spi: mxs: Terminate DMA in case of DMA timeout
[cascardo/linux.git] / arch / sparc / kernel / process_64.c
1 /*  arch/sparc64/kernel/process.c
2  *
3  *  Copyright (C) 1995, 1996, 2008 David S. Miller (davem@davemloft.net)
4  *  Copyright (C) 1996       Eddie C. Dost   (ecd@skynet.be)
5  *  Copyright (C) 1997, 1998 Jakub Jelinek   (jj@sunsite.mff.cuni.cz)
6  */
7
8 /*
9  * This file handles the architecture-dependent parts of process handling..
10  */
11
12 #include <stdarg.h>
13
14 #include <linux/errno.h>
15 #include <linux/export.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/ptrace.h>
23 #include <linux/slab.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/compat.h>
27 #include <linux/tick.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/sysrq.h>
32 #include <linux/nmi.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/pgtable.h>
38 #include <asm/processor.h>
39 #include <asm/pstate.h>
40 #include <asm/elf.h>
41 #include <asm/fpumacro.h>
42 #include <asm/head.h>
43 #include <asm/cpudata.h>
44 #include <asm/mmu_context.h>
45 #include <asm/unistd.h>
46 #include <asm/hypervisor.h>
47 #include <asm/syscalls.h>
48 #include <asm/irq_regs.h>
49 #include <asm/smp.h>
50
51 #include "kstack.h"
52
53 static void sparc64_yield(int cpu)
54 {
55         if (tlb_type != hypervisor) {
56                 touch_nmi_watchdog();
57                 return;
58         }
59
60         clear_thread_flag(TIF_POLLING_NRFLAG);
61         smp_mb__after_clear_bit();
62
63         while (!need_resched() && !cpu_is_offline(cpu)) {
64                 unsigned long pstate;
65
66                 /* Disable interrupts. */
67                 __asm__ __volatile__(
68                         "rdpr %%pstate, %0\n\t"
69                         "andn %0, %1, %0\n\t"
70                         "wrpr %0, %%g0, %%pstate"
71                         : "=&r" (pstate)
72                         : "i" (PSTATE_IE));
73
74                 if (!need_resched() && !cpu_is_offline(cpu))
75                         sun4v_cpu_yield();
76
77                 /* Re-enable interrupts. */
78                 __asm__ __volatile__(
79                         "rdpr %%pstate, %0\n\t"
80                         "or %0, %1, %0\n\t"
81                         "wrpr %0, %%g0, %%pstate"
82                         : "=&r" (pstate)
83                         : "i" (PSTATE_IE));
84         }
85
86         set_thread_flag(TIF_POLLING_NRFLAG);
87 }
88
89 /* The idle loop on sparc64. */
90 void cpu_idle(void)
91 {
92         int cpu = smp_processor_id();
93
94         set_thread_flag(TIF_POLLING_NRFLAG);
95
96         while(1) {
97                 tick_nohz_idle_enter();
98                 rcu_idle_enter();
99
100                 while (!need_resched() && !cpu_is_offline(cpu))
101                         sparc64_yield(cpu);
102
103                 rcu_idle_exit();
104                 tick_nohz_idle_exit();
105
106 #ifdef CONFIG_HOTPLUG_CPU
107                 if (cpu_is_offline(cpu)) {
108                         sched_preempt_enable_no_resched();
109                         cpu_play_dead();
110                 }
111 #endif
112                 schedule_preempt_disabled();
113         }
114 }
115
116 #ifdef CONFIG_COMPAT
117 static void show_regwindow32(struct pt_regs *regs)
118 {
119         struct reg_window32 __user *rw;
120         struct reg_window32 r_w;
121         mm_segment_t old_fs;
122         
123         __asm__ __volatile__ ("flushw");
124         rw = compat_ptr((unsigned)regs->u_regs[14]);
125         old_fs = get_fs();
126         set_fs (USER_DS);
127         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
128                 set_fs (old_fs);
129                 return;
130         }
131
132         set_fs (old_fs);                        
133         printk("l0: %08x l1: %08x l2: %08x l3: %08x "
134                "l4: %08x l5: %08x l6: %08x l7: %08x\n",
135                r_w.locals[0], r_w.locals[1], r_w.locals[2], r_w.locals[3],
136                r_w.locals[4], r_w.locals[5], r_w.locals[6], r_w.locals[7]);
137         printk("i0: %08x i1: %08x i2: %08x i3: %08x "
138                "i4: %08x i5: %08x i6: %08x i7: %08x\n",
139                r_w.ins[0], r_w.ins[1], r_w.ins[2], r_w.ins[3],
140                r_w.ins[4], r_w.ins[5], r_w.ins[6], r_w.ins[7]);
141 }
142 #else
143 #define show_regwindow32(regs)  do { } while (0)
144 #endif
145
146 static void show_regwindow(struct pt_regs *regs)
147 {
148         struct reg_window __user *rw;
149         struct reg_window *rwk;
150         struct reg_window r_w;
151         mm_segment_t old_fs;
152
153         if ((regs->tstate & TSTATE_PRIV) || !(test_thread_flag(TIF_32BIT))) {
154                 __asm__ __volatile__ ("flushw");
155                 rw = (struct reg_window __user *)
156                         (regs->u_regs[14] + STACK_BIAS);
157                 rwk = (struct reg_window *)
158                         (regs->u_regs[14] + STACK_BIAS);
159                 if (!(regs->tstate & TSTATE_PRIV)) {
160                         old_fs = get_fs();
161                         set_fs (USER_DS);
162                         if (copy_from_user (&r_w, rw, sizeof(r_w))) {
163                                 set_fs (old_fs);
164                                 return;
165                         }
166                         rwk = &r_w;
167                         set_fs (old_fs);                        
168                 }
169         } else {
170                 show_regwindow32(regs);
171                 return;
172         }
173         printk("l0: %016lx l1: %016lx l2: %016lx l3: %016lx\n",
174                rwk->locals[0], rwk->locals[1], rwk->locals[2], rwk->locals[3]);
175         printk("l4: %016lx l5: %016lx l6: %016lx l7: %016lx\n",
176                rwk->locals[4], rwk->locals[5], rwk->locals[6], rwk->locals[7]);
177         printk("i0: %016lx i1: %016lx i2: %016lx i3: %016lx\n",
178                rwk->ins[0], rwk->ins[1], rwk->ins[2], rwk->ins[3]);
179         printk("i4: %016lx i5: %016lx i6: %016lx i7: %016lx\n",
180                rwk->ins[4], rwk->ins[5], rwk->ins[6], rwk->ins[7]);
181         if (regs->tstate & TSTATE_PRIV)
182                 printk("I7: <%pS>\n", (void *) rwk->ins[7]);
183 }
184
185 void show_regs(struct pt_regs *regs)
186 {
187         printk("TSTATE: %016lx TPC: %016lx TNPC: %016lx Y: %08x    %s\n", regs->tstate,
188                regs->tpc, regs->tnpc, regs->y, print_tainted());
189         printk("TPC: <%pS>\n", (void *) regs->tpc);
190         printk("g0: %016lx g1: %016lx g2: %016lx g3: %016lx\n",
191                regs->u_regs[0], regs->u_regs[1], regs->u_regs[2],
192                regs->u_regs[3]);
193         printk("g4: %016lx g5: %016lx g6: %016lx g7: %016lx\n",
194                regs->u_regs[4], regs->u_regs[5], regs->u_regs[6],
195                regs->u_regs[7]);
196         printk("o0: %016lx o1: %016lx o2: %016lx o3: %016lx\n",
197                regs->u_regs[8], regs->u_regs[9], regs->u_regs[10],
198                regs->u_regs[11]);
199         printk("o4: %016lx o5: %016lx sp: %016lx ret_pc: %016lx\n",
200                regs->u_regs[12], regs->u_regs[13], regs->u_regs[14],
201                regs->u_regs[15]);
202         printk("RPC: <%pS>\n", (void *) regs->u_regs[15]);
203         show_regwindow(regs);
204         show_stack(current, (unsigned long *) regs->u_regs[UREG_FP]);
205 }
206
207 struct global_reg_snapshot global_reg_snapshot[NR_CPUS];
208 static DEFINE_SPINLOCK(global_reg_snapshot_lock);
209
210 static void __global_reg_self(struct thread_info *tp, struct pt_regs *regs,
211                               int this_cpu)
212 {
213         flushw_all();
214
215         global_reg_snapshot[this_cpu].tstate = regs->tstate;
216         global_reg_snapshot[this_cpu].tpc = regs->tpc;
217         global_reg_snapshot[this_cpu].tnpc = regs->tnpc;
218         global_reg_snapshot[this_cpu].o7 = regs->u_regs[UREG_I7];
219
220         if (regs->tstate & TSTATE_PRIV) {
221                 struct reg_window *rw;
222
223                 rw = (struct reg_window *)
224                         (regs->u_regs[UREG_FP] + STACK_BIAS);
225                 if (kstack_valid(tp, (unsigned long) rw)) {
226                         global_reg_snapshot[this_cpu].i7 = rw->ins[7];
227                         rw = (struct reg_window *)
228                                 (rw->ins[6] + STACK_BIAS);
229                         if (kstack_valid(tp, (unsigned long) rw))
230                                 global_reg_snapshot[this_cpu].rpc = rw->ins[7];
231                 }
232         } else {
233                 global_reg_snapshot[this_cpu].i7 = 0;
234                 global_reg_snapshot[this_cpu].rpc = 0;
235         }
236         global_reg_snapshot[this_cpu].thread = tp;
237 }
238
239 /* In order to avoid hangs we do not try to synchronize with the
240  * global register dump client cpus.  The last store they make is to
241  * the thread pointer, so do a short poll waiting for that to become
242  * non-NULL.
243  */
244 static void __global_reg_poll(struct global_reg_snapshot *gp)
245 {
246         int limit = 0;
247
248         while (!gp->thread && ++limit < 100) {
249                 barrier();
250                 udelay(1);
251         }
252 }
253
254 void arch_trigger_all_cpu_backtrace(void)
255 {
256         struct thread_info *tp = current_thread_info();
257         struct pt_regs *regs = get_irq_regs();
258         unsigned long flags;
259         int this_cpu, cpu;
260
261         if (!regs)
262                 regs = tp->kregs;
263
264         spin_lock_irqsave(&global_reg_snapshot_lock, flags);
265
266         memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
267
268         this_cpu = raw_smp_processor_id();
269
270         __global_reg_self(tp, regs, this_cpu);
271
272         smp_fetch_global_regs();
273
274         for_each_online_cpu(cpu) {
275                 struct global_reg_snapshot *gp = &global_reg_snapshot[cpu];
276
277                 __global_reg_poll(gp);
278
279                 tp = gp->thread;
280                 printk("%c CPU[%3d]: TSTATE[%016lx] TPC[%016lx] TNPC[%016lx] TASK[%s:%d]\n",
281                        (cpu == this_cpu ? '*' : ' '), cpu,
282                        gp->tstate, gp->tpc, gp->tnpc,
283                        ((tp && tp->task) ? tp->task->comm : "NULL"),
284                        ((tp && tp->task) ? tp->task->pid : -1));
285
286                 if (gp->tstate & TSTATE_PRIV) {
287                         printk("             TPC[%pS] O7[%pS] I7[%pS] RPC[%pS]\n",
288                                (void *) gp->tpc,
289                                (void *) gp->o7,
290                                (void *) gp->i7,
291                                (void *) gp->rpc);
292                 } else {
293                         printk("             TPC[%lx] O7[%lx] I7[%lx] RPC[%lx]\n",
294                                gp->tpc, gp->o7, gp->i7, gp->rpc);
295                 }
296         }
297
298         memset(global_reg_snapshot, 0, sizeof(global_reg_snapshot));
299
300         spin_unlock_irqrestore(&global_reg_snapshot_lock, flags);
301 }
302
303 #ifdef CONFIG_MAGIC_SYSRQ
304
305 static void sysrq_handle_globreg(int key)
306 {
307         arch_trigger_all_cpu_backtrace();
308 }
309
310 static struct sysrq_key_op sparc_globalreg_op = {
311         .handler        = sysrq_handle_globreg,
312         .help_msg       = "Globalregs",
313         .action_msg     = "Show Global CPU Regs",
314 };
315
316 static int __init sparc_globreg_init(void)
317 {
318         return register_sysrq_key('y', &sparc_globalreg_op);
319 }
320
321 core_initcall(sparc_globreg_init);
322
323 #endif
324
325 unsigned long thread_saved_pc(struct task_struct *tsk)
326 {
327         struct thread_info *ti = task_thread_info(tsk);
328         unsigned long ret = 0xdeadbeefUL;
329         
330         if (ti && ti->ksp) {
331                 unsigned long *sp;
332                 sp = (unsigned long *)(ti->ksp + STACK_BIAS);
333                 if (((unsigned long)sp & (sizeof(long) - 1)) == 0UL &&
334                     sp[14]) {
335                         unsigned long *fp;
336                         fp = (unsigned long *)(sp[14] + STACK_BIAS);
337                         if (((unsigned long)fp & (sizeof(long) - 1)) == 0UL)
338                                 ret = fp[15];
339                 }
340         }
341         return ret;
342 }
343
344 /* Free current thread data structures etc.. */
345 void exit_thread(void)
346 {
347         struct thread_info *t = current_thread_info();
348
349         if (t->utraps) {
350                 if (t->utraps[0] < 2)
351                         kfree (t->utraps);
352                 else
353                         t->utraps[0]--;
354         }
355 }
356
357 void flush_thread(void)
358 {
359         struct thread_info *t = current_thread_info();
360         struct mm_struct *mm;
361
362         mm = t->task->mm;
363         if (mm)
364                 tsb_context_switch(mm);
365
366         set_thread_wsaved(0);
367
368         /* Clear FPU register state. */
369         t->fpsaved[0] = 0;
370 }
371
372 /* It's a bit more tricky when 64-bit tasks are involved... */
373 static unsigned long clone_stackframe(unsigned long csp, unsigned long psp)
374 {
375         unsigned long fp, distance, rval;
376
377         if (!(test_thread_flag(TIF_32BIT))) {
378                 csp += STACK_BIAS;
379                 psp += STACK_BIAS;
380                 __get_user(fp, &(((struct reg_window __user *)psp)->ins[6]));
381                 fp += STACK_BIAS;
382         } else
383                 __get_user(fp, &(((struct reg_window32 __user *)psp)->ins[6]));
384
385         /* Now align the stack as this is mandatory in the Sparc ABI
386          * due to how register windows work.  This hides the
387          * restriction from thread libraries etc.
388          */
389         csp &= ~15UL;
390
391         distance = fp - psp;
392         rval = (csp - distance);
393         if (copy_in_user((void __user *) rval, (void __user *) psp, distance))
394                 rval = 0;
395         else if (test_thread_flag(TIF_32BIT)) {
396                 if (put_user(((u32)csp),
397                              &(((struct reg_window32 __user *)rval)->ins[6])))
398                         rval = 0;
399         } else {
400                 if (put_user(((u64)csp - STACK_BIAS),
401                              &(((struct reg_window __user *)rval)->ins[6])))
402                         rval = 0;
403                 else
404                         rval = rval - STACK_BIAS;
405         }
406
407         return rval;
408 }
409
410 /* Standard stuff. */
411 static inline void shift_window_buffer(int first_win, int last_win,
412                                        struct thread_info *t)
413 {
414         int i;
415
416         for (i = first_win; i < last_win; i++) {
417                 t->rwbuf_stkptrs[i] = t->rwbuf_stkptrs[i+1];
418                 memcpy(&t->reg_window[i], &t->reg_window[i+1],
419                        sizeof(struct reg_window));
420         }
421 }
422
423 void synchronize_user_stack(void)
424 {
425         struct thread_info *t = current_thread_info();
426         unsigned long window;
427
428         flush_user_windows();
429         if ((window = get_thread_wsaved()) != 0) {
430                 int winsize = sizeof(struct reg_window);
431                 int bias = 0;
432
433                 if (test_thread_flag(TIF_32BIT))
434                         winsize = sizeof(struct reg_window32);
435                 else
436                         bias = STACK_BIAS;
437
438                 window -= 1;
439                 do {
440                         unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
441                         struct reg_window *rwin = &t->reg_window[window];
442
443                         if (!copy_to_user((char __user *)sp, rwin, winsize)) {
444                                 shift_window_buffer(window, get_thread_wsaved() - 1, t);
445                                 set_thread_wsaved(get_thread_wsaved() - 1);
446                         }
447                 } while (window--);
448         }
449 }
450
451 static void stack_unaligned(unsigned long sp)
452 {
453         siginfo_t info;
454
455         info.si_signo = SIGBUS;
456         info.si_errno = 0;
457         info.si_code = BUS_ADRALN;
458         info.si_addr = (void __user *) sp;
459         info.si_trapno = 0;
460         force_sig_info(SIGBUS, &info, current);
461 }
462
463 void fault_in_user_windows(void)
464 {
465         struct thread_info *t = current_thread_info();
466         unsigned long window;
467         int winsize = sizeof(struct reg_window);
468         int bias = 0;
469
470         if (test_thread_flag(TIF_32BIT))
471                 winsize = sizeof(struct reg_window32);
472         else
473                 bias = STACK_BIAS;
474
475         flush_user_windows();
476         window = get_thread_wsaved();
477
478         if (likely(window != 0)) {
479                 window -= 1;
480                 do {
481                         unsigned long sp = (t->rwbuf_stkptrs[window] + bias);
482                         struct reg_window *rwin = &t->reg_window[window];
483
484                         if (unlikely(sp & 0x7UL))
485                                 stack_unaligned(sp);
486
487                         if (unlikely(copy_to_user((char __user *)sp,
488                                                   rwin, winsize)))
489                                 goto barf;
490                 } while (window--);
491         }
492         set_thread_wsaved(0);
493         return;
494
495 barf:
496         set_thread_wsaved(window + 1);
497         do_exit(SIGILL);
498 }
499
500 asmlinkage long sparc_do_fork(unsigned long clone_flags,
501                               unsigned long stack_start,
502                               struct pt_regs *regs,
503                               unsigned long stack_size)
504 {
505         int __user *parent_tid_ptr, *child_tid_ptr;
506         unsigned long orig_i1 = regs->u_regs[UREG_I1];
507         long ret;
508
509 #ifdef CONFIG_COMPAT
510         if (test_thread_flag(TIF_32BIT)) {
511                 parent_tid_ptr = compat_ptr(regs->u_regs[UREG_I2]);
512                 child_tid_ptr = compat_ptr(regs->u_regs[UREG_I4]);
513         } else
514 #endif
515         {
516                 parent_tid_ptr = (int __user *) regs->u_regs[UREG_I2];
517                 child_tid_ptr = (int __user *) regs->u_regs[UREG_I4];
518         }
519
520         ret = do_fork(clone_flags, stack_start,
521                       regs, stack_size,
522                       parent_tid_ptr, child_tid_ptr);
523
524         /* If we get an error and potentially restart the system
525          * call, we're screwed because copy_thread() clobbered
526          * the parent's %o1.  So detect that case and restore it
527          * here.
528          */
529         if ((unsigned long)ret >= -ERESTART_RESTARTBLOCK)
530                 regs->u_regs[UREG_I1] = orig_i1;
531
532         return ret;
533 }
534
535 /* Copy a Sparc thread.  The fork() return value conventions
536  * under SunOS are nothing short of bletcherous:
537  * Parent -->  %o0 == childs  pid, %o1 == 0
538  * Child  -->  %o0 == parents pid, %o1 == 1
539  */
540 int copy_thread(unsigned long clone_flags, unsigned long sp,
541                 unsigned long unused,
542                 struct task_struct *p, struct pt_regs *regs)
543 {
544         struct thread_info *t = task_thread_info(p);
545         struct sparc_stackf *parent_sf;
546         unsigned long child_stack_sz;
547         char *child_trap_frame;
548         int kernel_thread;
549
550         kernel_thread = (regs->tstate & TSTATE_PRIV) ? 1 : 0;
551         parent_sf = ((struct sparc_stackf *) regs) - 1;
552
553         /* Calculate offset to stack_frame & pt_regs */
554         child_stack_sz = ((STACKFRAME_SZ + TRACEREG_SZ) +
555                           (kernel_thread ? STACKFRAME_SZ : 0));
556         child_trap_frame = (task_stack_page(p) +
557                             (THREAD_SIZE - child_stack_sz));
558         memcpy(child_trap_frame, parent_sf, child_stack_sz);
559
560         t->flags = (t->flags & ~((0xffUL << TI_FLAG_CWP_SHIFT) |
561                                  (0xffUL << TI_FLAG_CURRENT_DS_SHIFT))) |
562                 (((regs->tstate + 1) & TSTATE_CWP) << TI_FLAG_CWP_SHIFT);
563         t->new_child = 1;
564         t->ksp = ((unsigned long) child_trap_frame) - STACK_BIAS;
565         t->kregs = (struct pt_regs *) (child_trap_frame +
566                                        sizeof(struct sparc_stackf));
567         t->fpsaved[0] = 0;
568
569         if (kernel_thread) {
570                 struct sparc_stackf *child_sf = (struct sparc_stackf *)
571                         (child_trap_frame + (STACKFRAME_SZ + TRACEREG_SZ));
572
573                 /* Zero terminate the stack backtrace.  */
574                 child_sf->fp = NULL;
575                 t->kregs->u_regs[UREG_FP] =
576                   ((unsigned long) child_sf) - STACK_BIAS;
577
578                 t->flags |= ((long)ASI_P << TI_FLAG_CURRENT_DS_SHIFT);
579                 t->kregs->u_regs[UREG_G6] = (unsigned long) t;
580                 t->kregs->u_regs[UREG_G4] = (unsigned long) t->task;
581         } else {
582                 if (t->flags & _TIF_32BIT) {
583                         sp &= 0x00000000ffffffffUL;
584                         regs->u_regs[UREG_FP] &= 0x00000000ffffffffUL;
585                 }
586                 t->kregs->u_regs[UREG_FP] = sp;
587                 t->flags |= ((long)ASI_AIUS << TI_FLAG_CURRENT_DS_SHIFT);
588                 if (sp != regs->u_regs[UREG_FP]) {
589                         unsigned long csp;
590
591                         csp = clone_stackframe(sp, regs->u_regs[UREG_FP]);
592                         if (!csp)
593                                 return -EFAULT;
594                         t->kregs->u_regs[UREG_FP] = csp;
595                 }
596                 if (t->utraps)
597                         t->utraps[0]++;
598         }
599
600         /* Set the return value for the child. */
601         t->kregs->u_regs[UREG_I0] = current->pid;
602         t->kregs->u_regs[UREG_I1] = 1;
603
604         /* Set the second return value for the parent. */
605         regs->u_regs[UREG_I1] = 0;
606
607         if (clone_flags & CLONE_SETTLS)
608                 t->kregs->u_regs[UREG_G7] = regs->u_regs[UREG_I3];
609
610         return 0;
611 }
612
613 /*
614  * This is the mechanism for creating a new kernel thread.
615  *
616  * NOTE! Only a kernel-only process(ie the swapper or direct descendants
617  * who haven't done an "execve()") should use this: it will work within
618  * a system call from a "real" process, but the process memory space will
619  * not be freed until both the parent and the child have exited.
620  */
621 pid_t kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
622 {
623         long retval;
624
625         /* If the parent runs before fn(arg) is called by the child,
626          * the input registers of this function can be clobbered.
627          * So we stash 'fn' and 'arg' into global registers which
628          * will not be modified by the parent.
629          */
630         __asm__ __volatile__("mov %4, %%g2\n\t"    /* Save FN into global */
631                              "mov %5, %%g3\n\t"    /* Save ARG into global */
632                              "mov %1, %%g1\n\t"    /* Clone syscall nr. */
633                              "mov %2, %%o0\n\t"    /* Clone flags. */
634                              "mov 0, %%o1\n\t"     /* usp arg == 0 */
635                              "t 0x6d\n\t"          /* Linux/Sparc clone(). */
636                              "brz,a,pn %%o1, 1f\n\t" /* Parent, just return. */
637                              " mov %%o0, %0\n\t"
638                              "jmpl %%g2, %%o7\n\t"   /* Call the function. */
639                              " mov %%g3, %%o0\n\t"   /* Set arg in delay. */
640                              "mov %3, %%g1\n\t"
641                              "t 0x6d\n\t"          /* Linux/Sparc exit(). */
642                              /* Notreached by child. */
643                              "1:" :
644                              "=r" (retval) :
645                              "i" (__NR_clone), "r" (flags | CLONE_VM | CLONE_UNTRACED),
646                              "i" (__NR_exit),  "r" (fn), "r" (arg) :
647                              "g1", "g2", "g3", "o0", "o1", "memory", "cc");
648         return retval;
649 }
650 EXPORT_SYMBOL(kernel_thread);
651
652 typedef struct {
653         union {
654                 unsigned int    pr_regs[32];
655                 unsigned long   pr_dregs[16];
656         } pr_fr;
657         unsigned int __unused;
658         unsigned int    pr_fsr;
659         unsigned char   pr_qcnt;
660         unsigned char   pr_q_entrysize;
661         unsigned char   pr_en;
662         unsigned int    pr_q[64];
663 } elf_fpregset_t32;
664
665 /*
666  * fill in the fpu structure for a core dump.
667  */
668 int dump_fpu (struct pt_regs * regs, elf_fpregset_t * fpregs)
669 {
670         unsigned long *kfpregs = current_thread_info()->fpregs;
671         unsigned long fprs = current_thread_info()->fpsaved[0];
672
673         if (test_thread_flag(TIF_32BIT)) {
674                 elf_fpregset_t32 *fpregs32 = (elf_fpregset_t32 *)fpregs;
675
676                 if (fprs & FPRS_DL)
677                         memcpy(&fpregs32->pr_fr.pr_regs[0], kfpregs,
678                                sizeof(unsigned int) * 32);
679                 else
680                         memset(&fpregs32->pr_fr.pr_regs[0], 0,
681                                sizeof(unsigned int) * 32);
682                 fpregs32->pr_qcnt = 0;
683                 fpregs32->pr_q_entrysize = 8;
684                 memset(&fpregs32->pr_q[0], 0,
685                        (sizeof(unsigned int) * 64));
686                 if (fprs & FPRS_FEF) {
687                         fpregs32->pr_fsr = (unsigned int) current_thread_info()->xfsr[0];
688                         fpregs32->pr_en = 1;
689                 } else {
690                         fpregs32->pr_fsr = 0;
691                         fpregs32->pr_en = 0;
692                 }
693         } else {
694                 if(fprs & FPRS_DL)
695                         memcpy(&fpregs->pr_regs[0], kfpregs,
696                                sizeof(unsigned int) * 32);
697                 else
698                         memset(&fpregs->pr_regs[0], 0,
699                                sizeof(unsigned int) * 32);
700                 if(fprs & FPRS_DU)
701                         memcpy(&fpregs->pr_regs[16], kfpregs+16,
702                                sizeof(unsigned int) * 32);
703                 else
704                         memset(&fpregs->pr_regs[16], 0,
705                                sizeof(unsigned int) * 32);
706                 if(fprs & FPRS_FEF) {
707                         fpregs->pr_fsr = current_thread_info()->xfsr[0];
708                         fpregs->pr_gsr = current_thread_info()->gsr[0];
709                 } else {
710                         fpregs->pr_fsr = fpregs->pr_gsr = 0;
711                 }
712                 fpregs->pr_fprs = fprs;
713         }
714         return 1;
715 }
716 EXPORT_SYMBOL(dump_fpu);
717
718 /*
719  * sparc_execve() executes a new program after the asm stub has set
720  * things up for us.  This should basically do what I want it to.
721  */
722 asmlinkage int sparc_execve(struct pt_regs *regs)
723 {
724         int error, base = 0;
725         struct filename *filename;
726
727         /* User register window flush is done by entry.S */
728
729         /* Check for indirect call. */
730         if (regs->u_regs[UREG_G1] == 0)
731                 base = 1;
732
733         filename = getname((char __user *)regs->u_regs[base + UREG_I0]);
734         error = PTR_ERR(filename);
735         if (IS_ERR(filename))
736                 goto out;
737         error = do_execve(filename->name,
738                           (const char __user *const __user *)
739                           regs->u_regs[base + UREG_I1],
740                           (const char __user *const __user *)
741                           regs->u_regs[base + UREG_I2], regs);
742         putname(filename);
743         if (!error) {
744                 fprs_write(0);
745                 current_thread_info()->xfsr[0] = 0;
746                 current_thread_info()->fpsaved[0] = 0;
747                 regs->tstate &= ~TSTATE_PEF;
748         }
749 out:
750         return error;
751 }
752
753 unsigned long get_wchan(struct task_struct *task)
754 {
755         unsigned long pc, fp, bias = 0;
756         struct thread_info *tp;
757         struct reg_window *rw;
758         unsigned long ret = 0;
759         int count = 0; 
760
761         if (!task || task == current ||
762             task->state == TASK_RUNNING)
763                 goto out;
764
765         tp = task_thread_info(task);
766         bias = STACK_BIAS;
767         fp = task_thread_info(task)->ksp + bias;
768
769         do {
770                 if (!kstack_valid(tp, fp))
771                         break;
772                 rw = (struct reg_window *) fp;
773                 pc = rw->ins[7];
774                 if (!in_sched_functions(pc)) {
775                         ret = pc;
776                         goto out;
777                 }
778                 fp = rw->ins[6] + bias;
779         } while (++count < 16);
780
781 out:
782         return ret;
783 }