Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[cascardo/linux.git] / arch / x86 / events / core.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45         .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51                                 [PERF_COUNT_HW_CACHE_MAX]
52                                 [PERF_COUNT_HW_CACHE_OP_MAX]
53                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60  * Propagate event elapsed time into the generic event.
61  * Can only be executed on the CPU where the event is active.
62  * Returns the delta events processed.
63  */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66         struct hw_perf_event *hwc = &event->hw;
67         int shift = 64 - x86_pmu.cntval_bits;
68         u64 prev_raw_count, new_raw_count;
69         int idx = hwc->idx;
70         s64 delta;
71
72         if (idx == INTEL_PMC_IDX_FIXED_BTS)
73                 return 0;
74
75         /*
76          * Careful: an NMI might modify the previous event value.
77          *
78          * Our tactic to handle this is to first atomically read and
79          * exchange a new raw count - then add that new-prev delta
80          * count to the generic event atomically:
81          */
82 again:
83         prev_raw_count = local64_read(&hwc->prev_count);
84         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87                                         new_raw_count) != prev_raw_count)
88                 goto again;
89
90         /*
91          * Now we have the new raw value and have updated the prev
92          * timestamp already. We can now calculate the elapsed delta
93          * (event-)time and add that to the generic event.
94          *
95          * Careful, not all hw sign-extends above the physical width
96          * of the count.
97          */
98         delta = (new_raw_count << shift) - (prev_raw_count << shift);
99         delta >>= shift;
100
101         local64_add(delta, &event->count);
102         local64_sub(delta, &hwc->period_left);
103
104         return new_raw_count;
105 }
106
107 /*
108  * Find and validate any extra registers to set up.
109  */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112         struct hw_perf_event_extra *reg;
113         struct extra_reg *er;
114
115         reg = &event->hw.extra_reg;
116
117         if (!x86_pmu.extra_regs)
118                 return 0;
119
120         for (er = x86_pmu.extra_regs; er->msr; er++) {
121                 if (er->event != (config & er->config_mask))
122                         continue;
123                 if (event->attr.config1 & ~er->valid_mask)
124                         return -EINVAL;
125                 /* Check if the extra msrs can be safely accessed*/
126                 if (!er->extra_msr_access)
127                         return -ENXIO;
128
129                 reg->idx = er->idx;
130                 reg->config = event->attr.config1;
131                 reg->reg = er->msr;
132                 break;
133         }
134         return 0;
135 }
136
137 static atomic_t active_events;
138 static atomic_t pmc_refcount;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
140
141 #ifdef CONFIG_X86_LOCAL_APIC
142
143 static bool reserve_pmc_hardware(void)
144 {
145         int i;
146
147         for (i = 0; i < x86_pmu.num_counters; i++) {
148                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149                         goto perfctr_fail;
150         }
151
152         for (i = 0; i < x86_pmu.num_counters; i++) {
153                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154                         goto eventsel_fail;
155         }
156
157         return true;
158
159 eventsel_fail:
160         for (i--; i >= 0; i--)
161                 release_evntsel_nmi(x86_pmu_config_addr(i));
162
163         i = x86_pmu.num_counters;
164
165 perfctr_fail:
166         for (i--; i >= 0; i--)
167                 release_perfctr_nmi(x86_pmu_event_addr(i));
168
169         return false;
170 }
171
172 static void release_pmc_hardware(void)
173 {
174         int i;
175
176         for (i = 0; i < x86_pmu.num_counters; i++) {
177                 release_perfctr_nmi(x86_pmu_event_addr(i));
178                 release_evntsel_nmi(x86_pmu_config_addr(i));
179         }
180 }
181
182 #else
183
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
186
187 #endif
188
189 static bool check_hw_exists(void)
190 {
191         u64 val, val_fail, val_new= ~0;
192         int i, reg, reg_fail, ret = 0;
193         int bios_fail = 0;
194         int reg_safe = -1;
195
196         /*
197          * Check to see if the BIOS enabled any of the counters, if so
198          * complain and bail.
199          */
200         for (i = 0; i < x86_pmu.num_counters; i++) {
201                 reg = x86_pmu_config_addr(i);
202                 ret = rdmsrl_safe(reg, &val);
203                 if (ret)
204                         goto msr_fail;
205                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
206                         bios_fail = 1;
207                         val_fail = val;
208                         reg_fail = reg;
209                 } else {
210                         reg_safe = i;
211                 }
212         }
213
214         if (x86_pmu.num_counters_fixed) {
215                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
216                 ret = rdmsrl_safe(reg, &val);
217                 if (ret)
218                         goto msr_fail;
219                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
220                         if (val & (0x03 << i*4)) {
221                                 bios_fail = 1;
222                                 val_fail = val;
223                                 reg_fail = reg;
224                         }
225                 }
226         }
227
228         /*
229          * If all the counters are enabled, the below test will always
230          * fail.  The tools will also become useless in this scenario.
231          * Just fail and disable the hardware counters.
232          */
233
234         if (reg_safe == -1) {
235                 reg = reg_safe;
236                 goto msr_fail;
237         }
238
239         /*
240          * Read the current value, change it and read it back to see if it
241          * matches, this is needed to detect certain hardware emulators
242          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
243          */
244         reg = x86_pmu_event_addr(reg_safe);
245         if (rdmsrl_safe(reg, &val))
246                 goto msr_fail;
247         val ^= 0xffffUL;
248         ret = wrmsrl_safe(reg, val);
249         ret |= rdmsrl_safe(reg, &val_new);
250         if (ret || val != val_new)
251                 goto msr_fail;
252
253         /*
254          * We still allow the PMU driver to operate:
255          */
256         if (bios_fail) {
257                 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
258                 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
259                               reg_fail, val_fail);
260         }
261
262         return true;
263
264 msr_fail:
265         pr_cont("Broken PMU hardware detected, using software events only.\n");
266         pr_info("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
267                 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
268                 reg, val_new);
269
270         return false;
271 }
272
273 static void hw_perf_event_destroy(struct perf_event *event)
274 {
275         x86_release_hardware();
276         atomic_dec(&active_events);
277 }
278
279 void hw_perf_lbr_event_destroy(struct perf_event *event)
280 {
281         hw_perf_event_destroy(event);
282
283         /* undo the lbr/bts event accounting */
284         x86_del_exclusive(x86_lbr_exclusive_lbr);
285 }
286
287 static inline int x86_pmu_initialized(void)
288 {
289         return x86_pmu.handle_irq != NULL;
290 }
291
292 static inline int
293 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
294 {
295         struct perf_event_attr *attr = &event->attr;
296         unsigned int cache_type, cache_op, cache_result;
297         u64 config, val;
298
299         config = attr->config;
300
301         cache_type = (config >>  0) & 0xff;
302         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
303                 return -EINVAL;
304
305         cache_op = (config >>  8) & 0xff;
306         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
307                 return -EINVAL;
308
309         cache_result = (config >> 16) & 0xff;
310         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
311                 return -EINVAL;
312
313         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
314
315         if (val == 0)
316                 return -ENOENT;
317
318         if (val == -1)
319                 return -EINVAL;
320
321         hwc->config |= val;
322         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
323         return x86_pmu_extra_regs(val, event);
324 }
325
326 int x86_reserve_hardware(void)
327 {
328         int err = 0;
329
330         if (!atomic_inc_not_zero(&pmc_refcount)) {
331                 mutex_lock(&pmc_reserve_mutex);
332                 if (atomic_read(&pmc_refcount) == 0) {
333                         if (!reserve_pmc_hardware())
334                                 err = -EBUSY;
335                         else
336                                 reserve_ds_buffers();
337                 }
338                 if (!err)
339                         atomic_inc(&pmc_refcount);
340                 mutex_unlock(&pmc_reserve_mutex);
341         }
342
343         return err;
344 }
345
346 void x86_release_hardware(void)
347 {
348         if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
349                 release_pmc_hardware();
350                 release_ds_buffers();
351                 mutex_unlock(&pmc_reserve_mutex);
352         }
353 }
354
355 /*
356  * Check if we can create event of a certain type (that no conflicting events
357  * are present).
358  */
359 int x86_add_exclusive(unsigned int what)
360 {
361         int i;
362
363         if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
364                 mutex_lock(&pmc_reserve_mutex);
365                 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
366                         if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
367                                 goto fail_unlock;
368                 }
369                 atomic_inc(&x86_pmu.lbr_exclusive[what]);
370                 mutex_unlock(&pmc_reserve_mutex);
371         }
372
373         atomic_inc(&active_events);
374         return 0;
375
376 fail_unlock:
377         mutex_unlock(&pmc_reserve_mutex);
378         return -EBUSY;
379 }
380
381 void x86_del_exclusive(unsigned int what)
382 {
383         atomic_dec(&x86_pmu.lbr_exclusive[what]);
384         atomic_dec(&active_events);
385 }
386
387 int x86_setup_perfctr(struct perf_event *event)
388 {
389         struct perf_event_attr *attr = &event->attr;
390         struct hw_perf_event *hwc = &event->hw;
391         u64 config;
392
393         if (!is_sampling_event(event)) {
394                 hwc->sample_period = x86_pmu.max_period;
395                 hwc->last_period = hwc->sample_period;
396                 local64_set(&hwc->period_left, hwc->sample_period);
397         }
398
399         if (attr->type == PERF_TYPE_RAW)
400                 return x86_pmu_extra_regs(event->attr.config, event);
401
402         if (attr->type == PERF_TYPE_HW_CACHE)
403                 return set_ext_hw_attr(hwc, event);
404
405         if (attr->config >= x86_pmu.max_events)
406                 return -EINVAL;
407
408         /*
409          * The generic map:
410          */
411         config = x86_pmu.event_map(attr->config);
412
413         if (config == 0)
414                 return -ENOENT;
415
416         if (config == -1LL)
417                 return -EINVAL;
418
419         /*
420          * Branch tracing:
421          */
422         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
423             !attr->freq && hwc->sample_period == 1) {
424                 /* BTS is not supported by this architecture. */
425                 if (!x86_pmu.bts_active)
426                         return -EOPNOTSUPP;
427
428                 /* BTS is currently only allowed for user-mode. */
429                 if (!attr->exclude_kernel)
430                         return -EOPNOTSUPP;
431
432                 /* disallow bts if conflicting events are present */
433                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
434                         return -EBUSY;
435
436                 event->destroy = hw_perf_lbr_event_destroy;
437         }
438
439         hwc->config |= config;
440
441         return 0;
442 }
443
444 /*
445  * check that branch_sample_type is compatible with
446  * settings needed for precise_ip > 1 which implies
447  * using the LBR to capture ALL taken branches at the
448  * priv levels of the measurement
449  */
450 static inline int precise_br_compat(struct perf_event *event)
451 {
452         u64 m = event->attr.branch_sample_type;
453         u64 b = 0;
454
455         /* must capture all branches */
456         if (!(m & PERF_SAMPLE_BRANCH_ANY))
457                 return 0;
458
459         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
460
461         if (!event->attr.exclude_user)
462                 b |= PERF_SAMPLE_BRANCH_USER;
463
464         if (!event->attr.exclude_kernel)
465                 b |= PERF_SAMPLE_BRANCH_KERNEL;
466
467         /*
468          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
469          */
470
471         return m == b;
472 }
473
474 int x86_pmu_hw_config(struct perf_event *event)
475 {
476         if (event->attr.precise_ip) {
477                 int precise = 0;
478
479                 /* Support for constant skid */
480                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
481                         precise++;
482
483                         /* Support for IP fixup */
484                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
485                                 precise++;
486
487                         if (x86_pmu.pebs_prec_dist)
488                                 precise++;
489                 }
490
491                 if (event->attr.precise_ip > precise)
492                         return -EOPNOTSUPP;
493         }
494         /*
495          * check that PEBS LBR correction does not conflict with
496          * whatever the user is asking with attr->branch_sample_type
497          */
498         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
499                 u64 *br_type = &event->attr.branch_sample_type;
500
501                 if (has_branch_stack(event)) {
502                         if (!precise_br_compat(event))
503                                 return -EOPNOTSUPP;
504
505                         /* branch_sample_type is compatible */
506
507                 } else {
508                         /*
509                          * user did not specify  branch_sample_type
510                          *
511                          * For PEBS fixups, we capture all
512                          * the branches at the priv level of the
513                          * event.
514                          */
515                         *br_type = PERF_SAMPLE_BRANCH_ANY;
516
517                         if (!event->attr.exclude_user)
518                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
519
520                         if (!event->attr.exclude_kernel)
521                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
522                 }
523         }
524
525         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
526                 event->attach_state |= PERF_ATTACH_TASK_DATA;
527
528         /*
529          * Generate PMC IRQs:
530          * (keep 'enabled' bit clear for now)
531          */
532         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
533
534         /*
535          * Count user and OS events unless requested not to
536          */
537         if (!event->attr.exclude_user)
538                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
539         if (!event->attr.exclude_kernel)
540                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
541
542         if (event->attr.type == PERF_TYPE_RAW)
543                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
544
545         if (event->attr.sample_period && x86_pmu.limit_period) {
546                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
547                                 event->attr.sample_period)
548                         return -EINVAL;
549         }
550
551         return x86_setup_perfctr(event);
552 }
553
554 /*
555  * Setup the hardware configuration for a given attr_type
556  */
557 static int __x86_pmu_event_init(struct perf_event *event)
558 {
559         int err;
560
561         if (!x86_pmu_initialized())
562                 return -ENODEV;
563
564         err = x86_reserve_hardware();
565         if (err)
566                 return err;
567
568         atomic_inc(&active_events);
569         event->destroy = hw_perf_event_destroy;
570
571         event->hw.idx = -1;
572         event->hw.last_cpu = -1;
573         event->hw.last_tag = ~0ULL;
574
575         /* mark unused */
576         event->hw.extra_reg.idx = EXTRA_REG_NONE;
577         event->hw.branch_reg.idx = EXTRA_REG_NONE;
578
579         return x86_pmu.hw_config(event);
580 }
581
582 void x86_pmu_disable_all(void)
583 {
584         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
585         int idx;
586
587         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
588                 u64 val;
589
590                 if (!test_bit(idx, cpuc->active_mask))
591                         continue;
592                 rdmsrl(x86_pmu_config_addr(idx), val);
593                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
594                         continue;
595                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
596                 wrmsrl(x86_pmu_config_addr(idx), val);
597         }
598 }
599
600 /*
601  * There may be PMI landing after enabled=0. The PMI hitting could be before or
602  * after disable_all.
603  *
604  * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
605  * It will not be re-enabled in the NMI handler again, because enabled=0. After
606  * handling the NMI, disable_all will be called, which will not change the
607  * state either. If PMI hits after disable_all, the PMU is already disabled
608  * before entering NMI handler. The NMI handler will not change the state
609  * either.
610  *
611  * So either situation is harmless.
612  */
613 static void x86_pmu_disable(struct pmu *pmu)
614 {
615         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
616
617         if (!x86_pmu_initialized())
618                 return;
619
620         if (!cpuc->enabled)
621                 return;
622
623         cpuc->n_added = 0;
624         cpuc->enabled = 0;
625         barrier();
626
627         x86_pmu.disable_all();
628 }
629
630 void x86_pmu_enable_all(int added)
631 {
632         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
633         int idx;
634
635         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
636                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
637
638                 if (!test_bit(idx, cpuc->active_mask))
639                         continue;
640
641                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
642         }
643 }
644
645 static struct pmu pmu;
646
647 static inline int is_x86_event(struct perf_event *event)
648 {
649         return event->pmu == &pmu;
650 }
651
652 /*
653  * Event scheduler state:
654  *
655  * Assign events iterating over all events and counters, beginning
656  * with events with least weights first. Keep the current iterator
657  * state in struct sched_state.
658  */
659 struct sched_state {
660         int     weight;
661         int     event;          /* event index */
662         int     counter;        /* counter index */
663         int     unassigned;     /* number of events to be assigned left */
664         int     nr_gp;          /* number of GP counters used */
665         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
666 };
667
668 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
669 #define SCHED_STATES_MAX        2
670
671 struct perf_sched {
672         int                     max_weight;
673         int                     max_events;
674         int                     max_gp;
675         int                     saved_states;
676         struct event_constraint **constraints;
677         struct sched_state      state;
678         struct sched_state      saved[SCHED_STATES_MAX];
679 };
680
681 /*
682  * Initialize interator that runs through all events and counters.
683  */
684 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
685                             int num, int wmin, int wmax, int gpmax)
686 {
687         int idx;
688
689         memset(sched, 0, sizeof(*sched));
690         sched->max_events       = num;
691         sched->max_weight       = wmax;
692         sched->max_gp           = gpmax;
693         sched->constraints      = constraints;
694
695         for (idx = 0; idx < num; idx++) {
696                 if (constraints[idx]->weight == wmin)
697                         break;
698         }
699
700         sched->state.event      = idx;          /* start with min weight */
701         sched->state.weight     = wmin;
702         sched->state.unassigned = num;
703 }
704
705 static void perf_sched_save_state(struct perf_sched *sched)
706 {
707         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
708                 return;
709
710         sched->saved[sched->saved_states] = sched->state;
711         sched->saved_states++;
712 }
713
714 static bool perf_sched_restore_state(struct perf_sched *sched)
715 {
716         if (!sched->saved_states)
717                 return false;
718
719         sched->saved_states--;
720         sched->state = sched->saved[sched->saved_states];
721
722         /* continue with next counter: */
723         clear_bit(sched->state.counter++, sched->state.used);
724
725         return true;
726 }
727
728 /*
729  * Select a counter for the current event to schedule. Return true on
730  * success.
731  */
732 static bool __perf_sched_find_counter(struct perf_sched *sched)
733 {
734         struct event_constraint *c;
735         int idx;
736
737         if (!sched->state.unassigned)
738                 return false;
739
740         if (sched->state.event >= sched->max_events)
741                 return false;
742
743         c = sched->constraints[sched->state.event];
744         /* Prefer fixed purpose counters */
745         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
746                 idx = INTEL_PMC_IDX_FIXED;
747                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
748                         if (!__test_and_set_bit(idx, sched->state.used))
749                                 goto done;
750                 }
751         }
752
753         /* Grab the first unused counter starting with idx */
754         idx = sched->state.counter;
755         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
756                 if (!__test_and_set_bit(idx, sched->state.used)) {
757                         if (sched->state.nr_gp++ >= sched->max_gp)
758                                 return false;
759
760                         goto done;
761                 }
762         }
763
764         return false;
765
766 done:
767         sched->state.counter = idx;
768
769         if (c->overlap)
770                 perf_sched_save_state(sched);
771
772         return true;
773 }
774
775 static bool perf_sched_find_counter(struct perf_sched *sched)
776 {
777         while (!__perf_sched_find_counter(sched)) {
778                 if (!perf_sched_restore_state(sched))
779                         return false;
780         }
781
782         return true;
783 }
784
785 /*
786  * Go through all unassigned events and find the next one to schedule.
787  * Take events with the least weight first. Return true on success.
788  */
789 static bool perf_sched_next_event(struct perf_sched *sched)
790 {
791         struct event_constraint *c;
792
793         if (!sched->state.unassigned || !--sched->state.unassigned)
794                 return false;
795
796         do {
797                 /* next event */
798                 sched->state.event++;
799                 if (sched->state.event >= sched->max_events) {
800                         /* next weight */
801                         sched->state.event = 0;
802                         sched->state.weight++;
803                         if (sched->state.weight > sched->max_weight)
804                                 return false;
805                 }
806                 c = sched->constraints[sched->state.event];
807         } while (c->weight != sched->state.weight);
808
809         sched->state.counter = 0;       /* start with first counter */
810
811         return true;
812 }
813
814 /*
815  * Assign a counter for each event.
816  */
817 int perf_assign_events(struct event_constraint **constraints, int n,
818                         int wmin, int wmax, int gpmax, int *assign)
819 {
820         struct perf_sched sched;
821
822         perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
823
824         do {
825                 if (!perf_sched_find_counter(&sched))
826                         break;  /* failed */
827                 if (assign)
828                         assign[sched.state.event] = sched.state.counter;
829         } while (perf_sched_next_event(&sched));
830
831         return sched.state.unassigned;
832 }
833 EXPORT_SYMBOL_GPL(perf_assign_events);
834
835 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
836 {
837         struct event_constraint *c;
838         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
839         struct perf_event *e;
840         int i, wmin, wmax, unsched = 0;
841         struct hw_perf_event *hwc;
842
843         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
844
845         if (x86_pmu.start_scheduling)
846                 x86_pmu.start_scheduling(cpuc);
847
848         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
849                 cpuc->event_constraint[i] = NULL;
850                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
851                 cpuc->event_constraint[i] = c;
852
853                 wmin = min(wmin, c->weight);
854                 wmax = max(wmax, c->weight);
855         }
856
857         /*
858          * fastpath, try to reuse previous register
859          */
860         for (i = 0; i < n; i++) {
861                 hwc = &cpuc->event_list[i]->hw;
862                 c = cpuc->event_constraint[i];
863
864                 /* never assigned */
865                 if (hwc->idx == -1)
866                         break;
867
868                 /* constraint still honored */
869                 if (!test_bit(hwc->idx, c->idxmsk))
870                         break;
871
872                 /* not already used */
873                 if (test_bit(hwc->idx, used_mask))
874                         break;
875
876                 __set_bit(hwc->idx, used_mask);
877                 if (assign)
878                         assign[i] = hwc->idx;
879         }
880
881         /* slow path */
882         if (i != n) {
883                 int gpmax = x86_pmu.num_counters;
884
885                 /*
886                  * Do not allow scheduling of more than half the available
887                  * generic counters.
888                  *
889                  * This helps avoid counter starvation of sibling thread by
890                  * ensuring at most half the counters cannot be in exclusive
891                  * mode. There is no designated counters for the limits. Any
892                  * N/2 counters can be used. This helps with events with
893                  * specific counter constraints.
894                  */
895                 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
896                     READ_ONCE(cpuc->excl_cntrs->exclusive_present))
897                         gpmax /= 2;
898
899                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
900                                              wmax, gpmax, assign);
901         }
902
903         /*
904          * In case of success (unsched = 0), mark events as committed,
905          * so we do not put_constraint() in case new events are added
906          * and fail to be scheduled
907          *
908          * We invoke the lower level commit callback to lock the resource
909          *
910          * We do not need to do all of this in case we are called to
911          * validate an event group (assign == NULL)
912          */
913         if (!unsched && assign) {
914                 for (i = 0; i < n; i++) {
915                         e = cpuc->event_list[i];
916                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
917                         if (x86_pmu.commit_scheduling)
918                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
919                 }
920         } else {
921                 for (i = 0; i < n; i++) {
922                         e = cpuc->event_list[i];
923                         /*
924                          * do not put_constraint() on comitted events,
925                          * because they are good to go
926                          */
927                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
928                                 continue;
929
930                         /*
931                          * release events that failed scheduling
932                          */
933                         if (x86_pmu.put_event_constraints)
934                                 x86_pmu.put_event_constraints(cpuc, e);
935                 }
936         }
937
938         if (x86_pmu.stop_scheduling)
939                 x86_pmu.stop_scheduling(cpuc);
940
941         return unsched ? -EINVAL : 0;
942 }
943
944 /*
945  * dogrp: true if must collect siblings events (group)
946  * returns total number of events and error code
947  */
948 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
949 {
950         struct perf_event *event;
951         int n, max_count;
952
953         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
954
955         /* current number of events already accepted */
956         n = cpuc->n_events;
957
958         if (is_x86_event(leader)) {
959                 if (n >= max_count)
960                         return -EINVAL;
961                 cpuc->event_list[n] = leader;
962                 n++;
963         }
964         if (!dogrp)
965                 return n;
966
967         list_for_each_entry(event, &leader->sibling_list, group_entry) {
968                 if (!is_x86_event(event) ||
969                     event->state <= PERF_EVENT_STATE_OFF)
970                         continue;
971
972                 if (n >= max_count)
973                         return -EINVAL;
974
975                 cpuc->event_list[n] = event;
976                 n++;
977         }
978         return n;
979 }
980
981 static inline void x86_assign_hw_event(struct perf_event *event,
982                                 struct cpu_hw_events *cpuc, int i)
983 {
984         struct hw_perf_event *hwc = &event->hw;
985
986         hwc->idx = cpuc->assign[i];
987         hwc->last_cpu = smp_processor_id();
988         hwc->last_tag = ++cpuc->tags[i];
989
990         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
991                 hwc->config_base = 0;
992                 hwc->event_base = 0;
993         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
994                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
995                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
996                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
997         } else {
998                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
999                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1000                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1001         }
1002 }
1003
1004 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1005                                         struct cpu_hw_events *cpuc,
1006                                         int i)
1007 {
1008         return hwc->idx == cpuc->assign[i] &&
1009                 hwc->last_cpu == smp_processor_id() &&
1010                 hwc->last_tag == cpuc->tags[i];
1011 }
1012
1013 static void x86_pmu_start(struct perf_event *event, int flags);
1014
1015 static void x86_pmu_enable(struct pmu *pmu)
1016 {
1017         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1018         struct perf_event *event;
1019         struct hw_perf_event *hwc;
1020         int i, added = cpuc->n_added;
1021
1022         if (!x86_pmu_initialized())
1023                 return;
1024
1025         if (cpuc->enabled)
1026                 return;
1027
1028         if (cpuc->n_added) {
1029                 int n_running = cpuc->n_events - cpuc->n_added;
1030                 /*
1031                  * apply assignment obtained either from
1032                  * hw_perf_group_sched_in() or x86_pmu_enable()
1033                  *
1034                  * step1: save events moving to new counters
1035                  */
1036                 for (i = 0; i < n_running; i++) {
1037                         event = cpuc->event_list[i];
1038                         hwc = &event->hw;
1039
1040                         /*
1041                          * we can avoid reprogramming counter if:
1042                          * - assigned same counter as last time
1043                          * - running on same CPU as last time
1044                          * - no other event has used the counter since
1045                          */
1046                         if (hwc->idx == -1 ||
1047                             match_prev_assignment(hwc, cpuc, i))
1048                                 continue;
1049
1050                         /*
1051                          * Ensure we don't accidentally enable a stopped
1052                          * counter simply because we rescheduled.
1053                          */
1054                         if (hwc->state & PERF_HES_STOPPED)
1055                                 hwc->state |= PERF_HES_ARCH;
1056
1057                         x86_pmu_stop(event, PERF_EF_UPDATE);
1058                 }
1059
1060                 /*
1061                  * step2: reprogram moved events into new counters
1062                  */
1063                 for (i = 0; i < cpuc->n_events; i++) {
1064                         event = cpuc->event_list[i];
1065                         hwc = &event->hw;
1066
1067                         if (!match_prev_assignment(hwc, cpuc, i))
1068                                 x86_assign_hw_event(event, cpuc, i);
1069                         else if (i < n_running)
1070                                 continue;
1071
1072                         if (hwc->state & PERF_HES_ARCH)
1073                                 continue;
1074
1075                         x86_pmu_start(event, PERF_EF_RELOAD);
1076                 }
1077                 cpuc->n_added = 0;
1078                 perf_events_lapic_init();
1079         }
1080
1081         cpuc->enabled = 1;
1082         barrier();
1083
1084         x86_pmu.enable_all(added);
1085 }
1086
1087 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1088
1089 /*
1090  * Set the next IRQ period, based on the hwc->period_left value.
1091  * To be called with the event disabled in hw:
1092  */
1093 int x86_perf_event_set_period(struct perf_event *event)
1094 {
1095         struct hw_perf_event *hwc = &event->hw;
1096         s64 left = local64_read(&hwc->period_left);
1097         s64 period = hwc->sample_period;
1098         int ret = 0, idx = hwc->idx;
1099
1100         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1101                 return 0;
1102
1103         /*
1104          * If we are way outside a reasonable range then just skip forward:
1105          */
1106         if (unlikely(left <= -period)) {
1107                 left = period;
1108                 local64_set(&hwc->period_left, left);
1109                 hwc->last_period = period;
1110                 ret = 1;
1111         }
1112
1113         if (unlikely(left <= 0)) {
1114                 left += period;
1115                 local64_set(&hwc->period_left, left);
1116                 hwc->last_period = period;
1117                 ret = 1;
1118         }
1119         /*
1120          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1121          */
1122         if (unlikely(left < 2))
1123                 left = 2;
1124
1125         if (left > x86_pmu.max_period)
1126                 left = x86_pmu.max_period;
1127
1128         if (x86_pmu.limit_period)
1129                 left = x86_pmu.limit_period(event, left);
1130
1131         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1132
1133         if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1134             local64_read(&hwc->prev_count) != (u64)-left) {
1135                 /*
1136                  * The hw event starts counting from this event offset,
1137                  * mark it to be able to extra future deltas:
1138                  */
1139                 local64_set(&hwc->prev_count, (u64)-left);
1140
1141                 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1142         }
1143
1144         /*
1145          * Due to erratum on certan cpu we need
1146          * a second write to be sure the register
1147          * is updated properly
1148          */
1149         if (x86_pmu.perfctr_second_write) {
1150                 wrmsrl(hwc->event_base,
1151                         (u64)(-left) & x86_pmu.cntval_mask);
1152         }
1153
1154         perf_event_update_userpage(event);
1155
1156         return ret;
1157 }
1158
1159 void x86_pmu_enable_event(struct perf_event *event)
1160 {
1161         if (__this_cpu_read(cpu_hw_events.enabled))
1162                 __x86_pmu_enable_event(&event->hw,
1163                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1164 }
1165
1166 /*
1167  * Add a single event to the PMU.
1168  *
1169  * The event is added to the group of enabled events
1170  * but only if it can be scehduled with existing events.
1171  */
1172 static int x86_pmu_add(struct perf_event *event, int flags)
1173 {
1174         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1175         struct hw_perf_event *hwc;
1176         int assign[X86_PMC_IDX_MAX];
1177         int n, n0, ret;
1178
1179         hwc = &event->hw;
1180
1181         n0 = cpuc->n_events;
1182         ret = n = collect_events(cpuc, event, false);
1183         if (ret < 0)
1184                 goto out;
1185
1186         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1187         if (!(flags & PERF_EF_START))
1188                 hwc->state |= PERF_HES_ARCH;
1189
1190         /*
1191          * If group events scheduling transaction was started,
1192          * skip the schedulability test here, it will be performed
1193          * at commit time (->commit_txn) as a whole.
1194          */
1195         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1196                 goto done_collect;
1197
1198         ret = x86_pmu.schedule_events(cpuc, n, assign);
1199         if (ret)
1200                 goto out;
1201         /*
1202          * copy new assignment, now we know it is possible
1203          * will be used by hw_perf_enable()
1204          */
1205         memcpy(cpuc->assign, assign, n*sizeof(int));
1206
1207 done_collect:
1208         /*
1209          * Commit the collect_events() state. See x86_pmu_del() and
1210          * x86_pmu_*_txn().
1211          */
1212         cpuc->n_events = n;
1213         cpuc->n_added += n - n0;
1214         cpuc->n_txn += n - n0;
1215
1216         ret = 0;
1217 out:
1218         return ret;
1219 }
1220
1221 static void x86_pmu_start(struct perf_event *event, int flags)
1222 {
1223         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1224         int idx = event->hw.idx;
1225
1226         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1227                 return;
1228
1229         if (WARN_ON_ONCE(idx == -1))
1230                 return;
1231
1232         if (flags & PERF_EF_RELOAD) {
1233                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1234                 x86_perf_event_set_period(event);
1235         }
1236
1237         event->hw.state = 0;
1238
1239         cpuc->events[idx] = event;
1240         __set_bit(idx, cpuc->active_mask);
1241         __set_bit(idx, cpuc->running);
1242         x86_pmu.enable(event);
1243         perf_event_update_userpage(event);
1244 }
1245
1246 void perf_event_print_debug(void)
1247 {
1248         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1249         u64 pebs, debugctl;
1250         struct cpu_hw_events *cpuc;
1251         unsigned long flags;
1252         int cpu, idx;
1253
1254         if (!x86_pmu.num_counters)
1255                 return;
1256
1257         local_irq_save(flags);
1258
1259         cpu = smp_processor_id();
1260         cpuc = &per_cpu(cpu_hw_events, cpu);
1261
1262         if (x86_pmu.version >= 2) {
1263                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1264                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1265                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1266                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1267
1268                 pr_info("\n");
1269                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1270                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1271                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1272                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1273                 if (x86_pmu.pebs_constraints) {
1274                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1275                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1276                 }
1277                 if (x86_pmu.lbr_nr) {
1278                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1279                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1280                 }
1281         }
1282         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1283
1284         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1285                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1286                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1287
1288                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1289
1290                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1291                         cpu, idx, pmc_ctrl);
1292                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1293                         cpu, idx, pmc_count);
1294                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1295                         cpu, idx, prev_left);
1296         }
1297         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1298                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1299
1300                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1301                         cpu, idx, pmc_count);
1302         }
1303         local_irq_restore(flags);
1304 }
1305
1306 void x86_pmu_stop(struct perf_event *event, int flags)
1307 {
1308         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1309         struct hw_perf_event *hwc = &event->hw;
1310
1311         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1312                 x86_pmu.disable(event);
1313                 cpuc->events[hwc->idx] = NULL;
1314                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1315                 hwc->state |= PERF_HES_STOPPED;
1316         }
1317
1318         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1319                 /*
1320                  * Drain the remaining delta count out of a event
1321                  * that we are disabling:
1322                  */
1323                 x86_perf_event_update(event);
1324                 hwc->state |= PERF_HES_UPTODATE;
1325         }
1326 }
1327
1328 static void x86_pmu_del(struct perf_event *event, int flags)
1329 {
1330         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1331         int i;
1332
1333         /*
1334          * event is descheduled
1335          */
1336         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1337
1338         /*
1339          * If we're called during a txn, we don't need to do anything.
1340          * The events never got scheduled and ->cancel_txn will truncate
1341          * the event_list.
1342          *
1343          * XXX assumes any ->del() called during a TXN will only be on
1344          * an event added during that same TXN.
1345          */
1346         if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1347                 return;
1348
1349         /*
1350          * Not a TXN, therefore cleanup properly.
1351          */
1352         x86_pmu_stop(event, PERF_EF_UPDATE);
1353
1354         for (i = 0; i < cpuc->n_events; i++) {
1355                 if (event == cpuc->event_list[i])
1356                         break;
1357         }
1358
1359         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1360                 return;
1361
1362         /* If we have a newly added event; make sure to decrease n_added. */
1363         if (i >= cpuc->n_events - cpuc->n_added)
1364                 --cpuc->n_added;
1365
1366         if (x86_pmu.put_event_constraints)
1367                 x86_pmu.put_event_constraints(cpuc, event);
1368
1369         /* Delete the array entry. */
1370         while (++i < cpuc->n_events) {
1371                 cpuc->event_list[i-1] = cpuc->event_list[i];
1372                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1373         }
1374         --cpuc->n_events;
1375
1376         perf_event_update_userpage(event);
1377 }
1378
1379 int x86_pmu_handle_irq(struct pt_regs *regs)
1380 {
1381         struct perf_sample_data data;
1382         struct cpu_hw_events *cpuc;
1383         struct perf_event *event;
1384         int idx, handled = 0;
1385         u64 val;
1386
1387         cpuc = this_cpu_ptr(&cpu_hw_events);
1388
1389         /*
1390          * Some chipsets need to unmask the LVTPC in a particular spot
1391          * inside the nmi handler.  As a result, the unmasking was pushed
1392          * into all the nmi handlers.
1393          *
1394          * This generic handler doesn't seem to have any issues where the
1395          * unmasking occurs so it was left at the top.
1396          */
1397         apic_write(APIC_LVTPC, APIC_DM_NMI);
1398
1399         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1400                 if (!test_bit(idx, cpuc->active_mask)) {
1401                         /*
1402                          * Though we deactivated the counter some cpus
1403                          * might still deliver spurious interrupts still
1404                          * in flight. Catch them:
1405                          */
1406                         if (__test_and_clear_bit(idx, cpuc->running))
1407                                 handled++;
1408                         continue;
1409                 }
1410
1411                 event = cpuc->events[idx];
1412
1413                 val = x86_perf_event_update(event);
1414                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1415                         continue;
1416
1417                 /*
1418                  * event overflow
1419                  */
1420                 handled++;
1421                 perf_sample_data_init(&data, 0, event->hw.last_period);
1422
1423                 if (!x86_perf_event_set_period(event))
1424                         continue;
1425
1426                 if (perf_event_overflow(event, &data, regs))
1427                         x86_pmu_stop(event, 0);
1428         }
1429
1430         if (handled)
1431                 inc_irq_stat(apic_perf_irqs);
1432
1433         return handled;
1434 }
1435
1436 void perf_events_lapic_init(void)
1437 {
1438         if (!x86_pmu.apic || !x86_pmu_initialized())
1439                 return;
1440
1441         /*
1442          * Always use NMI for PMU
1443          */
1444         apic_write(APIC_LVTPC, APIC_DM_NMI);
1445 }
1446
1447 static int
1448 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1449 {
1450         u64 start_clock;
1451         u64 finish_clock;
1452         int ret;
1453
1454         /*
1455          * All PMUs/events that share this PMI handler should make sure to
1456          * increment active_events for their events.
1457          */
1458         if (!atomic_read(&active_events))
1459                 return NMI_DONE;
1460
1461         start_clock = sched_clock();
1462         ret = x86_pmu.handle_irq(regs);
1463         finish_clock = sched_clock();
1464
1465         perf_sample_event_took(finish_clock - start_clock);
1466
1467         return ret;
1468 }
1469 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1470
1471 struct event_constraint emptyconstraint;
1472 struct event_constraint unconstrained;
1473
1474 static int
1475 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1476 {
1477         unsigned int cpu = (long)hcpu;
1478         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1479         int i, ret = NOTIFY_OK;
1480
1481         switch (action & ~CPU_TASKS_FROZEN) {
1482         case CPU_UP_PREPARE:
1483                 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1484                         cpuc->kfree_on_online[i] = NULL;
1485                 if (x86_pmu.cpu_prepare)
1486                         ret = x86_pmu.cpu_prepare(cpu);
1487                 break;
1488
1489         case CPU_STARTING:
1490                 if (x86_pmu.cpu_starting)
1491                         x86_pmu.cpu_starting(cpu);
1492                 break;
1493
1494         case CPU_ONLINE:
1495                 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1496                         kfree(cpuc->kfree_on_online[i]);
1497                         cpuc->kfree_on_online[i] = NULL;
1498                 }
1499                 break;
1500
1501         case CPU_DYING:
1502                 if (x86_pmu.cpu_dying)
1503                         x86_pmu.cpu_dying(cpu);
1504                 break;
1505
1506         case CPU_UP_CANCELED:
1507         case CPU_DEAD:
1508                 if (x86_pmu.cpu_dead)
1509                         x86_pmu.cpu_dead(cpu);
1510                 break;
1511
1512         default:
1513                 break;
1514         }
1515
1516         return ret;
1517 }
1518
1519 static void __init pmu_check_apic(void)
1520 {
1521         if (cpu_has_apic)
1522                 return;
1523
1524         x86_pmu.apic = 0;
1525         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1526         pr_info("no hardware sampling interrupt available.\n");
1527
1528         /*
1529          * If we have a PMU initialized but no APIC
1530          * interrupts, we cannot sample hardware
1531          * events (user-space has to fall back and
1532          * sample via a hrtimer based software event):
1533          */
1534         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1535
1536 }
1537
1538 static struct attribute_group x86_pmu_format_group = {
1539         .name = "format",
1540         .attrs = NULL,
1541 };
1542
1543 /*
1544  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1545  * out of events_attr attributes.
1546  */
1547 static void __init filter_events(struct attribute **attrs)
1548 {
1549         struct device_attribute *d;
1550         struct perf_pmu_events_attr *pmu_attr;
1551         int offset = 0;
1552         int i, j;
1553
1554         for (i = 0; attrs[i]; i++) {
1555                 d = (struct device_attribute *)attrs[i];
1556                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1557                 /* str trumps id */
1558                 if (pmu_attr->event_str)
1559                         continue;
1560                 if (x86_pmu.event_map(i + offset))
1561                         continue;
1562
1563                 for (j = i; attrs[j]; j++)
1564                         attrs[j] = attrs[j + 1];
1565
1566                 /* Check the shifted attr. */
1567                 i--;
1568
1569                 /*
1570                  * event_map() is index based, the attrs array is organized
1571                  * by increasing event index. If we shift the events, then
1572                  * we need to compensate for the event_map(), otherwise
1573                  * we are looking up the wrong event in the map
1574                  */
1575                 offset++;
1576         }
1577 }
1578
1579 /* Merge two pointer arrays */
1580 __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1581 {
1582         struct attribute **new;
1583         int j, i;
1584
1585         for (j = 0; a[j]; j++)
1586                 ;
1587         for (i = 0; b[i]; i++)
1588                 j++;
1589         j++;
1590
1591         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1592         if (!new)
1593                 return NULL;
1594
1595         j = 0;
1596         for (i = 0; a[i]; i++)
1597                 new[j++] = a[i];
1598         for (i = 0; b[i]; i++)
1599                 new[j++] = b[i];
1600         new[j] = NULL;
1601
1602         return new;
1603 }
1604
1605 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1606 {
1607         struct perf_pmu_events_attr *pmu_attr = \
1608                 container_of(attr, struct perf_pmu_events_attr, attr);
1609         u64 config = x86_pmu.event_map(pmu_attr->id);
1610
1611         /* string trumps id */
1612         if (pmu_attr->event_str)
1613                 return sprintf(page, "%s", pmu_attr->event_str);
1614
1615         return x86_pmu.events_sysfs_show(page, config);
1616 }
1617 EXPORT_SYMBOL_GPL(events_sysfs_show);
1618
1619 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1620 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1621 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1622 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1623 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1624 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1625 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1626 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1627 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1628 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1629
1630 static struct attribute *empty_attrs;
1631
1632 static struct attribute *events_attr[] = {
1633         EVENT_PTR(CPU_CYCLES),
1634         EVENT_PTR(INSTRUCTIONS),
1635         EVENT_PTR(CACHE_REFERENCES),
1636         EVENT_PTR(CACHE_MISSES),
1637         EVENT_PTR(BRANCH_INSTRUCTIONS),
1638         EVENT_PTR(BRANCH_MISSES),
1639         EVENT_PTR(BUS_CYCLES),
1640         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1641         EVENT_PTR(STALLED_CYCLES_BACKEND),
1642         EVENT_PTR(REF_CPU_CYCLES),
1643         NULL,
1644 };
1645
1646 static struct attribute_group x86_pmu_events_group = {
1647         .name = "events",
1648         .attrs = events_attr,
1649 };
1650
1651 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1652 {
1653         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1654         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1655         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1656         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1657         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1658         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1659         ssize_t ret;
1660
1661         /*
1662         * We have whole page size to spend and just little data
1663         * to write, so we can safely use sprintf.
1664         */
1665         ret = sprintf(page, "event=0x%02llx", event);
1666
1667         if (umask)
1668                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1669
1670         if (edge)
1671                 ret += sprintf(page + ret, ",edge");
1672
1673         if (pc)
1674                 ret += sprintf(page + ret, ",pc");
1675
1676         if (any)
1677                 ret += sprintf(page + ret, ",any");
1678
1679         if (inv)
1680                 ret += sprintf(page + ret, ",inv");
1681
1682         if (cmask)
1683                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1684
1685         ret += sprintf(page + ret, "\n");
1686
1687         return ret;
1688 }
1689
1690 static int __init init_hw_perf_events(void)
1691 {
1692         struct x86_pmu_quirk *quirk;
1693         int err;
1694
1695         pr_info("Performance Events: ");
1696
1697         switch (boot_cpu_data.x86_vendor) {
1698         case X86_VENDOR_INTEL:
1699                 err = intel_pmu_init();
1700                 break;
1701         case X86_VENDOR_AMD:
1702                 err = amd_pmu_init();
1703                 break;
1704         default:
1705                 err = -ENOTSUPP;
1706         }
1707         if (err != 0) {
1708                 pr_cont("no PMU driver, software events only.\n");
1709                 return 0;
1710         }
1711
1712         pmu_check_apic();
1713
1714         /* sanity check that the hardware exists or is emulated */
1715         if (!check_hw_exists())
1716                 return 0;
1717
1718         pr_cont("%s PMU driver.\n", x86_pmu.name);
1719
1720         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1721
1722         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1723                 quirk->func();
1724
1725         if (!x86_pmu.intel_ctrl)
1726                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1727
1728         perf_events_lapic_init();
1729         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1730
1731         unconstrained = (struct event_constraint)
1732                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1733                                    0, x86_pmu.num_counters, 0, 0);
1734
1735         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1736
1737         if (x86_pmu.event_attrs)
1738                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1739
1740         if (!x86_pmu.events_sysfs_show)
1741                 x86_pmu_events_group.attrs = &empty_attrs;
1742         else
1743                 filter_events(x86_pmu_events_group.attrs);
1744
1745         if (x86_pmu.cpu_events) {
1746                 struct attribute **tmp;
1747
1748                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1749                 if (!WARN_ON(!tmp))
1750                         x86_pmu_events_group.attrs = tmp;
1751         }
1752
1753         pr_info("... version:                %d\n",     x86_pmu.version);
1754         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1755         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1756         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1757         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1758         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1759         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1760
1761         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1762         perf_cpu_notifier(x86_pmu_notifier);
1763
1764         return 0;
1765 }
1766 early_initcall(init_hw_perf_events);
1767
1768 static inline void x86_pmu_read(struct perf_event *event)
1769 {
1770         x86_perf_event_update(event);
1771 }
1772
1773 /*
1774  * Start group events scheduling transaction
1775  * Set the flag to make pmu::enable() not perform the
1776  * schedulability test, it will be performed at commit time
1777  *
1778  * We only support PERF_PMU_TXN_ADD transactions. Save the
1779  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1780  * transactions.
1781  */
1782 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1783 {
1784         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1785
1786         WARN_ON_ONCE(cpuc->txn_flags);          /* txn already in flight */
1787
1788         cpuc->txn_flags = txn_flags;
1789         if (txn_flags & ~PERF_PMU_TXN_ADD)
1790                 return;
1791
1792         perf_pmu_disable(pmu);
1793         __this_cpu_write(cpu_hw_events.n_txn, 0);
1794 }
1795
1796 /*
1797  * Stop group events scheduling transaction
1798  * Clear the flag and pmu::enable() will perform the
1799  * schedulability test.
1800  */
1801 static void x86_pmu_cancel_txn(struct pmu *pmu)
1802 {
1803         unsigned int txn_flags;
1804         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1805
1806         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1807
1808         txn_flags = cpuc->txn_flags;
1809         cpuc->txn_flags = 0;
1810         if (txn_flags & ~PERF_PMU_TXN_ADD)
1811                 return;
1812
1813         /*
1814          * Truncate collected array by the number of events added in this
1815          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1816          */
1817         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1818         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1819         perf_pmu_enable(pmu);
1820 }
1821
1822 /*
1823  * Commit group events scheduling transaction
1824  * Perform the group schedulability test as a whole
1825  * Return 0 if success
1826  *
1827  * Does not cancel the transaction on failure; expects the caller to do this.
1828  */
1829 static int x86_pmu_commit_txn(struct pmu *pmu)
1830 {
1831         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1832         int assign[X86_PMC_IDX_MAX];
1833         int n, ret;
1834
1835         WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1836
1837         if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1838                 cpuc->txn_flags = 0;
1839                 return 0;
1840         }
1841
1842         n = cpuc->n_events;
1843
1844         if (!x86_pmu_initialized())
1845                 return -EAGAIN;
1846
1847         ret = x86_pmu.schedule_events(cpuc, n, assign);
1848         if (ret)
1849                 return ret;
1850
1851         /*
1852          * copy new assignment, now we know it is possible
1853          * will be used by hw_perf_enable()
1854          */
1855         memcpy(cpuc->assign, assign, n*sizeof(int));
1856
1857         cpuc->txn_flags = 0;
1858         perf_pmu_enable(pmu);
1859         return 0;
1860 }
1861 /*
1862  * a fake_cpuc is used to validate event groups. Due to
1863  * the extra reg logic, we need to also allocate a fake
1864  * per_core and per_cpu structure. Otherwise, group events
1865  * using extra reg may conflict without the kernel being
1866  * able to catch this when the last event gets added to
1867  * the group.
1868  */
1869 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1870 {
1871         kfree(cpuc->shared_regs);
1872         kfree(cpuc);
1873 }
1874
1875 static struct cpu_hw_events *allocate_fake_cpuc(void)
1876 {
1877         struct cpu_hw_events *cpuc;
1878         int cpu = raw_smp_processor_id();
1879
1880         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1881         if (!cpuc)
1882                 return ERR_PTR(-ENOMEM);
1883
1884         /* only needed, if we have extra_regs */
1885         if (x86_pmu.extra_regs) {
1886                 cpuc->shared_regs = allocate_shared_regs(cpu);
1887                 if (!cpuc->shared_regs)
1888                         goto error;
1889         }
1890         cpuc->is_fake = 1;
1891         return cpuc;
1892 error:
1893         free_fake_cpuc(cpuc);
1894         return ERR_PTR(-ENOMEM);
1895 }
1896
1897 /*
1898  * validate that we can schedule this event
1899  */
1900 static int validate_event(struct perf_event *event)
1901 {
1902         struct cpu_hw_events *fake_cpuc;
1903         struct event_constraint *c;
1904         int ret = 0;
1905
1906         fake_cpuc = allocate_fake_cpuc();
1907         if (IS_ERR(fake_cpuc))
1908                 return PTR_ERR(fake_cpuc);
1909
1910         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1911
1912         if (!c || !c->weight)
1913                 ret = -EINVAL;
1914
1915         if (x86_pmu.put_event_constraints)
1916                 x86_pmu.put_event_constraints(fake_cpuc, event);
1917
1918         free_fake_cpuc(fake_cpuc);
1919
1920         return ret;
1921 }
1922
1923 /*
1924  * validate a single event group
1925  *
1926  * validation include:
1927  *      - check events are compatible which each other
1928  *      - events do not compete for the same counter
1929  *      - number of events <= number of counters
1930  *
1931  * validation ensures the group can be loaded onto the
1932  * PMU if it was the only group available.
1933  */
1934 static int validate_group(struct perf_event *event)
1935 {
1936         struct perf_event *leader = event->group_leader;
1937         struct cpu_hw_events *fake_cpuc;
1938         int ret = -EINVAL, n;
1939
1940         fake_cpuc = allocate_fake_cpuc();
1941         if (IS_ERR(fake_cpuc))
1942                 return PTR_ERR(fake_cpuc);
1943         /*
1944          * the event is not yet connected with its
1945          * siblings therefore we must first collect
1946          * existing siblings, then add the new event
1947          * before we can simulate the scheduling
1948          */
1949         n = collect_events(fake_cpuc, leader, true);
1950         if (n < 0)
1951                 goto out;
1952
1953         fake_cpuc->n_events = n;
1954         n = collect_events(fake_cpuc, event, false);
1955         if (n < 0)
1956                 goto out;
1957
1958         fake_cpuc->n_events = n;
1959
1960         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1961
1962 out:
1963         free_fake_cpuc(fake_cpuc);
1964         return ret;
1965 }
1966
1967 static int x86_pmu_event_init(struct perf_event *event)
1968 {
1969         struct pmu *tmp;
1970         int err;
1971
1972         switch (event->attr.type) {
1973         case PERF_TYPE_RAW:
1974         case PERF_TYPE_HARDWARE:
1975         case PERF_TYPE_HW_CACHE:
1976                 break;
1977
1978         default:
1979                 return -ENOENT;
1980         }
1981
1982         err = __x86_pmu_event_init(event);
1983         if (!err) {
1984                 /*
1985                  * we temporarily connect event to its pmu
1986                  * such that validate_group() can classify
1987                  * it as an x86 event using is_x86_event()
1988                  */
1989                 tmp = event->pmu;
1990                 event->pmu = &pmu;
1991
1992                 if (event->group_leader != event)
1993                         err = validate_group(event);
1994                 else
1995                         err = validate_event(event);
1996
1997                 event->pmu = tmp;
1998         }
1999         if (err) {
2000                 if (event->destroy)
2001                         event->destroy(event);
2002         }
2003
2004         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
2005                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2006
2007         return err;
2008 }
2009
2010 static void refresh_pce(void *ignored)
2011 {
2012         if (current->mm)
2013                 load_mm_cr4(current->mm);
2014 }
2015
2016 static void x86_pmu_event_mapped(struct perf_event *event)
2017 {
2018         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2019                 return;
2020
2021         if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
2022                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2023 }
2024
2025 static void x86_pmu_event_unmapped(struct perf_event *event)
2026 {
2027         if (!current->mm)
2028                 return;
2029
2030         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2031                 return;
2032
2033         if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
2034                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
2035 }
2036
2037 static int x86_pmu_event_idx(struct perf_event *event)
2038 {
2039         int idx = event->hw.idx;
2040
2041         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2042                 return 0;
2043
2044         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2045                 idx -= INTEL_PMC_IDX_FIXED;
2046                 idx |= 1 << 30;
2047         }
2048
2049         return idx + 1;
2050 }
2051
2052 static ssize_t get_attr_rdpmc(struct device *cdev,
2053                               struct device_attribute *attr,
2054                               char *buf)
2055 {
2056         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2057 }
2058
2059 static ssize_t set_attr_rdpmc(struct device *cdev,
2060                               struct device_attribute *attr,
2061                               const char *buf, size_t count)
2062 {
2063         unsigned long val;
2064         ssize_t ret;
2065
2066         ret = kstrtoul(buf, 0, &val);
2067         if (ret)
2068                 return ret;
2069
2070         if (val > 2)
2071                 return -EINVAL;
2072
2073         if (x86_pmu.attr_rdpmc_broken)
2074                 return -ENOTSUPP;
2075
2076         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2077                 /*
2078                  * Changing into or out of always available, aka
2079                  * perf-event-bypassing mode.  This path is extremely slow,
2080                  * but only root can trigger it, so it's okay.
2081                  */
2082                 if (val == 2)
2083                         static_key_slow_inc(&rdpmc_always_available);
2084                 else
2085                         static_key_slow_dec(&rdpmc_always_available);
2086                 on_each_cpu(refresh_pce, NULL, 1);
2087         }
2088
2089         x86_pmu.attr_rdpmc = val;
2090
2091         return count;
2092 }
2093
2094 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2095
2096 static struct attribute *x86_pmu_attrs[] = {
2097         &dev_attr_rdpmc.attr,
2098         NULL,
2099 };
2100
2101 static struct attribute_group x86_pmu_attr_group = {
2102         .attrs = x86_pmu_attrs,
2103 };
2104
2105 static const struct attribute_group *x86_pmu_attr_groups[] = {
2106         &x86_pmu_attr_group,
2107         &x86_pmu_format_group,
2108         &x86_pmu_events_group,
2109         NULL,
2110 };
2111
2112 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2113 {
2114         if (x86_pmu.sched_task)
2115                 x86_pmu.sched_task(ctx, sched_in);
2116 }
2117
2118 void perf_check_microcode(void)
2119 {
2120         if (x86_pmu.check_microcode)
2121                 x86_pmu.check_microcode();
2122 }
2123 EXPORT_SYMBOL_GPL(perf_check_microcode);
2124
2125 static struct pmu pmu = {
2126         .pmu_enable             = x86_pmu_enable,
2127         .pmu_disable            = x86_pmu_disable,
2128
2129         .attr_groups            = x86_pmu_attr_groups,
2130
2131         .event_init             = x86_pmu_event_init,
2132
2133         .event_mapped           = x86_pmu_event_mapped,
2134         .event_unmapped         = x86_pmu_event_unmapped,
2135
2136         .add                    = x86_pmu_add,
2137         .del                    = x86_pmu_del,
2138         .start                  = x86_pmu_start,
2139         .stop                   = x86_pmu_stop,
2140         .read                   = x86_pmu_read,
2141
2142         .start_txn              = x86_pmu_start_txn,
2143         .cancel_txn             = x86_pmu_cancel_txn,
2144         .commit_txn             = x86_pmu_commit_txn,
2145
2146         .event_idx              = x86_pmu_event_idx,
2147         .sched_task             = x86_pmu_sched_task,
2148         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2149 };
2150
2151 void arch_perf_update_userpage(struct perf_event *event,
2152                                struct perf_event_mmap_page *userpg, u64 now)
2153 {
2154         struct cyc2ns_data *data;
2155
2156         userpg->cap_user_time = 0;
2157         userpg->cap_user_time_zero = 0;
2158         userpg->cap_user_rdpmc =
2159                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2160         userpg->pmc_width = x86_pmu.cntval_bits;
2161
2162         if (!sched_clock_stable())
2163                 return;
2164
2165         data = cyc2ns_read_begin();
2166
2167         /*
2168          * Internal timekeeping for enabled/running/stopped times
2169          * is always in the local_clock domain.
2170          */
2171         userpg->cap_user_time = 1;
2172         userpg->time_mult = data->cyc2ns_mul;
2173         userpg->time_shift = data->cyc2ns_shift;
2174         userpg->time_offset = data->cyc2ns_offset - now;
2175
2176         /*
2177          * cap_user_time_zero doesn't make sense when we're using a different
2178          * time base for the records.
2179          */
2180         if (event->clock == &local_clock) {
2181                 userpg->cap_user_time_zero = 1;
2182                 userpg->time_zero = data->cyc2ns_offset;
2183         }
2184
2185         cyc2ns_read_end(data);
2186 }
2187
2188 /*
2189  * callchain support
2190  */
2191
2192 static int backtrace_stack(void *data, char *name)
2193 {
2194         return 0;
2195 }
2196
2197 static int backtrace_address(void *data, unsigned long addr, int reliable)
2198 {
2199         struct perf_callchain_entry *entry = data;
2200
2201         return perf_callchain_store(entry, addr);
2202 }
2203
2204 static const struct stacktrace_ops backtrace_ops = {
2205         .stack                  = backtrace_stack,
2206         .address                = backtrace_address,
2207         .walk_stack             = print_context_stack_bp,
2208 };
2209
2210 void
2211 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2212 {
2213         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2214                 /* TODO: We don't support guest os callchain now */
2215                 return;
2216         }
2217
2218         perf_callchain_store(entry, regs->ip);
2219
2220         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2221 }
2222
2223 static inline int
2224 valid_user_frame(const void __user *fp, unsigned long size)
2225 {
2226         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2227 }
2228
2229 static unsigned long get_segment_base(unsigned int segment)
2230 {
2231         struct desc_struct *desc;
2232         int idx = segment >> 3;
2233
2234         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2235 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2236                 struct ldt_struct *ldt;
2237
2238                 if (idx > LDT_ENTRIES)
2239                         return 0;
2240
2241                 /* IRQs are off, so this synchronizes with smp_store_release */
2242                 ldt = lockless_dereference(current->active_mm->context.ldt);
2243                 if (!ldt || idx > ldt->size)
2244                         return 0;
2245
2246                 desc = &ldt->entries[idx];
2247 #else
2248                 return 0;
2249 #endif
2250         } else {
2251                 if (idx > GDT_ENTRIES)
2252                         return 0;
2253
2254                 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2255         }
2256
2257         return get_desc_base(desc);
2258 }
2259
2260 #ifdef CONFIG_IA32_EMULATION
2261
2262 #include <asm/compat.h>
2263
2264 static inline int
2265 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2266 {
2267         /* 32-bit process in 64-bit kernel. */
2268         unsigned long ss_base, cs_base;
2269         struct stack_frame_ia32 frame;
2270         const void __user *fp;
2271
2272         if (!test_thread_flag(TIF_IA32))
2273                 return 0;
2274
2275         cs_base = get_segment_base(regs->cs);
2276         ss_base = get_segment_base(regs->ss);
2277
2278         fp = compat_ptr(ss_base + regs->bp);
2279         pagefault_disable();
2280         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2281                 unsigned long bytes;
2282                 frame.next_frame     = 0;
2283                 frame.return_address = 0;
2284
2285                 if (!access_ok(VERIFY_READ, fp, 8))
2286                         break;
2287
2288                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2289                 if (bytes != 0)
2290                         break;
2291                 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
2292                 if (bytes != 0)
2293                         break;
2294
2295                 if (!valid_user_frame(fp, sizeof(frame)))
2296                         break;
2297
2298                 perf_callchain_store(entry, cs_base + frame.return_address);
2299                 fp = compat_ptr(ss_base + frame.next_frame);
2300         }
2301         pagefault_enable();
2302         return 1;
2303 }
2304 #else
2305 static inline int
2306 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2307 {
2308     return 0;
2309 }
2310 #endif
2311
2312 void
2313 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2314 {
2315         struct stack_frame frame;
2316         const void __user *fp;
2317
2318         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2319                 /* TODO: We don't support guest os callchain now */
2320                 return;
2321         }
2322
2323         /*
2324          * We don't know what to do with VM86 stacks.. ignore them for now.
2325          */
2326         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2327                 return;
2328
2329         fp = (void __user *)regs->bp;
2330
2331         perf_callchain_store(entry, regs->ip);
2332
2333         if (!current->mm)
2334                 return;
2335
2336         if (perf_callchain_user32(regs, entry))
2337                 return;
2338
2339         pagefault_disable();
2340         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2341                 unsigned long bytes;
2342                 frame.next_frame             = NULL;
2343                 frame.return_address = 0;
2344
2345                 if (!access_ok(VERIFY_READ, fp, 16))
2346                         break;
2347
2348                 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 8);
2349                 if (bytes != 0)
2350                         break;
2351                 bytes = __copy_from_user_nmi(&frame.return_address, fp+8, 8);
2352                 if (bytes != 0)
2353                         break;
2354
2355                 if (!valid_user_frame(fp, sizeof(frame)))
2356                         break;
2357
2358                 perf_callchain_store(entry, frame.return_address);
2359                 fp = (void __user *)frame.next_frame;
2360         }
2361         pagefault_enable();
2362 }
2363
2364 /*
2365  * Deal with code segment offsets for the various execution modes:
2366  *
2367  *   VM86 - the good olde 16 bit days, where the linear address is
2368  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2369  *
2370  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2371  *          to figure out what the 32bit base address is.
2372  *
2373  *    X32 - has TIF_X32 set, but is running in x86_64
2374  *
2375  * X86_64 - CS,DS,SS,ES are all zero based.
2376  */
2377 static unsigned long code_segment_base(struct pt_regs *regs)
2378 {
2379         /*
2380          * For IA32 we look at the GDT/LDT segment base to convert the
2381          * effective IP to a linear address.
2382          */
2383
2384 #ifdef CONFIG_X86_32
2385         /*
2386          * If we are in VM86 mode, add the segment offset to convert to a
2387          * linear address.
2388          */
2389         if (regs->flags & X86_VM_MASK)
2390                 return 0x10 * regs->cs;
2391
2392         if (user_mode(regs) && regs->cs != __USER_CS)
2393                 return get_segment_base(regs->cs);
2394 #else
2395         if (user_mode(regs) && !user_64bit_mode(regs) &&
2396             regs->cs != __USER32_CS)
2397                 return get_segment_base(regs->cs);
2398 #endif
2399         return 0;
2400 }
2401
2402 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2403 {
2404         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2405                 return perf_guest_cbs->get_guest_ip();
2406
2407         return regs->ip + code_segment_base(regs);
2408 }
2409
2410 unsigned long perf_misc_flags(struct pt_regs *regs)
2411 {
2412         int misc = 0;
2413
2414         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2415                 if (perf_guest_cbs->is_user_mode())
2416                         misc |= PERF_RECORD_MISC_GUEST_USER;
2417                 else
2418                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2419         } else {
2420                 if (user_mode(regs))
2421                         misc |= PERF_RECORD_MISC_USER;
2422                 else
2423                         misc |= PERF_RECORD_MISC_KERNEL;
2424         }
2425
2426         if (regs->flags & PERF_EFLAGS_EXACT)
2427                 misc |= PERF_RECORD_MISC_EXACT_IP;
2428
2429         return misc;
2430 }
2431
2432 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2433 {
2434         cap->version            = x86_pmu.version;
2435         cap->num_counters_gp    = x86_pmu.num_counters;
2436         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2437         cap->bit_width_gp       = x86_pmu.cntval_bits;
2438         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2439         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2440         cap->events_mask_len    = x86_pmu.events_mask_len;
2441 }
2442 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);