Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf-next
[cascardo/linux.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include <asm/idle.h>
49 #include "entry.h"
50
51 enum {
52         ec_schedule = 0,
53         ec_call_function_single,
54         ec_stop_cpu,
55 };
56
57 enum {
58         CPU_STATE_STANDBY,
59         CPU_STATE_CONFIGURED,
60 };
61
62 static DEFINE_PER_CPU(struct cpu *, cpu_device);
63
64 struct pcpu {
65         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
66         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
67         signed char state;              /* physical cpu state */
68         signed char polarization;       /* physical polarization */
69         u16 address;                    /* physical cpu address */
70 };
71
72 static u8 boot_cpu_type;
73 static struct pcpu pcpu_devices[NR_CPUS];
74
75 unsigned int smp_cpu_mt_shift;
76 EXPORT_SYMBOL(smp_cpu_mt_shift);
77
78 unsigned int smp_cpu_mtid;
79 EXPORT_SYMBOL(smp_cpu_mtid);
80
81 static unsigned int smp_max_threads __initdata = -1U;
82
83 static int __init early_nosmt(char *s)
84 {
85         smp_max_threads = 1;
86         return 0;
87 }
88 early_param("nosmt", early_nosmt);
89
90 static int __init early_smt(char *s)
91 {
92         get_option(&s, &smp_max_threads);
93         return 0;
94 }
95 early_param("smt", early_smt);
96
97 /*
98  * The smp_cpu_state_mutex must be held when changing the state or polarization
99  * member of a pcpu data structure within the pcpu_devices arreay.
100  */
101 DEFINE_MUTEX(smp_cpu_state_mutex);
102
103 /*
104  * Signal processor helper functions.
105  */
106 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm,
107                                     u32 *status)
108 {
109         int cc;
110
111         while (1) {
112                 cc = __pcpu_sigp(addr, order, parm, NULL);
113                 if (cc != SIGP_CC_BUSY)
114                         return cc;
115                 cpu_relax();
116         }
117 }
118
119 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
120 {
121         int cc, retry;
122
123         for (retry = 0; ; retry++) {
124                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
125                 if (cc != SIGP_CC_BUSY)
126                         break;
127                 if (retry >= 3)
128                         udelay(10);
129         }
130         return cc;
131 }
132
133 static inline int pcpu_stopped(struct pcpu *pcpu)
134 {
135         u32 uninitialized_var(status);
136
137         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
138                         0, &status) != SIGP_CC_STATUS_STORED)
139                 return 0;
140         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
141 }
142
143 static inline int pcpu_running(struct pcpu *pcpu)
144 {
145         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
146                         0, NULL) != SIGP_CC_STATUS_STORED)
147                 return 1;
148         /* Status stored condition code is equivalent to cpu not running. */
149         return 0;
150 }
151
152 /*
153  * Find struct pcpu by cpu address.
154  */
155 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
156 {
157         int cpu;
158
159         for_each_cpu(cpu, mask)
160                 if (pcpu_devices[cpu].address == address)
161                         return pcpu_devices + cpu;
162         return NULL;
163 }
164
165 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
166 {
167         int order;
168
169         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
170                 return;
171         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
172         pcpu_sigp_retry(pcpu, order, 0);
173 }
174
175 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
176 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
177
178 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
179 {
180         unsigned long async_stack, panic_stack;
181         struct _lowcore *lc;
182
183         if (pcpu != &pcpu_devices[0]) {
184                 pcpu->lowcore = (struct _lowcore *)
185                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
186                 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
187                 panic_stack = __get_free_page(GFP_KERNEL);
188                 if (!pcpu->lowcore || !panic_stack || !async_stack)
189                         goto out;
190         } else {
191                 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
192                 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
193         }
194         lc = pcpu->lowcore;
195         memcpy(lc, &S390_lowcore, 512);
196         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
197         lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
198         lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
199         lc->cpu_nr = cpu;
200         lc->spinlock_lockval = arch_spin_lockval(cpu);
201 #ifndef CONFIG_64BIT
202         if (MACHINE_HAS_IEEE) {
203                 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
204                 if (!lc->extended_save_area_addr)
205                         goto out;
206         }
207 #else
208         if (MACHINE_HAS_VX)
209                 lc->vector_save_area_addr =
210                         (unsigned long) &lc->vector_save_area;
211         if (vdso_alloc_per_cpu(lc))
212                 goto out;
213 #endif
214         lowcore_ptr[cpu] = lc;
215         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
216         return 0;
217 out:
218         if (pcpu != &pcpu_devices[0]) {
219                 free_page(panic_stack);
220                 free_pages(async_stack, ASYNC_ORDER);
221                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
222         }
223         return -ENOMEM;
224 }
225
226 #ifdef CONFIG_HOTPLUG_CPU
227
228 static void pcpu_free_lowcore(struct pcpu *pcpu)
229 {
230         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
231         lowcore_ptr[pcpu - pcpu_devices] = NULL;
232 #ifndef CONFIG_64BIT
233         if (MACHINE_HAS_IEEE) {
234                 struct _lowcore *lc = pcpu->lowcore;
235
236                 free_page((unsigned long) lc->extended_save_area_addr);
237                 lc->extended_save_area_addr = 0;
238         }
239 #else
240         vdso_free_per_cpu(pcpu->lowcore);
241 #endif
242         if (pcpu == &pcpu_devices[0])
243                 return;
244         free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
245         free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
246         free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
247 }
248
249 #endif /* CONFIG_HOTPLUG_CPU */
250
251 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
252 {
253         struct _lowcore *lc = pcpu->lowcore;
254
255         if (MACHINE_HAS_TLB_LC)
256                 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
257         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
258         atomic_inc(&init_mm.context.attach_count);
259         lc->cpu_nr = cpu;
260         lc->spinlock_lockval = arch_spin_lockval(cpu);
261         lc->percpu_offset = __per_cpu_offset[cpu];
262         lc->kernel_asce = S390_lowcore.kernel_asce;
263         lc->machine_flags = S390_lowcore.machine_flags;
264         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
265         __ctl_store(lc->cregs_save_area, 0, 15);
266         save_access_regs((unsigned int *) lc->access_regs_save_area);
267         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
268                MAX_FACILITY_BIT/8);
269 }
270
271 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
272 {
273         struct _lowcore *lc = pcpu->lowcore;
274         struct thread_info *ti = task_thread_info(tsk);
275
276         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
277                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
278         lc->thread_info = (unsigned long) task_thread_info(tsk);
279         lc->current_task = (unsigned long) tsk;
280         lc->user_timer = ti->user_timer;
281         lc->system_timer = ti->system_timer;
282         lc->steal_timer = 0;
283 }
284
285 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
286 {
287         struct _lowcore *lc = pcpu->lowcore;
288
289         lc->restart_stack = lc->kernel_stack;
290         lc->restart_fn = (unsigned long) func;
291         lc->restart_data = (unsigned long) data;
292         lc->restart_source = -1UL;
293         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
294 }
295
296 /*
297  * Call function via PSW restart on pcpu and stop the current cpu.
298  */
299 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
300                           void *data, unsigned long stack)
301 {
302         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
303         unsigned long source_cpu = stap();
304
305         __load_psw_mask(PSW_KERNEL_BITS);
306         if (pcpu->address == source_cpu)
307                 func(data);     /* should not return */
308         /* Stop target cpu (if func returns this stops the current cpu). */
309         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
310         /* Restart func on the target cpu and stop the current cpu. */
311         mem_assign_absolute(lc->restart_stack, stack);
312         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
313         mem_assign_absolute(lc->restart_data, (unsigned long) data);
314         mem_assign_absolute(lc->restart_source, source_cpu);
315         asm volatile(
316                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
317                 "       brc     2,0b    # busy, try again\n"
318                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
319                 "       brc     2,1b    # busy, try again\n"
320                 : : "d" (pcpu->address), "d" (source_cpu),
321                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
322                 : "0", "1", "cc");
323         for (;;) ;
324 }
325
326 /*
327  * Enable additional logical cpus for multi-threading.
328  */
329 static int pcpu_set_smt(unsigned int mtid)
330 {
331         register unsigned long reg1 asm ("1") = (unsigned long) mtid;
332         int cc;
333
334         if (smp_cpu_mtid == mtid)
335                 return 0;
336         asm volatile(
337                 "       sigp    %1,0,%2 # sigp set multi-threading\n"
338                 "       ipm     %0\n"
339                 "       srl     %0,28\n"
340                 : "=d" (cc) : "d" (reg1), "K" (SIGP_SET_MULTI_THREADING)
341                 : "cc");
342         if (cc == 0) {
343                 smp_cpu_mtid = mtid;
344                 smp_cpu_mt_shift = 0;
345                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
346                         smp_cpu_mt_shift++;
347                 pcpu_devices[0].address = stap();
348         }
349         return cc;
350 }
351
352 /*
353  * Call function on an online CPU.
354  */
355 void smp_call_online_cpu(void (*func)(void *), void *data)
356 {
357         struct pcpu *pcpu;
358
359         /* Use the current cpu if it is online. */
360         pcpu = pcpu_find_address(cpu_online_mask, stap());
361         if (!pcpu)
362                 /* Use the first online cpu. */
363                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
364         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
365 }
366
367 /*
368  * Call function on the ipl CPU.
369  */
370 void smp_call_ipl_cpu(void (*func)(void *), void *data)
371 {
372         pcpu_delegate(&pcpu_devices[0], func, data,
373                       pcpu_devices->lowcore->panic_stack -
374                       PANIC_FRAME_OFFSET + PAGE_SIZE);
375 }
376
377 int smp_find_processor_id(u16 address)
378 {
379         int cpu;
380
381         for_each_present_cpu(cpu)
382                 if (pcpu_devices[cpu].address == address)
383                         return cpu;
384         return -1;
385 }
386
387 int smp_vcpu_scheduled(int cpu)
388 {
389         return pcpu_running(pcpu_devices + cpu);
390 }
391
392 void smp_yield_cpu(int cpu)
393 {
394         if (MACHINE_HAS_DIAG9C)
395                 asm volatile("diag %0,0,0x9c"
396                              : : "d" (pcpu_devices[cpu].address));
397         else if (MACHINE_HAS_DIAG44)
398                 asm volatile("diag 0,0,0x44");
399 }
400
401 /*
402  * Send cpus emergency shutdown signal. This gives the cpus the
403  * opportunity to complete outstanding interrupts.
404  */
405 static void smp_emergency_stop(cpumask_t *cpumask)
406 {
407         u64 end;
408         int cpu;
409
410         end = get_tod_clock() + (1000000UL << 12);
411         for_each_cpu(cpu, cpumask) {
412                 struct pcpu *pcpu = pcpu_devices + cpu;
413                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
414                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
415                                    0, NULL) == SIGP_CC_BUSY &&
416                        get_tod_clock() < end)
417                         cpu_relax();
418         }
419         while (get_tod_clock() < end) {
420                 for_each_cpu(cpu, cpumask)
421                         if (pcpu_stopped(pcpu_devices + cpu))
422                                 cpumask_clear_cpu(cpu, cpumask);
423                 if (cpumask_empty(cpumask))
424                         break;
425                 cpu_relax();
426         }
427 }
428
429 /*
430  * Stop all cpus but the current one.
431  */
432 void smp_send_stop(void)
433 {
434         cpumask_t cpumask;
435         int cpu;
436
437         /* Disable all interrupts/machine checks */
438         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
439         trace_hardirqs_off();
440
441         debug_set_critical();
442         cpumask_copy(&cpumask, cpu_online_mask);
443         cpumask_clear_cpu(smp_processor_id(), &cpumask);
444
445         if (oops_in_progress)
446                 smp_emergency_stop(&cpumask);
447
448         /* stop all processors */
449         for_each_cpu(cpu, &cpumask) {
450                 struct pcpu *pcpu = pcpu_devices + cpu;
451                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
452                 while (!pcpu_stopped(pcpu))
453                         cpu_relax();
454         }
455 }
456
457 /*
458  * This is the main routine where commands issued by other
459  * cpus are handled.
460  */
461 static void smp_handle_ext_call(void)
462 {
463         unsigned long bits;
464
465         /* handle bit signal external calls */
466         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
467         if (test_bit(ec_stop_cpu, &bits))
468                 smp_stop_cpu();
469         if (test_bit(ec_schedule, &bits))
470                 scheduler_ipi();
471         if (test_bit(ec_call_function_single, &bits))
472                 generic_smp_call_function_single_interrupt();
473 }
474
475 static void do_ext_call_interrupt(struct ext_code ext_code,
476                                   unsigned int param32, unsigned long param64)
477 {
478         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
479         smp_handle_ext_call();
480 }
481
482 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
483 {
484         int cpu;
485
486         for_each_cpu(cpu, mask)
487                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
488 }
489
490 void arch_send_call_function_single_ipi(int cpu)
491 {
492         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
493 }
494
495 #ifndef CONFIG_64BIT
496 /*
497  * this function sends a 'purge tlb' signal to another CPU.
498  */
499 static void smp_ptlb_callback(void *info)
500 {
501         __tlb_flush_local();
502 }
503
504 void smp_ptlb_all(void)
505 {
506         on_each_cpu(smp_ptlb_callback, NULL, 1);
507 }
508 EXPORT_SYMBOL(smp_ptlb_all);
509 #endif /* ! CONFIG_64BIT */
510
511 /*
512  * this function sends a 'reschedule' IPI to another CPU.
513  * it goes straight through and wastes no time serializing
514  * anything. Worst case is that we lose a reschedule ...
515  */
516 void smp_send_reschedule(int cpu)
517 {
518         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
519 }
520
521 /*
522  * parameter area for the set/clear control bit callbacks
523  */
524 struct ec_creg_mask_parms {
525         unsigned long orval;
526         unsigned long andval;
527         int cr;
528 };
529
530 /*
531  * callback for setting/clearing control bits
532  */
533 static void smp_ctl_bit_callback(void *info)
534 {
535         struct ec_creg_mask_parms *pp = info;
536         unsigned long cregs[16];
537
538         __ctl_store(cregs, 0, 15);
539         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
540         __ctl_load(cregs, 0, 15);
541 }
542
543 /*
544  * Set a bit in a control register of all cpus
545  */
546 void smp_ctl_set_bit(int cr, int bit)
547 {
548         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
549
550         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
551 }
552 EXPORT_SYMBOL(smp_ctl_set_bit);
553
554 /*
555  * Clear a bit in a control register of all cpus
556  */
557 void smp_ctl_clear_bit(int cr, int bit)
558 {
559         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
560
561         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
562 }
563 EXPORT_SYMBOL(smp_ctl_clear_bit);
564
565 #ifdef CONFIG_CRASH_DUMP
566
567 static inline void __smp_store_cpu_state(int cpu, u16 address, int is_boot_cpu)
568 {
569         void *lc = pcpu_devices[0].lowcore;
570         struct save_area_ext *sa_ext;
571         unsigned long vx_sa;
572
573         sa_ext = dump_save_area_create(cpu);
574         if (!sa_ext)
575                 panic("could not allocate memory for save area\n");
576         if (is_boot_cpu) {
577                 /* Copy the registers of the boot CPU. */
578                 copy_oldmem_page(1, (void *) &sa_ext->sa, sizeof(sa_ext->sa),
579                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
580                 if (MACHINE_HAS_VX)
581                         save_vx_regs_safe(sa_ext->vx_regs);
582                 return;
583         }
584         /* Get the registers of a non-boot cpu. */
585         __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
586         memcpy_real(&sa_ext->sa, lc + SAVE_AREA_BASE, sizeof(sa_ext->sa));
587         if (!MACHINE_HAS_VX)
588                 return;
589         /* Get the VX registers */
590         vx_sa = __get_free_page(GFP_KERNEL);
591         if (!vx_sa)
592                 panic("could not allocate memory for VX save area\n");
593         __pcpu_sigp_relax(address, SIGP_STORE_ADDITIONAL_STATUS, vx_sa, NULL);
594         memcpy(sa_ext->vx_regs, (void *) vx_sa, sizeof(sa_ext->vx_regs));
595         free_page(vx_sa);
596 }
597
598 /*
599  * Collect CPU state of the previous, crashed system.
600  * There are four cases:
601  * 1) standard zfcp dump
602  *    condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
603  *    The state for all CPUs except the boot CPU needs to be collected
604  *    with sigp stop-and-store-status. The boot CPU state is located in
605  *    the absolute lowcore of the memory stored in the HSA. The zcore code
606  *    will allocate the save area and copy the boot CPU state from the HSA.
607  * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
608  *    condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
609  *    The state for all CPUs except the boot CPU needs to be collected
610  *    with sigp stop-and-store-status. The firmware or the boot-loader
611  *    stored the registers of the boot CPU in the absolute lowcore in the
612  *    memory of the old system.
613  * 3) kdump and the old kernel did not store the CPU state,
614  *    or stand-alone kdump for DASD
615  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
616  *    The state for all CPUs except the boot CPU needs to be collected
617  *    with sigp stop-and-store-status. The kexec code or the boot-loader
618  *    stored the registers of the boot CPU in the memory of the old system.
619  * 4) kdump and the old kernel stored the CPU state
620  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
621  *    The state of all CPUs is stored in ELF sections in the memory of the
622  *    old system. The ELF sections are picked up by the crash_dump code
623  *    via elfcorehdr_addr.
624  */
625 static void __init smp_store_cpu_states(struct sclp_cpu_info *info)
626 {
627         unsigned int cpu, address, i, j;
628         int is_boot_cpu;
629
630         if (is_kdump_kernel())
631                 /* Previous system stored the CPU states. Nothing to do. */
632                 return;
633         if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
634                 /* No previous system present, normal boot. */
635                 return;
636         /* Set multi-threading state to the previous system. */
637         pcpu_set_smt(sclp_get_mtid_prev());
638         /* Collect CPU states. */
639         cpu = 0;
640         for (i = 0; i < info->configured; i++) {
641                 /* Skip CPUs with different CPU type. */
642                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
643                         continue;
644                 for (j = 0; j <= smp_cpu_mtid; j++, cpu++) {
645                         address = (info->cpu[i].core_id << smp_cpu_mt_shift) + j;
646                         is_boot_cpu = (address == pcpu_devices[0].address);
647                         if (is_boot_cpu && !OLDMEM_BASE)
648                                 /* Skip boot CPU for standard zfcp dump. */
649                                 continue;
650                         /* Get state for this CPu. */
651                         __smp_store_cpu_state(cpu, address, is_boot_cpu);
652                 }
653         }
654 }
655
656 int smp_store_status(int cpu)
657 {
658         unsigned long vx_sa;
659         struct pcpu *pcpu;
660
661         pcpu = pcpu_devices + cpu;
662         if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
663                               0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
664                 return -EIO;
665         if (!MACHINE_HAS_VX)
666                 return 0;
667         vx_sa = __pa(pcpu->lowcore->vector_save_area_addr);
668         __pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
669                           vx_sa, NULL);
670         return 0;
671 }
672
673 #endif /* CONFIG_CRASH_DUMP */
674
675 void smp_cpu_set_polarization(int cpu, int val)
676 {
677         pcpu_devices[cpu].polarization = val;
678 }
679
680 int smp_cpu_get_polarization(int cpu)
681 {
682         return pcpu_devices[cpu].polarization;
683 }
684
685 static struct sclp_cpu_info *smp_get_cpu_info(void)
686 {
687         static int use_sigp_detection;
688         struct sclp_cpu_info *info;
689         int address;
690
691         info = kzalloc(sizeof(*info), GFP_KERNEL);
692         if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
693                 use_sigp_detection = 1;
694                 for (address = 0; address <= MAX_CPU_ADDRESS;
695                      address += (1U << smp_cpu_mt_shift)) {
696                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
697                             SIGP_CC_NOT_OPERATIONAL)
698                                 continue;
699                         info->cpu[info->configured].core_id =
700                                 address >> smp_cpu_mt_shift;
701                         info->configured++;
702                 }
703                 info->combined = info->configured;
704         }
705         return info;
706 }
707
708 static int smp_add_present_cpu(int cpu);
709
710 static int __smp_rescan_cpus(struct sclp_cpu_info *info, int sysfs_add)
711 {
712         struct pcpu *pcpu;
713         cpumask_t avail;
714         int cpu, nr, i, j;
715         u16 address;
716
717         nr = 0;
718         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
719         cpu = cpumask_first(&avail);
720         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
721                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
722                         continue;
723                 address = info->cpu[i].core_id << smp_cpu_mt_shift;
724                 for (j = 0; j <= smp_cpu_mtid; j++) {
725                         if (pcpu_find_address(cpu_present_mask, address + j))
726                                 continue;
727                         pcpu = pcpu_devices + cpu;
728                         pcpu->address = address + j;
729                         pcpu->state =
730                                 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
731                                 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
732                         smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
733                         set_cpu_present(cpu, true);
734                         if (sysfs_add && smp_add_present_cpu(cpu) != 0)
735                                 set_cpu_present(cpu, false);
736                         else
737                                 nr++;
738                         cpu = cpumask_next(cpu, &avail);
739                         if (cpu >= nr_cpu_ids)
740                                 break;
741                 }
742         }
743         return nr;
744 }
745
746 static void __init smp_detect_cpus(void)
747 {
748         unsigned int cpu, mtid, c_cpus, s_cpus;
749         struct sclp_cpu_info *info;
750         u16 address;
751
752         /* Get CPU information */
753         info = smp_get_cpu_info();
754         if (!info)
755                 panic("smp_detect_cpus failed to allocate memory\n");
756
757         /* Find boot CPU type */
758         if (info->has_cpu_type) {
759                 address = stap();
760                 for (cpu = 0; cpu < info->combined; cpu++)
761                         if (info->cpu[cpu].core_id == address) {
762                                 /* The boot cpu dictates the cpu type. */
763                                 boot_cpu_type = info->cpu[cpu].type;
764                                 break;
765                         }
766                 if (cpu >= info->combined)
767                         panic("Could not find boot CPU type");
768         }
769
770 #ifdef CONFIG_CRASH_DUMP
771         /* Collect CPU state of previous system */
772         smp_store_cpu_states(info);
773 #endif
774
775         /* Set multi-threading state for the current system */
776         mtid = sclp_get_mtid(boot_cpu_type);
777         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
778         pcpu_set_smt(mtid);
779
780         /* Print number of CPUs */
781         c_cpus = s_cpus = 0;
782         for (cpu = 0; cpu < info->combined; cpu++) {
783                 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
784                         continue;
785                 if (cpu < info->configured)
786                         c_cpus += smp_cpu_mtid + 1;
787                 else
788                         s_cpus += smp_cpu_mtid + 1;
789         }
790         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
791
792         /* Add CPUs present at boot */
793         get_online_cpus();
794         __smp_rescan_cpus(info, 0);
795         put_online_cpus();
796         kfree(info);
797 }
798
799 /*
800  *      Activate a secondary processor.
801  */
802 static void smp_start_secondary(void *cpuvoid)
803 {
804         S390_lowcore.last_update_clock = get_tod_clock();
805         S390_lowcore.restart_stack = (unsigned long) restart_stack;
806         S390_lowcore.restart_fn = (unsigned long) do_restart;
807         S390_lowcore.restart_data = 0;
808         S390_lowcore.restart_source = -1UL;
809         restore_access_regs(S390_lowcore.access_regs_save_area);
810         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
811         __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
812         cpu_init();
813         preempt_disable();
814         init_cpu_timer();
815         vtime_init();
816         pfault_init();
817         notify_cpu_starting(smp_processor_id());
818         set_cpu_online(smp_processor_id(), true);
819         inc_irq_stat(CPU_RST);
820         local_irq_enable();
821         cpu_startup_entry(CPUHP_ONLINE);
822 }
823
824 /* Upping and downing of CPUs */
825 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
826 {
827         struct pcpu *pcpu;
828         int base, i, rc;
829
830         pcpu = pcpu_devices + cpu;
831         if (pcpu->state != CPU_STATE_CONFIGURED)
832                 return -EIO;
833         base = cpu - (cpu % (smp_cpu_mtid + 1));
834         for (i = 0; i <= smp_cpu_mtid; i++) {
835                 if (base + i < nr_cpu_ids)
836                         if (cpu_online(base + i))
837                                 break;
838         }
839         /*
840          * If this is the first CPU of the core to get online
841          * do an initial CPU reset.
842          */
843         if (i > smp_cpu_mtid &&
844             pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
845             SIGP_CC_ORDER_CODE_ACCEPTED)
846                 return -EIO;
847
848         rc = pcpu_alloc_lowcore(pcpu, cpu);
849         if (rc)
850                 return rc;
851         pcpu_prepare_secondary(pcpu, cpu);
852         pcpu_attach_task(pcpu, tidle);
853         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
854         while (!cpu_online(cpu))
855                 cpu_relax();
856         return 0;
857 }
858
859 static unsigned int setup_possible_cpus __initdata;
860
861 static int __init _setup_possible_cpus(char *s)
862 {
863         get_option(&s, &setup_possible_cpus);
864         return 0;
865 }
866 early_param("possible_cpus", _setup_possible_cpus);
867
868 #ifdef CONFIG_HOTPLUG_CPU
869
870 int __cpu_disable(void)
871 {
872         unsigned long cregs[16];
873
874         /* Handle possible pending IPIs */
875         smp_handle_ext_call();
876         set_cpu_online(smp_processor_id(), false);
877         /* Disable pseudo page faults on this cpu. */
878         pfault_fini();
879         /* Disable interrupt sources via control register. */
880         __ctl_store(cregs, 0, 15);
881         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
882         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
883         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
884         __ctl_load(cregs, 0, 15);
885         clear_cpu_flag(CIF_NOHZ_DELAY);
886         return 0;
887 }
888
889 void __cpu_die(unsigned int cpu)
890 {
891         struct pcpu *pcpu;
892
893         /* Wait until target cpu is down */
894         pcpu = pcpu_devices + cpu;
895         while (!pcpu_stopped(pcpu))
896                 cpu_relax();
897         pcpu_free_lowcore(pcpu);
898         atomic_dec(&init_mm.context.attach_count);
899         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
900         if (MACHINE_HAS_TLB_LC)
901                 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
902 }
903
904 void __noreturn cpu_die(void)
905 {
906         idle_task_exit();
907         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
908         for (;;) ;
909 }
910
911 #endif /* CONFIG_HOTPLUG_CPU */
912
913 void __init smp_fill_possible_mask(void)
914 {
915         unsigned int possible, sclp, cpu;
916
917         sclp = min(smp_max_threads, sclp_get_mtid_max() + 1);
918         sclp = sclp_get_max_cpu()*sclp ?: nr_cpu_ids;
919         possible = setup_possible_cpus ?: nr_cpu_ids;
920         possible = min(possible, sclp);
921         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
922                 set_cpu_possible(cpu, true);
923 }
924
925 void __init smp_prepare_cpus(unsigned int max_cpus)
926 {
927         /* request the 0x1201 emergency signal external interrupt */
928         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
929                 panic("Couldn't request external interrupt 0x1201");
930         /* request the 0x1202 external call external interrupt */
931         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
932                 panic("Couldn't request external interrupt 0x1202");
933         smp_detect_cpus();
934 }
935
936 void __init smp_prepare_boot_cpu(void)
937 {
938         struct pcpu *pcpu = pcpu_devices;
939
940         pcpu->state = CPU_STATE_CONFIGURED;
941         pcpu->address = stap();
942         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
943         S390_lowcore.percpu_offset = __per_cpu_offset[0];
944         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
945         set_cpu_present(0, true);
946         set_cpu_online(0, true);
947 }
948
949 void __init smp_cpus_done(unsigned int max_cpus)
950 {
951 }
952
953 void __init smp_setup_processor_id(void)
954 {
955         S390_lowcore.cpu_nr = 0;
956         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
957 }
958
959 /*
960  * the frequency of the profiling timer can be changed
961  * by writing a multiplier value into /proc/profile.
962  *
963  * usually you want to run this on all CPUs ;)
964  */
965 int setup_profiling_timer(unsigned int multiplier)
966 {
967         return 0;
968 }
969
970 #ifdef CONFIG_HOTPLUG_CPU
971 static ssize_t cpu_configure_show(struct device *dev,
972                                   struct device_attribute *attr, char *buf)
973 {
974         ssize_t count;
975
976         mutex_lock(&smp_cpu_state_mutex);
977         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
978         mutex_unlock(&smp_cpu_state_mutex);
979         return count;
980 }
981
982 static ssize_t cpu_configure_store(struct device *dev,
983                                    struct device_attribute *attr,
984                                    const char *buf, size_t count)
985 {
986         struct pcpu *pcpu;
987         int cpu, val, rc, i;
988         char delim;
989
990         if (sscanf(buf, "%d %c", &val, &delim) != 1)
991                 return -EINVAL;
992         if (val != 0 && val != 1)
993                 return -EINVAL;
994         get_online_cpus();
995         mutex_lock(&smp_cpu_state_mutex);
996         rc = -EBUSY;
997         /* disallow configuration changes of online cpus and cpu 0 */
998         cpu = dev->id;
999         cpu -= cpu % (smp_cpu_mtid + 1);
1000         if (cpu == 0)
1001                 goto out;
1002         for (i = 0; i <= smp_cpu_mtid; i++)
1003                 if (cpu_online(cpu + i))
1004                         goto out;
1005         pcpu = pcpu_devices + cpu;
1006         rc = 0;
1007         switch (val) {
1008         case 0:
1009                 if (pcpu->state != CPU_STATE_CONFIGURED)
1010                         break;
1011                 rc = sclp_cpu_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1012                 if (rc)
1013                         break;
1014                 for (i = 0; i <= smp_cpu_mtid; i++) {
1015                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1016                                 continue;
1017                         pcpu[i].state = CPU_STATE_STANDBY;
1018                         smp_cpu_set_polarization(cpu + i,
1019                                                  POLARIZATION_UNKNOWN);
1020                 }
1021                 topology_expect_change();
1022                 break;
1023         case 1:
1024                 if (pcpu->state != CPU_STATE_STANDBY)
1025                         break;
1026                 rc = sclp_cpu_configure(pcpu->address >> smp_cpu_mt_shift);
1027                 if (rc)
1028                         break;
1029                 for (i = 0; i <= smp_cpu_mtid; i++) {
1030                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1031                                 continue;
1032                         pcpu[i].state = CPU_STATE_CONFIGURED;
1033                         smp_cpu_set_polarization(cpu + i,
1034                                                  POLARIZATION_UNKNOWN);
1035                 }
1036                 topology_expect_change();
1037                 break;
1038         default:
1039                 break;
1040         }
1041 out:
1042         mutex_unlock(&smp_cpu_state_mutex);
1043         put_online_cpus();
1044         return rc ? rc : count;
1045 }
1046 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1047 #endif /* CONFIG_HOTPLUG_CPU */
1048
1049 static ssize_t show_cpu_address(struct device *dev,
1050                                 struct device_attribute *attr, char *buf)
1051 {
1052         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1053 }
1054 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1055
1056 static struct attribute *cpu_common_attrs[] = {
1057 #ifdef CONFIG_HOTPLUG_CPU
1058         &dev_attr_configure.attr,
1059 #endif
1060         &dev_attr_address.attr,
1061         NULL,
1062 };
1063
1064 static struct attribute_group cpu_common_attr_group = {
1065         .attrs = cpu_common_attrs,
1066 };
1067
1068 static struct attribute *cpu_online_attrs[] = {
1069         &dev_attr_idle_count.attr,
1070         &dev_attr_idle_time_us.attr,
1071         NULL,
1072 };
1073
1074 static struct attribute_group cpu_online_attr_group = {
1075         .attrs = cpu_online_attrs,
1076 };
1077
1078 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1079                           void *hcpu)
1080 {
1081         unsigned int cpu = (unsigned int)(long)hcpu;
1082         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1083         int err = 0;
1084
1085         switch (action & ~CPU_TASKS_FROZEN) {
1086         case CPU_ONLINE:
1087                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1088                 break;
1089         case CPU_DEAD:
1090                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1091                 break;
1092         }
1093         return notifier_from_errno(err);
1094 }
1095
1096 static int smp_add_present_cpu(int cpu)
1097 {
1098         struct device *s;
1099         struct cpu *c;
1100         int rc;
1101
1102         c = kzalloc(sizeof(*c), GFP_KERNEL);
1103         if (!c)
1104                 return -ENOMEM;
1105         per_cpu(cpu_device, cpu) = c;
1106         s = &c->dev;
1107         c->hotpluggable = 1;
1108         rc = register_cpu(c, cpu);
1109         if (rc)
1110                 goto out;
1111         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1112         if (rc)
1113                 goto out_cpu;
1114         if (cpu_online(cpu)) {
1115                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1116                 if (rc)
1117                         goto out_online;
1118         }
1119         rc = topology_cpu_init(c);
1120         if (rc)
1121                 goto out_topology;
1122         return 0;
1123
1124 out_topology:
1125         if (cpu_online(cpu))
1126                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1127 out_online:
1128         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1129 out_cpu:
1130 #ifdef CONFIG_HOTPLUG_CPU
1131         unregister_cpu(c);
1132 #endif
1133 out:
1134         return rc;
1135 }
1136
1137 #ifdef CONFIG_HOTPLUG_CPU
1138
1139 int __ref smp_rescan_cpus(void)
1140 {
1141         struct sclp_cpu_info *info;
1142         int nr;
1143
1144         info = smp_get_cpu_info();
1145         if (!info)
1146                 return -ENOMEM;
1147         get_online_cpus();
1148         mutex_lock(&smp_cpu_state_mutex);
1149         nr = __smp_rescan_cpus(info, 1);
1150         mutex_unlock(&smp_cpu_state_mutex);
1151         put_online_cpus();
1152         kfree(info);
1153         if (nr)
1154                 topology_schedule_update();
1155         return 0;
1156 }
1157
1158 static ssize_t __ref rescan_store(struct device *dev,
1159                                   struct device_attribute *attr,
1160                                   const char *buf,
1161                                   size_t count)
1162 {
1163         int rc;
1164
1165         rc = smp_rescan_cpus();
1166         return rc ? rc : count;
1167 }
1168 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1169 #endif /* CONFIG_HOTPLUG_CPU */
1170
1171 static int __init s390_smp_init(void)
1172 {
1173         int cpu, rc = 0;
1174
1175 #ifdef CONFIG_HOTPLUG_CPU
1176         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1177         if (rc)
1178                 return rc;
1179 #endif
1180         cpu_notifier_register_begin();
1181         for_each_present_cpu(cpu) {
1182                 rc = smp_add_present_cpu(cpu);
1183                 if (rc)
1184                         goto out;
1185         }
1186
1187         __hotcpu_notifier(smp_cpu_notify, 0);
1188
1189 out:
1190         cpu_notifier_register_done();
1191         return rc;
1192 }
1193 subsys_initcall(s390_smp_init);