Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[cascardo/linux.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/err.h>
23 #include <linux/slab.h>
24 #include <linux/preempt.h>
25 #include <linux/sched.h>
26 #include <linux/delay.h>
27 #include <linux/export.h>
28 #include <linux/fs.h>
29 #include <linux/anon_inodes.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36
37 #include <asm/reg.h>
38 #include <asm/cputable.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
43 #include <asm/kvm_ppc.h>
44 #include <asm/kvm_book3s.h>
45 #include <asm/mmu_context.h>
46 #include <asm/lppaca.h>
47 #include <asm/processor.h>
48 #include <asm/cputhreads.h>
49 #include <asm/page.h>
50 #include <asm/hvcall.h>
51 #include <asm/switch_to.h>
52 #include <asm/smp.h>
53 #include <asm/dbell.h>
54 #include <linux/gfp.h>
55 #include <linux/vmalloc.h>
56 #include <linux/highmem.h>
57 #include <linux/hugetlb.h>
58 #include <linux/module.h>
59
60 #include "book3s.h"
61
62 #define CREATE_TRACE_POINTS
63 #include "trace_hv.h"
64
65 /* #define EXIT_DEBUG */
66 /* #define EXIT_DEBUG_SIMPLE */
67 /* #define EXIT_DEBUG_INT */
68
69 /* Used to indicate that a guest page fault needs to be handled */
70 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
71
72 /* Used as a "null" value for timebase values */
73 #define TB_NIL  (~(u64)0)
74
75 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
76
77 static int dynamic_mt_modes = 6;
78 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
80 static int target_smt_mode;
81 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
83
84 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
85 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
86
87 static bool kvmppc_ipi_thread(int cpu)
88 {
89         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
90         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
91                 preempt_disable();
92                 if (cpu_first_thread_sibling(cpu) ==
93                     cpu_first_thread_sibling(smp_processor_id())) {
94                         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
95                         msg |= cpu_thread_in_core(cpu);
96                         smp_mb();
97                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
98                         preempt_enable();
99                         return true;
100                 }
101                 preempt_enable();
102         }
103
104 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
105         if (cpu >= 0 && cpu < nr_cpu_ids && paca[cpu].kvm_hstate.xics_phys) {
106                 xics_wake_cpu(cpu);
107                 return true;
108         }
109 #endif
110
111         return false;
112 }
113
114 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
115 {
116         int cpu;
117         wait_queue_head_t *wqp;
118
119         wqp = kvm_arch_vcpu_wq(vcpu);
120         if (waitqueue_active(wqp)) {
121                 wake_up_interruptible(wqp);
122                 ++vcpu->stat.halt_wakeup;
123         }
124
125         if (kvmppc_ipi_thread(vcpu->arch.thread_cpu))
126                 return;
127
128         /* CPU points to the first thread of the core */
129         cpu = vcpu->cpu;
130         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
131                 smp_send_reschedule(cpu);
132 }
133
134 /*
135  * We use the vcpu_load/put functions to measure stolen time.
136  * Stolen time is counted as time when either the vcpu is able to
137  * run as part of a virtual core, but the task running the vcore
138  * is preempted or sleeping, or when the vcpu needs something done
139  * in the kernel by the task running the vcpu, but that task is
140  * preempted or sleeping.  Those two things have to be counted
141  * separately, since one of the vcpu tasks will take on the job
142  * of running the core, and the other vcpu tasks in the vcore will
143  * sleep waiting for it to do that, but that sleep shouldn't count
144  * as stolen time.
145  *
146  * Hence we accumulate stolen time when the vcpu can run as part of
147  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
148  * needs its task to do other things in the kernel (for example,
149  * service a page fault) in busy_stolen.  We don't accumulate
150  * stolen time for a vcore when it is inactive, or for a vcpu
151  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
152  * a misnomer; it means that the vcpu task is not executing in
153  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
154  * the kernel.  We don't have any way of dividing up that time
155  * between time that the vcpu is genuinely stopped, time that
156  * the task is actively working on behalf of the vcpu, and time
157  * that the task is preempted, so we don't count any of it as
158  * stolen.
159  *
160  * Updates to busy_stolen are protected by arch.tbacct_lock;
161  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
162  * lock.  The stolen times are measured in units of timebase ticks.
163  * (Note that the != TB_NIL checks below are purely defensive;
164  * they should never fail.)
165  */
166
167 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
168 {
169         unsigned long flags;
170
171         spin_lock_irqsave(&vc->stoltb_lock, flags);
172         vc->preempt_tb = mftb();
173         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
174 }
175
176 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
177 {
178         unsigned long flags;
179
180         spin_lock_irqsave(&vc->stoltb_lock, flags);
181         if (vc->preempt_tb != TB_NIL) {
182                 vc->stolen_tb += mftb() - vc->preempt_tb;
183                 vc->preempt_tb = TB_NIL;
184         }
185         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
186 }
187
188 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
189 {
190         struct kvmppc_vcore *vc = vcpu->arch.vcore;
191         unsigned long flags;
192
193         /*
194          * We can test vc->runner without taking the vcore lock,
195          * because only this task ever sets vc->runner to this
196          * vcpu, and once it is set to this vcpu, only this task
197          * ever sets it to NULL.
198          */
199         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
200                 kvmppc_core_end_stolen(vc);
201
202         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
203         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
204             vcpu->arch.busy_preempt != TB_NIL) {
205                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
206                 vcpu->arch.busy_preempt = TB_NIL;
207         }
208         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
209 }
210
211 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
212 {
213         struct kvmppc_vcore *vc = vcpu->arch.vcore;
214         unsigned long flags;
215
216         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
217                 kvmppc_core_start_stolen(vc);
218
219         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
220         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
221                 vcpu->arch.busy_preempt = mftb();
222         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
223 }
224
225 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
226 {
227         /*
228          * Check for illegal transactional state bit combination
229          * and if we find it, force the TS field to a safe state.
230          */
231         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
232                 msr &= ~MSR_TS_MASK;
233         vcpu->arch.shregs.msr = msr;
234         kvmppc_end_cede(vcpu);
235 }
236
237 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
238 {
239         vcpu->arch.pvr = pvr;
240 }
241
242 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
243 {
244         unsigned long pcr = 0;
245         struct kvmppc_vcore *vc = vcpu->arch.vcore;
246
247         if (arch_compat) {
248                 switch (arch_compat) {
249                 case PVR_ARCH_205:
250                         /*
251                          * If an arch bit is set in PCR, all the defined
252                          * higher-order arch bits also have to be set.
253                          */
254                         pcr = PCR_ARCH_206 | PCR_ARCH_205;
255                         break;
256                 case PVR_ARCH_206:
257                 case PVR_ARCH_206p:
258                         pcr = PCR_ARCH_206;
259                         break;
260                 case PVR_ARCH_207:
261                         break;
262                 default:
263                         return -EINVAL;
264                 }
265
266                 if (!cpu_has_feature(CPU_FTR_ARCH_207S)) {
267                         /* POWER7 can't emulate POWER8 */
268                         if (!(pcr & PCR_ARCH_206))
269                                 return -EINVAL;
270                         pcr &= ~PCR_ARCH_206;
271                 }
272         }
273
274         spin_lock(&vc->lock);
275         vc->arch_compat = arch_compat;
276         vc->pcr = pcr;
277         spin_unlock(&vc->lock);
278
279         return 0;
280 }
281
282 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
283 {
284         int r;
285
286         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
287         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
288                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
289         for (r = 0; r < 16; ++r)
290                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
291                        r, kvmppc_get_gpr(vcpu, r),
292                        r+16, kvmppc_get_gpr(vcpu, r+16));
293         pr_err("ctr = %.16lx  lr  = %.16lx\n",
294                vcpu->arch.ctr, vcpu->arch.lr);
295         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
296                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
297         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
298                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
299         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
300                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
301         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
302                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
303         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
304         pr_err("fault dar = %.16lx dsisr = %.8x\n",
305                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
306         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
307         for (r = 0; r < vcpu->arch.slb_max; ++r)
308                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
309                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
310         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
311                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
312                vcpu->arch.last_inst);
313 }
314
315 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
316 {
317         struct kvm_vcpu *ret;
318
319         mutex_lock(&kvm->lock);
320         ret = kvm_get_vcpu_by_id(kvm, id);
321         mutex_unlock(&kvm->lock);
322         return ret;
323 }
324
325 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
326 {
327         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
328         vpa->yield_count = cpu_to_be32(1);
329 }
330
331 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
332                    unsigned long addr, unsigned long len)
333 {
334         /* check address is cacheline aligned */
335         if (addr & (L1_CACHE_BYTES - 1))
336                 return -EINVAL;
337         spin_lock(&vcpu->arch.vpa_update_lock);
338         if (v->next_gpa != addr || v->len != len) {
339                 v->next_gpa = addr;
340                 v->len = addr ? len : 0;
341                 v->update_pending = 1;
342         }
343         spin_unlock(&vcpu->arch.vpa_update_lock);
344         return 0;
345 }
346
347 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
348 struct reg_vpa {
349         u32 dummy;
350         union {
351                 __be16 hword;
352                 __be32 word;
353         } length;
354 };
355
356 static int vpa_is_registered(struct kvmppc_vpa *vpap)
357 {
358         if (vpap->update_pending)
359                 return vpap->next_gpa != 0;
360         return vpap->pinned_addr != NULL;
361 }
362
363 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
364                                        unsigned long flags,
365                                        unsigned long vcpuid, unsigned long vpa)
366 {
367         struct kvm *kvm = vcpu->kvm;
368         unsigned long len, nb;
369         void *va;
370         struct kvm_vcpu *tvcpu;
371         int err;
372         int subfunc;
373         struct kvmppc_vpa *vpap;
374
375         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
376         if (!tvcpu)
377                 return H_PARAMETER;
378
379         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
380         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
381             subfunc == H_VPA_REG_SLB) {
382                 /* Registering new area - address must be cache-line aligned */
383                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
384                         return H_PARAMETER;
385
386                 /* convert logical addr to kernel addr and read length */
387                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
388                 if (va == NULL)
389                         return H_PARAMETER;
390                 if (subfunc == H_VPA_REG_VPA)
391                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
392                 else
393                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
394                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
395
396                 /* Check length */
397                 if (len > nb || len < sizeof(struct reg_vpa))
398                         return H_PARAMETER;
399         } else {
400                 vpa = 0;
401                 len = 0;
402         }
403
404         err = H_PARAMETER;
405         vpap = NULL;
406         spin_lock(&tvcpu->arch.vpa_update_lock);
407
408         switch (subfunc) {
409         case H_VPA_REG_VPA:             /* register VPA */
410                 if (len < sizeof(struct lppaca))
411                         break;
412                 vpap = &tvcpu->arch.vpa;
413                 err = 0;
414                 break;
415
416         case H_VPA_REG_DTL:             /* register DTL */
417                 if (len < sizeof(struct dtl_entry))
418                         break;
419                 len -= len % sizeof(struct dtl_entry);
420
421                 /* Check that they have previously registered a VPA */
422                 err = H_RESOURCE;
423                 if (!vpa_is_registered(&tvcpu->arch.vpa))
424                         break;
425
426                 vpap = &tvcpu->arch.dtl;
427                 err = 0;
428                 break;
429
430         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
431                 /* Check that they have previously registered a VPA */
432                 err = H_RESOURCE;
433                 if (!vpa_is_registered(&tvcpu->arch.vpa))
434                         break;
435
436                 vpap = &tvcpu->arch.slb_shadow;
437                 err = 0;
438                 break;
439
440         case H_VPA_DEREG_VPA:           /* deregister VPA */
441                 /* Check they don't still have a DTL or SLB buf registered */
442                 err = H_RESOURCE;
443                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
444                     vpa_is_registered(&tvcpu->arch.slb_shadow))
445                         break;
446
447                 vpap = &tvcpu->arch.vpa;
448                 err = 0;
449                 break;
450
451         case H_VPA_DEREG_DTL:           /* deregister DTL */
452                 vpap = &tvcpu->arch.dtl;
453                 err = 0;
454                 break;
455
456         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
457                 vpap = &tvcpu->arch.slb_shadow;
458                 err = 0;
459                 break;
460         }
461
462         if (vpap) {
463                 vpap->next_gpa = vpa;
464                 vpap->len = len;
465                 vpap->update_pending = 1;
466         }
467
468         spin_unlock(&tvcpu->arch.vpa_update_lock);
469
470         return err;
471 }
472
473 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
474 {
475         struct kvm *kvm = vcpu->kvm;
476         void *va;
477         unsigned long nb;
478         unsigned long gpa;
479
480         /*
481          * We need to pin the page pointed to by vpap->next_gpa,
482          * but we can't call kvmppc_pin_guest_page under the lock
483          * as it does get_user_pages() and down_read().  So we
484          * have to drop the lock, pin the page, then get the lock
485          * again and check that a new area didn't get registered
486          * in the meantime.
487          */
488         for (;;) {
489                 gpa = vpap->next_gpa;
490                 spin_unlock(&vcpu->arch.vpa_update_lock);
491                 va = NULL;
492                 nb = 0;
493                 if (gpa)
494                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
495                 spin_lock(&vcpu->arch.vpa_update_lock);
496                 if (gpa == vpap->next_gpa)
497                         break;
498                 /* sigh... unpin that one and try again */
499                 if (va)
500                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
501         }
502
503         vpap->update_pending = 0;
504         if (va && nb < vpap->len) {
505                 /*
506                  * If it's now too short, it must be that userspace
507                  * has changed the mappings underlying guest memory,
508                  * so unregister the region.
509                  */
510                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
511                 va = NULL;
512         }
513         if (vpap->pinned_addr)
514                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
515                                         vpap->dirty);
516         vpap->gpa = gpa;
517         vpap->pinned_addr = va;
518         vpap->dirty = false;
519         if (va)
520                 vpap->pinned_end = va + vpap->len;
521 }
522
523 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
524 {
525         if (!(vcpu->arch.vpa.update_pending ||
526               vcpu->arch.slb_shadow.update_pending ||
527               vcpu->arch.dtl.update_pending))
528                 return;
529
530         spin_lock(&vcpu->arch.vpa_update_lock);
531         if (vcpu->arch.vpa.update_pending) {
532                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
533                 if (vcpu->arch.vpa.pinned_addr)
534                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
535         }
536         if (vcpu->arch.dtl.update_pending) {
537                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
538                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
539                 vcpu->arch.dtl_index = 0;
540         }
541         if (vcpu->arch.slb_shadow.update_pending)
542                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
543         spin_unlock(&vcpu->arch.vpa_update_lock);
544 }
545
546 /*
547  * Return the accumulated stolen time for the vcore up until `now'.
548  * The caller should hold the vcore lock.
549  */
550 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
551 {
552         u64 p;
553         unsigned long flags;
554
555         spin_lock_irqsave(&vc->stoltb_lock, flags);
556         p = vc->stolen_tb;
557         if (vc->vcore_state != VCORE_INACTIVE &&
558             vc->preempt_tb != TB_NIL)
559                 p += now - vc->preempt_tb;
560         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
561         return p;
562 }
563
564 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
565                                     struct kvmppc_vcore *vc)
566 {
567         struct dtl_entry *dt;
568         struct lppaca *vpa;
569         unsigned long stolen;
570         unsigned long core_stolen;
571         u64 now;
572
573         dt = vcpu->arch.dtl_ptr;
574         vpa = vcpu->arch.vpa.pinned_addr;
575         now = mftb();
576         core_stolen = vcore_stolen_time(vc, now);
577         stolen = core_stolen - vcpu->arch.stolen_logged;
578         vcpu->arch.stolen_logged = core_stolen;
579         spin_lock_irq(&vcpu->arch.tbacct_lock);
580         stolen += vcpu->arch.busy_stolen;
581         vcpu->arch.busy_stolen = 0;
582         spin_unlock_irq(&vcpu->arch.tbacct_lock);
583         if (!dt || !vpa)
584                 return;
585         memset(dt, 0, sizeof(struct dtl_entry));
586         dt->dispatch_reason = 7;
587         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
588         dt->timebase = cpu_to_be64(now + vc->tb_offset);
589         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
590         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
591         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
592         ++dt;
593         if (dt == vcpu->arch.dtl.pinned_end)
594                 dt = vcpu->arch.dtl.pinned_addr;
595         vcpu->arch.dtl_ptr = dt;
596         /* order writing *dt vs. writing vpa->dtl_idx */
597         smp_wmb();
598         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
599         vcpu->arch.dtl.dirty = true;
600 }
601
602 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
603 {
604         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
605                 return true;
606         if ((!vcpu->arch.vcore->arch_compat) &&
607             cpu_has_feature(CPU_FTR_ARCH_207S))
608                 return true;
609         return false;
610 }
611
612 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
613                              unsigned long resource, unsigned long value1,
614                              unsigned long value2)
615 {
616         switch (resource) {
617         case H_SET_MODE_RESOURCE_SET_CIABR:
618                 if (!kvmppc_power8_compatible(vcpu))
619                         return H_P2;
620                 if (value2)
621                         return H_P4;
622                 if (mflags)
623                         return H_UNSUPPORTED_FLAG_START;
624                 /* Guests can't breakpoint the hypervisor */
625                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
626                         return H_P3;
627                 vcpu->arch.ciabr  = value1;
628                 return H_SUCCESS;
629         case H_SET_MODE_RESOURCE_SET_DAWR:
630                 if (!kvmppc_power8_compatible(vcpu))
631                         return H_P2;
632                 if (mflags)
633                         return H_UNSUPPORTED_FLAG_START;
634                 if (value2 & DABRX_HYP)
635                         return H_P4;
636                 vcpu->arch.dawr  = value1;
637                 vcpu->arch.dawrx = value2;
638                 return H_SUCCESS;
639         default:
640                 return H_TOO_HARD;
641         }
642 }
643
644 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
645 {
646         struct kvmppc_vcore *vcore = target->arch.vcore;
647
648         /*
649          * We expect to have been called by the real mode handler
650          * (kvmppc_rm_h_confer()) which would have directly returned
651          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
652          * have useful work to do and should not confer) so we don't
653          * recheck that here.
654          */
655
656         spin_lock(&vcore->lock);
657         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
658             vcore->vcore_state != VCORE_INACTIVE &&
659             vcore->runner)
660                 target = vcore->runner;
661         spin_unlock(&vcore->lock);
662
663         return kvm_vcpu_yield_to(target);
664 }
665
666 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
667 {
668         int yield_count = 0;
669         struct lppaca *lppaca;
670
671         spin_lock(&vcpu->arch.vpa_update_lock);
672         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
673         if (lppaca)
674                 yield_count = be32_to_cpu(lppaca->yield_count);
675         spin_unlock(&vcpu->arch.vpa_update_lock);
676         return yield_count;
677 }
678
679 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
680 {
681         unsigned long req = kvmppc_get_gpr(vcpu, 3);
682         unsigned long target, ret = H_SUCCESS;
683         int yield_count;
684         struct kvm_vcpu *tvcpu;
685         int idx, rc;
686
687         if (req <= MAX_HCALL_OPCODE &&
688             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
689                 return RESUME_HOST;
690
691         switch (req) {
692         case H_CEDE:
693                 break;
694         case H_PROD:
695                 target = kvmppc_get_gpr(vcpu, 4);
696                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
697                 if (!tvcpu) {
698                         ret = H_PARAMETER;
699                         break;
700                 }
701                 tvcpu->arch.prodded = 1;
702                 smp_mb();
703                 if (vcpu->arch.ceded) {
704                         if (waitqueue_active(&vcpu->wq)) {
705                                 wake_up_interruptible(&vcpu->wq);
706                                 vcpu->stat.halt_wakeup++;
707                         }
708                 }
709                 break;
710         case H_CONFER:
711                 target = kvmppc_get_gpr(vcpu, 4);
712                 if (target == -1)
713                         break;
714                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
715                 if (!tvcpu) {
716                         ret = H_PARAMETER;
717                         break;
718                 }
719                 yield_count = kvmppc_get_gpr(vcpu, 5);
720                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
721                         break;
722                 kvm_arch_vcpu_yield_to(tvcpu);
723                 break;
724         case H_REGISTER_VPA:
725                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
726                                         kvmppc_get_gpr(vcpu, 5),
727                                         kvmppc_get_gpr(vcpu, 6));
728                 break;
729         case H_RTAS:
730                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
731                         return RESUME_HOST;
732
733                 idx = srcu_read_lock(&vcpu->kvm->srcu);
734                 rc = kvmppc_rtas_hcall(vcpu);
735                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
736
737                 if (rc == -ENOENT)
738                         return RESUME_HOST;
739                 else if (rc == 0)
740                         break;
741
742                 /* Send the error out to userspace via KVM_RUN */
743                 return rc;
744         case H_LOGICAL_CI_LOAD:
745                 ret = kvmppc_h_logical_ci_load(vcpu);
746                 if (ret == H_TOO_HARD)
747                         return RESUME_HOST;
748                 break;
749         case H_LOGICAL_CI_STORE:
750                 ret = kvmppc_h_logical_ci_store(vcpu);
751                 if (ret == H_TOO_HARD)
752                         return RESUME_HOST;
753                 break;
754         case H_SET_MODE:
755                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
756                                         kvmppc_get_gpr(vcpu, 5),
757                                         kvmppc_get_gpr(vcpu, 6),
758                                         kvmppc_get_gpr(vcpu, 7));
759                 if (ret == H_TOO_HARD)
760                         return RESUME_HOST;
761                 break;
762         case H_XIRR:
763         case H_CPPR:
764         case H_EOI:
765         case H_IPI:
766         case H_IPOLL:
767         case H_XIRR_X:
768                 if (kvmppc_xics_enabled(vcpu)) {
769                         ret = kvmppc_xics_hcall(vcpu, req);
770                         break;
771                 } /* fallthrough */
772         default:
773                 return RESUME_HOST;
774         }
775         kvmppc_set_gpr(vcpu, 3, ret);
776         vcpu->arch.hcall_needed = 0;
777         return RESUME_GUEST;
778 }
779
780 static int kvmppc_hcall_impl_hv(unsigned long cmd)
781 {
782         switch (cmd) {
783         case H_CEDE:
784         case H_PROD:
785         case H_CONFER:
786         case H_REGISTER_VPA:
787         case H_SET_MODE:
788         case H_LOGICAL_CI_LOAD:
789         case H_LOGICAL_CI_STORE:
790 #ifdef CONFIG_KVM_XICS
791         case H_XIRR:
792         case H_CPPR:
793         case H_EOI:
794         case H_IPI:
795         case H_IPOLL:
796         case H_XIRR_X:
797 #endif
798                 return 1;
799         }
800
801         /* See if it's in the real-mode table */
802         return kvmppc_hcall_impl_hv_realmode(cmd);
803 }
804
805 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
806                                         struct kvm_vcpu *vcpu)
807 {
808         u32 last_inst;
809
810         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
811                                         EMULATE_DONE) {
812                 /*
813                  * Fetch failed, so return to guest and
814                  * try executing it again.
815                  */
816                 return RESUME_GUEST;
817         }
818
819         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
820                 run->exit_reason = KVM_EXIT_DEBUG;
821                 run->debug.arch.address = kvmppc_get_pc(vcpu);
822                 return RESUME_HOST;
823         } else {
824                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
825                 return RESUME_GUEST;
826         }
827 }
828
829 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
830                                  struct task_struct *tsk)
831 {
832         int r = RESUME_HOST;
833
834         vcpu->stat.sum_exits++;
835
836         /*
837          * This can happen if an interrupt occurs in the last stages
838          * of guest entry or the first stages of guest exit (i.e. after
839          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
840          * and before setting it to KVM_GUEST_MODE_HOST_HV).
841          * That can happen due to a bug, or due to a machine check
842          * occurring at just the wrong time.
843          */
844         if (vcpu->arch.shregs.msr & MSR_HV) {
845                 printk(KERN_EMERG "KVM trap in HV mode!\n");
846                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
847                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
848                         vcpu->arch.shregs.msr);
849                 kvmppc_dump_regs(vcpu);
850                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
851                 run->hw.hardware_exit_reason = vcpu->arch.trap;
852                 return RESUME_HOST;
853         }
854         run->exit_reason = KVM_EXIT_UNKNOWN;
855         run->ready_for_interrupt_injection = 1;
856         switch (vcpu->arch.trap) {
857         /* We're good on these - the host merely wanted to get our attention */
858         case BOOK3S_INTERRUPT_HV_DECREMENTER:
859                 vcpu->stat.dec_exits++;
860                 r = RESUME_GUEST;
861                 break;
862         case BOOK3S_INTERRUPT_EXTERNAL:
863         case BOOK3S_INTERRUPT_H_DOORBELL:
864                 vcpu->stat.ext_intr_exits++;
865                 r = RESUME_GUEST;
866                 break;
867         /* HMI is hypervisor interrupt and host has handled it. Resume guest.*/
868         case BOOK3S_INTERRUPT_HMI:
869         case BOOK3S_INTERRUPT_PERFMON:
870                 r = RESUME_GUEST;
871                 break;
872         case BOOK3S_INTERRUPT_MACHINE_CHECK:
873                 /*
874                  * Deliver a machine check interrupt to the guest.
875                  * We have to do this, even if the host has handled the
876                  * machine check, because machine checks use SRR0/1 and
877                  * the interrupt might have trashed guest state in them.
878                  */
879                 kvmppc_book3s_queue_irqprio(vcpu,
880                                             BOOK3S_INTERRUPT_MACHINE_CHECK);
881                 r = RESUME_GUEST;
882                 break;
883         case BOOK3S_INTERRUPT_PROGRAM:
884         {
885                 ulong flags;
886                 /*
887                  * Normally program interrupts are delivered directly
888                  * to the guest by the hardware, but we can get here
889                  * as a result of a hypervisor emulation interrupt
890                  * (e40) getting turned into a 700 by BML RTAS.
891                  */
892                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
893                 kvmppc_core_queue_program(vcpu, flags);
894                 r = RESUME_GUEST;
895                 break;
896         }
897         case BOOK3S_INTERRUPT_SYSCALL:
898         {
899                 /* hcall - punt to userspace */
900                 int i;
901
902                 /* hypercall with MSR_PR has already been handled in rmode,
903                  * and never reaches here.
904                  */
905
906                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
907                 for (i = 0; i < 9; ++i)
908                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
909                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
910                 vcpu->arch.hcall_needed = 1;
911                 r = RESUME_HOST;
912                 break;
913         }
914         /*
915          * We get these next two if the guest accesses a page which it thinks
916          * it has mapped but which is not actually present, either because
917          * it is for an emulated I/O device or because the corresonding
918          * host page has been paged out.  Any other HDSI/HISI interrupts
919          * have been handled already.
920          */
921         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
922                 r = RESUME_PAGE_FAULT;
923                 break;
924         case BOOK3S_INTERRUPT_H_INST_STORAGE:
925                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
926                 vcpu->arch.fault_dsisr = 0;
927                 r = RESUME_PAGE_FAULT;
928                 break;
929         /*
930          * This occurs if the guest executes an illegal instruction.
931          * If the guest debug is disabled, generate a program interrupt
932          * to the guest. If guest debug is enabled, we need to check
933          * whether the instruction is a software breakpoint instruction.
934          * Accordingly return to Guest or Host.
935          */
936         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
937                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
938                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
939                                 swab32(vcpu->arch.emul_inst) :
940                                 vcpu->arch.emul_inst;
941                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
942                         r = kvmppc_emulate_debug_inst(run, vcpu);
943                 } else {
944                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
945                         r = RESUME_GUEST;
946                 }
947                 break;
948         /*
949          * This occurs if the guest (kernel or userspace), does something that
950          * is prohibited by HFSCR.  We just generate a program interrupt to
951          * the guest.
952          */
953         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
954                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
955                 r = RESUME_GUEST;
956                 break;
957         default:
958                 kvmppc_dump_regs(vcpu);
959                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
960                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
961                         vcpu->arch.shregs.msr);
962                 run->hw.hardware_exit_reason = vcpu->arch.trap;
963                 r = RESUME_HOST;
964                 break;
965         }
966
967         return r;
968 }
969
970 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
971                                             struct kvm_sregs *sregs)
972 {
973         int i;
974
975         memset(sregs, 0, sizeof(struct kvm_sregs));
976         sregs->pvr = vcpu->arch.pvr;
977         for (i = 0; i < vcpu->arch.slb_max; i++) {
978                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
979                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
980         }
981
982         return 0;
983 }
984
985 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
986                                             struct kvm_sregs *sregs)
987 {
988         int i, j;
989
990         /* Only accept the same PVR as the host's, since we can't spoof it */
991         if (sregs->pvr != vcpu->arch.pvr)
992                 return -EINVAL;
993
994         j = 0;
995         for (i = 0; i < vcpu->arch.slb_nr; i++) {
996                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
997                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
998                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
999                         ++j;
1000                 }
1001         }
1002         vcpu->arch.slb_max = j;
1003
1004         return 0;
1005 }
1006
1007 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1008                 bool preserve_top32)
1009 {
1010         struct kvm *kvm = vcpu->kvm;
1011         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1012         u64 mask;
1013
1014         mutex_lock(&kvm->lock);
1015         spin_lock(&vc->lock);
1016         /*
1017          * If ILE (interrupt little-endian) has changed, update the
1018          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1019          */
1020         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1021                 struct kvm_vcpu *vcpu;
1022                 int i;
1023
1024                 kvm_for_each_vcpu(i, vcpu, kvm) {
1025                         if (vcpu->arch.vcore != vc)
1026                                 continue;
1027                         if (new_lpcr & LPCR_ILE)
1028                                 vcpu->arch.intr_msr |= MSR_LE;
1029                         else
1030                                 vcpu->arch.intr_msr &= ~MSR_LE;
1031                 }
1032         }
1033
1034         /*
1035          * Userspace can only modify DPFD (default prefetch depth),
1036          * ILE (interrupt little-endian) and TC (translation control).
1037          * On POWER8 userspace can also modify AIL (alt. interrupt loc.)
1038          */
1039         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1040         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1041                 mask |= LPCR_AIL;
1042
1043         /* Broken 32-bit version of LPCR must not clear top bits */
1044         if (preserve_top32)
1045                 mask &= 0xFFFFFFFF;
1046         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1047         spin_unlock(&vc->lock);
1048         mutex_unlock(&kvm->lock);
1049 }
1050
1051 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1052                                  union kvmppc_one_reg *val)
1053 {
1054         int r = 0;
1055         long int i;
1056
1057         switch (id) {
1058         case KVM_REG_PPC_DEBUG_INST:
1059                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1060                 break;
1061         case KVM_REG_PPC_HIOR:
1062                 *val = get_reg_val(id, 0);
1063                 break;
1064         case KVM_REG_PPC_DABR:
1065                 *val = get_reg_val(id, vcpu->arch.dabr);
1066                 break;
1067         case KVM_REG_PPC_DABRX:
1068                 *val = get_reg_val(id, vcpu->arch.dabrx);
1069                 break;
1070         case KVM_REG_PPC_DSCR:
1071                 *val = get_reg_val(id, vcpu->arch.dscr);
1072                 break;
1073         case KVM_REG_PPC_PURR:
1074                 *val = get_reg_val(id, vcpu->arch.purr);
1075                 break;
1076         case KVM_REG_PPC_SPURR:
1077                 *val = get_reg_val(id, vcpu->arch.spurr);
1078                 break;
1079         case KVM_REG_PPC_AMR:
1080                 *val = get_reg_val(id, vcpu->arch.amr);
1081                 break;
1082         case KVM_REG_PPC_UAMOR:
1083                 *val = get_reg_val(id, vcpu->arch.uamor);
1084                 break;
1085         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1086                 i = id - KVM_REG_PPC_MMCR0;
1087                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1088                 break;
1089         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1090                 i = id - KVM_REG_PPC_PMC1;
1091                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1092                 break;
1093         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1094                 i = id - KVM_REG_PPC_SPMC1;
1095                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1096                 break;
1097         case KVM_REG_PPC_SIAR:
1098                 *val = get_reg_val(id, vcpu->arch.siar);
1099                 break;
1100         case KVM_REG_PPC_SDAR:
1101                 *val = get_reg_val(id, vcpu->arch.sdar);
1102                 break;
1103         case KVM_REG_PPC_SIER:
1104                 *val = get_reg_val(id, vcpu->arch.sier);
1105                 break;
1106         case KVM_REG_PPC_IAMR:
1107                 *val = get_reg_val(id, vcpu->arch.iamr);
1108                 break;
1109         case KVM_REG_PPC_PSPB:
1110                 *val = get_reg_val(id, vcpu->arch.pspb);
1111                 break;
1112         case KVM_REG_PPC_DPDES:
1113                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1114                 break;
1115         case KVM_REG_PPC_DAWR:
1116                 *val = get_reg_val(id, vcpu->arch.dawr);
1117                 break;
1118         case KVM_REG_PPC_DAWRX:
1119                 *val = get_reg_val(id, vcpu->arch.dawrx);
1120                 break;
1121         case KVM_REG_PPC_CIABR:
1122                 *val = get_reg_val(id, vcpu->arch.ciabr);
1123                 break;
1124         case KVM_REG_PPC_CSIGR:
1125                 *val = get_reg_val(id, vcpu->arch.csigr);
1126                 break;
1127         case KVM_REG_PPC_TACR:
1128                 *val = get_reg_val(id, vcpu->arch.tacr);
1129                 break;
1130         case KVM_REG_PPC_TCSCR:
1131                 *val = get_reg_val(id, vcpu->arch.tcscr);
1132                 break;
1133         case KVM_REG_PPC_PID:
1134                 *val = get_reg_val(id, vcpu->arch.pid);
1135                 break;
1136         case KVM_REG_PPC_ACOP:
1137                 *val = get_reg_val(id, vcpu->arch.acop);
1138                 break;
1139         case KVM_REG_PPC_WORT:
1140                 *val = get_reg_val(id, vcpu->arch.wort);
1141                 break;
1142         case KVM_REG_PPC_VPA_ADDR:
1143                 spin_lock(&vcpu->arch.vpa_update_lock);
1144                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1145                 spin_unlock(&vcpu->arch.vpa_update_lock);
1146                 break;
1147         case KVM_REG_PPC_VPA_SLB:
1148                 spin_lock(&vcpu->arch.vpa_update_lock);
1149                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1150                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1151                 spin_unlock(&vcpu->arch.vpa_update_lock);
1152                 break;
1153         case KVM_REG_PPC_VPA_DTL:
1154                 spin_lock(&vcpu->arch.vpa_update_lock);
1155                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1156                 val->vpaval.length = vcpu->arch.dtl.len;
1157                 spin_unlock(&vcpu->arch.vpa_update_lock);
1158                 break;
1159         case KVM_REG_PPC_TB_OFFSET:
1160                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1161                 break;
1162         case KVM_REG_PPC_LPCR:
1163         case KVM_REG_PPC_LPCR_64:
1164                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1165                 break;
1166         case KVM_REG_PPC_PPR:
1167                 *val = get_reg_val(id, vcpu->arch.ppr);
1168                 break;
1169 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1170         case KVM_REG_PPC_TFHAR:
1171                 *val = get_reg_val(id, vcpu->arch.tfhar);
1172                 break;
1173         case KVM_REG_PPC_TFIAR:
1174                 *val = get_reg_val(id, vcpu->arch.tfiar);
1175                 break;
1176         case KVM_REG_PPC_TEXASR:
1177                 *val = get_reg_val(id, vcpu->arch.texasr);
1178                 break;
1179         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1180                 i = id - KVM_REG_PPC_TM_GPR0;
1181                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1182                 break;
1183         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1184         {
1185                 int j;
1186                 i = id - KVM_REG_PPC_TM_VSR0;
1187                 if (i < 32)
1188                         for (j = 0; j < TS_FPRWIDTH; j++)
1189                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1190                 else {
1191                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1192                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1193                         else
1194                                 r = -ENXIO;
1195                 }
1196                 break;
1197         }
1198         case KVM_REG_PPC_TM_CR:
1199                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1200                 break;
1201         case KVM_REG_PPC_TM_LR:
1202                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1203                 break;
1204         case KVM_REG_PPC_TM_CTR:
1205                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1206                 break;
1207         case KVM_REG_PPC_TM_FPSCR:
1208                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1209                 break;
1210         case KVM_REG_PPC_TM_AMR:
1211                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1212                 break;
1213         case KVM_REG_PPC_TM_PPR:
1214                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1215                 break;
1216         case KVM_REG_PPC_TM_VRSAVE:
1217                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1218                 break;
1219         case KVM_REG_PPC_TM_VSCR:
1220                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1221                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1222                 else
1223                         r = -ENXIO;
1224                 break;
1225         case KVM_REG_PPC_TM_DSCR:
1226                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1227                 break;
1228         case KVM_REG_PPC_TM_TAR:
1229                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1230                 break;
1231 #endif
1232         case KVM_REG_PPC_ARCH_COMPAT:
1233                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1234                 break;
1235         default:
1236                 r = -EINVAL;
1237                 break;
1238         }
1239
1240         return r;
1241 }
1242
1243 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1244                                  union kvmppc_one_reg *val)
1245 {
1246         int r = 0;
1247         long int i;
1248         unsigned long addr, len;
1249
1250         switch (id) {
1251         case KVM_REG_PPC_HIOR:
1252                 /* Only allow this to be set to zero */
1253                 if (set_reg_val(id, *val))
1254                         r = -EINVAL;
1255                 break;
1256         case KVM_REG_PPC_DABR:
1257                 vcpu->arch.dabr = set_reg_val(id, *val);
1258                 break;
1259         case KVM_REG_PPC_DABRX:
1260                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1261                 break;
1262         case KVM_REG_PPC_DSCR:
1263                 vcpu->arch.dscr = set_reg_val(id, *val);
1264                 break;
1265         case KVM_REG_PPC_PURR:
1266                 vcpu->arch.purr = set_reg_val(id, *val);
1267                 break;
1268         case KVM_REG_PPC_SPURR:
1269                 vcpu->arch.spurr = set_reg_val(id, *val);
1270                 break;
1271         case KVM_REG_PPC_AMR:
1272                 vcpu->arch.amr = set_reg_val(id, *val);
1273                 break;
1274         case KVM_REG_PPC_UAMOR:
1275                 vcpu->arch.uamor = set_reg_val(id, *val);
1276                 break;
1277         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1278                 i = id - KVM_REG_PPC_MMCR0;
1279                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1280                 break;
1281         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1282                 i = id - KVM_REG_PPC_PMC1;
1283                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1284                 break;
1285         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1286                 i = id - KVM_REG_PPC_SPMC1;
1287                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1288                 break;
1289         case KVM_REG_PPC_SIAR:
1290                 vcpu->arch.siar = set_reg_val(id, *val);
1291                 break;
1292         case KVM_REG_PPC_SDAR:
1293                 vcpu->arch.sdar = set_reg_val(id, *val);
1294                 break;
1295         case KVM_REG_PPC_SIER:
1296                 vcpu->arch.sier = set_reg_val(id, *val);
1297                 break;
1298         case KVM_REG_PPC_IAMR:
1299                 vcpu->arch.iamr = set_reg_val(id, *val);
1300                 break;
1301         case KVM_REG_PPC_PSPB:
1302                 vcpu->arch.pspb = set_reg_val(id, *val);
1303                 break;
1304         case KVM_REG_PPC_DPDES:
1305                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1306                 break;
1307         case KVM_REG_PPC_DAWR:
1308                 vcpu->arch.dawr = set_reg_val(id, *val);
1309                 break;
1310         case KVM_REG_PPC_DAWRX:
1311                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1312                 break;
1313         case KVM_REG_PPC_CIABR:
1314                 vcpu->arch.ciabr = set_reg_val(id, *val);
1315                 /* Don't allow setting breakpoints in hypervisor code */
1316                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1317                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1318                 break;
1319         case KVM_REG_PPC_CSIGR:
1320                 vcpu->arch.csigr = set_reg_val(id, *val);
1321                 break;
1322         case KVM_REG_PPC_TACR:
1323                 vcpu->arch.tacr = set_reg_val(id, *val);
1324                 break;
1325         case KVM_REG_PPC_TCSCR:
1326                 vcpu->arch.tcscr = set_reg_val(id, *val);
1327                 break;
1328         case KVM_REG_PPC_PID:
1329                 vcpu->arch.pid = set_reg_val(id, *val);
1330                 break;
1331         case KVM_REG_PPC_ACOP:
1332                 vcpu->arch.acop = set_reg_val(id, *val);
1333                 break;
1334         case KVM_REG_PPC_WORT:
1335                 vcpu->arch.wort = set_reg_val(id, *val);
1336                 break;
1337         case KVM_REG_PPC_VPA_ADDR:
1338                 addr = set_reg_val(id, *val);
1339                 r = -EINVAL;
1340                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1341                               vcpu->arch.dtl.next_gpa))
1342                         break;
1343                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1344                 break;
1345         case KVM_REG_PPC_VPA_SLB:
1346                 addr = val->vpaval.addr;
1347                 len = val->vpaval.length;
1348                 r = -EINVAL;
1349                 if (addr && !vcpu->arch.vpa.next_gpa)
1350                         break;
1351                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1352                 break;
1353         case KVM_REG_PPC_VPA_DTL:
1354                 addr = val->vpaval.addr;
1355                 len = val->vpaval.length;
1356                 r = -EINVAL;
1357                 if (addr && (len < sizeof(struct dtl_entry) ||
1358                              !vcpu->arch.vpa.next_gpa))
1359                         break;
1360                 len -= len % sizeof(struct dtl_entry);
1361                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1362                 break;
1363         case KVM_REG_PPC_TB_OFFSET:
1364                 /* round up to multiple of 2^24 */
1365                 vcpu->arch.vcore->tb_offset =
1366                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1367                 break;
1368         case KVM_REG_PPC_LPCR:
1369                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1370                 break;
1371         case KVM_REG_PPC_LPCR_64:
1372                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1373                 break;
1374         case KVM_REG_PPC_PPR:
1375                 vcpu->arch.ppr = set_reg_val(id, *val);
1376                 break;
1377 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1378         case KVM_REG_PPC_TFHAR:
1379                 vcpu->arch.tfhar = set_reg_val(id, *val);
1380                 break;
1381         case KVM_REG_PPC_TFIAR:
1382                 vcpu->arch.tfiar = set_reg_val(id, *val);
1383                 break;
1384         case KVM_REG_PPC_TEXASR:
1385                 vcpu->arch.texasr = set_reg_val(id, *val);
1386                 break;
1387         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1388                 i = id - KVM_REG_PPC_TM_GPR0;
1389                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1390                 break;
1391         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1392         {
1393                 int j;
1394                 i = id - KVM_REG_PPC_TM_VSR0;
1395                 if (i < 32)
1396                         for (j = 0; j < TS_FPRWIDTH; j++)
1397                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1398                 else
1399                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1400                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1401                         else
1402                                 r = -ENXIO;
1403                 break;
1404         }
1405         case KVM_REG_PPC_TM_CR:
1406                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1407                 break;
1408         case KVM_REG_PPC_TM_LR:
1409                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1410                 break;
1411         case KVM_REG_PPC_TM_CTR:
1412                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1413                 break;
1414         case KVM_REG_PPC_TM_FPSCR:
1415                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1416                 break;
1417         case KVM_REG_PPC_TM_AMR:
1418                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1419                 break;
1420         case KVM_REG_PPC_TM_PPR:
1421                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1422                 break;
1423         case KVM_REG_PPC_TM_VRSAVE:
1424                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1425                 break;
1426         case KVM_REG_PPC_TM_VSCR:
1427                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1428                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1429                 else
1430                         r = - ENXIO;
1431                 break;
1432         case KVM_REG_PPC_TM_DSCR:
1433                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1434                 break;
1435         case KVM_REG_PPC_TM_TAR:
1436                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1437                 break;
1438 #endif
1439         case KVM_REG_PPC_ARCH_COMPAT:
1440                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1441                 break;
1442         default:
1443                 r = -EINVAL;
1444                 break;
1445         }
1446
1447         return r;
1448 }
1449
1450 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1451 {
1452         struct kvmppc_vcore *vcore;
1453
1454         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1455
1456         if (vcore == NULL)
1457                 return NULL;
1458
1459         INIT_LIST_HEAD(&vcore->runnable_threads);
1460         spin_lock_init(&vcore->lock);
1461         spin_lock_init(&vcore->stoltb_lock);
1462         init_waitqueue_head(&vcore->wq);
1463         vcore->preempt_tb = TB_NIL;
1464         vcore->lpcr = kvm->arch.lpcr;
1465         vcore->first_vcpuid = core * threads_per_subcore;
1466         vcore->kvm = kvm;
1467         INIT_LIST_HEAD(&vcore->preempt_list);
1468
1469         return vcore;
1470 }
1471
1472 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1473 static struct debugfs_timings_element {
1474         const char *name;
1475         size_t offset;
1476 } timings[] = {
1477         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1478         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1479         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1480         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1481         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1482 };
1483
1484 #define N_TIMINGS       (sizeof(timings) / sizeof(timings[0]))
1485
1486 struct debugfs_timings_state {
1487         struct kvm_vcpu *vcpu;
1488         unsigned int    buflen;
1489         char            buf[N_TIMINGS * 100];
1490 };
1491
1492 static int debugfs_timings_open(struct inode *inode, struct file *file)
1493 {
1494         struct kvm_vcpu *vcpu = inode->i_private;
1495         struct debugfs_timings_state *p;
1496
1497         p = kzalloc(sizeof(*p), GFP_KERNEL);
1498         if (!p)
1499                 return -ENOMEM;
1500
1501         kvm_get_kvm(vcpu->kvm);
1502         p->vcpu = vcpu;
1503         file->private_data = p;
1504
1505         return nonseekable_open(inode, file);
1506 }
1507
1508 static int debugfs_timings_release(struct inode *inode, struct file *file)
1509 {
1510         struct debugfs_timings_state *p = file->private_data;
1511
1512         kvm_put_kvm(p->vcpu->kvm);
1513         kfree(p);
1514         return 0;
1515 }
1516
1517 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1518                                     size_t len, loff_t *ppos)
1519 {
1520         struct debugfs_timings_state *p = file->private_data;
1521         struct kvm_vcpu *vcpu = p->vcpu;
1522         char *s, *buf_end;
1523         struct kvmhv_tb_accumulator tb;
1524         u64 count;
1525         loff_t pos;
1526         ssize_t n;
1527         int i, loops;
1528         bool ok;
1529
1530         if (!p->buflen) {
1531                 s = p->buf;
1532                 buf_end = s + sizeof(p->buf);
1533                 for (i = 0; i < N_TIMINGS; ++i) {
1534                         struct kvmhv_tb_accumulator *acc;
1535
1536                         acc = (struct kvmhv_tb_accumulator *)
1537                                 ((unsigned long)vcpu + timings[i].offset);
1538                         ok = false;
1539                         for (loops = 0; loops < 1000; ++loops) {
1540                                 count = acc->seqcount;
1541                                 if (!(count & 1)) {
1542                                         smp_rmb();
1543                                         tb = *acc;
1544                                         smp_rmb();
1545                                         if (count == acc->seqcount) {
1546                                                 ok = true;
1547                                                 break;
1548                                         }
1549                                 }
1550                                 udelay(1);
1551                         }
1552                         if (!ok)
1553                                 snprintf(s, buf_end - s, "%s: stuck\n",
1554                                         timings[i].name);
1555                         else
1556                                 snprintf(s, buf_end - s,
1557                                         "%s: %llu %llu %llu %llu\n",
1558                                         timings[i].name, count / 2,
1559                                         tb_to_ns(tb.tb_total),
1560                                         tb_to_ns(tb.tb_min),
1561                                         tb_to_ns(tb.tb_max));
1562                         s += strlen(s);
1563                 }
1564                 p->buflen = s - p->buf;
1565         }
1566
1567         pos = *ppos;
1568         if (pos >= p->buflen)
1569                 return 0;
1570         if (len > p->buflen - pos)
1571                 len = p->buflen - pos;
1572         n = copy_to_user(buf, p->buf + pos, len);
1573         if (n) {
1574                 if (n == len)
1575                         return -EFAULT;
1576                 len -= n;
1577         }
1578         *ppos = pos + len;
1579         return len;
1580 }
1581
1582 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1583                                      size_t len, loff_t *ppos)
1584 {
1585         return -EACCES;
1586 }
1587
1588 static const struct file_operations debugfs_timings_ops = {
1589         .owner   = THIS_MODULE,
1590         .open    = debugfs_timings_open,
1591         .release = debugfs_timings_release,
1592         .read    = debugfs_timings_read,
1593         .write   = debugfs_timings_write,
1594         .llseek  = generic_file_llseek,
1595 };
1596
1597 /* Create a debugfs directory for the vcpu */
1598 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1599 {
1600         char buf[16];
1601         struct kvm *kvm = vcpu->kvm;
1602
1603         snprintf(buf, sizeof(buf), "vcpu%u", id);
1604         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1605                 return;
1606         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1607         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1608                 return;
1609         vcpu->arch.debugfs_timings =
1610                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1611                                     vcpu, &debugfs_timings_ops);
1612 }
1613
1614 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1615 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1616 {
1617 }
1618 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1619
1620 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1621                                                    unsigned int id)
1622 {
1623         struct kvm_vcpu *vcpu;
1624         int err = -EINVAL;
1625         int core;
1626         struct kvmppc_vcore *vcore;
1627
1628         core = id / threads_per_subcore;
1629         if (core >= KVM_MAX_VCORES)
1630                 goto out;
1631
1632         err = -ENOMEM;
1633         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1634         if (!vcpu)
1635                 goto out;
1636
1637         err = kvm_vcpu_init(vcpu, kvm, id);
1638         if (err)
1639                 goto free_vcpu;
1640
1641         vcpu->arch.shared = &vcpu->arch.shregs;
1642 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1643         /*
1644          * The shared struct is never shared on HV,
1645          * so we can always use host endianness
1646          */
1647 #ifdef __BIG_ENDIAN__
1648         vcpu->arch.shared_big_endian = true;
1649 #else
1650         vcpu->arch.shared_big_endian = false;
1651 #endif
1652 #endif
1653         vcpu->arch.mmcr[0] = MMCR0_FC;
1654         vcpu->arch.ctrl = CTRL_RUNLATCH;
1655         /* default to host PVR, since we can't spoof it */
1656         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1657         spin_lock_init(&vcpu->arch.vpa_update_lock);
1658         spin_lock_init(&vcpu->arch.tbacct_lock);
1659         vcpu->arch.busy_preempt = TB_NIL;
1660         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1661
1662         kvmppc_mmu_book3s_hv_init(vcpu);
1663
1664         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1665
1666         init_waitqueue_head(&vcpu->arch.cpu_run);
1667
1668         mutex_lock(&kvm->lock);
1669         vcore = kvm->arch.vcores[core];
1670         if (!vcore) {
1671                 vcore = kvmppc_vcore_create(kvm, core);
1672                 kvm->arch.vcores[core] = vcore;
1673                 kvm->arch.online_vcores++;
1674         }
1675         mutex_unlock(&kvm->lock);
1676
1677         if (!vcore)
1678                 goto free_vcpu;
1679
1680         spin_lock(&vcore->lock);
1681         ++vcore->num_threads;
1682         spin_unlock(&vcore->lock);
1683         vcpu->arch.vcore = vcore;
1684         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1685         vcpu->arch.thread_cpu = -1;
1686
1687         vcpu->arch.cpu_type = KVM_CPU_3S_64;
1688         kvmppc_sanity_check(vcpu);
1689
1690         debugfs_vcpu_init(vcpu, id);
1691
1692         return vcpu;
1693
1694 free_vcpu:
1695         kmem_cache_free(kvm_vcpu_cache, vcpu);
1696 out:
1697         return ERR_PTR(err);
1698 }
1699
1700 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
1701 {
1702         if (vpa->pinned_addr)
1703                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
1704                                         vpa->dirty);
1705 }
1706
1707 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
1708 {
1709         spin_lock(&vcpu->arch.vpa_update_lock);
1710         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
1711         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
1712         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
1713         spin_unlock(&vcpu->arch.vpa_update_lock);
1714         kvm_vcpu_uninit(vcpu);
1715         kmem_cache_free(kvm_vcpu_cache, vcpu);
1716 }
1717
1718 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
1719 {
1720         /* Indicate we want to get back into the guest */
1721         return 1;
1722 }
1723
1724 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
1725 {
1726         unsigned long dec_nsec, now;
1727
1728         now = get_tb();
1729         if (now > vcpu->arch.dec_expires) {
1730                 /* decrementer has already gone negative */
1731                 kvmppc_core_queue_dec(vcpu);
1732                 kvmppc_core_prepare_to_enter(vcpu);
1733                 return;
1734         }
1735         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
1736                    / tb_ticks_per_sec;
1737         hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
1738                       HRTIMER_MODE_REL);
1739         vcpu->arch.timer_running = 1;
1740 }
1741
1742 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
1743 {
1744         vcpu->arch.ceded = 0;
1745         if (vcpu->arch.timer_running) {
1746                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1747                 vcpu->arch.timer_running = 0;
1748         }
1749 }
1750
1751 extern void __kvmppc_vcore_entry(void);
1752
1753 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
1754                                    struct kvm_vcpu *vcpu)
1755 {
1756         u64 now;
1757
1758         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
1759                 return;
1760         spin_lock_irq(&vcpu->arch.tbacct_lock);
1761         now = mftb();
1762         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
1763                 vcpu->arch.stolen_logged;
1764         vcpu->arch.busy_preempt = now;
1765         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
1766         spin_unlock_irq(&vcpu->arch.tbacct_lock);
1767         --vc->n_runnable;
1768         list_del(&vcpu->arch.run_list);
1769 }
1770
1771 static int kvmppc_grab_hwthread(int cpu)
1772 {
1773         struct paca_struct *tpaca;
1774         long timeout = 10000;
1775
1776         tpaca = &paca[cpu];
1777
1778         /* Ensure the thread won't go into the kernel if it wakes */
1779         tpaca->kvm_hstate.kvm_vcpu = NULL;
1780         tpaca->kvm_hstate.kvm_vcore = NULL;
1781         tpaca->kvm_hstate.napping = 0;
1782         smp_wmb();
1783         tpaca->kvm_hstate.hwthread_req = 1;
1784
1785         /*
1786          * If the thread is already executing in the kernel (e.g. handling
1787          * a stray interrupt), wait for it to get back to nap mode.
1788          * The smp_mb() is to ensure that our setting of hwthread_req
1789          * is visible before we look at hwthread_state, so if this
1790          * races with the code at system_reset_pSeries and the thread
1791          * misses our setting of hwthread_req, we are sure to see its
1792          * setting of hwthread_state, and vice versa.
1793          */
1794         smp_mb();
1795         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
1796                 if (--timeout <= 0) {
1797                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
1798                         return -EBUSY;
1799                 }
1800                 udelay(1);
1801         }
1802         return 0;
1803 }
1804
1805 static void kvmppc_release_hwthread(int cpu)
1806 {
1807         struct paca_struct *tpaca;
1808
1809         tpaca = &paca[cpu];
1810         tpaca->kvm_hstate.hwthread_req = 0;
1811         tpaca->kvm_hstate.kvm_vcpu = NULL;
1812         tpaca->kvm_hstate.kvm_vcore = NULL;
1813         tpaca->kvm_hstate.kvm_split_mode = NULL;
1814 }
1815
1816 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
1817 {
1818         int cpu;
1819         struct paca_struct *tpaca;
1820         struct kvmppc_vcore *mvc = vc->master_vcore;
1821
1822         cpu = vc->pcpu;
1823         if (vcpu) {
1824                 if (vcpu->arch.timer_running) {
1825                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
1826                         vcpu->arch.timer_running = 0;
1827                 }
1828                 cpu += vcpu->arch.ptid;
1829                 vcpu->cpu = mvc->pcpu;
1830                 vcpu->arch.thread_cpu = cpu;
1831         }
1832         tpaca = &paca[cpu];
1833         tpaca->kvm_hstate.kvm_vcpu = vcpu;
1834         tpaca->kvm_hstate.ptid = cpu - mvc->pcpu;
1835         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
1836         smp_wmb();
1837         tpaca->kvm_hstate.kvm_vcore = mvc;
1838         if (cpu != smp_processor_id())
1839                 kvmppc_ipi_thread(cpu);
1840 }
1841
1842 static void kvmppc_wait_for_nap(void)
1843 {
1844         int cpu = smp_processor_id();
1845         int i, loops;
1846
1847         for (loops = 0; loops < 1000000; ++loops) {
1848                 /*
1849                  * Check if all threads are finished.
1850                  * We set the vcore pointer when starting a thread
1851                  * and the thread clears it when finished, so we look
1852                  * for any threads that still have a non-NULL vcore ptr.
1853                  */
1854                 for (i = 1; i < threads_per_subcore; ++i)
1855                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
1856                                 break;
1857                 if (i == threads_per_subcore) {
1858                         HMT_medium();
1859                         return;
1860                 }
1861                 HMT_low();
1862         }
1863         HMT_medium();
1864         for (i = 1; i < threads_per_subcore; ++i)
1865                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
1866                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
1867 }
1868
1869 /*
1870  * Check that we are on thread 0 and that any other threads in
1871  * this core are off-line.  Then grab the threads so they can't
1872  * enter the kernel.
1873  */
1874 static int on_primary_thread(void)
1875 {
1876         int cpu = smp_processor_id();
1877         int thr;
1878
1879         /* Are we on a primary subcore? */
1880         if (cpu_thread_in_subcore(cpu))
1881                 return 0;
1882
1883         thr = 0;
1884         while (++thr < threads_per_subcore)
1885                 if (cpu_online(cpu + thr))
1886                         return 0;
1887
1888         /* Grab all hw threads so they can't go into the kernel */
1889         for (thr = 1; thr < threads_per_subcore; ++thr) {
1890                 if (kvmppc_grab_hwthread(cpu + thr)) {
1891                         /* Couldn't grab one; let the others go */
1892                         do {
1893                                 kvmppc_release_hwthread(cpu + thr);
1894                         } while (--thr > 0);
1895                         return 0;
1896                 }
1897         }
1898         return 1;
1899 }
1900
1901 /*
1902  * A list of virtual cores for each physical CPU.
1903  * These are vcores that could run but their runner VCPU tasks are
1904  * (or may be) preempted.
1905  */
1906 struct preempted_vcore_list {
1907         struct list_head        list;
1908         spinlock_t              lock;
1909 };
1910
1911 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
1912
1913 static void init_vcore_lists(void)
1914 {
1915         int cpu;
1916
1917         for_each_possible_cpu(cpu) {
1918                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
1919                 spin_lock_init(&lp->lock);
1920                 INIT_LIST_HEAD(&lp->list);
1921         }
1922 }
1923
1924 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
1925 {
1926         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
1927
1928         vc->vcore_state = VCORE_PREEMPT;
1929         vc->pcpu = smp_processor_id();
1930         if (vc->num_threads < threads_per_subcore) {
1931                 spin_lock(&lp->lock);
1932                 list_add_tail(&vc->preempt_list, &lp->list);
1933                 spin_unlock(&lp->lock);
1934         }
1935
1936         /* Start accumulating stolen time */
1937         kvmppc_core_start_stolen(vc);
1938 }
1939
1940 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
1941 {
1942         struct preempted_vcore_list *lp;
1943
1944         kvmppc_core_end_stolen(vc);
1945         if (!list_empty(&vc->preempt_list)) {
1946                 lp = &per_cpu(preempted_vcores, vc->pcpu);
1947                 spin_lock(&lp->lock);
1948                 list_del_init(&vc->preempt_list);
1949                 spin_unlock(&lp->lock);
1950         }
1951         vc->vcore_state = VCORE_INACTIVE;
1952 }
1953
1954 /*
1955  * This stores information about the virtual cores currently
1956  * assigned to a physical core.
1957  */
1958 struct core_info {
1959         int             n_subcores;
1960         int             max_subcore_threads;
1961         int             total_threads;
1962         int             subcore_threads[MAX_SUBCORES];
1963         struct kvm      *subcore_vm[MAX_SUBCORES];
1964         struct list_head vcs[MAX_SUBCORES];
1965 };
1966
1967 /*
1968  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
1969  * respectively in 2-way micro-threading (split-core) mode.
1970  */
1971 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
1972
1973 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
1974 {
1975         int sub;
1976
1977         memset(cip, 0, sizeof(*cip));
1978         cip->n_subcores = 1;
1979         cip->max_subcore_threads = vc->num_threads;
1980         cip->total_threads = vc->num_threads;
1981         cip->subcore_threads[0] = vc->num_threads;
1982         cip->subcore_vm[0] = vc->kvm;
1983         for (sub = 0; sub < MAX_SUBCORES; ++sub)
1984                 INIT_LIST_HEAD(&cip->vcs[sub]);
1985         list_add_tail(&vc->preempt_list, &cip->vcs[0]);
1986 }
1987
1988 static bool subcore_config_ok(int n_subcores, int n_threads)
1989 {
1990         /* Can only dynamically split if unsplit to begin with */
1991         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
1992                 return false;
1993         if (n_subcores > MAX_SUBCORES)
1994                 return false;
1995         if (n_subcores > 1) {
1996                 if (!(dynamic_mt_modes & 2))
1997                         n_subcores = 4;
1998                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
1999                         return false;
2000         }
2001
2002         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2003 }
2004
2005 static void init_master_vcore(struct kvmppc_vcore *vc)
2006 {
2007         vc->master_vcore = vc;
2008         vc->entry_exit_map = 0;
2009         vc->in_guest = 0;
2010         vc->napping_threads = 0;
2011         vc->conferring_threads = 0;
2012 }
2013
2014 /*
2015  * See if the existing subcores can be split into 3 (or fewer) subcores
2016  * of at most two threads each, so we can fit in another vcore.  This
2017  * assumes there are at most two subcores and at most 6 threads in total.
2018  */
2019 static bool can_split_piggybacked_subcores(struct core_info *cip)
2020 {
2021         int sub, new_sub;
2022         int large_sub = -1;
2023         int thr;
2024         int n_subcores = cip->n_subcores;
2025         struct kvmppc_vcore *vc, *vcnext;
2026         struct kvmppc_vcore *master_vc = NULL;
2027
2028         for (sub = 0; sub < cip->n_subcores; ++sub) {
2029                 if (cip->subcore_threads[sub] <= 2)
2030                         continue;
2031                 if (large_sub >= 0)
2032                         return false;
2033                 large_sub = sub;
2034                 vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2035                                       preempt_list);
2036                 if (vc->num_threads > 2)
2037                         return false;
2038                 n_subcores += (cip->subcore_threads[sub] - 1) >> 1;
2039         }
2040         if (large_sub < 0 || !subcore_config_ok(n_subcores + 1, 2))
2041                 return false;
2042
2043         /*
2044          * Seems feasible, so go through and move vcores to new subcores.
2045          * Note that when we have two or more vcores in one subcore,
2046          * all those vcores must have only one thread each.
2047          */
2048         new_sub = cip->n_subcores;
2049         thr = 0;
2050         sub = large_sub;
2051         list_for_each_entry_safe(vc, vcnext, &cip->vcs[sub], preempt_list) {
2052                 if (thr >= 2) {
2053                         list_del(&vc->preempt_list);
2054                         list_add_tail(&vc->preempt_list, &cip->vcs[new_sub]);
2055                         /* vc->num_threads must be 1 */
2056                         if (++cip->subcore_threads[new_sub] == 1) {
2057                                 cip->subcore_vm[new_sub] = vc->kvm;
2058                                 init_master_vcore(vc);
2059                                 master_vc = vc;
2060                                 ++cip->n_subcores;
2061                         } else {
2062                                 vc->master_vcore = master_vc;
2063                                 ++new_sub;
2064                         }
2065                 }
2066                 thr += vc->num_threads;
2067         }
2068         cip->subcore_threads[large_sub] = 2;
2069         cip->max_subcore_threads = 2;
2070
2071         return true;
2072 }
2073
2074 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2075 {
2076         int n_threads = vc->num_threads;
2077         int sub;
2078
2079         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2080                 return false;
2081
2082         if (n_threads < cip->max_subcore_threads)
2083                 n_threads = cip->max_subcore_threads;
2084         if (subcore_config_ok(cip->n_subcores + 1, n_threads)) {
2085                 cip->max_subcore_threads = n_threads;
2086         } else if (cip->n_subcores <= 2 && cip->total_threads <= 6 &&
2087                    vc->num_threads <= 2) {
2088                 /*
2089                  * We may be able to fit another subcore in by
2090                  * splitting an existing subcore with 3 or 4
2091                  * threads into two 2-thread subcores, or one
2092                  * with 5 or 6 threads into three subcores.
2093                  * We can only do this if those subcores have
2094                  * piggybacked virtual cores.
2095                  */
2096                 if (!can_split_piggybacked_subcores(cip))
2097                         return false;
2098         } else {
2099                 return false;
2100         }
2101
2102         sub = cip->n_subcores;
2103         ++cip->n_subcores;
2104         cip->total_threads += vc->num_threads;
2105         cip->subcore_threads[sub] = vc->num_threads;
2106         cip->subcore_vm[sub] = vc->kvm;
2107         init_master_vcore(vc);
2108         list_del(&vc->preempt_list);
2109         list_add_tail(&vc->preempt_list, &cip->vcs[sub]);
2110
2111         return true;
2112 }
2113
2114 static bool can_piggyback_subcore(struct kvmppc_vcore *pvc,
2115                                   struct core_info *cip, int sub)
2116 {
2117         struct kvmppc_vcore *vc;
2118         int n_thr;
2119
2120         vc = list_first_entry(&cip->vcs[sub], struct kvmppc_vcore,
2121                               preempt_list);
2122
2123         /* require same VM and same per-core reg values */
2124         if (pvc->kvm != vc->kvm ||
2125             pvc->tb_offset != vc->tb_offset ||
2126             pvc->pcr != vc->pcr ||
2127             pvc->lpcr != vc->lpcr)
2128                 return false;
2129
2130         /* P8 guest with > 1 thread per core would see wrong TIR value */
2131         if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2132             (vc->num_threads > 1 || pvc->num_threads > 1))
2133                 return false;
2134
2135         n_thr = cip->subcore_threads[sub] + pvc->num_threads;
2136         if (n_thr > cip->max_subcore_threads) {
2137                 if (!subcore_config_ok(cip->n_subcores, n_thr))
2138                         return false;
2139                 cip->max_subcore_threads = n_thr;
2140         }
2141
2142         cip->total_threads += pvc->num_threads;
2143         cip->subcore_threads[sub] = n_thr;
2144         pvc->master_vcore = vc;
2145         list_del(&pvc->preempt_list);
2146         list_add_tail(&pvc->preempt_list, &cip->vcs[sub]);
2147
2148         return true;
2149 }
2150
2151 /*
2152  * Work out whether it is possible to piggyback the execution of
2153  * vcore *pvc onto the execution of the other vcores described in *cip.
2154  */
2155 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2156                           int target_threads)
2157 {
2158         int sub;
2159
2160         if (cip->total_threads + pvc->num_threads > target_threads)
2161                 return false;
2162         for (sub = 0; sub < cip->n_subcores; ++sub)
2163                 if (cip->subcore_threads[sub] &&
2164                     can_piggyback_subcore(pvc, cip, sub))
2165                         return true;
2166
2167         if (can_dynamic_split(pvc, cip))
2168                 return true;
2169
2170         return false;
2171 }
2172
2173 static void prepare_threads(struct kvmppc_vcore *vc)
2174 {
2175         struct kvm_vcpu *vcpu, *vnext;
2176
2177         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2178                                  arch.run_list) {
2179                 if (signal_pending(vcpu->arch.run_task))
2180                         vcpu->arch.ret = -EINTR;
2181                 else if (vcpu->arch.vpa.update_pending ||
2182                          vcpu->arch.slb_shadow.update_pending ||
2183                          vcpu->arch.dtl.update_pending)
2184                         vcpu->arch.ret = RESUME_GUEST;
2185                 else
2186                         continue;
2187                 kvmppc_remove_runnable(vc, vcpu);
2188                 wake_up(&vcpu->arch.cpu_run);
2189         }
2190 }
2191
2192 static void collect_piggybacks(struct core_info *cip, int target_threads)
2193 {
2194         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2195         struct kvmppc_vcore *pvc, *vcnext;
2196
2197         spin_lock(&lp->lock);
2198         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2199                 if (!spin_trylock(&pvc->lock))
2200                         continue;
2201                 prepare_threads(pvc);
2202                 if (!pvc->n_runnable) {
2203                         list_del_init(&pvc->preempt_list);
2204                         if (pvc->runner == NULL) {
2205                                 pvc->vcore_state = VCORE_INACTIVE;
2206                                 kvmppc_core_end_stolen(pvc);
2207                         }
2208                         spin_unlock(&pvc->lock);
2209                         continue;
2210                 }
2211                 if (!can_piggyback(pvc, cip, target_threads)) {
2212                         spin_unlock(&pvc->lock);
2213                         continue;
2214                 }
2215                 kvmppc_core_end_stolen(pvc);
2216                 pvc->vcore_state = VCORE_PIGGYBACK;
2217                 if (cip->total_threads >= target_threads)
2218                         break;
2219         }
2220         spin_unlock(&lp->lock);
2221 }
2222
2223 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2224 {
2225         int still_running = 0;
2226         u64 now;
2227         long ret;
2228         struct kvm_vcpu *vcpu, *vnext;
2229
2230         spin_lock(&vc->lock);
2231         now = get_tb();
2232         list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2233                                  arch.run_list) {
2234                 /* cancel pending dec exception if dec is positive */
2235                 if (now < vcpu->arch.dec_expires &&
2236                     kvmppc_core_pending_dec(vcpu))
2237                         kvmppc_core_dequeue_dec(vcpu);
2238
2239                 trace_kvm_guest_exit(vcpu);
2240
2241                 ret = RESUME_GUEST;
2242                 if (vcpu->arch.trap)
2243                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2244                                                     vcpu->arch.run_task);
2245
2246                 vcpu->arch.ret = ret;
2247                 vcpu->arch.trap = 0;
2248
2249                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2250                         if (vcpu->arch.pending_exceptions)
2251                                 kvmppc_core_prepare_to_enter(vcpu);
2252                         if (vcpu->arch.ceded)
2253                                 kvmppc_set_timer(vcpu);
2254                         else
2255                                 ++still_running;
2256                 } else {
2257                         kvmppc_remove_runnable(vc, vcpu);
2258                         wake_up(&vcpu->arch.cpu_run);
2259                 }
2260         }
2261         list_del_init(&vc->preempt_list);
2262         if (!is_master) {
2263                 if (still_running > 0) {
2264                         kvmppc_vcore_preempt(vc);
2265                 } else if (vc->runner) {
2266                         vc->vcore_state = VCORE_PREEMPT;
2267                         kvmppc_core_start_stolen(vc);
2268                 } else {
2269                         vc->vcore_state = VCORE_INACTIVE;
2270                 }
2271                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2272                         /* make sure there's a candidate runner awake */
2273                         vcpu = list_first_entry(&vc->runnable_threads,
2274                                                 struct kvm_vcpu, arch.run_list);
2275                         wake_up(&vcpu->arch.cpu_run);
2276                 }
2277         }
2278         spin_unlock(&vc->lock);
2279 }
2280
2281 /*
2282  * Run a set of guest threads on a physical core.
2283  * Called with vc->lock held.
2284  */
2285 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2286 {
2287         struct kvm_vcpu *vcpu, *vnext;
2288         int i;
2289         int srcu_idx;
2290         struct core_info core_info;
2291         struct kvmppc_vcore *pvc, *vcnext;
2292         struct kvm_split_mode split_info, *sip;
2293         int split, subcore_size, active;
2294         int sub;
2295         bool thr0_done;
2296         unsigned long cmd_bit, stat_bit;
2297         int pcpu, thr;
2298         int target_threads;
2299
2300         /*
2301          * Remove from the list any threads that have a signal pending
2302          * or need a VPA update done
2303          */
2304         prepare_threads(vc);
2305
2306         /* if the runner is no longer runnable, let the caller pick a new one */
2307         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2308                 return;
2309
2310         /*
2311          * Initialize *vc.
2312          */
2313         init_master_vcore(vc);
2314         vc->preempt_tb = TB_NIL;
2315
2316         /*
2317          * Make sure we are running on primary threads, and that secondary
2318          * threads are offline.  Also check if the number of threads in this
2319          * guest are greater than the current system threads per guest.
2320          */
2321         if ((threads_per_core > 1) &&
2322             ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
2323                 list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
2324                                          arch.run_list) {
2325                         vcpu->arch.ret = -EBUSY;
2326                         kvmppc_remove_runnable(vc, vcpu);
2327                         wake_up(&vcpu->arch.cpu_run);
2328                 }
2329                 goto out;
2330         }
2331
2332         /*
2333          * See if we could run any other vcores on the physical core
2334          * along with this one.
2335          */
2336         init_core_info(&core_info, vc);
2337         pcpu = smp_processor_id();
2338         target_threads = threads_per_subcore;
2339         if (target_smt_mode && target_smt_mode < target_threads)
2340                 target_threads = target_smt_mode;
2341         if (vc->num_threads < target_threads)
2342                 collect_piggybacks(&core_info, target_threads);
2343
2344         /* Decide on micro-threading (split-core) mode */
2345         subcore_size = threads_per_subcore;
2346         cmd_bit = stat_bit = 0;
2347         split = core_info.n_subcores;
2348         sip = NULL;
2349         if (split > 1) {
2350                 /* threads_per_subcore must be MAX_SMT_THREADS (8) here */
2351                 if (split == 2 && (dynamic_mt_modes & 2)) {
2352                         cmd_bit = HID0_POWER8_1TO2LPAR;
2353                         stat_bit = HID0_POWER8_2LPARMODE;
2354                 } else {
2355                         split = 4;
2356                         cmd_bit = HID0_POWER8_1TO4LPAR;
2357                         stat_bit = HID0_POWER8_4LPARMODE;
2358                 }
2359                 subcore_size = MAX_SMT_THREADS / split;
2360                 sip = &split_info;
2361                 memset(&split_info, 0, sizeof(split_info));
2362                 split_info.rpr = mfspr(SPRN_RPR);
2363                 split_info.pmmar = mfspr(SPRN_PMMAR);
2364                 split_info.ldbar = mfspr(SPRN_LDBAR);
2365                 split_info.subcore_size = subcore_size;
2366                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2367                         split_info.master_vcs[sub] =
2368                                 list_first_entry(&core_info.vcs[sub],
2369                                         struct kvmppc_vcore, preempt_list);
2370                 /* order writes to split_info before kvm_split_mode pointer */
2371                 smp_wmb();
2372         }
2373         pcpu = smp_processor_id();
2374         for (thr = 0; thr < threads_per_subcore; ++thr)
2375                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2376
2377         /* Initiate micro-threading (split-core) if required */
2378         if (cmd_bit) {
2379                 unsigned long hid0 = mfspr(SPRN_HID0);
2380
2381                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2382                 mb();
2383                 mtspr(SPRN_HID0, hid0);
2384                 isync();
2385                 for (;;) {
2386                         hid0 = mfspr(SPRN_HID0);
2387                         if (hid0 & stat_bit)
2388                                 break;
2389                         cpu_relax();
2390                 }
2391         }
2392
2393         /* Start all the threads */
2394         active = 0;
2395         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2396                 thr = subcore_thread_map[sub];
2397                 thr0_done = false;
2398                 active |= 1 << thr;
2399                 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list) {
2400                         pvc->pcpu = pcpu + thr;
2401                         list_for_each_entry(vcpu, &pvc->runnable_threads,
2402                                             arch.run_list) {
2403                                 kvmppc_start_thread(vcpu, pvc);
2404                                 kvmppc_create_dtl_entry(vcpu, pvc);
2405                                 trace_kvm_guest_enter(vcpu);
2406                                 if (!vcpu->arch.ptid)
2407                                         thr0_done = true;
2408                                 active |= 1 << (thr + vcpu->arch.ptid);
2409                         }
2410                         /*
2411                          * We need to start the first thread of each subcore
2412                          * even if it doesn't have a vcpu.
2413                          */
2414                         if (pvc->master_vcore == pvc && !thr0_done)
2415                                 kvmppc_start_thread(NULL, pvc);
2416                         thr += pvc->num_threads;
2417                 }
2418         }
2419
2420         /*
2421          * Ensure that split_info.do_nap is set after setting
2422          * the vcore pointer in the PACA of the secondaries.
2423          */
2424         smp_mb();
2425         if (cmd_bit)
2426                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2427
2428         /*
2429          * When doing micro-threading, poke the inactive threads as well.
2430          * This gets them to the nap instruction after kvm_do_nap,
2431          * which reduces the time taken to unsplit later.
2432          */
2433         if (split > 1)
2434                 for (thr = 1; thr < threads_per_subcore; ++thr)
2435                         if (!(active & (1 << thr)))
2436                                 kvmppc_ipi_thread(pcpu + thr);
2437
2438         vc->vcore_state = VCORE_RUNNING;
2439         preempt_disable();
2440
2441         trace_kvmppc_run_core(vc, 0);
2442
2443         for (sub = 0; sub < core_info.n_subcores; ++sub)
2444                 list_for_each_entry(pvc, &core_info.vcs[sub], preempt_list)
2445                         spin_unlock(&pvc->lock);
2446
2447         kvm_guest_enter();
2448
2449         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2450
2451         __kvmppc_vcore_entry();
2452
2453         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2454
2455         spin_lock(&vc->lock);
2456         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2457         vc->vcore_state = VCORE_EXITING;
2458
2459         /* wait for secondary threads to finish writing their state to memory */
2460         kvmppc_wait_for_nap();
2461
2462         /* Return to whole-core mode if we split the core earlier */
2463         if (split > 1) {
2464                 unsigned long hid0 = mfspr(SPRN_HID0);
2465                 unsigned long loops = 0;
2466
2467                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2468                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2469                 mb();
2470                 mtspr(SPRN_HID0, hid0);
2471                 isync();
2472                 for (;;) {
2473                         hid0 = mfspr(SPRN_HID0);
2474                         if (!(hid0 & stat_bit))
2475                                 break;
2476                         cpu_relax();
2477                         ++loops;
2478                 }
2479                 split_info.do_nap = 0;
2480         }
2481
2482         /* Let secondaries go back to the offline loop */
2483         for (i = 0; i < threads_per_subcore; ++i) {
2484                 kvmppc_release_hwthread(pcpu + i);
2485                 if (sip && sip->napped[i])
2486                         kvmppc_ipi_thread(pcpu + i);
2487         }
2488
2489         spin_unlock(&vc->lock);
2490
2491         /* make sure updates to secondary vcpu structs are visible now */
2492         smp_mb();
2493         kvm_guest_exit();
2494
2495         for (sub = 0; sub < core_info.n_subcores; ++sub)
2496                 list_for_each_entry_safe(pvc, vcnext, &core_info.vcs[sub],
2497                                          preempt_list)
2498                         post_guest_process(pvc, pvc == vc);
2499
2500         spin_lock(&vc->lock);
2501         preempt_enable();
2502
2503  out:
2504         vc->vcore_state = VCORE_INACTIVE;
2505         trace_kvmppc_run_core(vc, 1);
2506 }
2507
2508 /*
2509  * Wait for some other vcpu thread to execute us, and
2510  * wake us up when we need to handle something in the host.
2511  */
2512 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2513                                  struct kvm_vcpu *vcpu, int wait_state)
2514 {
2515         DEFINE_WAIT(wait);
2516
2517         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2518         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2519                 spin_unlock(&vc->lock);
2520                 schedule();
2521                 spin_lock(&vc->lock);
2522         }
2523         finish_wait(&vcpu->arch.cpu_run, &wait);
2524 }
2525
2526 /*
2527  * All the vcpus in this vcore are idle, so wait for a decrementer
2528  * or external interrupt to one of the vcpus.  vc->lock is held.
2529  */
2530 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
2531 {
2532         struct kvm_vcpu *vcpu;
2533         int do_sleep = 1;
2534
2535         DEFINE_WAIT(wait);
2536
2537         prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
2538
2539         /*
2540          * Check one last time for pending exceptions and ceded state after
2541          * we put ourselves on the wait queue
2542          */
2543         list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
2544                 if (vcpu->arch.pending_exceptions || !vcpu->arch.ceded) {
2545                         do_sleep = 0;
2546                         break;
2547                 }
2548         }
2549
2550         if (!do_sleep) {
2551                 finish_wait(&vc->wq, &wait);
2552                 return;
2553         }
2554
2555         vc->vcore_state = VCORE_SLEEPING;
2556         trace_kvmppc_vcore_blocked(vc, 0);
2557         spin_unlock(&vc->lock);
2558         schedule();
2559         finish_wait(&vc->wq, &wait);
2560         spin_lock(&vc->lock);
2561         vc->vcore_state = VCORE_INACTIVE;
2562         trace_kvmppc_vcore_blocked(vc, 1);
2563 }
2564
2565 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
2566 {
2567         int n_ceded;
2568         struct kvmppc_vcore *vc;
2569         struct kvm_vcpu *v, *vn;
2570
2571         trace_kvmppc_run_vcpu_enter(vcpu);
2572
2573         kvm_run->exit_reason = 0;
2574         vcpu->arch.ret = RESUME_GUEST;
2575         vcpu->arch.trap = 0;
2576         kvmppc_update_vpas(vcpu);
2577
2578         /*
2579          * Synchronize with other threads in this virtual core
2580          */
2581         vc = vcpu->arch.vcore;
2582         spin_lock(&vc->lock);
2583         vcpu->arch.ceded = 0;
2584         vcpu->arch.run_task = current;
2585         vcpu->arch.kvm_run = kvm_run;
2586         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
2587         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
2588         vcpu->arch.busy_preempt = TB_NIL;
2589         list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
2590         ++vc->n_runnable;
2591
2592         /*
2593          * This happens the first time this is called for a vcpu.
2594          * If the vcore is already running, we may be able to start
2595          * this thread straight away and have it join in.
2596          */
2597         if (!signal_pending(current)) {
2598                 if (vc->vcore_state == VCORE_PIGGYBACK) {
2599                         struct kvmppc_vcore *mvc = vc->master_vcore;
2600                         if (spin_trylock(&mvc->lock)) {
2601                                 if (mvc->vcore_state == VCORE_RUNNING &&
2602                                     !VCORE_IS_EXITING(mvc)) {
2603                                         kvmppc_create_dtl_entry(vcpu, vc);
2604                                         kvmppc_start_thread(vcpu, vc);
2605                                         trace_kvm_guest_enter(vcpu);
2606                                 }
2607                                 spin_unlock(&mvc->lock);
2608                         }
2609                 } else if (vc->vcore_state == VCORE_RUNNING &&
2610                            !VCORE_IS_EXITING(vc)) {
2611                         kvmppc_create_dtl_entry(vcpu, vc);
2612                         kvmppc_start_thread(vcpu, vc);
2613                         trace_kvm_guest_enter(vcpu);
2614                 } else if (vc->vcore_state == VCORE_SLEEPING) {
2615                         wake_up(&vc->wq);
2616                 }
2617
2618         }
2619
2620         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2621                !signal_pending(current)) {
2622                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2623                         kvmppc_vcore_end_preempt(vc);
2624
2625                 if (vc->vcore_state != VCORE_INACTIVE) {
2626                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
2627                         continue;
2628                 }
2629                 list_for_each_entry_safe(v, vn, &vc->runnable_threads,
2630                                          arch.run_list) {
2631                         kvmppc_core_prepare_to_enter(v);
2632                         if (signal_pending(v->arch.run_task)) {
2633                                 kvmppc_remove_runnable(vc, v);
2634                                 v->stat.signal_exits++;
2635                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
2636                                 v->arch.ret = -EINTR;
2637                                 wake_up(&v->arch.cpu_run);
2638                         }
2639                 }
2640                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2641                         break;
2642                 n_ceded = 0;
2643                 list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
2644                         if (!v->arch.pending_exceptions)
2645                                 n_ceded += v->arch.ceded;
2646                         else
2647                                 v->arch.ceded = 0;
2648                 }
2649                 vc->runner = vcpu;
2650                 if (n_ceded == vc->n_runnable) {
2651                         kvmppc_vcore_blocked(vc);
2652                 } else if (need_resched()) {
2653                         kvmppc_vcore_preempt(vc);
2654                         /* Let something else run */
2655                         cond_resched_lock(&vc->lock);
2656                         if (vc->vcore_state == VCORE_PREEMPT)
2657                                 kvmppc_vcore_end_preempt(vc);
2658                 } else {
2659                         kvmppc_run_core(vc);
2660                 }
2661                 vc->runner = NULL;
2662         }
2663
2664         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
2665                (vc->vcore_state == VCORE_RUNNING ||
2666                 vc->vcore_state == VCORE_EXITING ||
2667                 vc->vcore_state == VCORE_PIGGYBACK))
2668                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
2669
2670         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
2671                 kvmppc_vcore_end_preempt(vc);
2672
2673         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2674                 kvmppc_remove_runnable(vc, vcpu);
2675                 vcpu->stat.signal_exits++;
2676                 kvm_run->exit_reason = KVM_EXIT_INTR;
2677                 vcpu->arch.ret = -EINTR;
2678         }
2679
2680         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
2681                 /* Wake up some vcpu to run the core */
2682                 v = list_first_entry(&vc->runnable_threads,
2683                                      struct kvm_vcpu, arch.run_list);
2684                 wake_up(&v->arch.cpu_run);
2685         }
2686
2687         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
2688         spin_unlock(&vc->lock);
2689         return vcpu->arch.ret;
2690 }
2691
2692 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
2693 {
2694         int r;
2695         int srcu_idx;
2696
2697         if (!vcpu->arch.sane) {
2698                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2699                 return -EINVAL;
2700         }
2701
2702         kvmppc_core_prepare_to_enter(vcpu);
2703
2704         /* No need to go into the guest when all we'll do is come back out */
2705         if (signal_pending(current)) {
2706                 run->exit_reason = KVM_EXIT_INTR;
2707                 return -EINTR;
2708         }
2709
2710         atomic_inc(&vcpu->kvm->arch.vcpus_running);
2711         /* Order vcpus_running vs. hpte_setup_done, see kvmppc_alloc_reset_hpt */
2712         smp_mb();
2713
2714         /* On the first time here, set up HTAB and VRMA */
2715         if (!vcpu->kvm->arch.hpte_setup_done) {
2716                 r = kvmppc_hv_setup_htab_rma(vcpu);
2717                 if (r)
2718                         goto out;
2719         }
2720
2721         flush_all_to_thread(current);
2722
2723         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
2724         vcpu->arch.pgdir = current->mm->pgd;
2725         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2726
2727         do {
2728                 r = kvmppc_run_vcpu(run, vcpu);
2729
2730                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
2731                     !(vcpu->arch.shregs.msr & MSR_PR)) {
2732                         trace_kvm_hcall_enter(vcpu);
2733                         r = kvmppc_pseries_do_hcall(vcpu);
2734                         trace_kvm_hcall_exit(vcpu, r);
2735                         kvmppc_core_prepare_to_enter(vcpu);
2736                 } else if (r == RESUME_PAGE_FAULT) {
2737                         srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2738                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
2739                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
2740                         srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2741                 }
2742         } while (is_kvmppc_resume_guest(r));
2743
2744  out:
2745         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2746         atomic_dec(&vcpu->kvm->arch.vcpus_running);
2747         return r;
2748 }
2749
2750 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
2751                                      int linux_psize)
2752 {
2753         struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
2754
2755         if (!def->shift)
2756                 return;
2757         (*sps)->page_shift = def->shift;
2758         (*sps)->slb_enc = def->sllp;
2759         (*sps)->enc[0].page_shift = def->shift;
2760         (*sps)->enc[0].pte_enc = def->penc[linux_psize];
2761         /*
2762          * Add 16MB MPSS support if host supports it
2763          */
2764         if (linux_psize != MMU_PAGE_16M && def->penc[MMU_PAGE_16M] != -1) {
2765                 (*sps)->enc[1].page_shift = 24;
2766                 (*sps)->enc[1].pte_enc = def->penc[MMU_PAGE_16M];
2767         }
2768         (*sps)++;
2769 }
2770
2771 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
2772                                          struct kvm_ppc_smmu_info *info)
2773 {
2774         struct kvm_ppc_one_seg_page_size *sps;
2775
2776         info->flags = KVM_PPC_PAGE_SIZES_REAL;
2777         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
2778                 info->flags |= KVM_PPC_1T_SEGMENTS;
2779         info->slb_size = mmu_slb_size;
2780
2781         /* We only support these sizes for now, and no muti-size segments */
2782         sps = &info->sps[0];
2783         kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
2784         kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
2785         kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
2786
2787         return 0;
2788 }
2789
2790 /*
2791  * Get (and clear) the dirty memory log for a memory slot.
2792  */
2793 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
2794                                          struct kvm_dirty_log *log)
2795 {
2796         struct kvm_memslots *slots;
2797         struct kvm_memory_slot *memslot;
2798         int r;
2799         unsigned long n;
2800
2801         mutex_lock(&kvm->slots_lock);
2802
2803         r = -EINVAL;
2804         if (log->slot >= KVM_USER_MEM_SLOTS)
2805                 goto out;
2806
2807         slots = kvm_memslots(kvm);
2808         memslot = id_to_memslot(slots, log->slot);
2809         r = -ENOENT;
2810         if (!memslot->dirty_bitmap)
2811                 goto out;
2812
2813         n = kvm_dirty_bitmap_bytes(memslot);
2814         memset(memslot->dirty_bitmap, 0, n);
2815
2816         r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
2817         if (r)
2818                 goto out;
2819
2820         r = -EFAULT;
2821         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
2822                 goto out;
2823
2824         r = 0;
2825 out:
2826         mutex_unlock(&kvm->slots_lock);
2827         return r;
2828 }
2829
2830 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
2831                                         struct kvm_memory_slot *dont)
2832 {
2833         if (!dont || free->arch.rmap != dont->arch.rmap) {
2834                 vfree(free->arch.rmap);
2835                 free->arch.rmap = NULL;
2836         }
2837 }
2838
2839 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
2840                                          unsigned long npages)
2841 {
2842         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
2843         if (!slot->arch.rmap)
2844                 return -ENOMEM;
2845
2846         return 0;
2847 }
2848
2849 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
2850                                         struct kvm_memory_slot *memslot,
2851                                         const struct kvm_userspace_memory_region *mem)
2852 {
2853         return 0;
2854 }
2855
2856 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
2857                                 const struct kvm_userspace_memory_region *mem,
2858                                 const struct kvm_memory_slot *old,
2859                                 const struct kvm_memory_slot *new)
2860 {
2861         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
2862         struct kvm_memslots *slots;
2863         struct kvm_memory_slot *memslot;
2864
2865         if (npages && old->npages) {
2866                 /*
2867                  * If modifying a memslot, reset all the rmap dirty bits.
2868                  * If this is a new memslot, we don't need to do anything
2869                  * since the rmap array starts out as all zeroes,
2870                  * i.e. no pages are dirty.
2871                  */
2872                 slots = kvm_memslots(kvm);
2873                 memslot = id_to_memslot(slots, mem->slot);
2874                 kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
2875         }
2876 }
2877
2878 /*
2879  * Update LPCR values in kvm->arch and in vcores.
2880  * Caller must hold kvm->lock.
2881  */
2882 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
2883 {
2884         long int i;
2885         u32 cores_done = 0;
2886
2887         if ((kvm->arch.lpcr & mask) == lpcr)
2888                 return;
2889
2890         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
2891
2892         for (i = 0; i < KVM_MAX_VCORES; ++i) {
2893                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
2894                 if (!vc)
2895                         continue;
2896                 spin_lock(&vc->lock);
2897                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
2898                 spin_unlock(&vc->lock);
2899                 if (++cores_done >= kvm->arch.online_vcores)
2900                         break;
2901         }
2902 }
2903
2904 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
2905 {
2906         return;
2907 }
2908
2909 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
2910 {
2911         int err = 0;
2912         struct kvm *kvm = vcpu->kvm;
2913         unsigned long hva;
2914         struct kvm_memory_slot *memslot;
2915         struct vm_area_struct *vma;
2916         unsigned long lpcr = 0, senc;
2917         unsigned long psize, porder;
2918         int srcu_idx;
2919
2920         mutex_lock(&kvm->lock);
2921         if (kvm->arch.hpte_setup_done)
2922                 goto out;       /* another vcpu beat us to it */
2923
2924         /* Allocate hashed page table (if not done already) and reset it */
2925         if (!kvm->arch.hpt_virt) {
2926                 err = kvmppc_alloc_hpt(kvm, NULL);
2927                 if (err) {
2928                         pr_err("KVM: Couldn't alloc HPT\n");
2929                         goto out;
2930                 }
2931         }
2932
2933         /* Look up the memslot for guest physical address 0 */
2934         srcu_idx = srcu_read_lock(&kvm->srcu);
2935         memslot = gfn_to_memslot(kvm, 0);
2936
2937         /* We must have some memory at 0 by now */
2938         err = -EINVAL;
2939         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
2940                 goto out_srcu;
2941
2942         /* Look up the VMA for the start of this memory slot */
2943         hva = memslot->userspace_addr;
2944         down_read(&current->mm->mmap_sem);
2945         vma = find_vma(current->mm, hva);
2946         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
2947                 goto up_out;
2948
2949         psize = vma_kernel_pagesize(vma);
2950         porder = __ilog2(psize);
2951
2952         up_read(&current->mm->mmap_sem);
2953
2954         /* We can handle 4k, 64k or 16M pages in the VRMA */
2955         err = -EINVAL;
2956         if (!(psize == 0x1000 || psize == 0x10000 ||
2957               psize == 0x1000000))
2958                 goto out_srcu;
2959
2960         /* Update VRMASD field in the LPCR */
2961         senc = slb_pgsize_encoding(psize);
2962         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
2963                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
2964         /* the -4 is to account for senc values starting at 0x10 */
2965         lpcr = senc << (LPCR_VRMASD_SH - 4);
2966
2967         /* Create HPTEs in the hash page table for the VRMA */
2968         kvmppc_map_vrma(vcpu, memslot, porder);
2969
2970         kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
2971
2972         /* Order updates to kvm->arch.lpcr etc. vs. hpte_setup_done */
2973         smp_wmb();
2974         kvm->arch.hpte_setup_done = 1;
2975         err = 0;
2976  out_srcu:
2977         srcu_read_unlock(&kvm->srcu, srcu_idx);
2978  out:
2979         mutex_unlock(&kvm->lock);
2980         return err;
2981
2982  up_out:
2983         up_read(&current->mm->mmap_sem);
2984         goto out_srcu;
2985 }
2986
2987 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
2988 {
2989         unsigned long lpcr, lpid;
2990         char buf[32];
2991
2992         /* Allocate the guest's logical partition ID */
2993
2994         lpid = kvmppc_alloc_lpid();
2995         if ((long)lpid < 0)
2996                 return -ENOMEM;
2997         kvm->arch.lpid = lpid;
2998
2999         /*
3000          * Since we don't flush the TLB when tearing down a VM,
3001          * and this lpid might have previously been used,
3002          * make sure we flush on each core before running the new VM.
3003          */
3004         cpumask_setall(&kvm->arch.need_tlb_flush);
3005
3006         /* Start out with the default set of hcalls enabled */
3007         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3008                sizeof(kvm->arch.enabled_hcalls));
3009
3010         kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3011
3012         /* Init LPCR for virtual RMA mode */
3013         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3014         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3015         lpcr &= LPCR_PECE | LPCR_LPES;
3016         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3017                 LPCR_VPM0 | LPCR_VPM1;
3018         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3019                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3020         /* On POWER8 turn on online bit to enable PURR/SPURR */
3021         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3022                 lpcr |= LPCR_ONL;
3023         kvm->arch.lpcr = lpcr;
3024
3025         /*
3026          * Track that we now have a HV mode VM active. This blocks secondary
3027          * CPU threads from coming online.
3028          */
3029         kvm_hv_vm_activated();
3030
3031         /*
3032          * Create a debugfs directory for the VM
3033          */
3034         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3035         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3036         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3037                 kvmppc_mmu_debugfs_init(kvm);
3038
3039         return 0;
3040 }
3041
3042 static void kvmppc_free_vcores(struct kvm *kvm)
3043 {
3044         long int i;
3045
3046         for (i = 0; i < KVM_MAX_VCORES; ++i)
3047                 kfree(kvm->arch.vcores[i]);
3048         kvm->arch.online_vcores = 0;
3049 }
3050
3051 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3052 {
3053         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3054
3055         kvm_hv_vm_deactivated();
3056
3057         kvmppc_free_vcores(kvm);
3058
3059         kvmppc_free_hpt(kvm);
3060 }
3061
3062 /* We don't need to emulate any privileged instructions or dcbz */
3063 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3064                                      unsigned int inst, int *advance)
3065 {
3066         return EMULATE_FAIL;
3067 }
3068
3069 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3070                                         ulong spr_val)
3071 {
3072         return EMULATE_FAIL;
3073 }
3074
3075 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3076                                         ulong *spr_val)
3077 {
3078         return EMULATE_FAIL;
3079 }
3080
3081 static int kvmppc_core_check_processor_compat_hv(void)
3082 {
3083         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3084             !cpu_has_feature(CPU_FTR_ARCH_206))
3085                 return -EIO;
3086         return 0;
3087 }
3088
3089 static long kvm_arch_vm_ioctl_hv(struct file *filp,
3090                                  unsigned int ioctl, unsigned long arg)
3091 {
3092         struct kvm *kvm __maybe_unused = filp->private_data;
3093         void __user *argp = (void __user *)arg;
3094         long r;
3095
3096         switch (ioctl) {
3097
3098         case KVM_PPC_ALLOCATE_HTAB: {
3099                 u32 htab_order;
3100
3101                 r = -EFAULT;
3102                 if (get_user(htab_order, (u32 __user *)argp))
3103                         break;
3104                 r = kvmppc_alloc_reset_hpt(kvm, &htab_order);
3105                 if (r)
3106                         break;
3107                 r = -EFAULT;
3108                 if (put_user(htab_order, (u32 __user *)argp))
3109                         break;
3110                 r = 0;
3111                 break;
3112         }
3113
3114         case KVM_PPC_GET_HTAB_FD: {
3115                 struct kvm_get_htab_fd ghf;
3116
3117                 r = -EFAULT;
3118                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
3119                         break;
3120                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
3121                 break;
3122         }
3123
3124         default:
3125                 r = -ENOTTY;
3126         }
3127
3128         return r;
3129 }
3130
3131 /*
3132  * List of hcall numbers to enable by default.
3133  * For compatibility with old userspace, we enable by default
3134  * all hcalls that were implemented before the hcall-enabling
3135  * facility was added.  Note this list should not include H_RTAS.
3136  */
3137 static unsigned int default_hcall_list[] = {
3138         H_REMOVE,
3139         H_ENTER,
3140         H_READ,
3141         H_PROTECT,
3142         H_BULK_REMOVE,
3143         H_GET_TCE,
3144         H_PUT_TCE,
3145         H_SET_DABR,
3146         H_SET_XDABR,
3147         H_CEDE,
3148         H_PROD,
3149         H_CONFER,
3150         H_REGISTER_VPA,
3151 #ifdef CONFIG_KVM_XICS
3152         H_EOI,
3153         H_CPPR,
3154         H_IPI,
3155         H_IPOLL,
3156         H_XIRR,
3157         H_XIRR_X,
3158 #endif
3159         0
3160 };
3161
3162 static void init_default_hcalls(void)
3163 {
3164         int i;
3165         unsigned int hcall;
3166
3167         for (i = 0; default_hcall_list[i]; ++i) {
3168                 hcall = default_hcall_list[i];
3169                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
3170                 __set_bit(hcall / 4, default_enabled_hcalls);
3171         }
3172 }
3173
3174 static struct kvmppc_ops kvm_ops_hv = {
3175         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
3176         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
3177         .get_one_reg = kvmppc_get_one_reg_hv,
3178         .set_one_reg = kvmppc_set_one_reg_hv,
3179         .vcpu_load   = kvmppc_core_vcpu_load_hv,
3180         .vcpu_put    = kvmppc_core_vcpu_put_hv,
3181         .set_msr     = kvmppc_set_msr_hv,
3182         .vcpu_run    = kvmppc_vcpu_run_hv,
3183         .vcpu_create = kvmppc_core_vcpu_create_hv,
3184         .vcpu_free   = kvmppc_core_vcpu_free_hv,
3185         .check_requests = kvmppc_core_check_requests_hv,
3186         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
3187         .flush_memslot  = kvmppc_core_flush_memslot_hv,
3188         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
3189         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
3190         .unmap_hva = kvm_unmap_hva_hv,
3191         .unmap_hva_range = kvm_unmap_hva_range_hv,
3192         .age_hva  = kvm_age_hva_hv,
3193         .test_age_hva = kvm_test_age_hva_hv,
3194         .set_spte_hva = kvm_set_spte_hva_hv,
3195         .mmu_destroy  = kvmppc_mmu_destroy_hv,
3196         .free_memslot = kvmppc_core_free_memslot_hv,
3197         .create_memslot = kvmppc_core_create_memslot_hv,
3198         .init_vm =  kvmppc_core_init_vm_hv,
3199         .destroy_vm = kvmppc_core_destroy_vm_hv,
3200         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
3201         .emulate_op = kvmppc_core_emulate_op_hv,
3202         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
3203         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
3204         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
3205         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
3206         .hcall_implemented = kvmppc_hcall_impl_hv,
3207 };
3208
3209 static int kvmppc_book3s_init_hv(void)
3210 {
3211         int r;
3212         /*
3213          * FIXME!! Do we need to check on all cpus ?
3214          */
3215         r = kvmppc_core_check_processor_compat_hv();
3216         if (r < 0)
3217                 return -ENODEV;
3218
3219         kvm_ops_hv.owner = THIS_MODULE;
3220         kvmppc_hv_ops = &kvm_ops_hv;
3221
3222         init_default_hcalls();
3223
3224         init_vcore_lists();
3225
3226         r = kvmppc_mmu_hv_init();
3227         return r;
3228 }
3229
3230 static void kvmppc_book3s_exit_hv(void)
3231 {
3232         kvmppc_hv_ops = NULL;
3233 }
3234
3235 module_init(kvmppc_book3s_init_hv);
3236 module_exit(kvmppc_book3s_exit_hv);
3237 MODULE_LICENSE("GPL");
3238 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3239 MODULE_ALIAS("devname:kvm");