s390/crashdump: use list_first_entry_or_null
[cascardo/linux.git] / arch / s390 / kernel / crash_dump.c
1 /*
2  * S390 kdump implementation
3  *
4  * Copyright IBM Corp. 2011
5  * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6  */
7
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/asm-offsets.h>
17 #include <linux/memblock.h>
18 #include <asm/os_info.h>
19 #include <asm/elf.h>
20 #include <asm/ipl.h>
21 #include <asm/sclp.h>
22
23 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
24 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
25 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
26
27 static struct memblock_region oldmem_region;
28
29 static struct memblock_type oldmem_type = {
30         .cnt = 1,
31         .max = 1,
32         .total_size = 0,
33         .regions = &oldmem_region,
34 };
35
36 struct save_area {
37         struct list_head list;
38         u64 psw[2];
39         u64 ctrs[16];
40         u64 gprs[16];
41         u32 acrs[16];
42         u64 fprs[16];
43         u32 fpc;
44         u32 prefix;
45         u64 todpreg;
46         u64 timer;
47         u64 todcmp;
48         u64 vxrs_low[16];
49         __vector128 vxrs_high[16];
50 };
51
52 static LIST_HEAD(dump_save_areas);
53
54 /*
55  * Allocate a save area
56  */
57 struct save_area * __init save_area_alloc(bool is_boot_cpu)
58 {
59         struct save_area *sa;
60
61         sa = (void *) memblock_alloc(sizeof(*sa), 8);
62         if (is_boot_cpu)
63                 list_add(&sa->list, &dump_save_areas);
64         else
65                 list_add_tail(&sa->list, &dump_save_areas);
66         return sa;
67 }
68
69 /*
70  * Return the address of the save area for the boot CPU
71  */
72 struct save_area * __init save_area_boot_cpu(void)
73 {
74         return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
75 }
76
77 /*
78  * Copy CPU registers into the save area
79  */
80 void __init save_area_add_regs(struct save_area *sa, void *regs)
81 {
82         struct lowcore *lc;
83
84         lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
85         memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
86         memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
87         memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
88         memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
89         memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
90         memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
91         memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
92         memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
93         memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
94         memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
95 }
96
97 /*
98  * Copy vector registers into the save area
99  */
100 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
101 {
102         int i;
103
104         /* Copy lower halves of vector registers 0-15 */
105         for (i = 0; i < 16; i++)
106                 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
107         /* Copy vector registers 16-31 */
108         memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
109 }
110
111 /*
112  * Return physical address for virtual address
113  */
114 static inline void *load_real_addr(void *addr)
115 {
116         unsigned long real_addr;
117
118         asm volatile(
119                    "    lra     %0,0(%1)\n"
120                    "    jz      0f\n"
121                    "    la      %0,0\n"
122                    "0:"
123                    : "=a" (real_addr) : "a" (addr) : "cc");
124         return (void *)real_addr;
125 }
126
127 /*
128  * Copy memory of the old, dumped system to a kernel space virtual address
129  */
130 int copy_oldmem_kernel(void *dst, void *src, size_t count)
131 {
132         unsigned long from, len;
133         void *ra;
134         int rc;
135
136         while (count) {
137                 from = __pa(src);
138                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
139                         /* Copy from zfcpdump HSA area */
140                         len = min(count, sclp.hsa_size - from);
141                         rc = memcpy_hsa_kernel(dst, from, len);
142                         if (rc)
143                                 return rc;
144                 } else {
145                         /* Check for swapped kdump oldmem areas */
146                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
147                                 from -= OLDMEM_BASE;
148                                 len = min(count, OLDMEM_SIZE - from);
149                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
150                                 len = min(count, OLDMEM_SIZE - from);
151                                 from += OLDMEM_BASE;
152                         } else {
153                                 len = count;
154                         }
155                         if (is_vmalloc_or_module_addr(dst)) {
156                                 ra = load_real_addr(dst);
157                                 len = min(PAGE_SIZE - offset_in_page(ra), len);
158                         } else {
159                                 ra = dst;
160                         }
161                         if (memcpy_real(ra, (void *) from, len))
162                                 return -EFAULT;
163                 }
164                 dst += len;
165                 src += len;
166                 count -= len;
167         }
168         return 0;
169 }
170
171 /*
172  * Copy memory of the old, dumped system to a user space virtual address
173  */
174 static int copy_oldmem_user(void __user *dst, void *src, size_t count)
175 {
176         unsigned long from, len;
177         int rc;
178
179         while (count) {
180                 from = __pa(src);
181                 if (!OLDMEM_BASE && from < sclp.hsa_size) {
182                         /* Copy from zfcpdump HSA area */
183                         len = min(count, sclp.hsa_size - from);
184                         rc = memcpy_hsa_user(dst, from, len);
185                         if (rc)
186                                 return rc;
187                 } else {
188                         /* Check for swapped kdump oldmem areas */
189                         if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
190                                 from -= OLDMEM_BASE;
191                                 len = min(count, OLDMEM_SIZE - from);
192                         } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
193                                 len = min(count, OLDMEM_SIZE - from);
194                                 from += OLDMEM_BASE;
195                         } else {
196                                 len = count;
197                         }
198                         rc = copy_to_user_real(dst, (void *) from, count);
199                         if (rc)
200                                 return rc;
201                 }
202                 dst += len;
203                 src += len;
204                 count -= len;
205         }
206         return 0;
207 }
208
209 /*
210  * Copy one page from "oldmem"
211  */
212 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
213                          unsigned long offset, int userbuf)
214 {
215         void *src;
216         int rc;
217
218         if (!csize)
219                 return 0;
220         src = (void *) (pfn << PAGE_SHIFT) + offset;
221         if (userbuf)
222                 rc = copy_oldmem_user((void __force __user *) buf, src, csize);
223         else
224                 rc = copy_oldmem_kernel((void *) buf, src, csize);
225         return rc;
226 }
227
228 /*
229  * Remap "oldmem" for kdump
230  *
231  * For the kdump reserved memory this functions performs a swap operation:
232  * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
233  */
234 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
235                                         unsigned long from, unsigned long pfn,
236                                         unsigned long size, pgprot_t prot)
237 {
238         unsigned long size_old;
239         int rc;
240
241         if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
242                 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
243                 rc = remap_pfn_range(vma, from,
244                                      pfn + (OLDMEM_BASE >> PAGE_SHIFT),
245                                      size_old, prot);
246                 if (rc || size == size_old)
247                         return rc;
248                 size -= size_old;
249                 from += size_old;
250                 pfn += size_old >> PAGE_SHIFT;
251         }
252         return remap_pfn_range(vma, from, pfn, size, prot);
253 }
254
255 /*
256  * Remap "oldmem" for zfcpdump
257  *
258  * We only map available memory above HSA size. Memory below HSA size
259  * is read on demand using the copy_oldmem_page() function.
260  */
261 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
262                                            unsigned long from,
263                                            unsigned long pfn,
264                                            unsigned long size, pgprot_t prot)
265 {
266         unsigned long hsa_end = sclp.hsa_size;
267         unsigned long size_hsa;
268
269         if (pfn < hsa_end >> PAGE_SHIFT) {
270                 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
271                 if (size == size_hsa)
272                         return 0;
273                 size -= size_hsa;
274                 from += size_hsa;
275                 pfn += size_hsa >> PAGE_SHIFT;
276         }
277         return remap_pfn_range(vma, from, pfn, size, prot);
278 }
279
280 /*
281  * Remap "oldmem" for kdump or zfcpdump
282  */
283 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
284                            unsigned long pfn, unsigned long size, pgprot_t prot)
285 {
286         if (OLDMEM_BASE)
287                 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
288         else
289                 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
290                                                        prot);
291 }
292
293 /*
294  * Alloc memory and panic in case of ENOMEM
295  */
296 static void *kzalloc_panic(int len)
297 {
298         void *rc;
299
300         rc = kzalloc(len, GFP_KERNEL);
301         if (!rc)
302                 panic("s390 kdump kzalloc (%d) failed", len);
303         return rc;
304 }
305
306 /*
307  * Initialize ELF note
308  */
309 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
310                           const char *name)
311 {
312         Elf64_Nhdr *note;
313         u64 len;
314
315         note = (Elf64_Nhdr *)buf;
316         note->n_namesz = strlen(name) + 1;
317         note->n_descsz = d_len;
318         note->n_type = type;
319         len = sizeof(Elf64_Nhdr);
320
321         memcpy(buf + len, name, note->n_namesz);
322         len = roundup(len + note->n_namesz, 4);
323
324         memcpy(buf + len, desc, note->n_descsz);
325         len = roundup(len + note->n_descsz, 4);
326
327         return PTR_ADD(buf, len);
328 }
329
330 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
331 {
332         return nt_init_name(buf, type, desc, d_len, KEXEC_CORE_NOTE_NAME);
333 }
334
335 /*
336  * Fill ELF notes for one CPU with save area registers
337  */
338 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
339 {
340         struct elf_prstatus nt_prstatus;
341         elf_fpregset_t nt_fpregset;
342
343         /* Prepare prstatus note */
344         memset(&nt_prstatus, 0, sizeof(nt_prstatus));
345         memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
346         memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
347         memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
348         nt_prstatus.pr_pid = cpu;
349         /* Prepare fpregset (floating point) note */
350         memset(&nt_fpregset, 0, sizeof(nt_fpregset));
351         memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
352         memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
353         /* Create ELF notes for the CPU */
354         ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
355         ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
356         ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
357         ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
358         ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
359         ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
360         ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
361         if (MACHINE_HAS_VX) {
362                 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
363                               &sa->vxrs_high, sizeof(sa->vxrs_high));
364                 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
365                               &sa->vxrs_low, sizeof(sa->vxrs_low));
366         }
367         return ptr;
368 }
369
370 /*
371  * Initialize prpsinfo note (new kernel)
372  */
373 static void *nt_prpsinfo(void *ptr)
374 {
375         struct elf_prpsinfo prpsinfo;
376
377         memset(&prpsinfo, 0, sizeof(prpsinfo));
378         prpsinfo.pr_sname = 'R';
379         strcpy(prpsinfo.pr_fname, "vmlinux");
380         return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
381 }
382
383 /*
384  * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
385  */
386 static void *get_vmcoreinfo_old(unsigned long *size)
387 {
388         char nt_name[11], *vmcoreinfo;
389         Elf64_Nhdr note;
390         void *addr;
391
392         if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
393                 return NULL;
394         memset(nt_name, 0, sizeof(nt_name));
395         if (copy_oldmem_kernel(&note, addr, sizeof(note)))
396                 return NULL;
397         if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
398                                sizeof(nt_name) - 1))
399                 return NULL;
400         if (strcmp(nt_name, "VMCOREINFO") != 0)
401                 return NULL;
402         vmcoreinfo = kzalloc_panic(note.n_descsz);
403         if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
404                 return NULL;
405         *size = note.n_descsz;
406         return vmcoreinfo;
407 }
408
409 /*
410  * Initialize vmcoreinfo note (new kernel)
411  */
412 static void *nt_vmcoreinfo(void *ptr)
413 {
414         unsigned long size;
415         void *vmcoreinfo;
416
417         vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
418         if (!vmcoreinfo)
419                 vmcoreinfo = get_vmcoreinfo_old(&size);
420         if (!vmcoreinfo)
421                 return ptr;
422         return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
423 }
424
425 /*
426  * Initialize ELF header (new kernel)
427  */
428 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
429 {
430         memset(ehdr, 0, sizeof(*ehdr));
431         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
432         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
433         ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
434         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
435         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
436         ehdr->e_type = ET_CORE;
437         ehdr->e_machine = EM_S390;
438         ehdr->e_version = EV_CURRENT;
439         ehdr->e_phoff = sizeof(Elf64_Ehdr);
440         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
441         ehdr->e_phentsize = sizeof(Elf64_Phdr);
442         ehdr->e_phnum = mem_chunk_cnt + 1;
443         return ehdr + 1;
444 }
445
446 /*
447  * Return CPU count for ELF header (new kernel)
448  */
449 static int get_cpu_cnt(void)
450 {
451         struct save_area *sa;
452         int cpus = 0;
453
454         list_for_each_entry(sa, &dump_save_areas, list)
455                 if (sa->prefix != 0)
456                         cpus++;
457         return cpus;
458 }
459
460 /*
461  * Return memory chunk count for ELF header (new kernel)
462  */
463 static int get_mem_chunk_cnt(void)
464 {
465         int cnt = 0;
466         u64 idx;
467
468         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
469                            MEMBLOCK_NONE, NULL, NULL, NULL)
470                 cnt++;
471         return cnt;
472 }
473
474 /*
475  * Initialize ELF loads (new kernel)
476  */
477 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
478 {
479         phys_addr_t start, end;
480         u64 idx;
481
482         for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
483                            MEMBLOCK_NONE, &start, &end, NULL) {
484                 phdr->p_filesz = end - start;
485                 phdr->p_type = PT_LOAD;
486                 phdr->p_offset = start;
487                 phdr->p_vaddr = start;
488                 phdr->p_paddr = start;
489                 phdr->p_memsz = end - start;
490                 phdr->p_flags = PF_R | PF_W | PF_X;
491                 phdr->p_align = PAGE_SIZE;
492                 phdr++;
493         }
494 }
495
496 /*
497  * Initialize notes (new kernel)
498  */
499 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
500 {
501         struct save_area *sa;
502         void *ptr_start = ptr;
503         int cpu;
504
505         ptr = nt_prpsinfo(ptr);
506
507         cpu = 1;
508         list_for_each_entry(sa, &dump_save_areas, list)
509                 if (sa->prefix != 0)
510                         ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
511         ptr = nt_vmcoreinfo(ptr);
512         memset(phdr, 0, sizeof(*phdr));
513         phdr->p_type = PT_NOTE;
514         phdr->p_offset = notes_offset;
515         phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
516         phdr->p_memsz = phdr->p_filesz;
517         return ptr;
518 }
519
520 /*
521  * Create ELF core header (new kernel)
522  */
523 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
524 {
525         Elf64_Phdr *phdr_notes, *phdr_loads;
526         int mem_chunk_cnt;
527         void *ptr, *hdr;
528         u32 alloc_size;
529         u64 hdr_off;
530
531         /* If we are not in kdump or zfcpdump mode return */
532         if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
533                 return 0;
534         /* If we cannot get HSA size for zfcpdump return error */
535         if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
536                 return -ENODEV;
537
538         /* For kdump, exclude previous crashkernel memory */
539         if (OLDMEM_BASE) {
540                 oldmem_region.base = OLDMEM_BASE;
541                 oldmem_region.size = OLDMEM_SIZE;
542                 oldmem_type.total_size = OLDMEM_SIZE;
543         }
544
545         mem_chunk_cnt = get_mem_chunk_cnt();
546
547         alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
548                 mem_chunk_cnt * sizeof(Elf64_Phdr);
549         hdr = kzalloc_panic(alloc_size);
550         /* Init elf header */
551         ptr = ehdr_init(hdr, mem_chunk_cnt);
552         /* Init program headers */
553         phdr_notes = ptr;
554         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
555         phdr_loads = ptr;
556         ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
557         /* Init notes */
558         hdr_off = PTR_DIFF(ptr, hdr);
559         ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
560         /* Init loads */
561         hdr_off = PTR_DIFF(ptr, hdr);
562         loads_init(phdr_loads, hdr_off);
563         *addr = (unsigned long long) hdr;
564         *size = (unsigned long long) hdr_off;
565         BUG_ON(elfcorehdr_size > alloc_size);
566         return 0;
567 }
568
569 /*
570  * Free ELF core header (new kernel)
571  */
572 void elfcorehdr_free(unsigned long long addr)
573 {
574         kfree((void *)(unsigned long)addr);
575 }
576
577 /*
578  * Read from ELF header
579  */
580 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
581 {
582         void *src = (void *)(unsigned long)*ppos;
583
584         memcpy(buf, src, count);
585         *ppos += count;
586         return count;
587 }
588
589 /*
590  * Read from ELF notes data
591  */
592 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
593 {
594         void *src = (void *)(unsigned long)*ppos;
595
596         memcpy(buf, src, count);
597         *ppos += count;
598         return count;
599 }