Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[cascardo/linux.git] / arch / s390 / mm / vmem.c
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19
20 static DEFINE_MUTEX(vmem_mutex);
21
22 struct memory_segment {
23         struct list_head list;
24         unsigned long start;
25         unsigned long size;
26 };
27
28 static LIST_HEAD(mem_segs);
29
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32         if (slab_is_available())
33                 return (void *)__get_free_pages(GFP_KERNEL, order);
34         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39         pud_t *pud = NULL;
40
41 #ifdef CONFIG_64BIT
42         pud = vmem_alloc_pages(2);
43         if (!pud)
44                 return NULL;
45         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
46 #endif
47         return pud;
48 }
49
50 static inline pmd_t *vmem_pmd_alloc(void)
51 {
52         pmd_t *pmd = NULL;
53
54 #ifdef CONFIG_64BIT
55         pmd = vmem_alloc_pages(2);
56         if (!pmd)
57                 return NULL;
58         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
59 #endif
60         return pmd;
61 }
62
63 static pte_t __ref *vmem_pte_alloc(unsigned long address)
64 {
65         pte_t *pte;
66
67         if (slab_is_available())
68                 pte = (pte_t *) page_table_alloc(&init_mm);
69         else
70                 pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
71                                           PTRS_PER_PTE * sizeof(pte_t));
72         if (!pte)
73                 return NULL;
74         clear_table((unsigned long *) pte, _PAGE_INVALID,
75                     PTRS_PER_PTE * sizeof(pte_t));
76         return pte;
77 }
78
79 /*
80  * Add a physical memory range to the 1:1 mapping.
81  */
82 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
83 {
84         unsigned long end = start + size;
85         unsigned long address = start;
86         pgd_t *pg_dir;
87         pud_t *pu_dir;
88         pmd_t *pm_dir;
89         pte_t *pt_dir;
90         int ret = -ENOMEM;
91
92         while (address < end) {
93                 pg_dir = pgd_offset_k(address);
94                 if (pgd_none(*pg_dir)) {
95                         pu_dir = vmem_pud_alloc();
96                         if (!pu_dir)
97                                 goto out;
98                         pgd_populate(&init_mm, pg_dir, pu_dir);
99                 }
100                 pu_dir = pud_offset(pg_dir, address);
101 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
102                 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
103                     !(address & ~PUD_MASK) && (address + PUD_SIZE <= end)) {
104                         pud_val(*pu_dir) = __pa(address) |
105                                 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
106                                 (ro ? _REGION_ENTRY_PROTECT : 0);
107                         address += PUD_SIZE;
108                         continue;
109                 }
110 #endif
111                 if (pud_none(*pu_dir)) {
112                         pm_dir = vmem_pmd_alloc();
113                         if (!pm_dir)
114                                 goto out;
115                         pud_populate(&init_mm, pu_dir, pm_dir);
116                 }
117                 pm_dir = pmd_offset(pu_dir, address);
118 #if defined(CONFIG_64BIT) && !defined(CONFIG_DEBUG_PAGEALLOC)
119                 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
120                     !(address & ~PMD_MASK) && (address + PMD_SIZE <= end)) {
121                         pmd_val(*pm_dir) = __pa(address) |
122                                 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
123                                 _SEGMENT_ENTRY_YOUNG |
124                                 (ro ? _SEGMENT_ENTRY_PROTECT : 0);
125                         address += PMD_SIZE;
126                         continue;
127                 }
128 #endif
129                 if (pmd_none(*pm_dir)) {
130                         pt_dir = vmem_pte_alloc(address);
131                         if (!pt_dir)
132                                 goto out;
133                         pmd_populate(&init_mm, pm_dir, pt_dir);
134                 }
135
136                 pt_dir = pte_offset_kernel(pm_dir, address);
137                 pte_val(*pt_dir) = __pa(address) |
138                         pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
139                 address += PAGE_SIZE;
140         }
141         ret = 0;
142 out:
143         return ret;
144 }
145
146 /*
147  * Remove a physical memory range from the 1:1 mapping.
148  * Currently only invalidates page table entries.
149  */
150 static void vmem_remove_range(unsigned long start, unsigned long size)
151 {
152         unsigned long end = start + size;
153         unsigned long address = start;
154         pgd_t *pg_dir;
155         pud_t *pu_dir;
156         pmd_t *pm_dir;
157         pte_t *pt_dir;
158         pte_t  pte;
159
160         pte_val(pte) = _PAGE_INVALID;
161         while (address < end) {
162                 pg_dir = pgd_offset_k(address);
163                 if (pgd_none(*pg_dir)) {
164                         address += PGDIR_SIZE;
165                         continue;
166                 }
167                 pu_dir = pud_offset(pg_dir, address);
168                 if (pud_none(*pu_dir)) {
169                         address += PUD_SIZE;
170                         continue;
171                 }
172                 if (pud_large(*pu_dir)) {
173                         pud_clear(pu_dir);
174                         address += PUD_SIZE;
175                         continue;
176                 }
177                 pm_dir = pmd_offset(pu_dir, address);
178                 if (pmd_none(*pm_dir)) {
179                         address += PMD_SIZE;
180                         continue;
181                 }
182                 if (pmd_large(*pm_dir)) {
183                         pmd_clear(pm_dir);
184                         address += PMD_SIZE;
185                         continue;
186                 }
187                 pt_dir = pte_offset_kernel(pm_dir, address);
188                 *pt_dir = pte;
189                 address += PAGE_SIZE;
190         }
191         flush_tlb_kernel_range(start, end);
192 }
193
194 /*
195  * Add a backed mem_map array to the virtual mem_map array.
196  */
197 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
198 {
199         unsigned long address = start;
200         pgd_t *pg_dir;
201         pud_t *pu_dir;
202         pmd_t *pm_dir;
203         pte_t *pt_dir;
204         int ret = -ENOMEM;
205
206         for (address = start; address < end;) {
207                 pg_dir = pgd_offset_k(address);
208                 if (pgd_none(*pg_dir)) {
209                         pu_dir = vmem_pud_alloc();
210                         if (!pu_dir)
211                                 goto out;
212                         pgd_populate(&init_mm, pg_dir, pu_dir);
213                 }
214
215                 pu_dir = pud_offset(pg_dir, address);
216                 if (pud_none(*pu_dir)) {
217                         pm_dir = vmem_pmd_alloc();
218                         if (!pm_dir)
219                                 goto out;
220                         pud_populate(&init_mm, pu_dir, pm_dir);
221                 }
222
223                 pm_dir = pmd_offset(pu_dir, address);
224                 if (pmd_none(*pm_dir)) {
225 #ifdef CONFIG_64BIT
226                         /* Use 1MB frames for vmemmap if available. We always
227                          * use large frames even if they are only partially
228                          * used.
229                          * Otherwise we would have also page tables since
230                          * vmemmap_populate gets called for each section
231                          * separately. */
232                         if (MACHINE_HAS_EDAT1) {
233                                 void *new_page;
234
235                                 new_page = vmemmap_alloc_block(PMD_SIZE, node);
236                                 if (!new_page)
237                                         goto out;
238                                 pmd_val(*pm_dir) = __pa(new_page) |
239                                         _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
240                                 address = (address + PMD_SIZE) & PMD_MASK;
241                                 continue;
242                         }
243 #endif
244                         pt_dir = vmem_pte_alloc(address);
245                         if (!pt_dir)
246                                 goto out;
247                         pmd_populate(&init_mm, pm_dir, pt_dir);
248                 } else if (pmd_large(*pm_dir)) {
249                         address = (address + PMD_SIZE) & PMD_MASK;
250                         continue;
251                 }
252
253                 pt_dir = pte_offset_kernel(pm_dir, address);
254                 if (pte_none(*pt_dir)) {
255                         void *new_page;
256
257                         new_page = vmemmap_alloc_block(PAGE_SIZE, node);
258                         if (!new_page)
259                                 goto out;
260                         pte_val(*pt_dir) =
261                                 __pa(new_page) | pgprot_val(PAGE_KERNEL);
262                 }
263                 address += PAGE_SIZE;
264         }
265         ret = 0;
266 out:
267         return ret;
268 }
269
270 void vmemmap_free(unsigned long start, unsigned long end)
271 {
272 }
273
274 /*
275  * Add memory segment to the segment list if it doesn't overlap with
276  * an already present segment.
277  */
278 static int insert_memory_segment(struct memory_segment *seg)
279 {
280         struct memory_segment *tmp;
281
282         if (seg->start + seg->size > VMEM_MAX_PHYS ||
283             seg->start + seg->size < seg->start)
284                 return -ERANGE;
285
286         list_for_each_entry(tmp, &mem_segs, list) {
287                 if (seg->start >= tmp->start + tmp->size)
288                         continue;
289                 if (seg->start + seg->size <= tmp->start)
290                         continue;
291                 return -ENOSPC;
292         }
293         list_add(&seg->list, &mem_segs);
294         return 0;
295 }
296
297 /*
298  * Remove memory segment from the segment list.
299  */
300 static void remove_memory_segment(struct memory_segment *seg)
301 {
302         list_del(&seg->list);
303 }
304
305 static void __remove_shared_memory(struct memory_segment *seg)
306 {
307         remove_memory_segment(seg);
308         vmem_remove_range(seg->start, seg->size);
309 }
310
311 int vmem_remove_mapping(unsigned long start, unsigned long size)
312 {
313         struct memory_segment *seg;
314         int ret;
315
316         mutex_lock(&vmem_mutex);
317
318         ret = -ENOENT;
319         list_for_each_entry(seg, &mem_segs, list) {
320                 if (seg->start == start && seg->size == size)
321                         break;
322         }
323
324         if (seg->start != start || seg->size != size)
325                 goto out;
326
327         ret = 0;
328         __remove_shared_memory(seg);
329         kfree(seg);
330 out:
331         mutex_unlock(&vmem_mutex);
332         return ret;
333 }
334
335 int vmem_add_mapping(unsigned long start, unsigned long size)
336 {
337         struct memory_segment *seg;
338         int ret;
339
340         mutex_lock(&vmem_mutex);
341         ret = -ENOMEM;
342         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
343         if (!seg)
344                 goto out;
345         seg->start = start;
346         seg->size = size;
347
348         ret = insert_memory_segment(seg);
349         if (ret)
350                 goto out_free;
351
352         ret = vmem_add_mem(start, size, 0);
353         if (ret)
354                 goto out_remove;
355         goto out;
356
357 out_remove:
358         __remove_shared_memory(seg);
359 out_free:
360         kfree(seg);
361 out:
362         mutex_unlock(&vmem_mutex);
363         return ret;
364 }
365
366 /*
367  * map whole physical memory to virtual memory (identity mapping)
368  * we reserve enough space in the vmalloc area for vmemmap to hotplug
369  * additional memory segments.
370  */
371 void __init vmem_map_init(void)
372 {
373         unsigned long ro_start, ro_end;
374         struct memblock_region *reg;
375         phys_addr_t start, end;
376
377         ro_start = PFN_ALIGN((unsigned long)&_stext);
378         ro_end = (unsigned long)&_eshared & PAGE_MASK;
379         for_each_memblock(memory, reg) {
380                 start = reg->base;
381                 end = reg->base + reg->size - 1;
382                 if (start >= ro_end || end <= ro_start)
383                         vmem_add_mem(start, end - start, 0);
384                 else if (start >= ro_start && end <= ro_end)
385                         vmem_add_mem(start, end - start, 1);
386                 else if (start >= ro_start) {
387                         vmem_add_mem(start, ro_end - start, 1);
388                         vmem_add_mem(ro_end, end - ro_end, 0);
389                 } else if (end < ro_end) {
390                         vmem_add_mem(start, ro_start - start, 0);
391                         vmem_add_mem(ro_start, end - ro_start, 1);
392                 } else {
393                         vmem_add_mem(start, ro_start - start, 0);
394                         vmem_add_mem(ro_start, ro_end - ro_start, 1);
395                         vmem_add_mem(ro_end, end - ro_end, 0);
396                 }
397         }
398 }
399
400 /*
401  * Convert memblock.memory  to a memory segment list so there is a single
402  * list that contains all memory segments.
403  */
404 static int __init vmem_convert_memory_chunk(void)
405 {
406         struct memblock_region *reg;
407         struct memory_segment *seg;
408
409         mutex_lock(&vmem_mutex);
410         for_each_memblock(memory, reg) {
411                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
412                 if (!seg)
413                         panic("Out of memory...\n");
414                 seg->start = reg->base;
415                 seg->size = reg->size;
416                 insert_memory_segment(seg);
417         }
418         mutex_unlock(&vmem_mutex);
419         return 0;
420 }
421
422 core_initcall(vmem_convert_memory_chunk);