x86/entry: Get rid of two-phase syscall entry work
[cascardo/linux.git] / arch / x86 / entry / common.c
1 /*
2  * common.c - C code for kernel entry and exit
3  * Copyright (c) 2015 Andrew Lutomirski
4  * GPL v2
5  *
6  * Based on asm and ptrace code by many authors.  The code here originated
7  * in ptrace.c and signal.c.
8  */
9
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/mm.h>
13 #include <linux/smp.h>
14 #include <linux/errno.h>
15 #include <linux/ptrace.h>
16 #include <linux/tracehook.h>
17 #include <linux/audit.h>
18 #include <linux/seccomp.h>
19 #include <linux/signal.h>
20 #include <linux/export.h>
21 #include <linux/context_tracking.h>
22 #include <linux/user-return-notifier.h>
23 #include <linux/uprobes.h>
24
25 #include <asm/desc.h>
26 #include <asm/traps.h>
27 #include <asm/vdso.h>
28 #include <asm/uaccess.h>
29 #include <asm/cpufeature.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/syscalls.h>
33
34 static struct thread_info *pt_regs_to_thread_info(struct pt_regs *regs)
35 {
36         unsigned long top_of_stack =
37                 (unsigned long)(regs + 1) + TOP_OF_KERNEL_STACK_PADDING;
38         return (struct thread_info *)(top_of_stack - THREAD_SIZE);
39 }
40
41 #ifdef CONFIG_CONTEXT_TRACKING
42 /* Called on entry from user mode with IRQs off. */
43 __visible void enter_from_user_mode(void)
44 {
45         CT_WARN_ON(ct_state() != CONTEXT_USER);
46         user_exit();
47 }
48 #else
49 static inline void enter_from_user_mode(void) {}
50 #endif
51
52 static void do_audit_syscall_entry(struct pt_regs *regs, u32 arch)
53 {
54 #ifdef CONFIG_X86_64
55         if (arch == AUDIT_ARCH_X86_64) {
56                 audit_syscall_entry(regs->orig_ax, regs->di,
57                                     regs->si, regs->dx, regs->r10);
58         } else
59 #endif
60         {
61                 audit_syscall_entry(regs->orig_ax, regs->bx,
62                                     regs->cx, regs->dx, regs->si);
63         }
64 }
65
66 /*
67  * Returns the syscall nr to run (which should match regs->orig_ax) or -1
68  * to skip the syscall.
69  */
70 static long syscall_trace_enter(struct pt_regs *regs)
71 {
72         u32 arch = in_ia32_syscall() ? AUDIT_ARCH_I386 : AUDIT_ARCH_X86_64;
73
74         struct thread_info *ti = pt_regs_to_thread_info(regs);
75         unsigned long ret = 0;
76         u32 work;
77
78         if (IS_ENABLED(CONFIG_DEBUG_ENTRY))
79                 BUG_ON(regs != task_pt_regs(current));
80
81         work = ACCESS_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY;
82
83 #ifdef CONFIG_SECCOMP
84         /*
85          * Do seccomp first -- it should minimize exposure of other
86          * code, and keeping seccomp fast is probably more valuable
87          * than the rest of this.
88          */
89         if (work & _TIF_SECCOMP) {
90                 struct seccomp_data sd;
91
92                 sd.arch = arch;
93                 sd.nr = regs->orig_ax;
94                 sd.instruction_pointer = regs->ip;
95 #ifdef CONFIG_X86_64
96                 if (arch == AUDIT_ARCH_X86_64) {
97                         sd.args[0] = regs->di;
98                         sd.args[1] = regs->si;
99                         sd.args[2] = regs->dx;
100                         sd.args[3] = regs->r10;
101                         sd.args[4] = regs->r8;
102                         sd.args[5] = regs->r9;
103                 } else
104 #endif
105                 {
106                         sd.args[0] = regs->bx;
107                         sd.args[1] = regs->cx;
108                         sd.args[2] = regs->dx;
109                         sd.args[3] = regs->si;
110                         sd.args[4] = regs->di;
111                         sd.args[5] = regs->bp;
112                 }
113
114                 ret = __secure_computing(&sd);
115                 if (ret == -1)
116                         return ret;
117         }
118 #endif
119
120         if (unlikely(work & _TIF_SYSCALL_EMU))
121                 ret = -1L;
122
123         if ((ret || test_thread_flag(TIF_SYSCALL_TRACE)) &&
124             tracehook_report_syscall_entry(regs))
125                 ret = -1L;
126
127         if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
128                 trace_sys_enter(regs, regs->orig_ax);
129
130         do_audit_syscall_entry(regs, arch);
131
132         return ret ?: regs->orig_ax;
133 }
134
135 #define EXIT_TO_USERMODE_LOOP_FLAGS                             \
136         (_TIF_SIGPENDING | _TIF_NOTIFY_RESUME | _TIF_UPROBE |   \
137          _TIF_NEED_RESCHED | _TIF_USER_RETURN_NOTIFY)
138
139 static void exit_to_usermode_loop(struct pt_regs *regs, u32 cached_flags)
140 {
141         /*
142          * In order to return to user mode, we need to have IRQs off with
143          * none of _TIF_SIGPENDING, _TIF_NOTIFY_RESUME, _TIF_USER_RETURN_NOTIFY,
144          * _TIF_UPROBE, or _TIF_NEED_RESCHED set.  Several of these flags
145          * can be set at any time on preemptable kernels if we have IRQs on,
146          * so we need to loop.  Disabling preemption wouldn't help: doing the
147          * work to clear some of the flags can sleep.
148          */
149         while (true) {
150                 /* We have work to do. */
151                 local_irq_enable();
152
153                 if (cached_flags & _TIF_NEED_RESCHED)
154                         schedule();
155
156                 if (cached_flags & _TIF_UPROBE)
157                         uprobe_notify_resume(regs);
158
159                 /* deal with pending signal delivery */
160                 if (cached_flags & _TIF_SIGPENDING)
161                         do_signal(regs);
162
163                 if (cached_flags & _TIF_NOTIFY_RESUME) {
164                         clear_thread_flag(TIF_NOTIFY_RESUME);
165                         tracehook_notify_resume(regs);
166                 }
167
168                 if (cached_flags & _TIF_USER_RETURN_NOTIFY)
169                         fire_user_return_notifiers();
170
171                 /* Disable IRQs and retry */
172                 local_irq_disable();
173
174                 cached_flags = READ_ONCE(pt_regs_to_thread_info(regs)->flags);
175
176                 if (!(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
177                         break;
178
179         }
180 }
181
182 /* Called with IRQs disabled. */
183 __visible inline void prepare_exit_to_usermode(struct pt_regs *regs)
184 {
185         struct thread_info *ti = pt_regs_to_thread_info(regs);
186         u32 cached_flags;
187
188         if (IS_ENABLED(CONFIG_PROVE_LOCKING) && WARN_ON(!irqs_disabled()))
189                 local_irq_disable();
190
191         lockdep_sys_exit();
192
193         cached_flags = READ_ONCE(ti->flags);
194
195         if (unlikely(cached_flags & EXIT_TO_USERMODE_LOOP_FLAGS))
196                 exit_to_usermode_loop(regs, cached_flags);
197
198 #ifdef CONFIG_COMPAT
199         /*
200          * Compat syscalls set TS_COMPAT.  Make sure we clear it before
201          * returning to user mode.  We need to clear it *after* signal
202          * handling, because syscall restart has a fixup for compat
203          * syscalls.  The fixup is exercised by the ptrace_syscall_32
204          * selftest.
205          */
206         ti->status &= ~TS_COMPAT;
207 #endif
208
209         user_enter();
210 }
211
212 #define SYSCALL_EXIT_WORK_FLAGS                         \
213         (_TIF_SYSCALL_TRACE | _TIF_SYSCALL_AUDIT |      \
214          _TIF_SINGLESTEP | _TIF_SYSCALL_TRACEPOINT)
215
216 static void syscall_slow_exit_work(struct pt_regs *regs, u32 cached_flags)
217 {
218         bool step;
219
220         audit_syscall_exit(regs);
221
222         if (cached_flags & _TIF_SYSCALL_TRACEPOINT)
223                 trace_sys_exit(regs, regs->ax);
224
225         /*
226          * If TIF_SYSCALL_EMU is set, we only get here because of
227          * TIF_SINGLESTEP (i.e. this is PTRACE_SYSEMU_SINGLESTEP).
228          * We already reported this syscall instruction in
229          * syscall_trace_enter().
230          */
231         step = unlikely(
232                 (cached_flags & (_TIF_SINGLESTEP | _TIF_SYSCALL_EMU))
233                 == _TIF_SINGLESTEP);
234         if (step || cached_flags & _TIF_SYSCALL_TRACE)
235                 tracehook_report_syscall_exit(regs, step);
236 }
237
238 /*
239  * Called with IRQs on and fully valid regs.  Returns with IRQs off in a
240  * state such that we can immediately switch to user mode.
241  */
242 __visible inline void syscall_return_slowpath(struct pt_regs *regs)
243 {
244         struct thread_info *ti = pt_regs_to_thread_info(regs);
245         u32 cached_flags = READ_ONCE(ti->flags);
246
247         CT_WARN_ON(ct_state() != CONTEXT_KERNEL);
248
249         if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
250             WARN(irqs_disabled(), "syscall %ld left IRQs disabled", regs->orig_ax))
251                 local_irq_enable();
252
253         /*
254          * First do one-time work.  If these work items are enabled, we
255          * want to run them exactly once per syscall exit with IRQs on.
256          */
257         if (unlikely(cached_flags & SYSCALL_EXIT_WORK_FLAGS))
258                 syscall_slow_exit_work(regs, cached_flags);
259
260         local_irq_disable();
261         prepare_exit_to_usermode(regs);
262 }
263
264 #ifdef CONFIG_X86_64
265 __visible void do_syscall_64(struct pt_regs *regs)
266 {
267         struct thread_info *ti = pt_regs_to_thread_info(regs);
268         unsigned long nr = regs->orig_ax;
269
270         enter_from_user_mode();
271         local_irq_enable();
272
273         if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY)
274                 nr = syscall_trace_enter(regs);
275
276         /*
277          * NB: Native and x32 syscalls are dispatched from the same
278          * table.  The only functional difference is the x32 bit in
279          * regs->orig_ax, which changes the behavior of some syscalls.
280          */
281         if (likely((nr & __SYSCALL_MASK) < NR_syscalls)) {
282                 regs->ax = sys_call_table[nr & __SYSCALL_MASK](
283                         regs->di, regs->si, regs->dx,
284                         regs->r10, regs->r8, regs->r9);
285         }
286
287         syscall_return_slowpath(regs);
288 }
289 #endif
290
291 #if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
292 /*
293  * Does a 32-bit syscall.  Called with IRQs on in CONTEXT_KERNEL.  Does
294  * all entry and exit work and returns with IRQs off.  This function is
295  * extremely hot in workloads that use it, and it's usually called from
296  * do_fast_syscall_32, so forcibly inline it to improve performance.
297  */
298 static __always_inline void do_syscall_32_irqs_on(struct pt_regs *regs)
299 {
300         struct thread_info *ti = pt_regs_to_thread_info(regs);
301         unsigned int nr = (unsigned int)regs->orig_ax;
302
303 #ifdef CONFIG_IA32_EMULATION
304         ti->status |= TS_COMPAT;
305 #endif
306
307         if (READ_ONCE(ti->flags) & _TIF_WORK_SYSCALL_ENTRY) {
308                 /*
309                  * Subtlety here: if ptrace pokes something larger than
310                  * 2^32-1 into orig_ax, this truncates it.  This may or
311                  * may not be necessary, but it matches the old asm
312                  * behavior.
313                  */
314                 nr = syscall_trace_enter(regs);
315         }
316
317         if (likely(nr < IA32_NR_syscalls)) {
318                 /*
319                  * It's possible that a 32-bit syscall implementation
320                  * takes a 64-bit parameter but nonetheless assumes that
321                  * the high bits are zero.  Make sure we zero-extend all
322                  * of the args.
323                  */
324                 regs->ax = ia32_sys_call_table[nr](
325                         (unsigned int)regs->bx, (unsigned int)regs->cx,
326                         (unsigned int)regs->dx, (unsigned int)regs->si,
327                         (unsigned int)regs->di, (unsigned int)regs->bp);
328         }
329
330         syscall_return_slowpath(regs);
331 }
332
333 /* Handles int $0x80 */
334 __visible void do_int80_syscall_32(struct pt_regs *regs)
335 {
336         enter_from_user_mode();
337         local_irq_enable();
338         do_syscall_32_irqs_on(regs);
339 }
340
341 /* Returns 0 to return using IRET or 1 to return using SYSEXIT/SYSRETL. */
342 __visible long do_fast_syscall_32(struct pt_regs *regs)
343 {
344         /*
345          * Called using the internal vDSO SYSENTER/SYSCALL32 calling
346          * convention.  Adjust regs so it looks like we entered using int80.
347          */
348
349         unsigned long landing_pad = (unsigned long)current->mm->context.vdso +
350                 vdso_image_32.sym_int80_landing_pad;
351
352         /*
353          * SYSENTER loses EIP, and even SYSCALL32 needs us to skip forward
354          * so that 'regs->ip -= 2' lands back on an int $0x80 instruction.
355          * Fix it up.
356          */
357         regs->ip = landing_pad;
358
359         enter_from_user_mode();
360
361         local_irq_enable();
362
363         /* Fetch EBP from where the vDSO stashed it. */
364         if (
365 #ifdef CONFIG_X86_64
366                 /*
367                  * Micro-optimization: the pointer we're following is explicitly
368                  * 32 bits, so it can't be out of range.
369                  */
370                 __get_user(*(u32 *)&regs->bp,
371                             (u32 __user __force *)(unsigned long)(u32)regs->sp)
372 #else
373                 get_user(*(u32 *)&regs->bp,
374                          (u32 __user __force *)(unsigned long)(u32)regs->sp)
375 #endif
376                 ) {
377
378                 /* User code screwed up. */
379                 local_irq_disable();
380                 regs->ax = -EFAULT;
381                 prepare_exit_to_usermode(regs);
382                 return 0;       /* Keep it simple: use IRET. */
383         }
384
385         /* Now this is just like a normal syscall. */
386         do_syscall_32_irqs_on(regs);
387
388 #ifdef CONFIG_X86_64
389         /*
390          * Opportunistic SYSRETL: if possible, try to return using SYSRETL.
391          * SYSRETL is available on all 64-bit CPUs, so we don't need to
392          * bother with SYSEXIT.
393          *
394          * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
395          * because the ECX fixup above will ensure that this is essentially
396          * never the case.
397          */
398         return regs->cs == __USER32_CS && regs->ss == __USER_DS &&
399                 regs->ip == landing_pad &&
400                 (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF)) == 0;
401 #else
402         /*
403          * Opportunistic SYSEXIT: if possible, try to return using SYSEXIT.
404          *
405          * Unlike 64-bit opportunistic SYSRET, we can't check that CX == IP,
406          * because the ECX fixup above will ensure that this is essentially
407          * never the case.
408          *
409          * We don't allow syscalls at all from VM86 mode, but we still
410          * need to check VM, because we might be returning from sys_vm86.
411          */
412         return static_cpu_has(X86_FEATURE_SEP) &&
413                 regs->cs == __USER_CS && regs->ss == __USER_DS &&
414                 regs->ip == landing_pad &&
415                 (regs->flags & (X86_EFLAGS_RF | X86_EFLAGS_TF | X86_EFLAGS_VM)) == 0;
416 #endif
417 }
418 #endif