ACPI / button: remove pointer to old lid_sysfs on unbind
[cascardo/linux.git] / arch / s390 / mm / vmem.c
1 /*
2  *    Copyright IBM Corp. 2006
3  *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
4  */
5
6 #include <linux/bootmem.h>
7 #include <linux/pfn.h>
8 #include <linux/mm.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/hugetlb.h>
12 #include <linux/slab.h>
13 #include <linux/memblock.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 #include <asm/setup.h>
17 #include <asm/tlbflush.h>
18 #include <asm/sections.h>
19
20 static DEFINE_MUTEX(vmem_mutex);
21
22 struct memory_segment {
23         struct list_head list;
24         unsigned long start;
25         unsigned long size;
26 };
27
28 static LIST_HEAD(mem_segs);
29
30 static void __ref *vmem_alloc_pages(unsigned int order)
31 {
32         if (slab_is_available())
33                 return (void *)__get_free_pages(GFP_KERNEL, order);
34         return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
35 }
36
37 static inline pud_t *vmem_pud_alloc(void)
38 {
39         pud_t *pud = NULL;
40
41         pud = vmem_alloc_pages(2);
42         if (!pud)
43                 return NULL;
44         clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
45         return pud;
46 }
47
48 static inline pmd_t *vmem_pmd_alloc(void)
49 {
50         pmd_t *pmd = NULL;
51
52         pmd = vmem_alloc_pages(2);
53         if (!pmd)
54                 return NULL;
55         clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
56         return pmd;
57 }
58
59 static pte_t __ref *vmem_pte_alloc(void)
60 {
61         pte_t *pte;
62
63         if (slab_is_available())
64                 pte = (pte_t *) page_table_alloc(&init_mm);
65         else
66                 pte = alloc_bootmem_align(PTRS_PER_PTE * sizeof(pte_t),
67                                           PTRS_PER_PTE * sizeof(pte_t));
68         if (!pte)
69                 return NULL;
70         clear_table((unsigned long *) pte, _PAGE_INVALID,
71                     PTRS_PER_PTE * sizeof(pte_t));
72         return pte;
73 }
74
75 /*
76  * Add a physical memory range to the 1:1 mapping.
77  */
78 static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
79 {
80         unsigned long end = start + size;
81         unsigned long address = start;
82         pgd_t *pg_dir;
83         pud_t *pu_dir;
84         pmd_t *pm_dir;
85         pte_t *pt_dir;
86         int ret = -ENOMEM;
87
88         while (address < end) {
89                 pg_dir = pgd_offset_k(address);
90                 if (pgd_none(*pg_dir)) {
91                         pu_dir = vmem_pud_alloc();
92                         if (!pu_dir)
93                                 goto out;
94                         pgd_populate(&init_mm, pg_dir, pu_dir);
95                 }
96                 pu_dir = pud_offset(pg_dir, address);
97                 if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
98                     !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
99                      !debug_pagealloc_enabled()) {
100                         pud_val(*pu_dir) = __pa(address) |
101                                 _REGION_ENTRY_TYPE_R3 | _REGION3_ENTRY_LARGE |
102                                 (ro ? _REGION_ENTRY_PROTECT : 0);
103                         address += PUD_SIZE;
104                         continue;
105                 }
106                 if (pud_none(*pu_dir)) {
107                         pm_dir = vmem_pmd_alloc();
108                         if (!pm_dir)
109                                 goto out;
110                         pud_populate(&init_mm, pu_dir, pm_dir);
111                 }
112                 pm_dir = pmd_offset(pu_dir, address);
113                 if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
114                     !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
115                     !debug_pagealloc_enabled()) {
116                         pmd_val(*pm_dir) = __pa(address) |
117                                 _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE |
118                                 _SEGMENT_ENTRY_YOUNG |
119                                 (ro ? _SEGMENT_ENTRY_PROTECT : 0);
120                         address += PMD_SIZE;
121                         continue;
122                 }
123                 if (pmd_none(*pm_dir)) {
124                         pt_dir = vmem_pte_alloc();
125                         if (!pt_dir)
126                                 goto out;
127                         pmd_populate(&init_mm, pm_dir, pt_dir);
128                 }
129
130                 pt_dir = pte_offset_kernel(pm_dir, address);
131                 pte_val(*pt_dir) = __pa(address) |
132                         pgprot_val(ro ? PAGE_KERNEL_RO : PAGE_KERNEL);
133                 address += PAGE_SIZE;
134         }
135         ret = 0;
136 out:
137         return ret;
138 }
139
140 /*
141  * Remove a physical memory range from the 1:1 mapping.
142  * Currently only invalidates page table entries.
143  */
144 static void vmem_remove_range(unsigned long start, unsigned long size)
145 {
146         unsigned long end = start + size;
147         unsigned long address = start;
148         pgd_t *pg_dir;
149         pud_t *pu_dir;
150         pmd_t *pm_dir;
151         pte_t *pt_dir;
152         pte_t  pte;
153
154         pte_val(pte) = _PAGE_INVALID;
155         while (address < end) {
156                 pg_dir = pgd_offset_k(address);
157                 if (pgd_none(*pg_dir)) {
158                         address += PGDIR_SIZE;
159                         continue;
160                 }
161                 pu_dir = pud_offset(pg_dir, address);
162                 if (pud_none(*pu_dir)) {
163                         address += PUD_SIZE;
164                         continue;
165                 }
166                 if (pud_large(*pu_dir)) {
167                         pud_clear(pu_dir);
168                         address += PUD_SIZE;
169                         continue;
170                 }
171                 pm_dir = pmd_offset(pu_dir, address);
172                 if (pmd_none(*pm_dir)) {
173                         address += PMD_SIZE;
174                         continue;
175                 }
176                 if (pmd_large(*pm_dir)) {
177                         pmd_clear(pm_dir);
178                         address += PMD_SIZE;
179                         continue;
180                 }
181                 pt_dir = pte_offset_kernel(pm_dir, address);
182                 *pt_dir = pte;
183                 address += PAGE_SIZE;
184         }
185         flush_tlb_kernel_range(start, end);
186 }
187
188 /*
189  * Add a backed mem_map array to the virtual mem_map array.
190  */
191 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
192 {
193         unsigned long address = start;
194         pgd_t *pg_dir;
195         pud_t *pu_dir;
196         pmd_t *pm_dir;
197         pte_t *pt_dir;
198         int ret = -ENOMEM;
199
200         for (address = start; address < end;) {
201                 pg_dir = pgd_offset_k(address);
202                 if (pgd_none(*pg_dir)) {
203                         pu_dir = vmem_pud_alloc();
204                         if (!pu_dir)
205                                 goto out;
206                         pgd_populate(&init_mm, pg_dir, pu_dir);
207                 }
208
209                 pu_dir = pud_offset(pg_dir, address);
210                 if (pud_none(*pu_dir)) {
211                         pm_dir = vmem_pmd_alloc();
212                         if (!pm_dir)
213                                 goto out;
214                         pud_populate(&init_mm, pu_dir, pm_dir);
215                 }
216
217                 pm_dir = pmd_offset(pu_dir, address);
218                 if (pmd_none(*pm_dir)) {
219                         /* Use 1MB frames for vmemmap if available. We always
220                          * use large frames even if they are only partially
221                          * used.
222                          * Otherwise we would have also page tables since
223                          * vmemmap_populate gets called for each section
224                          * separately. */
225                         if (MACHINE_HAS_EDAT1) {
226                                 void *new_page;
227
228                                 new_page = vmemmap_alloc_block(PMD_SIZE, node);
229                                 if (!new_page)
230                                         goto out;
231                                 pmd_val(*pm_dir) = __pa(new_page) |
232                                         _SEGMENT_ENTRY | _SEGMENT_ENTRY_LARGE;
233                                 address = (address + PMD_SIZE) & PMD_MASK;
234                                 continue;
235                         }
236                         pt_dir = vmem_pte_alloc();
237                         if (!pt_dir)
238                                 goto out;
239                         pmd_populate(&init_mm, pm_dir, pt_dir);
240                 } else if (pmd_large(*pm_dir)) {
241                         address = (address + PMD_SIZE) & PMD_MASK;
242                         continue;
243                 }
244
245                 pt_dir = pte_offset_kernel(pm_dir, address);
246                 if (pte_none(*pt_dir)) {
247                         void *new_page;
248
249                         new_page = vmemmap_alloc_block(PAGE_SIZE, node);
250                         if (!new_page)
251                                 goto out;
252                         pte_val(*pt_dir) =
253                                 __pa(new_page) | pgprot_val(PAGE_KERNEL);
254                 }
255                 address += PAGE_SIZE;
256         }
257         ret = 0;
258 out:
259         return ret;
260 }
261
262 void vmemmap_free(unsigned long start, unsigned long end)
263 {
264 }
265
266 /*
267  * Add memory segment to the segment list if it doesn't overlap with
268  * an already present segment.
269  */
270 static int insert_memory_segment(struct memory_segment *seg)
271 {
272         struct memory_segment *tmp;
273
274         if (seg->start + seg->size > VMEM_MAX_PHYS ||
275             seg->start + seg->size < seg->start)
276                 return -ERANGE;
277
278         list_for_each_entry(tmp, &mem_segs, list) {
279                 if (seg->start >= tmp->start + tmp->size)
280                         continue;
281                 if (seg->start + seg->size <= tmp->start)
282                         continue;
283                 return -ENOSPC;
284         }
285         list_add(&seg->list, &mem_segs);
286         return 0;
287 }
288
289 /*
290  * Remove memory segment from the segment list.
291  */
292 static void remove_memory_segment(struct memory_segment *seg)
293 {
294         list_del(&seg->list);
295 }
296
297 static void __remove_shared_memory(struct memory_segment *seg)
298 {
299         remove_memory_segment(seg);
300         vmem_remove_range(seg->start, seg->size);
301 }
302
303 int vmem_remove_mapping(unsigned long start, unsigned long size)
304 {
305         struct memory_segment *seg;
306         int ret;
307
308         mutex_lock(&vmem_mutex);
309
310         ret = -ENOENT;
311         list_for_each_entry(seg, &mem_segs, list) {
312                 if (seg->start == start && seg->size == size)
313                         break;
314         }
315
316         if (seg->start != start || seg->size != size)
317                 goto out;
318
319         ret = 0;
320         __remove_shared_memory(seg);
321         kfree(seg);
322 out:
323         mutex_unlock(&vmem_mutex);
324         return ret;
325 }
326
327 int vmem_add_mapping(unsigned long start, unsigned long size)
328 {
329         struct memory_segment *seg;
330         int ret;
331
332         mutex_lock(&vmem_mutex);
333         ret = -ENOMEM;
334         seg = kzalloc(sizeof(*seg), GFP_KERNEL);
335         if (!seg)
336                 goto out;
337         seg->start = start;
338         seg->size = size;
339
340         ret = insert_memory_segment(seg);
341         if (ret)
342                 goto out_free;
343
344         ret = vmem_add_mem(start, size, 0);
345         if (ret)
346                 goto out_remove;
347         goto out;
348
349 out_remove:
350         __remove_shared_memory(seg);
351 out_free:
352         kfree(seg);
353 out:
354         mutex_unlock(&vmem_mutex);
355         return ret;
356 }
357
358 /*
359  * map whole physical memory to virtual memory (identity mapping)
360  * we reserve enough space in the vmalloc area for vmemmap to hotplug
361  * additional memory segments.
362  */
363 void __init vmem_map_init(void)
364 {
365         unsigned long ro_start, ro_end;
366         struct memblock_region *reg;
367         phys_addr_t start, end;
368
369         ro_start = PFN_ALIGN((unsigned long)&_stext);
370         ro_end = (unsigned long)&_eshared & PAGE_MASK;
371         for_each_memblock(memory, reg) {
372                 start = reg->base;
373                 end = reg->base + reg->size;
374                 if (start >= ro_end || end <= ro_start)
375                         vmem_add_mem(start, end - start, 0);
376                 else if (start >= ro_start && end <= ro_end)
377                         vmem_add_mem(start, end - start, 1);
378                 else if (start >= ro_start) {
379                         vmem_add_mem(start, ro_end - start, 1);
380                         vmem_add_mem(ro_end, end - ro_end, 0);
381                 } else if (end < ro_end) {
382                         vmem_add_mem(start, ro_start - start, 0);
383                         vmem_add_mem(ro_start, end - ro_start, 1);
384                 } else {
385                         vmem_add_mem(start, ro_start - start, 0);
386                         vmem_add_mem(ro_start, ro_end - ro_start, 1);
387                         vmem_add_mem(ro_end, end - ro_end, 0);
388                 }
389         }
390 }
391
392 /*
393  * Convert memblock.memory  to a memory segment list so there is a single
394  * list that contains all memory segments.
395  */
396 static int __init vmem_convert_memory_chunk(void)
397 {
398         struct memblock_region *reg;
399         struct memory_segment *seg;
400
401         mutex_lock(&vmem_mutex);
402         for_each_memblock(memory, reg) {
403                 seg = kzalloc(sizeof(*seg), GFP_KERNEL);
404                 if (!seg)
405                         panic("Out of memory...\n");
406                 seg->start = reg->base;
407                 seg->size = reg->size;
408                 insert_memory_segment(seg);
409         }
410         mutex_unlock(&vmem_mutex);
411         return 0;
412 }
413
414 core_initcall(vmem_convert_memory_chunk);