KVM: x86: disable MPX if host did not enable MPX XSAVE features
[cascardo/linux.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/fpu/internal.h> /* For use_eager_fpu.  Ugh! */
20 #include <asm/user.h>
21 #include <asm/fpu/xstate.h>
22 #include "cpuid.h"
23 #include "lapic.h"
24 #include "mmu.h"
25 #include "trace.h"
26 #include "pmu.h"
27
28 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
29 {
30         int feature_bit = 0;
31         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
32
33         xstate_bv &= XFEATURE_MASK_EXTEND;
34         while (xstate_bv) {
35                 if (xstate_bv & 0x1) {
36                         u32 eax, ebx, ecx, edx, offset;
37                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
38                         offset = compacted ? ret : ebx;
39                         ret = max(ret, offset + eax);
40                 }
41
42                 xstate_bv >>= 1;
43                 feature_bit++;
44         }
45
46         return ret;
47 }
48
49 bool kvm_mpx_supported(void)
50 {
51         return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
52                  && kvm_x86_ops->mpx_supported());
53 }
54 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
55
56 u64 kvm_supported_xcr0(void)
57 {
58         u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
59
60         if (!kvm_mpx_supported())
61                 xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
62
63         return xcr0;
64 }
65
66 #define F(x) bit(X86_FEATURE_##x)
67
68 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
69 {
70         struct kvm_cpuid_entry2 *best;
71         struct kvm_lapic *apic = vcpu->arch.apic;
72
73         best = kvm_find_cpuid_entry(vcpu, 1, 0);
74         if (!best)
75                 return 0;
76
77         /* Update OSXSAVE bit */
78         if (cpu_has_xsave && best->function == 0x1) {
79                 best->ecx &= ~F(OSXSAVE);
80                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
81                         best->ecx |= F(OSXSAVE);
82         }
83
84         if (apic) {
85                 if (best->ecx & F(TSC_DEADLINE_TIMER))
86                         apic->lapic_timer.timer_mode_mask = 3 << 17;
87                 else
88                         apic->lapic_timer.timer_mode_mask = 1 << 17;
89         }
90
91         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
92         if (!best) {
93                 vcpu->arch.guest_supported_xcr0 = 0;
94                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
95         } else {
96                 vcpu->arch.guest_supported_xcr0 =
97                         (best->eax | ((u64)best->edx << 32)) &
98                         kvm_supported_xcr0();
99                 vcpu->arch.guest_xstate_size = best->ebx =
100                         xstate_required_size(vcpu->arch.xcr0, false);
101         }
102
103         best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
104         if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
105                 best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
106
107         vcpu->arch.eager_fpu = use_eager_fpu();
108         if (vcpu->arch.eager_fpu)
109                 kvm_x86_ops->fpu_activate(vcpu);
110
111         /*
112          * The existing code assumes virtual address is 48-bit in the canonical
113          * address checks; exit if it is ever changed.
114          */
115         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
116         if (best && ((best->eax & 0xff00) >> 8) != 48 &&
117                 ((best->eax & 0xff00) >> 8) != 0)
118                 return -EINVAL;
119
120         /* Update physical-address width */
121         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
122
123         kvm_pmu_refresh(vcpu);
124         return 0;
125 }
126
127 static int is_efer_nx(void)
128 {
129         unsigned long long efer = 0;
130
131         rdmsrl_safe(MSR_EFER, &efer);
132         return efer & EFER_NX;
133 }
134
135 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
136 {
137         int i;
138         struct kvm_cpuid_entry2 *e, *entry;
139
140         entry = NULL;
141         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
142                 e = &vcpu->arch.cpuid_entries[i];
143                 if (e->function == 0x80000001) {
144                         entry = e;
145                         break;
146                 }
147         }
148         if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
149                 entry->edx &= ~F(NX);
150                 printk(KERN_INFO "kvm: guest NX capability removed\n");
151         }
152 }
153
154 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
155 {
156         struct kvm_cpuid_entry2 *best;
157
158         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
159         if (!best || best->eax < 0x80000008)
160                 goto not_found;
161         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
162         if (best)
163                 return best->eax & 0xff;
164 not_found:
165         return 36;
166 }
167 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
168
169 /* when an old userspace process fills a new kernel module */
170 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
171                              struct kvm_cpuid *cpuid,
172                              struct kvm_cpuid_entry __user *entries)
173 {
174         int r, i;
175         struct kvm_cpuid_entry *cpuid_entries;
176
177         r = -E2BIG;
178         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
179                 goto out;
180         r = -ENOMEM;
181         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
182         if (!cpuid_entries)
183                 goto out;
184         r = -EFAULT;
185         if (copy_from_user(cpuid_entries, entries,
186                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
187                 goto out_free;
188         for (i = 0; i < cpuid->nent; i++) {
189                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
190                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
191                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
192                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
193                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
194                 vcpu->arch.cpuid_entries[i].index = 0;
195                 vcpu->arch.cpuid_entries[i].flags = 0;
196                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
197                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
198                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
199         }
200         vcpu->arch.cpuid_nent = cpuid->nent;
201         cpuid_fix_nx_cap(vcpu);
202         kvm_apic_set_version(vcpu);
203         kvm_x86_ops->cpuid_update(vcpu);
204         r = kvm_update_cpuid(vcpu);
205
206 out_free:
207         vfree(cpuid_entries);
208 out:
209         return r;
210 }
211
212 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
213                               struct kvm_cpuid2 *cpuid,
214                               struct kvm_cpuid_entry2 __user *entries)
215 {
216         int r;
217
218         r = -E2BIG;
219         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
220                 goto out;
221         r = -EFAULT;
222         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
223                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
224                 goto out;
225         vcpu->arch.cpuid_nent = cpuid->nent;
226         kvm_apic_set_version(vcpu);
227         kvm_x86_ops->cpuid_update(vcpu);
228         r = kvm_update_cpuid(vcpu);
229 out:
230         return r;
231 }
232
233 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
234                               struct kvm_cpuid2 *cpuid,
235                               struct kvm_cpuid_entry2 __user *entries)
236 {
237         int r;
238
239         r = -E2BIG;
240         if (cpuid->nent < vcpu->arch.cpuid_nent)
241                 goto out;
242         r = -EFAULT;
243         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
244                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
245                 goto out;
246         return 0;
247
248 out:
249         cpuid->nent = vcpu->arch.cpuid_nent;
250         return r;
251 }
252
253 static void cpuid_mask(u32 *word, int wordnum)
254 {
255         *word &= boot_cpu_data.x86_capability[wordnum];
256 }
257
258 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
259                            u32 index)
260 {
261         entry->function = function;
262         entry->index = index;
263         cpuid_count(entry->function, entry->index,
264                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
265         entry->flags = 0;
266 }
267
268 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
269                                    u32 func, u32 index, int *nent, int maxnent)
270 {
271         switch (func) {
272         case 0:
273                 entry->eax = 1;         /* only one leaf currently */
274                 ++*nent;
275                 break;
276         case 1:
277                 entry->ecx = F(MOVBE);
278                 ++*nent;
279                 break;
280         default:
281                 break;
282         }
283
284         entry->function = func;
285         entry->index = index;
286
287         return 0;
288 }
289
290 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
291                                  u32 index, int *nent, int maxnent)
292 {
293         int r;
294         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
295 #ifdef CONFIG_X86_64
296         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
297                                 ? F(GBPAGES) : 0;
298         unsigned f_lm = F(LM);
299 #else
300         unsigned f_gbpages = 0;
301         unsigned f_lm = 0;
302 #endif
303         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
304         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
305         unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
306         unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
307
308         /* cpuid 1.edx */
309         const u32 kvm_supported_word0_x86_features =
310                 F(FPU) | F(VME) | F(DE) | F(PSE) |
311                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
312                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
313                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
314                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
315                 0 /* Reserved, DS, ACPI */ | F(MMX) |
316                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
317                 0 /* HTT, TM, Reserved, PBE */;
318         /* cpuid 0x80000001.edx */
319         const u32 kvm_supported_word1_x86_features =
320                 F(FPU) | F(VME) | F(DE) | F(PSE) |
321                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
322                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
323                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
324                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
325                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
326                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
327                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
328         /* cpuid 1.ecx */
329         const u32 kvm_supported_word4_x86_features =
330                 /* NOTE: MONITOR (and MWAIT) are emulated as NOP,
331                  * but *not* advertised to guests via CPUID ! */
332                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
333                 0 /* DS-CPL, VMX, SMX, EST */ |
334                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
335                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
336                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
337                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
338                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
339                 F(F16C) | F(RDRAND);
340         /* cpuid 0x80000001.ecx */
341         const u32 kvm_supported_word6_x86_features =
342                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
343                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
344                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
345                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
346
347         /* cpuid 0xC0000001.edx */
348         const u32 kvm_supported_word5_x86_features =
349                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
350                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
351                 F(PMM) | F(PMM_EN);
352
353         /* cpuid 7.0.ebx */
354         const u32 kvm_supported_word9_x86_features =
355                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
356                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
357                 F(ADX) | F(SMAP) | F(AVX512F) | F(AVX512PF) | F(AVX512ER) |
358                 F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(PCOMMIT);
359
360         /* cpuid 0xD.1.eax */
361         const u32 kvm_supported_word10_x86_features =
362                 F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
363
364         /* all calls to cpuid_count() should be made on the same cpu */
365         get_cpu();
366
367         r = -E2BIG;
368
369         if (*nent >= maxnent)
370                 goto out;
371
372         do_cpuid_1_ent(entry, function, index);
373         ++*nent;
374
375         switch (function) {
376         case 0:
377                 entry->eax = min(entry->eax, (u32)0xd);
378                 break;
379         case 1:
380                 entry->edx &= kvm_supported_word0_x86_features;
381                 cpuid_mask(&entry->edx, 0);
382                 entry->ecx &= kvm_supported_word4_x86_features;
383                 cpuid_mask(&entry->ecx, 4);
384                 /* we support x2apic emulation even if host does not support
385                  * it since we emulate x2apic in software */
386                 entry->ecx |= F(X2APIC);
387                 break;
388         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
389          * may return different values. This forces us to get_cpu() before
390          * issuing the first command, and also to emulate this annoying behavior
391          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
392         case 2: {
393                 int t, times = entry->eax & 0xff;
394
395                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
396                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
397                 for (t = 1; t < times; ++t) {
398                         if (*nent >= maxnent)
399                                 goto out;
400
401                         do_cpuid_1_ent(&entry[t], function, 0);
402                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
403                         ++*nent;
404                 }
405                 break;
406         }
407         /* function 4 has additional index. */
408         case 4: {
409                 int i, cache_type;
410
411                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
412                 /* read more entries until cache_type is zero */
413                 for (i = 1; ; ++i) {
414                         if (*nent >= maxnent)
415                                 goto out;
416
417                         cache_type = entry[i - 1].eax & 0x1f;
418                         if (!cache_type)
419                                 break;
420                         do_cpuid_1_ent(&entry[i], function, i);
421                         entry[i].flags |=
422                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
423                         ++*nent;
424                 }
425                 break;
426         }
427         case 6: /* Thermal management */
428                 entry->eax = 0x4; /* allow ARAT */
429                 entry->ebx = 0;
430                 entry->ecx = 0;
431                 entry->edx = 0;
432                 break;
433         case 7: {
434                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
435                 /* Mask ebx against host capability word 9 */
436                 if (index == 0) {
437                         entry->ebx &= kvm_supported_word9_x86_features;
438                         cpuid_mask(&entry->ebx, 9);
439                         // TSC_ADJUST is emulated
440                         entry->ebx |= F(TSC_ADJUST);
441                 } else
442                         entry->ebx = 0;
443                 entry->eax = 0;
444                 entry->ecx = 0;
445                 entry->edx = 0;
446                 break;
447         }
448         case 9:
449                 break;
450         case 0xa: { /* Architectural Performance Monitoring */
451                 struct x86_pmu_capability cap;
452                 union cpuid10_eax eax;
453                 union cpuid10_edx edx;
454
455                 perf_get_x86_pmu_capability(&cap);
456
457                 /*
458                  * Only support guest architectural pmu on a host
459                  * with architectural pmu.
460                  */
461                 if (!cap.version)
462                         memset(&cap, 0, sizeof(cap));
463
464                 eax.split.version_id = min(cap.version, 2);
465                 eax.split.num_counters = cap.num_counters_gp;
466                 eax.split.bit_width = cap.bit_width_gp;
467                 eax.split.mask_length = cap.events_mask_len;
468
469                 edx.split.num_counters_fixed = cap.num_counters_fixed;
470                 edx.split.bit_width_fixed = cap.bit_width_fixed;
471                 edx.split.reserved = 0;
472
473                 entry->eax = eax.full;
474                 entry->ebx = cap.events_mask;
475                 entry->ecx = 0;
476                 entry->edx = edx.full;
477                 break;
478         }
479         /* function 0xb has additional index. */
480         case 0xb: {
481                 int i, level_type;
482
483                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
484                 /* read more entries until level_type is zero */
485                 for (i = 1; ; ++i) {
486                         if (*nent >= maxnent)
487                                 goto out;
488
489                         level_type = entry[i - 1].ecx & 0xff00;
490                         if (!level_type)
491                                 break;
492                         do_cpuid_1_ent(&entry[i], function, i);
493                         entry[i].flags |=
494                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
495                         ++*nent;
496                 }
497                 break;
498         }
499         case 0xd: {
500                 int idx, i;
501                 u64 supported = kvm_supported_xcr0();
502
503                 entry->eax &= supported;
504                 entry->ebx = xstate_required_size(supported, false);
505                 entry->ecx = entry->ebx;
506                 entry->edx &= supported >> 32;
507                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
508                 if (!supported)
509                         break;
510
511                 for (idx = 1, i = 1; idx < 64; ++idx) {
512                         u64 mask = ((u64)1 << idx);
513                         if (*nent >= maxnent)
514                                 goto out;
515
516                         do_cpuid_1_ent(&entry[i], function, idx);
517                         if (idx == 1) {
518                                 entry[i].eax &= kvm_supported_word10_x86_features;
519                                 entry[i].ebx = 0;
520                                 if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
521                                         entry[i].ebx =
522                                                 xstate_required_size(supported,
523                                                                      true);
524                         } else {
525                                 if (entry[i].eax == 0 || !(supported & mask))
526                                         continue;
527                                 if (WARN_ON_ONCE(entry[i].ecx & 1))
528                                         continue;
529                         }
530                         entry[i].ecx = 0;
531                         entry[i].edx = 0;
532                         entry[i].flags |=
533                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
534                         ++*nent;
535                         ++i;
536                 }
537                 break;
538         }
539         case KVM_CPUID_SIGNATURE: {
540                 static const char signature[12] = "KVMKVMKVM\0\0";
541                 const u32 *sigptr = (const u32 *)signature;
542                 entry->eax = KVM_CPUID_FEATURES;
543                 entry->ebx = sigptr[0];
544                 entry->ecx = sigptr[1];
545                 entry->edx = sigptr[2];
546                 break;
547         }
548         case KVM_CPUID_FEATURES:
549                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
550                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
551                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
552                              (1 << KVM_FEATURE_ASYNC_PF) |
553                              (1 << KVM_FEATURE_PV_EOI) |
554                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
555                              (1 << KVM_FEATURE_PV_UNHALT);
556
557                 if (sched_info_on())
558                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
559
560                 entry->ebx = 0;
561                 entry->ecx = 0;
562                 entry->edx = 0;
563                 break;
564         case 0x80000000:
565                 entry->eax = min(entry->eax, 0x8000001a);
566                 break;
567         case 0x80000001:
568                 entry->edx &= kvm_supported_word1_x86_features;
569                 cpuid_mask(&entry->edx, 1);
570                 entry->ecx &= kvm_supported_word6_x86_features;
571                 cpuid_mask(&entry->ecx, 6);
572                 break;
573         case 0x80000007: /* Advanced power management */
574                 /* invariant TSC is CPUID.80000007H:EDX[8] */
575                 entry->edx &= (1 << 8);
576                 /* mask against host */
577                 entry->edx &= boot_cpu_data.x86_power;
578                 entry->eax = entry->ebx = entry->ecx = 0;
579                 break;
580         case 0x80000008: {
581                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
582                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
583                 unsigned phys_as = entry->eax & 0xff;
584
585                 if (!g_phys_as)
586                         g_phys_as = phys_as;
587                 entry->eax = g_phys_as | (virt_as << 8);
588                 entry->ebx = entry->edx = 0;
589                 break;
590         }
591         case 0x80000019:
592                 entry->ecx = entry->edx = 0;
593                 break;
594         case 0x8000001a:
595                 break;
596         case 0x8000001d:
597                 break;
598         /*Add support for Centaur's CPUID instruction*/
599         case 0xC0000000:
600                 /*Just support up to 0xC0000004 now*/
601                 entry->eax = min(entry->eax, 0xC0000004);
602                 break;
603         case 0xC0000001:
604                 entry->edx &= kvm_supported_word5_x86_features;
605                 cpuid_mask(&entry->edx, 5);
606                 break;
607         case 3: /* Processor serial number */
608         case 5: /* MONITOR/MWAIT */
609         case 0xC0000002:
610         case 0xC0000003:
611         case 0xC0000004:
612         default:
613                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
614                 break;
615         }
616
617         kvm_x86_ops->set_supported_cpuid(function, entry);
618
619         r = 0;
620
621 out:
622         put_cpu();
623
624         return r;
625 }
626
627 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
628                         u32 idx, int *nent, int maxnent, unsigned int type)
629 {
630         if (type == KVM_GET_EMULATED_CPUID)
631                 return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
632
633         return __do_cpuid_ent(entry, func, idx, nent, maxnent);
634 }
635
636 #undef F
637
638 struct kvm_cpuid_param {
639         u32 func;
640         u32 idx;
641         bool has_leaf_count;
642         bool (*qualifier)(const struct kvm_cpuid_param *param);
643 };
644
645 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
646 {
647         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
648 }
649
650 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
651                                  __u32 num_entries, unsigned int ioctl_type)
652 {
653         int i;
654         __u32 pad[3];
655
656         if (ioctl_type != KVM_GET_EMULATED_CPUID)
657                 return false;
658
659         /*
660          * We want to make sure that ->padding is being passed clean from
661          * userspace in case we want to use it for something in the future.
662          *
663          * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
664          * have to give ourselves satisfied only with the emulated side. /me
665          * sheds a tear.
666          */
667         for (i = 0; i < num_entries; i++) {
668                 if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
669                         return true;
670
671                 if (pad[0] || pad[1] || pad[2])
672                         return true;
673         }
674         return false;
675 }
676
677 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
678                             struct kvm_cpuid_entry2 __user *entries,
679                             unsigned int type)
680 {
681         struct kvm_cpuid_entry2 *cpuid_entries;
682         int limit, nent = 0, r = -E2BIG, i;
683         u32 func;
684         static const struct kvm_cpuid_param param[] = {
685                 { .func = 0, .has_leaf_count = true },
686                 { .func = 0x80000000, .has_leaf_count = true },
687                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
688                 { .func = KVM_CPUID_SIGNATURE },
689                 { .func = KVM_CPUID_FEATURES },
690         };
691
692         if (cpuid->nent < 1)
693                 goto out;
694         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
695                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
696
697         if (sanity_check_entries(entries, cpuid->nent, type))
698                 return -EINVAL;
699
700         r = -ENOMEM;
701         cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
702         if (!cpuid_entries)
703                 goto out;
704
705         r = 0;
706         for (i = 0; i < ARRAY_SIZE(param); i++) {
707                 const struct kvm_cpuid_param *ent = &param[i];
708
709                 if (ent->qualifier && !ent->qualifier(ent))
710                         continue;
711
712                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
713                                 &nent, cpuid->nent, type);
714
715                 if (r)
716                         goto out_free;
717
718                 if (!ent->has_leaf_count)
719                         continue;
720
721                 limit = cpuid_entries[nent - 1].eax;
722                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
723                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
724                                      &nent, cpuid->nent, type);
725
726                 if (r)
727                         goto out_free;
728         }
729
730         r = -EFAULT;
731         if (copy_to_user(entries, cpuid_entries,
732                          nent * sizeof(struct kvm_cpuid_entry2)))
733                 goto out_free;
734         cpuid->nent = nent;
735         r = 0;
736
737 out_free:
738         vfree(cpuid_entries);
739 out:
740         return r;
741 }
742
743 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
744 {
745         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
746         int j, nent = vcpu->arch.cpuid_nent;
747
748         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
749         /* when no next entry is found, the current entry[i] is reselected */
750         for (j = i + 1; ; j = (j + 1) % nent) {
751                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
752                 if (ej->function == e->function) {
753                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
754                         return j;
755                 }
756         }
757         return 0; /* silence gcc, even though control never reaches here */
758 }
759
760 /* find an entry with matching function, matching index (if needed), and that
761  * should be read next (if it's stateful) */
762 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
763         u32 function, u32 index)
764 {
765         if (e->function != function)
766                 return 0;
767         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
768                 return 0;
769         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
770             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
771                 return 0;
772         return 1;
773 }
774
775 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
776                                               u32 function, u32 index)
777 {
778         int i;
779         struct kvm_cpuid_entry2 *best = NULL;
780
781         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
782                 struct kvm_cpuid_entry2 *e;
783
784                 e = &vcpu->arch.cpuid_entries[i];
785                 if (is_matching_cpuid_entry(e, function, index)) {
786                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
787                                 move_to_next_stateful_cpuid_entry(vcpu, i);
788                         best = e;
789                         break;
790                 }
791         }
792         return best;
793 }
794 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
795
796 /*
797  * If no match is found, check whether we exceed the vCPU's limit
798  * and return the content of the highest valid _standard_ leaf instead.
799  * This is to satisfy the CPUID specification.
800  */
801 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
802                                                   u32 function, u32 index)
803 {
804         struct kvm_cpuid_entry2 *maxlevel;
805
806         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
807         if (!maxlevel || maxlevel->eax >= function)
808                 return NULL;
809         if (function & 0x80000000) {
810                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
811                 if (!maxlevel)
812                         return NULL;
813         }
814         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
815 }
816
817 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
818 {
819         u32 function = *eax, index = *ecx;
820         struct kvm_cpuid_entry2 *best;
821
822         best = kvm_find_cpuid_entry(vcpu, function, index);
823
824         if (!best)
825                 best = check_cpuid_limit(vcpu, function, index);
826
827         /*
828          * Perfmon not yet supported for L2 guest.
829          */
830         if (is_guest_mode(vcpu) && function == 0xa)
831                 best = NULL;
832
833         if (best) {
834                 *eax = best->eax;
835                 *ebx = best->ebx;
836                 *ecx = best->ecx;
837                 *edx = best->edx;
838         } else
839                 *eax = *ebx = *ecx = *edx = 0;
840         trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx);
841 }
842 EXPORT_SYMBOL_GPL(kvm_cpuid);
843
844 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
845 {
846         u32 function, eax, ebx, ecx, edx;
847
848         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
849         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
850         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
851         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
852         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
853         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
854         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
855         kvm_x86_ops->skip_emulated_instruction(vcpu);
856 }
857 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);