powerpc/powernv: Rename PE# fields in struct pnv_phb
[cascardo/linux.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
52 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
53
54 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
55 #define POWERNV_IOMMU_MAX_LEVELS        5
56
57 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
58
59 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
60                             const char *fmt, ...)
61 {
62         struct va_format vaf;
63         va_list args;
64         char pfix[32];
65
66         va_start(args, fmt);
67
68         vaf.fmt = fmt;
69         vaf.va = &args;
70
71         if (pe->flags & PNV_IODA_PE_DEV)
72                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
73         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
74                 sprintf(pfix, "%04x:%02x     ",
75                         pci_domain_nr(pe->pbus), pe->pbus->number);
76 #ifdef CONFIG_PCI_IOV
77         else if (pe->flags & PNV_IODA_PE_VF)
78                 sprintf(pfix, "%04x:%02x:%2x.%d",
79                         pci_domain_nr(pe->parent_dev->bus),
80                         (pe->rid & 0xff00) >> 8,
81                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
82 #endif /* CONFIG_PCI_IOV*/
83
84         printk("%spci %s: [PE# %.3d] %pV",
85                level, pfix, pe->pe_number, &vaf);
86
87         va_end(args);
88 }
89
90 #define pe_err(pe, fmt, ...)                                    \
91         pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
92 #define pe_warn(pe, fmt, ...)                                   \
93         pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
94 #define pe_info(pe, fmt, ...)                                   \
95         pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
96
97 static bool pnv_iommu_bypass_disabled __read_mostly;
98
99 static int __init iommu_setup(char *str)
100 {
101         if (!str)
102                 return -EINVAL;
103
104         while (*str) {
105                 if (!strncmp(str, "nobypass", 8)) {
106                         pnv_iommu_bypass_disabled = true;
107                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
108                         break;
109                 }
110                 str += strcspn(str, ",");
111                 if (*str == ',')
112                         str++;
113         }
114
115         return 0;
116 }
117 early_param("iommu", iommu_setup);
118
119 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
120 {
121         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
122                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
123 }
124
125 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
126 {
127         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
128                 pr_warn("%s: Invalid PE %d on PHB#%x\n",
129                         __func__, pe_no, phb->hose->global_number);
130                 return;
131         }
132
133         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
134                 pr_debug("%s: PE %d was reserved on PHB#%x\n",
135                          __func__, pe_no, phb->hose->global_number);
136
137         phb->ioda.pe_array[pe_no].phb = phb;
138         phb->ioda.pe_array[pe_no].pe_number = pe_no;
139 }
140
141 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
142 {
143         unsigned long pe;
144
145         do {
146                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
147                                         phb->ioda.total_pe_num, 0);
148                 if (pe >= phb->ioda.total_pe_num)
149                         return IODA_INVALID_PE;
150         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
151
152         phb->ioda.pe_array[pe].phb = phb;
153         phb->ioda.pe_array[pe].pe_number = pe;
154         return pe;
155 }
156
157 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
158 {
159         WARN_ON(phb->ioda.pe_array[pe].pdev);
160
161         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
162         clear_bit(pe, phb->ioda.pe_alloc);
163 }
164
165 /* The default M64 BAR is shared by all PEs */
166 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
167 {
168         const char *desc;
169         struct resource *r;
170         s64 rc;
171
172         /* Configure the default M64 BAR */
173         rc = opal_pci_set_phb_mem_window(phb->opal_id,
174                                          OPAL_M64_WINDOW_TYPE,
175                                          phb->ioda.m64_bar_idx,
176                                          phb->ioda.m64_base,
177                                          0, /* unused */
178                                          phb->ioda.m64_size);
179         if (rc != OPAL_SUCCESS) {
180                 desc = "configuring";
181                 goto fail;
182         }
183
184         /* Enable the default M64 BAR */
185         rc = opal_pci_phb_mmio_enable(phb->opal_id,
186                                       OPAL_M64_WINDOW_TYPE,
187                                       phb->ioda.m64_bar_idx,
188                                       OPAL_ENABLE_M64_SPLIT);
189         if (rc != OPAL_SUCCESS) {
190                 desc = "enabling";
191                 goto fail;
192         }
193
194         /* Mark the M64 BAR assigned */
195         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
196
197         /*
198          * Strip off the segment used by the reserved PE, which is
199          * expected to be 0 or last one of PE capabicity.
200          */
201         r = &phb->hose->mem_resources[1];
202         if (phb->ioda.reserved_pe_idx == 0)
203                 r->start += phb->ioda.m64_segsize;
204         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
205                 r->end -= phb->ioda.m64_segsize;
206         else
207                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
208                         phb->ioda.reserved_pe_idx);
209
210         return 0;
211
212 fail:
213         pr_warn("  Failure %lld %s M64 BAR#%d\n",
214                 rc, desc, phb->ioda.m64_bar_idx);
215         opal_pci_phb_mmio_enable(phb->opal_id,
216                                  OPAL_M64_WINDOW_TYPE,
217                                  phb->ioda.m64_bar_idx,
218                                  OPAL_DISABLE_M64);
219         return -EIO;
220 }
221
222 static void pnv_ioda2_reserve_dev_m64_pe(struct pci_dev *pdev,
223                                          unsigned long *pe_bitmap)
224 {
225         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
226         struct pnv_phb *phb = hose->private_data;
227         struct resource *r;
228         resource_size_t base, sgsz, start, end;
229         int segno, i;
230
231         base = phb->ioda.m64_base;
232         sgsz = phb->ioda.m64_segsize;
233         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
234                 r = &pdev->resource[i];
235                 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
236                         continue;
237
238                 start = _ALIGN_DOWN(r->start - base, sgsz);
239                 end = _ALIGN_UP(r->end - base, sgsz);
240                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
241                         if (pe_bitmap)
242                                 set_bit(segno, pe_bitmap);
243                         else
244                                 pnv_ioda_reserve_pe(phb, segno);
245                 }
246         }
247 }
248
249 static void pnv_ioda2_reserve_m64_pe(struct pci_bus *bus,
250                                      unsigned long *pe_bitmap,
251                                      bool all)
252 {
253         struct pci_dev *pdev;
254
255         list_for_each_entry(pdev, &bus->devices, bus_list) {
256                 pnv_ioda2_reserve_dev_m64_pe(pdev, pe_bitmap);
257
258                 if (all && pdev->subordinate)
259                         pnv_ioda2_reserve_m64_pe(pdev->subordinate,
260                                                  pe_bitmap, all);
261         }
262 }
263
264 static int pnv_ioda2_pick_m64_pe(struct pci_bus *bus, bool all)
265 {
266         struct pci_controller *hose = pci_bus_to_host(bus);
267         struct pnv_phb *phb = hose->private_data;
268         struct pnv_ioda_pe *master_pe, *pe;
269         unsigned long size, *pe_alloc;
270         int i;
271
272         /* Root bus shouldn't use M64 */
273         if (pci_is_root_bus(bus))
274                 return IODA_INVALID_PE;
275
276         /* Allocate bitmap */
277         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
278         pe_alloc = kzalloc(size, GFP_KERNEL);
279         if (!pe_alloc) {
280                 pr_warn("%s: Out of memory !\n",
281                         __func__);
282                 return IODA_INVALID_PE;
283         }
284
285         /* Figure out reserved PE numbers by the PE */
286         pnv_ioda2_reserve_m64_pe(bus, pe_alloc, all);
287
288         /*
289          * the current bus might not own M64 window and that's all
290          * contributed by its child buses. For the case, we needn't
291          * pick M64 dependent PE#.
292          */
293         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
294                 kfree(pe_alloc);
295                 return IODA_INVALID_PE;
296         }
297
298         /*
299          * Figure out the master PE and put all slave PEs to master
300          * PE's list to form compound PE.
301          */
302         master_pe = NULL;
303         i = -1;
304         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
305                 phb->ioda.total_pe_num) {
306                 pe = &phb->ioda.pe_array[i];
307
308                 if (!master_pe) {
309                         pe->flags |= PNV_IODA_PE_MASTER;
310                         INIT_LIST_HEAD(&pe->slaves);
311                         master_pe = pe;
312                 } else {
313                         pe->flags |= PNV_IODA_PE_SLAVE;
314                         pe->master = master_pe;
315                         list_add_tail(&pe->list, &master_pe->slaves);
316                 }
317         }
318
319         kfree(pe_alloc);
320         return master_pe->pe_number;
321 }
322
323 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
324 {
325         struct pci_controller *hose = phb->hose;
326         struct device_node *dn = hose->dn;
327         struct resource *res;
328         const u32 *r;
329         u64 pci_addr;
330
331         /* FIXME: Support M64 for P7IOC */
332         if (phb->type != PNV_PHB_IODA2) {
333                 pr_info("  Not support M64 window\n");
334                 return;
335         }
336
337         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
338                 pr_info("  Firmware too old to support M64 window\n");
339                 return;
340         }
341
342         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
343         if (!r) {
344                 pr_info("  No <ibm,opal-m64-window> on %s\n",
345                         dn->full_name);
346                 return;
347         }
348
349         res = &hose->mem_resources[1];
350         res->name = dn->full_name;
351         res->start = of_translate_address(dn, r + 2);
352         res->end = res->start + of_read_number(r + 4, 2) - 1;
353         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
354         pci_addr = of_read_number(r, 2);
355         hose->mem_offset[1] = res->start - pci_addr;
356
357         phb->ioda.m64_size = resource_size(res);
358         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
359         phb->ioda.m64_base = pci_addr;
360
361         pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
362                         res->start, res->end, pci_addr);
363
364         /* Use last M64 BAR to cover M64 window */
365         phb->ioda.m64_bar_idx = 15;
366         phb->init_m64 = pnv_ioda2_init_m64;
367         phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
368         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
369 }
370
371 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
372 {
373         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
374         struct pnv_ioda_pe *slave;
375         s64 rc;
376
377         /* Fetch master PE */
378         if (pe->flags & PNV_IODA_PE_SLAVE) {
379                 pe = pe->master;
380                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
381                         return;
382
383                 pe_no = pe->pe_number;
384         }
385
386         /* Freeze master PE */
387         rc = opal_pci_eeh_freeze_set(phb->opal_id,
388                                      pe_no,
389                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
390         if (rc != OPAL_SUCCESS) {
391                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
392                         __func__, rc, phb->hose->global_number, pe_no);
393                 return;
394         }
395
396         /* Freeze slave PEs */
397         if (!(pe->flags & PNV_IODA_PE_MASTER))
398                 return;
399
400         list_for_each_entry(slave, &pe->slaves, list) {
401                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
402                                              slave->pe_number,
403                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
404                 if (rc != OPAL_SUCCESS)
405                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
406                                 __func__, rc, phb->hose->global_number,
407                                 slave->pe_number);
408         }
409 }
410
411 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
412 {
413         struct pnv_ioda_pe *pe, *slave;
414         s64 rc;
415
416         /* Find master PE */
417         pe = &phb->ioda.pe_array[pe_no];
418         if (pe->flags & PNV_IODA_PE_SLAVE) {
419                 pe = pe->master;
420                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
421                 pe_no = pe->pe_number;
422         }
423
424         /* Clear frozen state for master PE */
425         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
426         if (rc != OPAL_SUCCESS) {
427                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
428                         __func__, rc, opt, phb->hose->global_number, pe_no);
429                 return -EIO;
430         }
431
432         if (!(pe->flags & PNV_IODA_PE_MASTER))
433                 return 0;
434
435         /* Clear frozen state for slave PEs */
436         list_for_each_entry(slave, &pe->slaves, list) {
437                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
438                                              slave->pe_number,
439                                              opt);
440                 if (rc != OPAL_SUCCESS) {
441                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
442                                 __func__, rc, opt, phb->hose->global_number,
443                                 slave->pe_number);
444                         return -EIO;
445                 }
446         }
447
448         return 0;
449 }
450
451 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
452 {
453         struct pnv_ioda_pe *slave, *pe;
454         u8 fstate, state;
455         __be16 pcierr;
456         s64 rc;
457
458         /* Sanity check on PE number */
459         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
460                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
461
462         /*
463          * Fetch the master PE and the PE instance might be
464          * not initialized yet.
465          */
466         pe = &phb->ioda.pe_array[pe_no];
467         if (pe->flags & PNV_IODA_PE_SLAVE) {
468                 pe = pe->master;
469                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
470                 pe_no = pe->pe_number;
471         }
472
473         /* Check the master PE */
474         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
475                                         &state, &pcierr, NULL);
476         if (rc != OPAL_SUCCESS) {
477                 pr_warn("%s: Failure %lld getting "
478                         "PHB#%x-PE#%x state\n",
479                         __func__, rc,
480                         phb->hose->global_number, pe_no);
481                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
482         }
483
484         /* Check the slave PE */
485         if (!(pe->flags & PNV_IODA_PE_MASTER))
486                 return state;
487
488         list_for_each_entry(slave, &pe->slaves, list) {
489                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
490                                                 slave->pe_number,
491                                                 &fstate,
492                                                 &pcierr,
493                                                 NULL);
494                 if (rc != OPAL_SUCCESS) {
495                         pr_warn("%s: Failure %lld getting "
496                                 "PHB#%x-PE#%x state\n",
497                                 __func__, rc,
498                                 phb->hose->global_number, slave->pe_number);
499                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
500                 }
501
502                 /*
503                  * Override the result based on the ascending
504                  * priority.
505                  */
506                 if (fstate > state)
507                         state = fstate;
508         }
509
510         return state;
511 }
512
513 /* Currently those 2 are only used when MSIs are enabled, this will change
514  * but in the meantime, we need to protect them to avoid warnings
515  */
516 #ifdef CONFIG_PCI_MSI
517 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
518 {
519         struct pci_controller *hose = pci_bus_to_host(dev->bus);
520         struct pnv_phb *phb = hose->private_data;
521         struct pci_dn *pdn = pci_get_pdn(dev);
522
523         if (!pdn)
524                 return NULL;
525         if (pdn->pe_number == IODA_INVALID_PE)
526                 return NULL;
527         return &phb->ioda.pe_array[pdn->pe_number];
528 }
529 #endif /* CONFIG_PCI_MSI */
530
531 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
532                                   struct pnv_ioda_pe *parent,
533                                   struct pnv_ioda_pe *child,
534                                   bool is_add)
535 {
536         const char *desc = is_add ? "adding" : "removing";
537         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
538                               OPAL_REMOVE_PE_FROM_DOMAIN;
539         struct pnv_ioda_pe *slave;
540         long rc;
541
542         /* Parent PE affects child PE */
543         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
544                                 child->pe_number, op);
545         if (rc != OPAL_SUCCESS) {
546                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
547                         rc, desc);
548                 return -ENXIO;
549         }
550
551         if (!(child->flags & PNV_IODA_PE_MASTER))
552                 return 0;
553
554         /* Compound case: parent PE affects slave PEs */
555         list_for_each_entry(slave, &child->slaves, list) {
556                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
557                                         slave->pe_number, op);
558                 if (rc != OPAL_SUCCESS) {
559                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
560                                 rc, desc);
561                         return -ENXIO;
562                 }
563         }
564
565         return 0;
566 }
567
568 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
569                               struct pnv_ioda_pe *pe,
570                               bool is_add)
571 {
572         struct pnv_ioda_pe *slave;
573         struct pci_dev *pdev = NULL;
574         int ret;
575
576         /*
577          * Clear PE frozen state. If it's master PE, we need
578          * clear slave PE frozen state as well.
579          */
580         if (is_add) {
581                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
582                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
583                 if (pe->flags & PNV_IODA_PE_MASTER) {
584                         list_for_each_entry(slave, &pe->slaves, list)
585                                 opal_pci_eeh_freeze_clear(phb->opal_id,
586                                                           slave->pe_number,
587                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
588                 }
589         }
590
591         /*
592          * Associate PE in PELT. We need add the PE into the
593          * corresponding PELT-V as well. Otherwise, the error
594          * originated from the PE might contribute to other
595          * PEs.
596          */
597         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
598         if (ret)
599                 return ret;
600
601         /* For compound PEs, any one affects all of them */
602         if (pe->flags & PNV_IODA_PE_MASTER) {
603                 list_for_each_entry(slave, &pe->slaves, list) {
604                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
605                         if (ret)
606                                 return ret;
607                 }
608         }
609
610         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
611                 pdev = pe->pbus->self;
612         else if (pe->flags & PNV_IODA_PE_DEV)
613                 pdev = pe->pdev->bus->self;
614 #ifdef CONFIG_PCI_IOV
615         else if (pe->flags & PNV_IODA_PE_VF)
616                 pdev = pe->parent_dev;
617 #endif /* CONFIG_PCI_IOV */
618         while (pdev) {
619                 struct pci_dn *pdn = pci_get_pdn(pdev);
620                 struct pnv_ioda_pe *parent;
621
622                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
623                         parent = &phb->ioda.pe_array[pdn->pe_number];
624                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
625                         if (ret)
626                                 return ret;
627                 }
628
629                 pdev = pdev->bus->self;
630         }
631
632         return 0;
633 }
634
635 #ifdef CONFIG_PCI_IOV
636 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
637 {
638         struct pci_dev *parent;
639         uint8_t bcomp, dcomp, fcomp;
640         int64_t rc;
641         long rid_end, rid;
642
643         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
644         if (pe->pbus) {
645                 int count;
646
647                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
648                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
649                 parent = pe->pbus->self;
650                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
651                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
652                 else
653                         count = 1;
654
655                 switch(count) {
656                 case  1: bcomp = OpalPciBusAll;         break;
657                 case  2: bcomp = OpalPciBus7Bits;       break;
658                 case  4: bcomp = OpalPciBus6Bits;       break;
659                 case  8: bcomp = OpalPciBus5Bits;       break;
660                 case 16: bcomp = OpalPciBus4Bits;       break;
661                 case 32: bcomp = OpalPciBus3Bits;       break;
662                 default:
663                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
664                                 count);
665                         /* Do an exact match only */
666                         bcomp = OpalPciBusAll;
667                 }
668                 rid_end = pe->rid + (count << 8);
669         } else {
670                 if (pe->flags & PNV_IODA_PE_VF)
671                         parent = pe->parent_dev;
672                 else
673                         parent = pe->pdev->bus->self;
674                 bcomp = OpalPciBusAll;
675                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
676                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
677                 rid_end = pe->rid + 1;
678         }
679
680         /* Clear the reverse map */
681         for (rid = pe->rid; rid < rid_end; rid++)
682                 phb->ioda.pe_rmap[rid] = 0;
683
684         /* Release from all parents PELT-V */
685         while (parent) {
686                 struct pci_dn *pdn = pci_get_pdn(parent);
687                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
688                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
689                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
690                         /* XXX What to do in case of error ? */
691                 }
692                 parent = parent->bus->self;
693         }
694
695         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
696                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
697
698         /* Disassociate PE in PELT */
699         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
700                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
701         if (rc)
702                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
703         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
704                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
705         if (rc)
706                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
707
708         pe->pbus = NULL;
709         pe->pdev = NULL;
710         pe->parent_dev = NULL;
711
712         return 0;
713 }
714 #endif /* CONFIG_PCI_IOV */
715
716 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
717 {
718         struct pci_dev *parent;
719         uint8_t bcomp, dcomp, fcomp;
720         long rc, rid_end, rid;
721
722         /* Bus validation ? */
723         if (pe->pbus) {
724                 int count;
725
726                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
727                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
728                 parent = pe->pbus->self;
729                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
730                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
731                 else
732                         count = 1;
733
734                 switch(count) {
735                 case  1: bcomp = OpalPciBusAll;         break;
736                 case  2: bcomp = OpalPciBus7Bits;       break;
737                 case  4: bcomp = OpalPciBus6Bits;       break;
738                 case  8: bcomp = OpalPciBus5Bits;       break;
739                 case 16: bcomp = OpalPciBus4Bits;       break;
740                 case 32: bcomp = OpalPciBus3Bits;       break;
741                 default:
742                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
743                                 count);
744                         /* Do an exact match only */
745                         bcomp = OpalPciBusAll;
746                 }
747                 rid_end = pe->rid + (count << 8);
748         } else {
749 #ifdef CONFIG_PCI_IOV
750                 if (pe->flags & PNV_IODA_PE_VF)
751                         parent = pe->parent_dev;
752                 else
753 #endif /* CONFIG_PCI_IOV */
754                         parent = pe->pdev->bus->self;
755                 bcomp = OpalPciBusAll;
756                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
757                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
758                 rid_end = pe->rid + 1;
759         }
760
761         /*
762          * Associate PE in PELT. We need add the PE into the
763          * corresponding PELT-V as well. Otherwise, the error
764          * originated from the PE might contribute to other
765          * PEs.
766          */
767         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
768                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
769         if (rc) {
770                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
771                 return -ENXIO;
772         }
773
774         /*
775          * Configure PELTV. NPUs don't have a PELTV table so skip
776          * configuration on them.
777          */
778         if (phb->type != PNV_PHB_NPU)
779                 pnv_ioda_set_peltv(phb, pe, true);
780
781         /* Setup reverse map */
782         for (rid = pe->rid; rid < rid_end; rid++)
783                 phb->ioda.pe_rmap[rid] = pe->pe_number;
784
785         /* Setup one MVTs on IODA1 */
786         if (phb->type != PNV_PHB_IODA1) {
787                 pe->mve_number = 0;
788                 goto out;
789         }
790
791         pe->mve_number = pe->pe_number;
792         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
793         if (rc != OPAL_SUCCESS) {
794                 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
795                        rc, pe->mve_number);
796                 pe->mve_number = -1;
797         } else {
798                 rc = opal_pci_set_mve_enable(phb->opal_id,
799                                              pe->mve_number, OPAL_ENABLE_MVE);
800                 if (rc) {
801                         pe_err(pe, "OPAL error %ld enabling MVE %d\n",
802                                rc, pe->mve_number);
803                         pe->mve_number = -1;
804                 }
805         }
806
807 out:
808         return 0;
809 }
810
811 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
812                                        struct pnv_ioda_pe *pe)
813 {
814         struct pnv_ioda_pe *lpe;
815
816         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
817                 if (lpe->dma_weight < pe->dma_weight) {
818                         list_add_tail(&pe->dma_link, &lpe->dma_link);
819                         return;
820                 }
821         }
822         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
823 }
824
825 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
826 {
827         /* This is quite simplistic. The "base" weight of a device
828          * is 10. 0 means no DMA is to be accounted for it.
829          */
830
831         /* If it's a bridge, no DMA */
832         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
833                 return 0;
834
835         /* Reduce the weight of slow USB controllers */
836         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
837             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
838             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
839                 return 3;
840
841         /* Increase the weight of RAID (includes Obsidian) */
842         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
843                 return 15;
844
845         /* Default */
846         return 10;
847 }
848
849 #ifdef CONFIG_PCI_IOV
850 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
851 {
852         struct pci_dn *pdn = pci_get_pdn(dev);
853         int i;
854         struct resource *res, res2;
855         resource_size_t size;
856         u16 num_vfs;
857
858         if (!dev->is_physfn)
859                 return -EINVAL;
860
861         /*
862          * "offset" is in VFs.  The M64 windows are sized so that when they
863          * are segmented, each segment is the same size as the IOV BAR.
864          * Each segment is in a separate PE, and the high order bits of the
865          * address are the PE number.  Therefore, each VF's BAR is in a
866          * separate PE, and changing the IOV BAR start address changes the
867          * range of PEs the VFs are in.
868          */
869         num_vfs = pdn->num_vfs;
870         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
871                 res = &dev->resource[i + PCI_IOV_RESOURCES];
872                 if (!res->flags || !res->parent)
873                         continue;
874
875                 /*
876                  * The actual IOV BAR range is determined by the start address
877                  * and the actual size for num_vfs VFs BAR.  This check is to
878                  * make sure that after shifting, the range will not overlap
879                  * with another device.
880                  */
881                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
882                 res2.flags = res->flags;
883                 res2.start = res->start + (size * offset);
884                 res2.end = res2.start + (size * num_vfs) - 1;
885
886                 if (res2.end > res->end) {
887                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
888                                 i, &res2, res, num_vfs, offset);
889                         return -EBUSY;
890                 }
891         }
892
893         /*
894          * After doing so, there would be a "hole" in the /proc/iomem when
895          * offset is a positive value. It looks like the device return some
896          * mmio back to the system, which actually no one could use it.
897          */
898         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
899                 res = &dev->resource[i + PCI_IOV_RESOURCES];
900                 if (!res->flags || !res->parent)
901                         continue;
902
903                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
904                 res2 = *res;
905                 res->start += size * offset;
906
907                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
908                          i, &res2, res, (offset > 0) ? "En" : "Dis",
909                          num_vfs, offset);
910                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
911         }
912         return 0;
913 }
914 #endif /* CONFIG_PCI_IOV */
915
916 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
917 {
918         struct pci_controller *hose = pci_bus_to_host(dev->bus);
919         struct pnv_phb *phb = hose->private_data;
920         struct pci_dn *pdn = pci_get_pdn(dev);
921         struct pnv_ioda_pe *pe;
922         int pe_num;
923
924         if (!pdn) {
925                 pr_err("%s: Device tree node not associated properly\n",
926                            pci_name(dev));
927                 return NULL;
928         }
929         if (pdn->pe_number != IODA_INVALID_PE)
930                 return NULL;
931
932         pe_num = pnv_ioda_alloc_pe(phb);
933         if (pe_num == IODA_INVALID_PE) {
934                 pr_warning("%s: Not enough PE# available, disabling device\n",
935                            pci_name(dev));
936                 return NULL;
937         }
938
939         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
940          * pointer in the PE data structure, both should be destroyed at the
941          * same time. However, this needs to be looked at more closely again
942          * once we actually start removing things (Hotplug, SR-IOV, ...)
943          *
944          * At some point we want to remove the PDN completely anyways
945          */
946         pe = &phb->ioda.pe_array[pe_num];
947         pci_dev_get(dev);
948         pdn->pcidev = dev;
949         pdn->pe_number = pe_num;
950         pe->flags = PNV_IODA_PE_DEV;
951         pe->pdev = dev;
952         pe->pbus = NULL;
953         pe->tce32_seg = -1;
954         pe->mve_number = -1;
955         pe->rid = dev->bus->number << 8 | pdn->devfn;
956
957         pe_info(pe, "Associated device to PE\n");
958
959         if (pnv_ioda_configure_pe(phb, pe)) {
960                 /* XXX What do we do here ? */
961                 if (pe_num)
962                         pnv_ioda_free_pe(phb, pe_num);
963                 pdn->pe_number = IODA_INVALID_PE;
964                 pe->pdev = NULL;
965                 pci_dev_put(dev);
966                 return NULL;
967         }
968
969         /* Assign a DMA weight to the device */
970         pe->dma_weight = pnv_ioda_dma_weight(dev);
971         if (pe->dma_weight != 0) {
972                 phb->ioda.dma_weight += pe->dma_weight;
973                 phb->ioda.dma_pe_count++;
974         }
975
976         /* Link the PE */
977         pnv_ioda_link_pe_by_weight(phb, pe);
978
979         return pe;
980 }
981
982 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
983 {
984         struct pci_dev *dev;
985
986         list_for_each_entry(dev, &bus->devices, bus_list) {
987                 struct pci_dn *pdn = pci_get_pdn(dev);
988
989                 if (pdn == NULL) {
990                         pr_warn("%s: No device node associated with device !\n",
991                                 pci_name(dev));
992                         continue;
993                 }
994                 pdn->pcidev = dev;
995                 pdn->pe_number = pe->pe_number;
996                 pe->dma_weight += pnv_ioda_dma_weight(dev);
997                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
998                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
999         }
1000 }
1001
1002 /*
1003  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1004  * single PCI bus. Another one that contains the primary PCI bus and its
1005  * subordinate PCI devices and buses. The second type of PE is normally
1006  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1007  */
1008 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1009 {
1010         struct pci_controller *hose = pci_bus_to_host(bus);
1011         struct pnv_phb *phb = hose->private_data;
1012         struct pnv_ioda_pe *pe;
1013         int pe_num = IODA_INVALID_PE;
1014
1015         /* Check if PE is determined by M64 */
1016         if (phb->pick_m64_pe)
1017                 pe_num = phb->pick_m64_pe(bus, all);
1018
1019         /* The PE number isn't pinned by M64 */
1020         if (pe_num == IODA_INVALID_PE)
1021                 pe_num = pnv_ioda_alloc_pe(phb);
1022
1023         if (pe_num == IODA_INVALID_PE) {
1024                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1025                         __func__, pci_domain_nr(bus), bus->number);
1026                 return;
1027         }
1028
1029         pe = &phb->ioda.pe_array[pe_num];
1030         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1031         pe->pbus = bus;
1032         pe->pdev = NULL;
1033         pe->tce32_seg = -1;
1034         pe->mve_number = -1;
1035         pe->rid = bus->busn_res.start << 8;
1036         pe->dma_weight = 0;
1037
1038         if (all)
1039                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1040                         bus->busn_res.start, bus->busn_res.end, pe_num);
1041         else
1042                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1043                         bus->busn_res.start, pe_num);
1044
1045         if (pnv_ioda_configure_pe(phb, pe)) {
1046                 /* XXX What do we do here ? */
1047                 if (pe_num)
1048                         pnv_ioda_free_pe(phb, pe_num);
1049                 pe->pbus = NULL;
1050                 return;
1051         }
1052
1053         /* Associate it with all child devices */
1054         pnv_ioda_setup_same_PE(bus, pe);
1055
1056         /* Put PE to the list */
1057         list_add_tail(&pe->list, &phb->ioda.pe_list);
1058
1059         /* Account for one DMA PE if at least one DMA capable device exist
1060          * below the bridge
1061          */
1062         if (pe->dma_weight != 0) {
1063                 phb->ioda.dma_weight += pe->dma_weight;
1064                 phb->ioda.dma_pe_count++;
1065         }
1066
1067         /* Link the PE */
1068         pnv_ioda_link_pe_by_weight(phb, pe);
1069 }
1070
1071 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1072 {
1073         int pe_num, found_pe = false, rc;
1074         long rid;
1075         struct pnv_ioda_pe *pe;
1076         struct pci_dev *gpu_pdev;
1077         struct pci_dn *npu_pdn;
1078         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1079         struct pnv_phb *phb = hose->private_data;
1080
1081         /*
1082          * Due to a hardware errata PE#0 on the NPU is reserved for
1083          * error handling. This means we only have three PEs remaining
1084          * which need to be assigned to four links, implying some
1085          * links must share PEs.
1086          *
1087          * To achieve this we assign PEs such that NPUs linking the
1088          * same GPU get assigned the same PE.
1089          */
1090         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1091         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1092                 pe = &phb->ioda.pe_array[pe_num];
1093                 if (!pe->pdev)
1094                         continue;
1095
1096                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1097                         /*
1098                          * This device has the same peer GPU so should
1099                          * be assigned the same PE as the existing
1100                          * peer NPU.
1101                          */
1102                         dev_info(&npu_pdev->dev,
1103                                 "Associating to existing PE %d\n", pe_num);
1104                         pci_dev_get(npu_pdev);
1105                         npu_pdn = pci_get_pdn(npu_pdev);
1106                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1107                         npu_pdn->pcidev = npu_pdev;
1108                         npu_pdn->pe_number = pe_num;
1109                         pe->dma_weight += pnv_ioda_dma_weight(npu_pdev);
1110                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1111
1112                         /* Map the PE to this link */
1113                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1114                                         OpalPciBusAll,
1115                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1116                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1117                                         OPAL_MAP_PE);
1118                         WARN_ON(rc != OPAL_SUCCESS);
1119                         found_pe = true;
1120                         break;
1121                 }
1122         }
1123
1124         if (!found_pe)
1125                 /*
1126                  * Could not find an existing PE so allocate a new
1127                  * one.
1128                  */
1129                 return pnv_ioda_setup_dev_PE(npu_pdev);
1130         else
1131                 return pe;
1132 }
1133
1134 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1135 {
1136         struct pci_dev *pdev;
1137
1138         list_for_each_entry(pdev, &bus->devices, bus_list)
1139                 pnv_ioda_setup_npu_PE(pdev);
1140 }
1141
1142 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
1143 {
1144         struct pci_dev *dev;
1145
1146         pnv_ioda_setup_bus_PE(bus, false);
1147
1148         list_for_each_entry(dev, &bus->devices, bus_list) {
1149                 if (dev->subordinate) {
1150                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
1151                                 pnv_ioda_setup_bus_PE(dev->subordinate, true);
1152                         else
1153                                 pnv_ioda_setup_PEs(dev->subordinate);
1154                 }
1155         }
1156 }
1157
1158 /*
1159  * Configure PEs so that the downstream PCI buses and devices
1160  * could have their associated PE#. Unfortunately, we didn't
1161  * figure out the way to identify the PLX bridge yet. So we
1162  * simply put the PCI bus and the subordinate behind the root
1163  * port to PE# here. The game rule here is expected to be changed
1164  * as soon as we can detected PLX bridge correctly.
1165  */
1166 static void pnv_pci_ioda_setup_PEs(void)
1167 {
1168         struct pci_controller *hose, *tmp;
1169         struct pnv_phb *phb;
1170
1171         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1172                 phb = hose->private_data;
1173
1174                 /* M64 layout might affect PE allocation */
1175                 if (phb->reserve_m64_pe)
1176                         phb->reserve_m64_pe(hose->bus, NULL, true);
1177
1178                 /*
1179                  * On NPU PHB, we expect separate PEs for individual PCI
1180                  * functions. PCI bus dependent PEs are required for the
1181                  * remaining types of PHBs.
1182                  */
1183                 if (phb->type == PNV_PHB_NPU) {
1184                         /* PE#0 is needed for error reporting */
1185                         pnv_ioda_reserve_pe(phb, 0);
1186                         pnv_ioda_setup_npu_PEs(hose->bus);
1187                 } else
1188                         pnv_ioda_setup_PEs(hose->bus);
1189         }
1190 }
1191
1192 #ifdef CONFIG_PCI_IOV
1193 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1194 {
1195         struct pci_bus        *bus;
1196         struct pci_controller *hose;
1197         struct pnv_phb        *phb;
1198         struct pci_dn         *pdn;
1199         int                    i, j;
1200         int                    m64_bars;
1201
1202         bus = pdev->bus;
1203         hose = pci_bus_to_host(bus);
1204         phb = hose->private_data;
1205         pdn = pci_get_pdn(pdev);
1206
1207         if (pdn->m64_single_mode)
1208                 m64_bars = num_vfs;
1209         else
1210                 m64_bars = 1;
1211
1212         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1213                 for (j = 0; j < m64_bars; j++) {
1214                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1215                                 continue;
1216                         opal_pci_phb_mmio_enable(phb->opal_id,
1217                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1218                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1219                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1220                 }
1221
1222         kfree(pdn->m64_map);
1223         return 0;
1224 }
1225
1226 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1227 {
1228         struct pci_bus        *bus;
1229         struct pci_controller *hose;
1230         struct pnv_phb        *phb;
1231         struct pci_dn         *pdn;
1232         unsigned int           win;
1233         struct resource       *res;
1234         int                    i, j;
1235         int64_t                rc;
1236         int                    total_vfs;
1237         resource_size_t        size, start;
1238         int                    pe_num;
1239         int                    m64_bars;
1240
1241         bus = pdev->bus;
1242         hose = pci_bus_to_host(bus);
1243         phb = hose->private_data;
1244         pdn = pci_get_pdn(pdev);
1245         total_vfs = pci_sriov_get_totalvfs(pdev);
1246
1247         if (pdn->m64_single_mode)
1248                 m64_bars = num_vfs;
1249         else
1250                 m64_bars = 1;
1251
1252         pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1253         if (!pdn->m64_map)
1254                 return -ENOMEM;
1255         /* Initialize the m64_map to IODA_INVALID_M64 */
1256         for (i = 0; i < m64_bars ; i++)
1257                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1258                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1259
1260
1261         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1262                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1263                 if (!res->flags || !res->parent)
1264                         continue;
1265
1266                 for (j = 0; j < m64_bars; j++) {
1267                         do {
1268                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1269                                                 phb->ioda.m64_bar_idx + 1, 0);
1270
1271                                 if (win >= phb->ioda.m64_bar_idx + 1)
1272                                         goto m64_failed;
1273                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1274
1275                         pdn->m64_map[j][i] = win;
1276
1277                         if (pdn->m64_single_mode) {
1278                                 size = pci_iov_resource_size(pdev,
1279                                                         PCI_IOV_RESOURCES + i);
1280                                 start = res->start + size * j;
1281                         } else {
1282                                 size = resource_size(res);
1283                                 start = res->start;
1284                         }
1285
1286                         /* Map the M64 here */
1287                         if (pdn->m64_single_mode) {
1288                                 pe_num = pdn->pe_num_map[j];
1289                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1290                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1291                                                 pdn->m64_map[j][i], 0);
1292                         }
1293
1294                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1295                                                  OPAL_M64_WINDOW_TYPE,
1296                                                  pdn->m64_map[j][i],
1297                                                  start,
1298                                                  0, /* unused */
1299                                                  size);
1300
1301
1302                         if (rc != OPAL_SUCCESS) {
1303                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1304                                         win, rc);
1305                                 goto m64_failed;
1306                         }
1307
1308                         if (pdn->m64_single_mode)
1309                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1310                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1311                         else
1312                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1313                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1314
1315                         if (rc != OPAL_SUCCESS) {
1316                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1317                                         win, rc);
1318                                 goto m64_failed;
1319                         }
1320                 }
1321         }
1322         return 0;
1323
1324 m64_failed:
1325         pnv_pci_vf_release_m64(pdev, num_vfs);
1326         return -EBUSY;
1327 }
1328
1329 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1330                 int num);
1331 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1332
1333 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1334 {
1335         struct iommu_table    *tbl;
1336         int64_t               rc;
1337
1338         tbl = pe->table_group.tables[0];
1339         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1340         if (rc)
1341                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1342
1343         pnv_pci_ioda2_set_bypass(pe, false);
1344         if (pe->table_group.group) {
1345                 iommu_group_put(pe->table_group.group);
1346                 BUG_ON(pe->table_group.group);
1347         }
1348         pnv_pci_ioda2_table_free_pages(tbl);
1349         iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1350 }
1351
1352 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1353 {
1354         struct pci_bus        *bus;
1355         struct pci_controller *hose;
1356         struct pnv_phb        *phb;
1357         struct pnv_ioda_pe    *pe, *pe_n;
1358         struct pci_dn         *pdn;
1359
1360         bus = pdev->bus;
1361         hose = pci_bus_to_host(bus);
1362         phb = hose->private_data;
1363         pdn = pci_get_pdn(pdev);
1364
1365         if (!pdev->is_physfn)
1366                 return;
1367
1368         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1369                 if (pe->parent_dev != pdev)
1370                         continue;
1371
1372                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1373
1374                 /* Remove from list */
1375                 mutex_lock(&phb->ioda.pe_list_mutex);
1376                 list_del(&pe->list);
1377                 mutex_unlock(&phb->ioda.pe_list_mutex);
1378
1379                 pnv_ioda_deconfigure_pe(phb, pe);
1380
1381                 pnv_ioda_free_pe(phb, pe->pe_number);
1382         }
1383 }
1384
1385 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1386 {
1387         struct pci_bus        *bus;
1388         struct pci_controller *hose;
1389         struct pnv_phb        *phb;
1390         struct pci_dn         *pdn;
1391         struct pci_sriov      *iov;
1392         u16                    num_vfs, i;
1393
1394         bus = pdev->bus;
1395         hose = pci_bus_to_host(bus);
1396         phb = hose->private_data;
1397         pdn = pci_get_pdn(pdev);
1398         iov = pdev->sriov;
1399         num_vfs = pdn->num_vfs;
1400
1401         /* Release VF PEs */
1402         pnv_ioda_release_vf_PE(pdev);
1403
1404         if (phb->type == PNV_PHB_IODA2) {
1405                 if (!pdn->m64_single_mode)
1406                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1407
1408                 /* Release M64 windows */
1409                 pnv_pci_vf_release_m64(pdev, num_vfs);
1410
1411                 /* Release PE numbers */
1412                 if (pdn->m64_single_mode) {
1413                         for (i = 0; i < num_vfs; i++) {
1414                                 if (pdn->pe_num_map[i] != IODA_INVALID_PE)
1415                                         pnv_ioda_free_pe(phb, pdn->pe_num_map[i]);
1416                         }
1417                 } else
1418                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1419                 /* Releasing pe_num_map */
1420                 kfree(pdn->pe_num_map);
1421         }
1422 }
1423
1424 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1425                                        struct pnv_ioda_pe *pe);
1426 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1427 {
1428         struct pci_bus        *bus;
1429         struct pci_controller *hose;
1430         struct pnv_phb        *phb;
1431         struct pnv_ioda_pe    *pe;
1432         int                    pe_num;
1433         u16                    vf_index;
1434         struct pci_dn         *pdn;
1435
1436         bus = pdev->bus;
1437         hose = pci_bus_to_host(bus);
1438         phb = hose->private_data;
1439         pdn = pci_get_pdn(pdev);
1440
1441         if (!pdev->is_physfn)
1442                 return;
1443
1444         /* Reserve PE for each VF */
1445         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1446                 if (pdn->m64_single_mode)
1447                         pe_num = pdn->pe_num_map[vf_index];
1448                 else
1449                         pe_num = *pdn->pe_num_map + vf_index;
1450
1451                 pe = &phb->ioda.pe_array[pe_num];
1452                 pe->pe_number = pe_num;
1453                 pe->phb = phb;
1454                 pe->flags = PNV_IODA_PE_VF;
1455                 pe->pbus = NULL;
1456                 pe->parent_dev = pdev;
1457                 pe->tce32_seg = -1;
1458                 pe->mve_number = -1;
1459                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1460                            pci_iov_virtfn_devfn(pdev, vf_index);
1461
1462                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1463                         hose->global_number, pdev->bus->number,
1464                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1465                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1466
1467                 if (pnv_ioda_configure_pe(phb, pe)) {
1468                         /* XXX What do we do here ? */
1469                         if (pe_num)
1470                                 pnv_ioda_free_pe(phb, pe_num);
1471                         pe->pdev = NULL;
1472                         continue;
1473                 }
1474
1475                 /* Put PE to the list */
1476                 mutex_lock(&phb->ioda.pe_list_mutex);
1477                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1478                 mutex_unlock(&phb->ioda.pe_list_mutex);
1479
1480                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1481         }
1482 }
1483
1484 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1485 {
1486         struct pci_bus        *bus;
1487         struct pci_controller *hose;
1488         struct pnv_phb        *phb;
1489         struct pci_dn         *pdn;
1490         int                    ret;
1491         u16                    i;
1492
1493         bus = pdev->bus;
1494         hose = pci_bus_to_host(bus);
1495         phb = hose->private_data;
1496         pdn = pci_get_pdn(pdev);
1497
1498         if (phb->type == PNV_PHB_IODA2) {
1499                 if (!pdn->vfs_expanded) {
1500                         dev_info(&pdev->dev, "don't support this SRIOV device"
1501                                 " with non 64bit-prefetchable IOV BAR\n");
1502                         return -ENOSPC;
1503                 }
1504
1505                 /*
1506                  * When M64 BARs functions in Single PE mode, the number of VFs
1507                  * could be enabled must be less than the number of M64 BARs.
1508                  */
1509                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1510                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1511                         return -EBUSY;
1512                 }
1513
1514                 /* Allocating pe_num_map */
1515                 if (pdn->m64_single_mode)
1516                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1517                                         GFP_KERNEL);
1518                 else
1519                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1520
1521                 if (!pdn->pe_num_map)
1522                         return -ENOMEM;
1523
1524                 if (pdn->m64_single_mode)
1525                         for (i = 0; i < num_vfs; i++)
1526                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1527
1528                 /* Calculate available PE for required VFs */
1529                 if (pdn->m64_single_mode) {
1530                         for (i = 0; i < num_vfs; i++) {
1531                                 pdn->pe_num_map[i] = pnv_ioda_alloc_pe(phb);
1532                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE) {
1533                                         ret = -EBUSY;
1534                                         goto m64_failed;
1535                                 }
1536                         }
1537                 } else {
1538                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1539                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1540                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1541                                 0, num_vfs, 0);
1542                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1543                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1544                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1545                                 kfree(pdn->pe_num_map);
1546                                 return -EBUSY;
1547                         }
1548                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1549                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1550                 }
1551                 pdn->num_vfs = num_vfs;
1552
1553                 /* Assign M64 window accordingly */
1554                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1555                 if (ret) {
1556                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1557                         goto m64_failed;
1558                 }
1559
1560                 /*
1561                  * When using one M64 BAR to map one IOV BAR, we need to shift
1562                  * the IOV BAR according to the PE# allocated to the VFs.
1563                  * Otherwise, the PE# for the VF will conflict with others.
1564                  */
1565                 if (!pdn->m64_single_mode) {
1566                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1567                         if (ret)
1568                                 goto m64_failed;
1569                 }
1570         }
1571
1572         /* Setup VF PEs */
1573         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1574
1575         return 0;
1576
1577 m64_failed:
1578         if (pdn->m64_single_mode) {
1579                 for (i = 0; i < num_vfs; i++) {
1580                         if (pdn->pe_num_map[i] != IODA_INVALID_PE)
1581                                 pnv_ioda_free_pe(phb, pdn->pe_num_map[i]);
1582                 }
1583         } else
1584                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1585
1586         /* Releasing pe_num_map */
1587         kfree(pdn->pe_num_map);
1588
1589         return ret;
1590 }
1591
1592 int pcibios_sriov_disable(struct pci_dev *pdev)
1593 {
1594         pnv_pci_sriov_disable(pdev);
1595
1596         /* Release PCI data */
1597         remove_dev_pci_data(pdev);
1598         return 0;
1599 }
1600
1601 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1602 {
1603         /* Allocate PCI data */
1604         add_dev_pci_data(pdev);
1605
1606         return pnv_pci_sriov_enable(pdev, num_vfs);
1607 }
1608 #endif /* CONFIG_PCI_IOV */
1609
1610 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1611 {
1612         struct pci_dn *pdn = pci_get_pdn(pdev);
1613         struct pnv_ioda_pe *pe;
1614
1615         /*
1616          * The function can be called while the PE#
1617          * hasn't been assigned. Do nothing for the
1618          * case.
1619          */
1620         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1621                 return;
1622
1623         pe = &phb->ioda.pe_array[pdn->pe_number];
1624         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1625         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1626         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1627         /*
1628          * Note: iommu_add_device() will fail here as
1629          * for physical PE: the device is already added by now;
1630          * for virtual PE: sysfs entries are not ready yet and
1631          * tce_iommu_bus_notifier will add the device to a group later.
1632          */
1633 }
1634
1635 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1636 {
1637         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1638         struct pnv_phb *phb = hose->private_data;
1639         struct pci_dn *pdn = pci_get_pdn(pdev);
1640         struct pnv_ioda_pe *pe;
1641         uint64_t top;
1642         bool bypass = false;
1643         struct pci_dev *linked_npu_dev;
1644         int i;
1645
1646         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1647                 return -ENODEV;;
1648
1649         pe = &phb->ioda.pe_array[pdn->pe_number];
1650         if (pe->tce_bypass_enabled) {
1651                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1652                 bypass = (dma_mask >= top);
1653         }
1654
1655         if (bypass) {
1656                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1657                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1658         } else {
1659                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1660                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1661         }
1662         *pdev->dev.dma_mask = dma_mask;
1663
1664         /* Update peer npu devices */
1665         if (pe->flags & PNV_IODA_PE_PEER)
1666                 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1667                         if (!pe->peers[i])
1668                                 continue;
1669
1670                         linked_npu_dev = pe->peers[i]->pdev;
1671                         if (dma_get_mask(&linked_npu_dev->dev) != dma_mask)
1672                                 dma_set_mask(&linked_npu_dev->dev, dma_mask);
1673                 }
1674
1675         return 0;
1676 }
1677
1678 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1679 {
1680         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1681         struct pnv_phb *phb = hose->private_data;
1682         struct pci_dn *pdn = pci_get_pdn(pdev);
1683         struct pnv_ioda_pe *pe;
1684         u64 end, mask;
1685
1686         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1687                 return 0;
1688
1689         pe = &phb->ioda.pe_array[pdn->pe_number];
1690         if (!pe->tce_bypass_enabled)
1691                 return __dma_get_required_mask(&pdev->dev);
1692
1693
1694         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1695         mask = 1ULL << (fls64(end) - 1);
1696         mask += mask - 1;
1697
1698         return mask;
1699 }
1700
1701 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1702                                    struct pci_bus *bus)
1703 {
1704         struct pci_dev *dev;
1705
1706         list_for_each_entry(dev, &bus->devices, bus_list) {
1707                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1708                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1709                 iommu_add_device(&dev->dev);
1710
1711                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1712                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1713         }
1714 }
1715
1716 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1717                 unsigned long index, unsigned long npages, bool rm)
1718 {
1719         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1720                         &tbl->it_group_list, struct iommu_table_group_link,
1721                         next);
1722         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1723                         struct pnv_ioda_pe, table_group);
1724         __be64 __iomem *invalidate = rm ?
1725                 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1726                 pe->phb->ioda.tce_inval_reg;
1727         unsigned long start, end, inc;
1728         const unsigned shift = tbl->it_page_shift;
1729
1730         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1731         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1732                         npages - 1);
1733
1734         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1735         if (tbl->it_busno) {
1736                 start <<= shift;
1737                 end <<= shift;
1738                 inc = 128ull << shift;
1739                 start |= tbl->it_busno;
1740                 end |= tbl->it_busno;
1741         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1742                 /* p7ioc-style invalidation, 2 TCEs per write */
1743                 start |= (1ull << 63);
1744                 end |= (1ull << 63);
1745                 inc = 16;
1746         } else {
1747                 /* Default (older HW) */
1748                 inc = 128;
1749         }
1750
1751         end |= inc - 1; /* round up end to be different than start */
1752
1753         mb(); /* Ensure above stores are visible */
1754         while (start <= end) {
1755                 if (rm)
1756                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1757                 else
1758                         __raw_writeq(cpu_to_be64(start), invalidate);
1759                 start += inc;
1760         }
1761
1762         /*
1763          * The iommu layer will do another mb() for us on build()
1764          * and we don't care on free()
1765          */
1766 }
1767
1768 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1769                 long npages, unsigned long uaddr,
1770                 enum dma_data_direction direction,
1771                 struct dma_attrs *attrs)
1772 {
1773         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1774                         attrs);
1775
1776         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1777                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1778
1779         return ret;
1780 }
1781
1782 #ifdef CONFIG_IOMMU_API
1783 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1784                 unsigned long *hpa, enum dma_data_direction *direction)
1785 {
1786         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1787
1788         if (!ret && (tbl->it_type &
1789                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1790                 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1791
1792         return ret;
1793 }
1794 #endif
1795
1796 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1797                 long npages)
1798 {
1799         pnv_tce_free(tbl, index, npages);
1800
1801         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1802                 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1803 }
1804
1805 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1806         .set = pnv_ioda1_tce_build,
1807 #ifdef CONFIG_IOMMU_API
1808         .exchange = pnv_ioda1_tce_xchg,
1809 #endif
1810         .clear = pnv_ioda1_tce_free,
1811         .get = pnv_tce_get,
1812 };
1813
1814 static inline void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_ioda_pe *pe)
1815 {
1816         /* 01xb - invalidate TCEs that match the specified PE# */
1817         unsigned long val = (0x4ull << 60) | (pe->pe_number & 0xFF);
1818         struct pnv_phb *phb = pe->phb;
1819         struct pnv_ioda_pe *npe;
1820         int i;
1821
1822         if (!phb->ioda.tce_inval_reg)
1823                 return;
1824
1825         mb(); /* Ensure above stores are visible */
1826         __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1827
1828         if (pe->flags & PNV_IODA_PE_PEER)
1829                 for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1830                         npe = pe->peers[i];
1831                         if (!npe || npe->phb->type != PNV_PHB_NPU)
1832                                 continue;
1833
1834                         pnv_npu_tce_invalidate_entire(npe);
1835                 }
1836 }
1837
1838 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1839                 __be64 __iomem *invalidate, unsigned shift,
1840                 unsigned long index, unsigned long npages)
1841 {
1842         unsigned long start, end, inc;
1843
1844         /* We'll invalidate DMA address in PE scope */
1845         start = 0x2ull << 60;
1846         start |= (pe_number & 0xFF);
1847         end = start;
1848
1849         /* Figure out the start, end and step */
1850         start |= (index << shift);
1851         end |= ((index + npages - 1) << shift);
1852         inc = (0x1ull << shift);
1853         mb();
1854
1855         while (start <= end) {
1856                 if (rm)
1857                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1858                 else
1859                         __raw_writeq(cpu_to_be64(start), invalidate);
1860                 start += inc;
1861         }
1862 }
1863
1864 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1865                 unsigned long index, unsigned long npages, bool rm)
1866 {
1867         struct iommu_table_group_link *tgl;
1868
1869         list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1870                 struct pnv_ioda_pe *npe;
1871                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1872                                 struct pnv_ioda_pe, table_group);
1873                 __be64 __iomem *invalidate = rm ?
1874                         (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1875                         pe->phb->ioda.tce_inval_reg;
1876                 int i;
1877
1878                 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1879                         invalidate, tbl->it_page_shift,
1880                         index, npages);
1881
1882                 if (pe->flags & PNV_IODA_PE_PEER)
1883                         /* Invalidate PEs using the same TCE table */
1884                         for (i = 0; i < PNV_IODA_MAX_PEER_PES; i++) {
1885                                 npe = pe->peers[i];
1886                                 if (!npe || npe->phb->type != PNV_PHB_NPU)
1887                                         continue;
1888
1889                                 pnv_npu_tce_invalidate(npe, tbl, index,
1890                                                         npages, rm);
1891                         }
1892         }
1893 }
1894
1895 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1896                 long npages, unsigned long uaddr,
1897                 enum dma_data_direction direction,
1898                 struct dma_attrs *attrs)
1899 {
1900         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1901                         attrs);
1902
1903         if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1904                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1905
1906         return ret;
1907 }
1908
1909 #ifdef CONFIG_IOMMU_API
1910 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1911                 unsigned long *hpa, enum dma_data_direction *direction)
1912 {
1913         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1914
1915         if (!ret && (tbl->it_type &
1916                         (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1917                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1918
1919         return ret;
1920 }
1921 #endif
1922
1923 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1924                 long npages)
1925 {
1926         pnv_tce_free(tbl, index, npages);
1927
1928         if (tbl->it_type & TCE_PCI_SWINV_FREE)
1929                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1930 }
1931
1932 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1933 {
1934         pnv_pci_ioda2_table_free_pages(tbl);
1935         iommu_free_table(tbl, "pnv");
1936 }
1937
1938 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1939         .set = pnv_ioda2_tce_build,
1940 #ifdef CONFIG_IOMMU_API
1941         .exchange = pnv_ioda2_tce_xchg,
1942 #endif
1943         .clear = pnv_ioda2_tce_free,
1944         .get = pnv_tce_get,
1945         .free = pnv_ioda2_table_free,
1946 };
1947
1948 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1949                                       struct pnv_ioda_pe *pe, unsigned int base,
1950                                       unsigned int segs)
1951 {
1952
1953         struct page *tce_mem = NULL;
1954         struct iommu_table *tbl;
1955         unsigned int i;
1956         int64_t rc;
1957         void *addr;
1958
1959         /* XXX FIXME: Handle 64-bit only DMA devices */
1960         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1961         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1962
1963         /* We shouldn't already have a 32-bit DMA associated */
1964         if (WARN_ON(pe->tce32_seg >= 0))
1965                 return;
1966
1967         tbl = pnv_pci_table_alloc(phb->hose->node);
1968         iommu_register_group(&pe->table_group, phb->hose->global_number,
1969                         pe->pe_number);
1970         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1971
1972         /* Grab a 32-bit TCE table */
1973         pe->tce32_seg = base;
1974         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1975                 (base << 28), ((base + segs) << 28) - 1);
1976
1977         /* XXX Currently, we allocate one big contiguous table for the
1978          * TCEs. We only really need one chunk per 256M of TCE space
1979          * (ie per segment) but that's an optimization for later, it
1980          * requires some added smarts with our get/put_tce implementation
1981          */
1982         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1983                                    get_order(TCE32_TABLE_SIZE * segs));
1984         if (!tce_mem) {
1985                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1986                 goto fail;
1987         }
1988         addr = page_address(tce_mem);
1989         memset(addr, 0, TCE32_TABLE_SIZE * segs);
1990
1991         /* Configure HW */
1992         for (i = 0; i < segs; i++) {
1993                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1994                                               pe->pe_number,
1995                                               base + i, 1,
1996                                               __pa(addr) + TCE32_TABLE_SIZE * i,
1997                                               TCE32_TABLE_SIZE, 0x1000);
1998                 if (rc) {
1999                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2000                                " err %ld\n", rc);
2001                         goto fail;
2002                 }
2003         }
2004
2005         /* Setup linux iommu table */
2006         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
2007                                   base << 28, IOMMU_PAGE_SHIFT_4K);
2008
2009         /* OPAL variant of P7IOC SW invalidated TCEs */
2010         if (phb->ioda.tce_inval_reg)
2011                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2012                                  TCE_PCI_SWINV_FREE   |
2013                                  TCE_PCI_SWINV_PAIR);
2014
2015         tbl->it_ops = &pnv_ioda1_iommu_ops;
2016         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2017         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2018         iommu_init_table(tbl, phb->hose->node);
2019
2020         if (pe->flags & PNV_IODA_PE_DEV) {
2021                 /*
2022                  * Setting table base here only for carrying iommu_group
2023                  * further down to let iommu_add_device() do the job.
2024                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2025                  */
2026                 set_iommu_table_base(&pe->pdev->dev, tbl);
2027                 iommu_add_device(&pe->pdev->dev);
2028         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2029                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2030
2031         return;
2032  fail:
2033         /* XXX Failure: Try to fallback to 64-bit only ? */
2034         if (pe->tce32_seg >= 0)
2035                 pe->tce32_seg = -1;
2036         if (tce_mem)
2037                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
2038         if (tbl) {
2039                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2040                 iommu_free_table(tbl, "pnv");
2041         }
2042 }
2043
2044 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2045                 int num, struct iommu_table *tbl)
2046 {
2047         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2048                         table_group);
2049         struct pnv_phb *phb = pe->phb;
2050         int64_t rc;
2051         const unsigned long size = tbl->it_indirect_levels ?
2052                         tbl->it_level_size : tbl->it_size;
2053         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2054         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2055
2056         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2057                         start_addr, start_addr + win_size - 1,
2058                         IOMMU_PAGE_SIZE(tbl));
2059
2060         /*
2061          * Map TCE table through TVT. The TVE index is the PE number
2062          * shifted by 1 bit for 32-bits DMA space.
2063          */
2064         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2065                         pe->pe_number,
2066                         (pe->pe_number << 1) + num,
2067                         tbl->it_indirect_levels + 1,
2068                         __pa(tbl->it_base),
2069                         size << 3,
2070                         IOMMU_PAGE_SIZE(tbl));
2071         if (rc) {
2072                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2073                 return rc;
2074         }
2075
2076         pnv_pci_link_table_and_group(phb->hose->node, num,
2077                         tbl, &pe->table_group);
2078         pnv_pci_ioda2_tce_invalidate_entire(pe);
2079
2080         return 0;
2081 }
2082
2083 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2084 {
2085         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2086         int64_t rc;
2087
2088         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2089         if (enable) {
2090                 phys_addr_t top = memblock_end_of_DRAM();
2091
2092                 top = roundup_pow_of_two(top);
2093                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2094                                                      pe->pe_number,
2095                                                      window_id,
2096                                                      pe->tce_bypass_base,
2097                                                      top);
2098         } else {
2099                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2100                                                      pe->pe_number,
2101                                                      window_id,
2102                                                      pe->tce_bypass_base,
2103                                                      0);
2104         }
2105         if (rc)
2106                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2107         else
2108                 pe->tce_bypass_enabled = enable;
2109 }
2110
2111 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2112                 __u32 page_shift, __u64 window_size, __u32 levels,
2113                 struct iommu_table *tbl);
2114
2115 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2116                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2117                 struct iommu_table **ptbl)
2118 {
2119         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2120                         table_group);
2121         int nid = pe->phb->hose->node;
2122         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2123         long ret;
2124         struct iommu_table *tbl;
2125
2126         tbl = pnv_pci_table_alloc(nid);
2127         if (!tbl)
2128                 return -ENOMEM;
2129
2130         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2131                         bus_offset, page_shift, window_size,
2132                         levels, tbl);
2133         if (ret) {
2134                 iommu_free_table(tbl, "pnv");
2135                 return ret;
2136         }
2137
2138         tbl->it_ops = &pnv_ioda2_iommu_ops;
2139         if (pe->phb->ioda.tce_inval_reg)
2140                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2141
2142         *ptbl = tbl;
2143
2144         return 0;
2145 }
2146
2147 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2148 {
2149         struct iommu_table *tbl = NULL;
2150         long rc;
2151
2152         /*
2153          * crashkernel= specifies the kdump kernel's maximum memory at
2154          * some offset and there is no guaranteed the result is a power
2155          * of 2, which will cause errors later.
2156          */
2157         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2158
2159         /*
2160          * In memory constrained environments, e.g. kdump kernel, the
2161          * DMA window can be larger than available memory, which will
2162          * cause errors later.
2163          */
2164         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2165
2166         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2167                         IOMMU_PAGE_SHIFT_4K,
2168                         window_size,
2169                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2170         if (rc) {
2171                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2172                                 rc);
2173                 return rc;
2174         }
2175
2176         iommu_init_table(tbl, pe->phb->hose->node);
2177
2178         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2179         if (rc) {
2180                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2181                                 rc);
2182                 pnv_ioda2_table_free(tbl);
2183                 return rc;
2184         }
2185
2186         if (!pnv_iommu_bypass_disabled)
2187                 pnv_pci_ioda2_set_bypass(pe, true);
2188
2189         /* OPAL variant of PHB3 invalidated TCEs */
2190         if (pe->phb->ioda.tce_inval_reg)
2191                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2192
2193         /*
2194          * Setting table base here only for carrying iommu_group
2195          * further down to let iommu_add_device() do the job.
2196          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2197          */
2198         if (pe->flags & PNV_IODA_PE_DEV)
2199                 set_iommu_table_base(&pe->pdev->dev, tbl);
2200
2201         return 0;
2202 }
2203
2204 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2205 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2206                 int num)
2207 {
2208         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2209                         table_group);
2210         struct pnv_phb *phb = pe->phb;
2211         long ret;
2212
2213         pe_info(pe, "Removing DMA window #%d\n", num);
2214
2215         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2216                         (pe->pe_number << 1) + num,
2217                         0/* levels */, 0/* table address */,
2218                         0/* table size */, 0/* page size */);
2219         if (ret)
2220                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2221         else
2222                 pnv_pci_ioda2_tce_invalidate_entire(pe);
2223
2224         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2225
2226         return ret;
2227 }
2228 #endif
2229
2230 #ifdef CONFIG_IOMMU_API
2231 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2232                 __u64 window_size, __u32 levels)
2233 {
2234         unsigned long bytes = 0;
2235         const unsigned window_shift = ilog2(window_size);
2236         unsigned entries_shift = window_shift - page_shift;
2237         unsigned table_shift = entries_shift + 3;
2238         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2239         unsigned long direct_table_size;
2240
2241         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2242                         (window_size > memory_hotplug_max()) ||
2243                         !is_power_of_2(window_size))
2244                 return 0;
2245
2246         /* Calculate a direct table size from window_size and levels */
2247         entries_shift = (entries_shift + levels - 1) / levels;
2248         table_shift = entries_shift + 3;
2249         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2250         direct_table_size =  1UL << table_shift;
2251
2252         for ( ; levels; --levels) {
2253                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2254
2255                 tce_table_size /= direct_table_size;
2256                 tce_table_size <<= 3;
2257                 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2258         }
2259
2260         return bytes;
2261 }
2262
2263 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2264 {
2265         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2266                                                 table_group);
2267         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2268         struct iommu_table *tbl = pe->table_group.tables[0];
2269
2270         pnv_pci_ioda2_set_bypass(pe, false);
2271         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2272         pnv_ioda2_table_free(tbl);
2273 }
2274
2275 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2276 {
2277         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2278                                                 table_group);
2279
2280         pnv_pci_ioda2_setup_default_config(pe);
2281 }
2282
2283 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2284         .get_table_size = pnv_pci_ioda2_get_table_size,
2285         .create_table = pnv_pci_ioda2_create_table,
2286         .set_window = pnv_pci_ioda2_set_window,
2287         .unset_window = pnv_pci_ioda2_unset_window,
2288         .take_ownership = pnv_ioda2_take_ownership,
2289         .release_ownership = pnv_ioda2_release_ownership,
2290 };
2291 #endif
2292
2293 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2294 {
2295         const __be64 *swinvp;
2296
2297         /* OPAL variant of PHB3 invalidated TCEs */
2298         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2299         if (!swinvp)
2300                 return;
2301
2302         phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2303         phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2304 }
2305
2306 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2307                 unsigned levels, unsigned long limit,
2308                 unsigned long *current_offset, unsigned long *total_allocated)
2309 {
2310         struct page *tce_mem = NULL;
2311         __be64 *addr, *tmp;
2312         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2313         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2314         unsigned entries = 1UL << (shift - 3);
2315         long i;
2316
2317         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2318         if (!tce_mem) {
2319                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2320                 return NULL;
2321         }
2322         addr = page_address(tce_mem);
2323         memset(addr, 0, allocated);
2324         *total_allocated += allocated;
2325
2326         --levels;
2327         if (!levels) {
2328                 *current_offset += allocated;
2329                 return addr;
2330         }
2331
2332         for (i = 0; i < entries; ++i) {
2333                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2334                                 levels, limit, current_offset, total_allocated);
2335                 if (!tmp)
2336                         break;
2337
2338                 addr[i] = cpu_to_be64(__pa(tmp) |
2339                                 TCE_PCI_READ | TCE_PCI_WRITE);
2340
2341                 if (*current_offset >= limit)
2342                         break;
2343         }
2344
2345         return addr;
2346 }
2347
2348 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2349                 unsigned long size, unsigned level);
2350
2351 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2352                 __u32 page_shift, __u64 window_size, __u32 levels,
2353                 struct iommu_table *tbl)
2354 {
2355         void *addr;
2356         unsigned long offset = 0, level_shift, total_allocated = 0;
2357         const unsigned window_shift = ilog2(window_size);
2358         unsigned entries_shift = window_shift - page_shift;
2359         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2360         const unsigned long tce_table_size = 1UL << table_shift;
2361
2362         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2363                 return -EINVAL;
2364
2365         if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2366                 return -EINVAL;
2367
2368         /* Adjust direct table size from window_size and levels */
2369         entries_shift = (entries_shift + levels - 1) / levels;
2370         level_shift = entries_shift + 3;
2371         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2372
2373         /* Allocate TCE table */
2374         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2375                         levels, tce_table_size, &offset, &total_allocated);
2376
2377         /* addr==NULL means that the first level allocation failed */
2378         if (!addr)
2379                 return -ENOMEM;
2380
2381         /*
2382          * First level was allocated but some lower level failed as
2383          * we did not allocate as much as we wanted,
2384          * release partially allocated table.
2385          */
2386         if (offset < tce_table_size) {
2387                 pnv_pci_ioda2_table_do_free_pages(addr,
2388                                 1ULL << (level_shift - 3), levels - 1);
2389                 return -ENOMEM;
2390         }
2391
2392         /* Setup linux iommu table */
2393         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2394                         page_shift);
2395         tbl->it_level_size = 1ULL << (level_shift - 3);
2396         tbl->it_indirect_levels = levels - 1;
2397         tbl->it_allocated_size = total_allocated;
2398
2399         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2400                         window_size, tce_table_size, bus_offset);
2401
2402         return 0;
2403 }
2404
2405 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2406                 unsigned long size, unsigned level)
2407 {
2408         const unsigned long addr_ul = (unsigned long) addr &
2409                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2410
2411         if (level) {
2412                 long i;
2413                 u64 *tmp = (u64 *) addr_ul;
2414
2415                 for (i = 0; i < size; ++i) {
2416                         unsigned long hpa = be64_to_cpu(tmp[i]);
2417
2418                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2419                                 continue;
2420
2421                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2422                                         level - 1);
2423                 }
2424         }
2425
2426         free_pages(addr_ul, get_order(size << 3));
2427 }
2428
2429 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2430 {
2431         const unsigned long size = tbl->it_indirect_levels ?
2432                         tbl->it_level_size : tbl->it_size;
2433
2434         if (!tbl->it_size)
2435                 return;
2436
2437         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2438                         tbl->it_indirect_levels);
2439 }
2440
2441 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2442                                        struct pnv_ioda_pe *pe)
2443 {
2444         int64_t rc;
2445
2446         /* We shouldn't already have a 32-bit DMA associated */
2447         if (WARN_ON(pe->tce32_seg >= 0))
2448                 return;
2449
2450         /* TVE #1 is selected by PCI address bit 59 */
2451         pe->tce_bypass_base = 1ull << 59;
2452
2453         iommu_register_group(&pe->table_group, phb->hose->global_number,
2454                         pe->pe_number);
2455
2456         /* The PE will reserve all possible 32-bits space */
2457         pe->tce32_seg = 0;
2458         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2459                 phb->ioda.m32_pci_base);
2460
2461         /* Setup linux iommu table */
2462         pe->table_group.tce32_start = 0;
2463         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2464         pe->table_group.max_dynamic_windows_supported =
2465                         IOMMU_TABLE_GROUP_MAX_TABLES;
2466         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2467         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2468 #ifdef CONFIG_IOMMU_API
2469         pe->table_group.ops = &pnv_pci_ioda2_ops;
2470 #endif
2471
2472         rc = pnv_pci_ioda2_setup_default_config(pe);
2473         if (rc) {
2474                 if (pe->tce32_seg >= 0)
2475                         pe->tce32_seg = -1;
2476                 return;
2477         }
2478
2479         if (pe->flags & PNV_IODA_PE_DEV)
2480                 iommu_add_device(&pe->pdev->dev);
2481         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2482                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2483 }
2484
2485 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
2486 {
2487         struct pci_controller *hose = phb->hose;
2488         unsigned int residual, remaining, segs, tw, base;
2489         struct pnv_ioda_pe *pe;
2490
2491         /* If we have more PE# than segments available, hand out one
2492          * per PE until we run out and let the rest fail. If not,
2493          * then we assign at least one segment per PE, plus more based
2494          * on the amount of devices under that PE
2495          */
2496         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
2497                 residual = 0;
2498         else
2499                 residual = phb->ioda.tce32_count -
2500                         phb->ioda.dma_pe_count;
2501
2502         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
2503                 hose->global_number, phb->ioda.tce32_count);
2504         pr_info("PCI: %d PE# for a total weight of %d\n",
2505                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
2506
2507         pnv_pci_ioda_setup_opal_tce_kill(phb);
2508
2509         /* Walk our PE list and configure their DMA segments, hand them
2510          * out one base segment plus any residual segments based on
2511          * weight
2512          */
2513         remaining = phb->ioda.tce32_count;
2514         tw = phb->ioda.dma_weight;
2515         base = 0;
2516         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
2517                 if (!pe->dma_weight)
2518                         continue;
2519                 if (!remaining) {
2520                         pe_warn(pe, "No DMA32 resources available\n");
2521                         continue;
2522                 }
2523                 segs = 1;
2524                 if (residual) {
2525                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
2526                         if (segs > remaining)
2527                                 segs = remaining;
2528                 }
2529
2530                 /*
2531                  * For IODA2 compliant PHB3, we needn't care about the weight.
2532                  * The all available 32-bits DMA space will be assigned to
2533                  * the specific PE.
2534                  */
2535                 if (phb->type == PNV_PHB_IODA1) {
2536                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
2537                                 pe->dma_weight, segs);
2538                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
2539                 } else if (phb->type == PNV_PHB_IODA2) {
2540                         pe_info(pe, "Assign DMA32 space\n");
2541                         segs = 0;
2542                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
2543                 } else if (phb->type == PNV_PHB_NPU) {
2544                         /*
2545                          * We initialise the DMA space for an NPU PHB
2546                          * after setup of the PHB is complete as we
2547                          * point the NPU TVT to the the same location
2548                          * as the PHB3 TVT.
2549                          */
2550                 }
2551
2552                 remaining -= segs;
2553                 base += segs;
2554         }
2555 }
2556
2557 #ifdef CONFIG_PCI_MSI
2558 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2559 {
2560         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2561         struct irq_chip *chip = irq_data_get_irq_chip(d);
2562         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2563                                            ioda.irq_chip);
2564         int64_t rc;
2565
2566         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2567         WARN_ON_ONCE(rc);
2568
2569         icp_native_eoi(d);
2570 }
2571
2572
2573 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2574 {
2575         struct irq_data *idata;
2576         struct irq_chip *ichip;
2577
2578         if (phb->type != PNV_PHB_IODA2)
2579                 return;
2580
2581         if (!phb->ioda.irq_chip_init) {
2582                 /*
2583                  * First time we setup an MSI IRQ, we need to setup the
2584                  * corresponding IRQ chip to route correctly.
2585                  */
2586                 idata = irq_get_irq_data(virq);
2587                 ichip = irq_data_get_irq_chip(idata);
2588                 phb->ioda.irq_chip_init = 1;
2589                 phb->ioda.irq_chip = *ichip;
2590                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2591         }
2592         irq_set_chip(virq, &phb->ioda.irq_chip);
2593 }
2594
2595 #ifdef CONFIG_CXL_BASE
2596
2597 struct device_node *pnv_pci_get_phb_node(struct pci_dev *dev)
2598 {
2599         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2600
2601         return of_node_get(hose->dn);
2602 }
2603 EXPORT_SYMBOL(pnv_pci_get_phb_node);
2604
2605 int pnv_phb_to_cxl_mode(struct pci_dev *dev, uint64_t mode)
2606 {
2607         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2608         struct pnv_phb *phb = hose->private_data;
2609         struct pnv_ioda_pe *pe;
2610         int rc;
2611
2612         pe = pnv_ioda_get_pe(dev);
2613         if (!pe)
2614                 return -ENODEV;
2615
2616         pe_info(pe, "Switching PHB to CXL\n");
2617
2618         rc = opal_pci_set_phb_cxl_mode(phb->opal_id, mode, pe->pe_number);
2619         if (rc)
2620                 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
2621
2622         return rc;
2623 }
2624 EXPORT_SYMBOL(pnv_phb_to_cxl_mode);
2625
2626 /* Find PHB for cxl dev and allocate MSI hwirqs?
2627  * Returns the absolute hardware IRQ number
2628  */
2629 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
2630 {
2631         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2632         struct pnv_phb *phb = hose->private_data;
2633         int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
2634
2635         if (hwirq < 0) {
2636                 dev_warn(&dev->dev, "Failed to find a free MSI\n");
2637                 return -ENOSPC;
2638         }
2639
2640         return phb->msi_base + hwirq;
2641 }
2642 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
2643
2644 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
2645 {
2646         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2647         struct pnv_phb *phb = hose->private_data;
2648
2649         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
2650 }
2651 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
2652
2653 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
2654                                   struct pci_dev *dev)
2655 {
2656         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2657         struct pnv_phb *phb = hose->private_data;
2658         int i, hwirq;
2659
2660         for (i = 1; i < CXL_IRQ_RANGES; i++) {
2661                 if (!irqs->range[i])
2662                         continue;
2663                 pr_devel("cxl release irq range 0x%x: offset: 0x%lx  limit: %ld\n",
2664                          i, irqs->offset[i],
2665                          irqs->range[i]);
2666                 hwirq = irqs->offset[i] - phb->msi_base;
2667                 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
2668                                        irqs->range[i]);
2669         }
2670 }
2671 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
2672
2673 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
2674                                struct pci_dev *dev, int num)
2675 {
2676         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2677         struct pnv_phb *phb = hose->private_data;
2678         int i, hwirq, try;
2679
2680         memset(irqs, 0, sizeof(struct cxl_irq_ranges));
2681
2682         /* 0 is reserved for the multiplexed PSL DSI interrupt */
2683         for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
2684                 try = num;
2685                 while (try) {
2686                         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
2687                         if (hwirq >= 0)
2688                                 break;
2689                         try /= 2;
2690                 }
2691                 if (!try)
2692                         goto fail;
2693
2694                 irqs->offset[i] = phb->msi_base + hwirq;
2695                 irqs->range[i] = try;
2696                 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx  limit: %li\n",
2697                          i, irqs->offset[i], irqs->range[i]);
2698                 num -= try;
2699         }
2700         if (num)
2701                 goto fail;
2702
2703         return 0;
2704 fail:
2705         pnv_cxl_release_hwirq_ranges(irqs, dev);
2706         return -ENOSPC;
2707 }
2708 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
2709
2710 int pnv_cxl_get_irq_count(struct pci_dev *dev)
2711 {
2712         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2713         struct pnv_phb *phb = hose->private_data;
2714
2715         return phb->msi_bmp.irq_count;
2716 }
2717 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
2718
2719 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
2720                            unsigned int virq)
2721 {
2722         struct pci_controller *hose = pci_bus_to_host(dev->bus);
2723         struct pnv_phb *phb = hose->private_data;
2724         unsigned int xive_num = hwirq - phb->msi_base;
2725         struct pnv_ioda_pe *pe;
2726         int rc;
2727
2728         if (!(pe = pnv_ioda_get_pe(dev)))
2729                 return -ENODEV;
2730
2731         /* Assign XIVE to PE */
2732         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2733         if (rc) {
2734                 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
2735                         "hwirq 0x%x XIVE 0x%x PE\n",
2736                         pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
2737                 return -EIO;
2738         }
2739         set_msi_irq_chip(phb, virq);
2740
2741         return 0;
2742 }
2743 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
2744 #endif
2745
2746 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2747                                   unsigned int hwirq, unsigned int virq,
2748                                   unsigned int is_64, struct msi_msg *msg)
2749 {
2750         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2751         unsigned int xive_num = hwirq - phb->msi_base;
2752         __be32 data;
2753         int rc;
2754
2755         /* No PE assigned ? bail out ... no MSI for you ! */
2756         if (pe == NULL)
2757                 return -ENXIO;
2758
2759         /* Check if we have an MVE */
2760         if (pe->mve_number < 0)
2761                 return -ENXIO;
2762
2763         /* Force 32-bit MSI on some broken devices */
2764         if (dev->no_64bit_msi)
2765                 is_64 = 0;
2766
2767         /* Assign XIVE to PE */
2768         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2769         if (rc) {
2770                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2771                         pci_name(dev), rc, xive_num);
2772                 return -EIO;
2773         }
2774
2775         if (is_64) {
2776                 __be64 addr64;
2777
2778                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2779                                      &addr64, &data);
2780                 if (rc) {
2781                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2782                                 pci_name(dev), rc);
2783                         return -EIO;
2784                 }
2785                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2786                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2787         } else {
2788                 __be32 addr32;
2789
2790                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2791                                      &addr32, &data);
2792                 if (rc) {
2793                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2794                                 pci_name(dev), rc);
2795                         return -EIO;
2796                 }
2797                 msg->address_hi = 0;
2798                 msg->address_lo = be32_to_cpu(addr32);
2799         }
2800         msg->data = be32_to_cpu(data);
2801
2802         set_msi_irq_chip(phb, virq);
2803
2804         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2805                  " address=%x_%08x data=%x PE# %d\n",
2806                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2807                  msg->address_hi, msg->address_lo, data, pe->pe_number);
2808
2809         return 0;
2810 }
2811
2812 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2813 {
2814         unsigned int count;
2815         const __be32 *prop = of_get_property(phb->hose->dn,
2816                                              "ibm,opal-msi-ranges", NULL);
2817         if (!prop) {
2818                 /* BML Fallback */
2819                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2820         }
2821         if (!prop)
2822                 return;
2823
2824         phb->msi_base = be32_to_cpup(prop);
2825         count = be32_to_cpup(prop + 1);
2826         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2827                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2828                        phb->hose->global_number);
2829                 return;
2830         }
2831
2832         phb->msi_setup = pnv_pci_ioda_msi_setup;
2833         phb->msi32_support = 1;
2834         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2835                 count, phb->msi_base);
2836 }
2837 #else
2838 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2839 #endif /* CONFIG_PCI_MSI */
2840
2841 #ifdef CONFIG_PCI_IOV
2842 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2843 {
2844         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2845         struct pnv_phb *phb = hose->private_data;
2846         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2847         struct resource *res;
2848         int i;
2849         resource_size_t size, total_vf_bar_sz;
2850         struct pci_dn *pdn;
2851         int mul, total_vfs;
2852
2853         if (!pdev->is_physfn || pdev->is_added)
2854                 return;
2855
2856         pdn = pci_get_pdn(pdev);
2857         pdn->vfs_expanded = 0;
2858         pdn->m64_single_mode = false;
2859
2860         total_vfs = pci_sriov_get_totalvfs(pdev);
2861         mul = phb->ioda.total_pe_num;
2862         total_vf_bar_sz = 0;
2863
2864         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2865                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2866                 if (!res->flags || res->parent)
2867                         continue;
2868                 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2869                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
2870                                         " non M64 VF BAR%d: %pR. \n",
2871                                  i, res);
2872                         goto truncate_iov;
2873                 }
2874
2875                 total_vf_bar_sz += pci_iov_resource_size(pdev,
2876                                 i + PCI_IOV_RESOURCES);
2877
2878                 /*
2879                  * If bigger than quarter of M64 segment size, just round up
2880                  * power of two.
2881                  *
2882                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2883                  * with other devices, IOV BAR size is expanded to be
2884                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
2885                  * segment size , the expanded size would equal to half of the
2886                  * whole M64 space size, which will exhaust the M64 Space and
2887                  * limit the system flexibility.  This is a design decision to
2888                  * set the boundary to quarter of the M64 segment size.
2889                  */
2890                 if (total_vf_bar_sz > gate) {
2891                         mul = roundup_pow_of_two(total_vfs);
2892                         dev_info(&pdev->dev,
2893                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2894                                 total_vf_bar_sz, gate, mul);
2895                         pdn->m64_single_mode = true;
2896                         break;
2897                 }
2898         }
2899
2900         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2901                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2902                 if (!res->flags || res->parent)
2903                         continue;
2904
2905                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2906                 /*
2907                  * On PHB3, the minimum size alignment of M64 BAR in single
2908                  * mode is 32MB.
2909                  */
2910                 if (pdn->m64_single_mode && (size < SZ_32M))
2911                         goto truncate_iov;
2912                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2913                 res->end = res->start + size * mul - 1;
2914                 dev_dbg(&pdev->dev, "                       %pR\n", res);
2915                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2916                          i, res, mul);
2917         }
2918         pdn->vfs_expanded = mul;
2919
2920         return;
2921
2922 truncate_iov:
2923         /* To save MMIO space, IOV BAR is truncated. */
2924         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2925                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2926                 res->flags = 0;
2927                 res->end = res->start - 1;
2928         }
2929 }
2930 #endif /* CONFIG_PCI_IOV */
2931
2932 /*
2933  * This function is supposed to be called on basis of PE from top
2934  * to bottom style. So the the I/O or MMIO segment assigned to
2935  * parent PE could be overrided by its child PEs if necessary.
2936  */
2937 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
2938                                   struct pnv_ioda_pe *pe)
2939 {
2940         struct pnv_phb *phb = hose->private_data;
2941         struct pci_bus_region region;
2942         struct resource *res;
2943         int i, index;
2944         int rc;
2945
2946         /*
2947          * NOTE: We only care PCI bus based PE for now. For PCI
2948          * device based PE, for example SRIOV sensitive VF should
2949          * be figured out later.
2950          */
2951         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2952
2953         pci_bus_for_each_resource(pe->pbus, res, i) {
2954                 if (!res || !res->flags ||
2955                     res->start > res->end)
2956                         continue;
2957
2958                 if (res->flags & IORESOURCE_IO) {
2959                         region.start = res->start - phb->ioda.io_pci_base;
2960                         region.end   = res->end - phb->ioda.io_pci_base;
2961                         index = region.start / phb->ioda.io_segsize;
2962
2963                         while (index < phb->ioda.total_pe_num &&
2964                                region.start <= region.end) {
2965                                 phb->ioda.io_segmap[index] = pe->pe_number;
2966                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2967                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2968                                 if (rc != OPAL_SUCCESS) {
2969                                         pr_err("%s: OPAL error %d when mapping IO "
2970                                                "segment #%d to PE#%d\n",
2971                                                __func__, rc, index, pe->pe_number);
2972                                         break;
2973                                 }
2974
2975                                 region.start += phb->ioda.io_segsize;
2976                                 index++;
2977                         }
2978                 } else if ((res->flags & IORESOURCE_MEM) &&
2979                            !pnv_pci_is_mem_pref_64(res->flags)) {
2980                         region.start = res->start -
2981                                        hose->mem_offset[0] -
2982                                        phb->ioda.m32_pci_base;
2983                         region.end   = res->end -
2984                                        hose->mem_offset[0] -
2985                                        phb->ioda.m32_pci_base;
2986                         index = region.start / phb->ioda.m32_segsize;
2987
2988                         while (index < phb->ioda.total_pe_num &&
2989                                region.start <= region.end) {
2990                                 phb->ioda.m32_segmap[index] = pe->pe_number;
2991                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2992                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2993                                 if (rc != OPAL_SUCCESS) {
2994                                         pr_err("%s: OPAL error %d when mapping M32 "
2995                                                "segment#%d to PE#%d",
2996                                                __func__, rc, index, pe->pe_number);
2997                                         break;
2998                                 }
2999
3000                                 region.start += phb->ioda.m32_segsize;
3001                                 index++;
3002                         }
3003                 }
3004         }
3005 }
3006
3007 static void pnv_pci_ioda_setup_seg(void)
3008 {
3009         struct pci_controller *tmp, *hose;
3010         struct pnv_phb *phb;
3011         struct pnv_ioda_pe *pe;
3012
3013         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3014                 phb = hose->private_data;
3015
3016                 /* NPU PHB does not support IO or MMIO segmentation */
3017                 if (phb->type == PNV_PHB_NPU)
3018                         continue;
3019
3020                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
3021                         pnv_ioda_setup_pe_seg(hose, pe);
3022                 }
3023         }
3024 }
3025
3026 static void pnv_pci_ioda_setup_DMA(void)
3027 {
3028         struct pci_controller *hose, *tmp;
3029         struct pnv_phb *phb;
3030
3031         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3032                 pnv_ioda_setup_dma(hose->private_data);
3033
3034                 /* Mark the PHB initialization done */
3035                 phb = hose->private_data;
3036                 phb->initialized = 1;
3037         }
3038 }
3039
3040 static void pnv_pci_ioda_create_dbgfs(void)
3041 {
3042 #ifdef CONFIG_DEBUG_FS
3043         struct pci_controller *hose, *tmp;
3044         struct pnv_phb *phb;
3045         char name[16];
3046
3047         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3048                 phb = hose->private_data;
3049
3050                 sprintf(name, "PCI%04x", hose->global_number);
3051                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3052                 if (!phb->dbgfs)
3053                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3054                                 __func__, hose->global_number);
3055         }
3056 #endif /* CONFIG_DEBUG_FS */
3057 }
3058
3059 static void pnv_npu_ioda_fixup(void)
3060 {
3061         bool enable_bypass;
3062         struct pci_controller *hose, *tmp;
3063         struct pnv_phb *phb;
3064         struct pnv_ioda_pe *pe;
3065
3066         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3067                 phb = hose->private_data;
3068                 if (phb->type != PNV_PHB_NPU)
3069                         continue;
3070
3071                 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
3072                         enable_bypass = dma_get_mask(&pe->pdev->dev) ==
3073                                 DMA_BIT_MASK(64);
3074                         pnv_npu_init_dma_pe(pe);
3075                         pnv_npu_dma_set_bypass(pe, enable_bypass);
3076                 }
3077         }
3078 }
3079
3080 static void pnv_pci_ioda_fixup(void)
3081 {
3082         pnv_pci_ioda_setup_PEs();
3083         pnv_pci_ioda_setup_seg();
3084         pnv_pci_ioda_setup_DMA();
3085
3086         pnv_pci_ioda_create_dbgfs();
3087
3088 #ifdef CONFIG_EEH
3089         eeh_init();
3090         eeh_addr_cache_build();
3091 #endif
3092
3093         /* Link NPU IODA tables to their PCI devices. */
3094         pnv_npu_ioda_fixup();
3095 }
3096
3097 /*
3098  * Returns the alignment for I/O or memory windows for P2P
3099  * bridges. That actually depends on how PEs are segmented.
3100  * For now, we return I/O or M32 segment size for PE sensitive
3101  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3102  * 1MiB for memory) will be returned.
3103  *
3104  * The current PCI bus might be put into one PE, which was
3105  * create against the parent PCI bridge. For that case, we
3106  * needn't enlarge the alignment so that we can save some
3107  * resources.
3108  */
3109 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3110                                                 unsigned long type)
3111 {
3112         struct pci_dev *bridge;
3113         struct pci_controller *hose = pci_bus_to_host(bus);
3114         struct pnv_phb *phb = hose->private_data;
3115         int num_pci_bridges = 0;
3116
3117         bridge = bus->self;
3118         while (bridge) {
3119                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3120                         num_pci_bridges++;
3121                         if (num_pci_bridges >= 2)
3122                                 return 1;
3123                 }
3124
3125                 bridge = bridge->bus->self;
3126         }
3127
3128         /* We fail back to M32 if M64 isn't supported */
3129         if (phb->ioda.m64_segsize &&
3130             pnv_pci_is_mem_pref_64(type))
3131                 return phb->ioda.m64_segsize;
3132         if (type & IORESOURCE_MEM)
3133                 return phb->ioda.m32_segsize;
3134
3135         return phb->ioda.io_segsize;
3136 }
3137
3138 #ifdef CONFIG_PCI_IOV
3139 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3140                                                       int resno)
3141 {
3142         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3143         struct pnv_phb *phb = hose->private_data;
3144         struct pci_dn *pdn = pci_get_pdn(pdev);
3145         resource_size_t align;
3146
3147         /*
3148          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3149          * SR-IOV. While from hardware perspective, the range mapped by M64
3150          * BAR should be size aligned.
3151          *
3152          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3153          * powernv-specific hardware restriction is gone. But if just use the
3154          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3155          * in one segment of M64 #15, which introduces the PE conflict between
3156          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3157          * m64_segsize.
3158          *
3159          * This function returns the total IOV BAR size if M64 BAR is in
3160          * Shared PE mode or just VF BAR size if not.
3161          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3162          * M64 segment size if IOV BAR size is less.
3163          */
3164         align = pci_iov_resource_size(pdev, resno);
3165         if (!pdn->vfs_expanded)
3166                 return align;
3167         if (pdn->m64_single_mode)
3168                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3169
3170         return pdn->vfs_expanded * align;
3171 }
3172 #endif /* CONFIG_PCI_IOV */
3173
3174 /* Prevent enabling devices for which we couldn't properly
3175  * assign a PE
3176  */
3177 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3178 {
3179         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3180         struct pnv_phb *phb = hose->private_data;
3181         struct pci_dn *pdn;
3182
3183         /* The function is probably called while the PEs have
3184          * not be created yet. For example, resource reassignment
3185          * during PCI probe period. We just skip the check if
3186          * PEs isn't ready.
3187          */
3188         if (!phb->initialized)
3189                 return true;
3190
3191         pdn = pci_get_pdn(dev);
3192         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3193                 return false;
3194
3195         return true;
3196 }
3197
3198 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3199 {
3200         struct pnv_phb *phb = hose->private_data;
3201
3202         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3203                        OPAL_ASSERT_RESET);
3204 }
3205
3206 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3207         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3208         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3209 #ifdef CONFIG_PCI_MSI
3210         .setup_msi_irqs         = pnv_setup_msi_irqs,
3211         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3212 #endif
3213         .enable_device_hook     = pnv_pci_enable_device_hook,
3214         .window_alignment       = pnv_pci_window_alignment,
3215         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3216         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3217         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3218         .shutdown               = pnv_pci_ioda_shutdown,
3219 };
3220
3221 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3222         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3223 #ifdef CONFIG_PCI_MSI
3224         .setup_msi_irqs         = pnv_setup_msi_irqs,
3225         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3226 #endif
3227         .enable_device_hook     = pnv_pci_enable_device_hook,
3228         .window_alignment       = pnv_pci_window_alignment,
3229         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3230         .dma_set_mask           = pnv_npu_dma_set_mask,
3231         .shutdown               = pnv_pci_ioda_shutdown,
3232 };
3233
3234 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3235                                          u64 hub_id, int ioda_type)
3236 {
3237         struct pci_controller *hose;
3238         struct pnv_phb *phb;
3239         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
3240         const __be64 *prop64;
3241         const __be32 *prop32;
3242         int len;
3243         u64 phb_id;
3244         void *aux;
3245         long rc;
3246
3247         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
3248
3249         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3250         if (!prop64) {
3251                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3252                 return;
3253         }
3254         phb_id = be64_to_cpup(prop64);
3255         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3256
3257         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3258
3259         /* Allocate PCI controller */
3260         phb->hose = hose = pcibios_alloc_controller(np);
3261         if (!phb->hose) {
3262                 pr_err("  Can't allocate PCI controller for %s\n",
3263                        np->full_name);
3264                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3265                 return;
3266         }
3267
3268         spin_lock_init(&phb->lock);
3269         prop32 = of_get_property(np, "bus-range", &len);
3270         if (prop32 && len == 8) {
3271                 hose->first_busno = be32_to_cpu(prop32[0]);
3272                 hose->last_busno = be32_to_cpu(prop32[1]);
3273         } else {
3274                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
3275                 hose->first_busno = 0;
3276                 hose->last_busno = 0xff;
3277         }
3278         hose->private_data = phb;
3279         phb->hub_id = hub_id;
3280         phb->opal_id = phb_id;
3281         phb->type = ioda_type;
3282         mutex_init(&phb->ioda.pe_alloc_mutex);
3283
3284         /* Detect specific models for error handling */
3285         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3286                 phb->model = PNV_PHB_MODEL_P7IOC;
3287         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3288                 phb->model = PNV_PHB_MODEL_PHB3;
3289         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3290                 phb->model = PNV_PHB_MODEL_NPU;
3291         else
3292                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3293
3294         /* Parse 32-bit and IO ranges (if any) */
3295         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3296
3297         /* Get registers */
3298         phb->regs = of_iomap(np, 0);
3299         if (phb->regs == NULL)
3300                 pr_err("  Failed to map registers !\n");
3301
3302         /* Initialize more IODA stuff */
3303         phb->ioda.total_pe_num = 1;
3304         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3305         if (prop32)
3306                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3307         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3308         if (prop32)
3309                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3310
3311         /* Parse 64-bit MMIO range */
3312         pnv_ioda_parse_m64_window(phb);
3313
3314         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3315         /* FW Has already off top 64k of M32 space (MSI space) */
3316         phb->ioda.m32_size += 0x10000;
3317
3318         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3319         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3320         phb->ioda.io_size = hose->pci_io_size;
3321         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3322         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3323
3324         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3325         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
3326         m32map_off = size;
3327         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3328         if (phb->type == PNV_PHB_IODA1) {
3329                 iomap_off = size;
3330                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3331         }
3332         pemap_off = size;
3333         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3334         aux = memblock_virt_alloc(size, 0);
3335         phb->ioda.pe_alloc = aux;
3336         phb->ioda.m32_segmap = aux + m32map_off;
3337         if (phb->type == PNV_PHB_IODA1)
3338                 phb->ioda.io_segmap = aux + iomap_off;
3339         phb->ioda.pe_array = aux + pemap_off;
3340         set_bit(phb->ioda.reserved_pe_idx, phb->ioda.pe_alloc);
3341
3342         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
3343         INIT_LIST_HEAD(&phb->ioda.pe_list);
3344         mutex_init(&phb->ioda.pe_list_mutex);
3345
3346         /* Calculate how many 32-bit TCE segments we have */
3347         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
3348
3349 #if 0 /* We should really do that ... */
3350         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3351                                          window_type,
3352                                          window_num,
3353                                          starting_real_address,
3354                                          starting_pci_address,
3355                                          segment_size);
3356 #endif
3357
3358         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3359                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3360                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3361         if (phb->ioda.m64_size)
3362                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3363                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3364         if (phb->ioda.io_size)
3365                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3366                         phb->ioda.io_size, phb->ioda.io_segsize);
3367
3368
3369         phb->hose->ops = &pnv_pci_ops;
3370         phb->get_pe_state = pnv_ioda_get_pe_state;
3371         phb->freeze_pe = pnv_ioda_freeze_pe;
3372         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3373
3374         /* Setup TCEs */
3375         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3376
3377         /* Setup MSI support */
3378         pnv_pci_init_ioda_msis(phb);
3379
3380         /*
3381          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3382          * to let the PCI core do resource assignment. It's supposed
3383          * that the PCI core will do correct I/O and MMIO alignment
3384          * for the P2P bridge bars so that each PCI bus (excluding
3385          * the child P2P bridges) can form individual PE.
3386          */
3387         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3388
3389         if (phb->type == PNV_PHB_NPU)
3390                 hose->controller_ops = pnv_npu_ioda_controller_ops;
3391         else
3392                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3393
3394 #ifdef CONFIG_PCI_IOV
3395         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3396         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3397 #endif
3398
3399         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3400
3401         /* Reset IODA tables to a clean state */
3402         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3403         if (rc)
3404                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
3405
3406         /* If we're running in kdump kerenl, the previous kerenl never
3407          * shutdown PCI devices correctly. We already got IODA table
3408          * cleaned out. So we have to issue PHB reset to stop all PCI
3409          * transactions from previous kerenl.
3410          */
3411         if (is_kdump_kernel()) {
3412                 pr_info("  Issue PHB reset ...\n");
3413                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3414                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3415         }
3416
3417         /* Remove M64 resource if we can't configure it successfully */
3418         if (!phb->init_m64 || phb->init_m64(phb))
3419                 hose->mem_resources[1].flags = 0;
3420 }
3421
3422 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3423 {
3424         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3425 }
3426
3427 void __init pnv_pci_init_npu_phb(struct device_node *np)
3428 {
3429         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3430 }
3431
3432 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3433 {
3434         struct device_node *phbn;
3435         const __be64 *prop64;
3436         u64 hub_id;
3437
3438         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3439
3440         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3441         if (!prop64) {
3442                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3443                 return;
3444         }
3445         hub_id = be64_to_cpup(prop64);
3446         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3447
3448         /* Count child PHBs */
3449         for_each_child_of_node(np, phbn) {
3450                 /* Look for IODA1 PHBs */
3451                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3452                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3453         }
3454 }