493
1494         case EXCCODE_RI:
1495                 ++vcpu->stat.resvd_inst_exits;
1496                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1497                 break;
1498
1499         case EXCCODE_BP:
1500                 ++vcpu->stat.break_inst_exits;
1501                 ret = kvm_mips_callbacks->handle_break(vcpu);
1502                 break;
1503
1504         case EXCCODE_TR:
1505                 ++vcpu->stat.trap_inst_exits;
1506                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1507                 break;
1508
1509         case EXCCODE_MSAFPE:
1510                 ++vcpu->stat.msa_fpe_exits;
1511                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1512                 break;
1513
1514         case EXCCODE_FPE:
1515                 ++vcpu->stat.fpe_exits;
1516                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1517                 break;
1518
1519         case EXCCODE_MSADIS:
1520                 ++vcpu->stat.msa_disabled_exits;
1521                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1522                 break;
1523
1524         default:
1525                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1526                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1527                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1528                 kvm_arch_vcpu_dump_regs(vcpu);
1529                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1530                 ret = RESUME_HOST;
1531                 break;
1532
1533         }
1534
1535 skip_emul:
1536         local_irq_disable();
1537
1538         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1539                 kvm_mips_deliver_interrupts(vcpu, cause);
1540
1541         if (!(ret & RESUME_HOST)) {
1542                 /* Only check for signals if not already exiting to userspace */
1543                 if (signal_pending(current)) {
1544                         run->exit_reason = KVM_EXIT_INTR;
1545                         ret = (-EINTR << 2) | RESUME_HOST;
1546                         ++vcpu->stat.signal_exits;
1547                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1548                 }
1549         }
1550
1551         if (ret == RESUME_GUEST) {
1552                 trace_kvm_reenter(vcpu);
1553
1554                 /*
1555                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1556                  * is live), restore FCR31 / MSACSR.
1557                  *
1558                  * This should be before returning to the guest exception
1559                  * vector, as it may well cause an [MSA] FP exception if there
1560                  * are pending exception bits unmasked. (see
1561                  * kvm_mips_csr_die_notifier() for how that is handled).
1562                  */
1563                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1564                     read_c0_status() & ST0_CU1)
1565                         __kvm_restore_fcsr(&vcpu->arch);
1566
1567                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1568                     read_c0_config5() & MIPS_CONF5_MSAEN)
1569                         __kvm_restore_msacsr(&vcpu->arch);
1570         }
1571
1572         /* Disable HTW before returning to guest or host */
1573         htw_stop();
1574
1575         return ret;
1576 }
1577
1578 /* Enable FPU for guest and restore context */
1579 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1580 {
1581         struct mips_coproc *cop0 = vcpu->arch.cop0;
1582         unsigned int sr, cfg5;
1583
1584         preempt_disable();
1585
1586         sr = kvm_read_c0_guest_status(cop0);
1587
1588         /*
1589          * If MSA state is already live, it is undefined how it interacts with
1590          * FR=0 FPU state, and we don't want to hit reserved instruction
1591          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1592          * play it safe and save it first.
1593          *
1594          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1595          * get called when guest CU1 is set, however we can't trust the guest
1596          * not to clobber the status register directly via the commpage.
1597          */
1598         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1599             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1600                 kvm_lose_fpu(vcpu);
1601
1602         /*
1603          * Enable FPU for guest
1604          * We set FR and FRE according to guest context
1605          */
1606         change_c0_status(ST0_CU1 | ST0_FR, sr);
1607         if (cpu_has_fre) {
1608                 cfg5 = kvm_read_c0_guest_config5(cop0);
1609                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1610         }
1611         enable_fpu_hazard();
1612
1613         /* If guest FPU state not active, restore it now */
1614         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1615                 __kvm_restore_fpu(&vcpu->arch);
1616                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1617                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1618         } else {
1619                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1620         }
1621
1622         preempt_enable();
1623 }
1624
1625 #ifdef CONFIG_CPU_HAS_MSA
1626 /* Enable MSA for guest and restore context */
1627 void kvm_own_msa(struct kvm_vcpu *vcpu)
1628 {
1629         struct mips_coproc *cop0 = vcpu->arch.cop0;
1630         unsigned int sr, cfg5;
1631
1632         preempt_disable();
1633
1634         /*
1635          * Enable FPU if enabled in guest, since we're restoring FPU context
1636          * anyway. We set FR and FRE according to guest context.
1637          */
1638         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1639                 sr = kvm_read_c0_guest_status(cop0);
1640
1641                 /*
1642                  * If FR=0 FPU state is already live, it is undefined how it
1643                  * interacts with MSA state, so play it safe and save it first.
1644                  */
1645                 if (!(sr & ST0_FR) &&
1646                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1647                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1648                         kvm_lose_fpu(vcpu);
1649
1650                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1651                 if (sr & ST0_CU1 && cpu_has_fre) {
1652                         cfg5 = kvm_read_c0_guest_config5(cop0);
1653                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654                 }
1655         }
1656
1657         /* Enable MSA for guest */
1658         set_c0_config5(MIPS_CONF5_MSAEN);
1659         enable_fpu_hazard();
1660
1661         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1662         case KVM_MIPS_AUX_FPU:
1663                 /*
1664                  * Guest FPU state already loaded, only restore upper MSA state
1665                  */
1666                 __kvm_restore_msa_upper(&vcpu->arch);
1667                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1668                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1669                 break;
1670         case 0:
1671                 /* Neither FPU or MSA already active, restore full MSA state */
1672                 __kvm_restore_msa(&vcpu->arch);
1673                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1674                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1675                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1676                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1677                               KVM_TRACE_AUX_FPU_MSA);
1678                 break;
1679         default:
1680                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1681                 break;
1682         }
1683
1684         preempt_enable();
1685 }
1686 #endif
1687
1688 /* Drop FPU & MSA without saving it */
1689 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1690 {
1691         preempt_disable();
1692         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1693                 disable_msa();
1694                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1695                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1696         }
1697         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1698                 clear_c0_status(ST0_CU1 | ST0_FR);
1699                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1700                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1701         }
1702         preempt_enable();
1703 }
1704
1705 /* Save and disable FPU & MSA */
1706 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1707 {
1708         /*
1709          * FPU & MSA get disabled in root context (hardware) when it is disabled
1710          * in guest context (software), but the register state in the hardware
1711          * may still be in use. This is why we explicitly re-enable the hardware
1712          * before saving.
1713          */
1714
1715         preempt_disable();
1716         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1717                 set_c0_config5(MIPS_CONF5_MSAEN);
1718                 enable_fpu_hazard();
1719
1720                 __kvm_save_msa(&vcpu->arch);
1721                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1722
1723                 /* Disable MSA & FPU */
1724                 disable_msa();
1725                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1726                         clear_c0_status(ST0_CU1 | ST0_FR);
1727                         disable_fpu_hazard();
1728                 }
1729                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1730         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1731                 set_c0_status(ST0_CU1);
1732                 enable_fpu_hazard();
1733
1734                 __kvm_save_fpu(&vcpu->arch);
1735                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1736                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1737
1738                 /* Disable FPU */
1739                 clear_c0_status(ST0_CU1 | ST0_FR);
1740                 disable_fpu_hazard();
1741         }
1742         preempt_enable();
1743 }
1744
1745 /*
1746  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1747  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1748  * exception if cause bits are set in the value being written.
1749  */
1750 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1751                                    unsigned long cmd, void *ptr)
1752 {
1753         struct die_args *args = (struct die_args *)ptr;
1754         struct pt_regs *regs = args->regs;
1755         unsigned long pc;
1756
1757         /* Only interested in FPE and MSAFPE */
1758         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1759                 return NOTIFY_DONE;
1760
1761         /* Return immediately if guest context isn't active */
1762         if (!(current->flags & PF_VCPU))
1763                 return NOTIFY_DONE;
1764
1765         /* Should never get here from user mode */
1766         BUG_ON(user_mode(regs));
1767
1768         pc = instruction_pointer(regs);
1769         switch (cmd) {
1770         case DIE_FP:
1771                 /* match 2nd instruction in __kvm_restore_fcsr */
1772                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1773                         return NOTIFY_DONE;
1774                 break;
1775         case DIE_MSAFP:
1776                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1777                 if (!cpu_has_msa ||
1778                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1779                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1780                         return NOTIFY_DONE;
1781                 break;
1782         }
1783
1784         /* Move PC forward a little and continue executing */
1785         instruction_pointer(regs) += 4;
1786
1787         return NOTIFY_STOP;
1788 }
1789
1790 static struct notifier_block kvm_mips_csr_die_notifier = {
1791         .notifier_call = kvm_mips_csr_die_notify,
1792 };
1793
1794 static int __init kvm_mips_init(void)
1795 {
1796         int ret;
1797
1798         ret = kvm_mips_entry_setup();
1799         if (ret)
1800                 return ret;
1801
1802         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1803
1804         if (ret)
1805                 return ret;
1806
1807         register_die_notifier(&kvm_mips_csr_die_notifier);
1808
1809         return 0;
1810 }
1811
1812 static void __exit kvm_mips_exit(void)
1813 {
1814         kvm_exit();
1815
1816         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1817 }
1818
1819 module_init(kvm_mips_init);
1820 module_exit(kvm_mips_exit);
1821
1822 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);