KVM: i8254: remove pit and kvm from kvm_kpit_state
[cascardo/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53
54 /* Compute with 96 bit intermediate result: (a*b)/c */
55 static u64 muldiv64(u64 a, u32 b, u32 c)
56 {
57         union {
58                 u64 ll;
59                 struct {
60                         u32 low, high;
61                 } l;
62         } u, res;
63         u64 rl, rh;
64
65         u.ll = a;
66         rl = (u64)u.l.low * (u64)b;
67         rh = (u64)u.l.high * (u64)b;
68         rh += (rl >> 32);
69         res.l.high = div64_u64(rh, c);
70         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
71         return res.ll;
72 }
73
74 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
75 {
76         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
77
78         switch (c->mode) {
79         default:
80         case 0:
81         case 4:
82                 /* XXX: just disable/enable counting */
83                 break;
84         case 1:
85         case 2:
86         case 3:
87         case 5:
88                 /* Restart counting on rising edge. */
89                 if (c->gate < val)
90                         c->count_load_time = ktime_get();
91                 break;
92         }
93
94         c->gate = val;
95 }
96
97 static int pit_get_gate(struct kvm_pit *pit, int channel)
98 {
99         return pit->pit_state.channels[channel].gate;
100 }
101
102 static s64 __kpit_elapsed(struct kvm_pit *pit)
103 {
104         s64 elapsed;
105         ktime_t remaining;
106         struct kvm_kpit_state *ps = &pit->pit_state;
107
108         if (!ps->period)
109                 return 0;
110
111         /*
112          * The Counter does not stop when it reaches zero. In
113          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
114          * the highest count, either FFFF hex for binary counting
115          * or 9999 for BCD counting, and continues counting.
116          * Modes 2 and 3 are periodic; the Counter reloads
117          * itself with the initial count and continues counting
118          * from there.
119          */
120         remaining = hrtimer_get_remaining(&ps->timer);
121         elapsed = ps->period - ktime_to_ns(remaining);
122
123         return elapsed;
124 }
125
126 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
127                         int channel)
128 {
129         if (channel == 0)
130                 return __kpit_elapsed(pit);
131
132         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
133 }
134
135 static int pit_get_count(struct kvm_pit *pit, int channel)
136 {
137         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
138         s64 d, t;
139         int counter;
140
141         t = kpit_elapsed(pit, c, channel);
142         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
143
144         switch (c->mode) {
145         case 0:
146         case 1:
147         case 4:
148         case 5:
149                 counter = (c->count - d) & 0xffff;
150                 break;
151         case 3:
152                 /* XXX: may be incorrect for odd counts */
153                 counter = c->count - (mod_64((2 * d), c->count));
154                 break;
155         default:
156                 counter = c->count - mod_64(d, c->count);
157                 break;
158         }
159         return counter;
160 }
161
162 static int pit_get_out(struct kvm_pit *pit, int channel)
163 {
164         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
165         s64 d, t;
166         int out;
167
168         t = kpit_elapsed(pit, c, channel);
169         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
170
171         switch (c->mode) {
172         default:
173         case 0:
174                 out = (d >= c->count);
175                 break;
176         case 1:
177                 out = (d < c->count);
178                 break;
179         case 2:
180                 out = ((mod_64(d, c->count) == 0) && (d != 0));
181                 break;
182         case 3:
183                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
184                 break;
185         case 4:
186         case 5:
187                 out = (d == c->count);
188                 break;
189         }
190
191         return out;
192 }
193
194 static void pit_latch_count(struct kvm_pit *pit, int channel)
195 {
196         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
197
198         if (!c->count_latched) {
199                 c->latched_count = pit_get_count(pit, channel);
200                 c->count_latched = c->rw_mode;
201         }
202 }
203
204 static void pit_latch_status(struct kvm_pit *pit, int channel)
205 {
206         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
207
208         if (!c->status_latched) {
209                 /* TODO: Return NULL COUNT (bit 6). */
210                 c->status = ((pit_get_out(pit, channel) << 7) |
211                                 (c->rw_mode << 4) |
212                                 (c->mode << 1) |
213                                 c->bcd);
214                 c->status_latched = 1;
215         }
216 }
217
218 static inline struct kvm_pit *pit_state_to_pit(struct kvm_kpit_state *ps)
219 {
220         return container_of(ps, struct kvm_pit, pit_state);
221 }
222
223 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
224 {
225         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
226                                                  irq_ack_notifier);
227         struct kvm_pit *pit = pit_state_to_pit(ps);
228
229         atomic_set(&ps->irq_ack, 1);
230         /* irq_ack should be set before pending is read.  Order accesses with
231          * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
232          */
233         smp_mb();
234         if (atomic_dec_if_positive(&ps->pending) > 0)
235                 queue_kthread_work(&pit->worker, &pit->expired);
236 }
237
238 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
239 {
240         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
241         struct hrtimer *timer;
242
243         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
244                 return;
245
246         timer = &pit->pit_state.timer;
247         mutex_lock(&pit->pit_state.lock);
248         if (hrtimer_cancel(timer))
249                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
250         mutex_unlock(&pit->pit_state.lock);
251 }
252
253 static void destroy_pit_timer(struct kvm_pit *pit)
254 {
255         hrtimer_cancel(&pit->pit_state.timer);
256         flush_kthread_work(&pit->expired);
257 }
258
259 static void pit_do_work(struct kthread_work *work)
260 {
261         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
262         struct kvm *kvm = pit->kvm;
263         struct kvm_vcpu *vcpu;
264         int i;
265         struct kvm_kpit_state *ps = &pit->pit_state;
266
267         if (ps->reinject && !atomic_xchg(&ps->irq_ack, 0))
268                 return;
269
270         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
271         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
272
273         /*
274          * Provides NMI watchdog support via Virtual Wire mode.
275          * The route is: PIT -> LVT0 in NMI mode.
276          *
277          * Note: Our Virtual Wire implementation does not follow
278          * the MP specification.  We propagate a PIT interrupt to all
279          * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
280          * also be simultaneously delivered through PIC and IOAPIC.
281          */
282         if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
283                 kvm_for_each_vcpu(i, vcpu, kvm)
284                         kvm_apic_nmi_wd_deliver(vcpu);
285 }
286
287 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
288 {
289         struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
290         struct kvm_pit *pt = pit_state_to_pit(ps);
291
292         if (ps->reinject)
293                 atomic_inc(&ps->pending);
294
295         queue_kthread_work(&pt->worker, &pt->expired);
296
297         if (ps->is_periodic) {
298                 hrtimer_add_expires_ns(&ps->timer, ps->period);
299                 return HRTIMER_RESTART;
300         } else
301                 return HRTIMER_NORESTART;
302 }
303
304 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
305 {
306         atomic_set(&pit->pit_state.pending, 0);
307         atomic_set(&pit->pit_state.irq_ack, 1);
308 }
309
310 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
311 {
312         struct kvm_kpit_state *ps = &pit->pit_state;
313         struct kvm *kvm = pit->kvm;
314
315         if (ps->reinject == reinject)
316                 return;
317
318         if (reinject) {
319                 /* The initial state is preserved while ps->reinject == 0. */
320                 kvm_pit_reset_reinject(pit);
321                 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
322                 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
323         } else {
324                 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
325                 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
326         }
327
328         ps->reinject = reinject;
329 }
330
331 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
332 {
333         struct kvm_kpit_state *ps = &pit->pit_state;
334         struct kvm *kvm = pit->kvm;
335         s64 interval;
336
337         if (!ioapic_in_kernel(kvm) ||
338             ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
339                 return;
340
341         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
342
343         pr_debug("create pit timer, interval is %llu nsec\n", interval);
344
345         /* TODO The new value only affected after the retriggered */
346         hrtimer_cancel(&ps->timer);
347         flush_kthread_work(&pit->expired);
348         ps->period = interval;
349         ps->is_periodic = is_period;
350
351         ps->timer.function = pit_timer_fn;
352
353         kvm_pit_reset_reinject(pit);
354
355         /*
356          * Do not allow the guest to program periodic timers with small
357          * interval, since the hrtimers are not throttled by the host
358          * scheduler.
359          */
360         if (ps->is_periodic) {
361                 s64 min_period = min_timer_period_us * 1000LL;
362
363                 if (ps->period < min_period) {
364                         pr_info_ratelimited(
365                             "kvm: requested %lld ns "
366                             "i8254 timer period limited to %lld ns\n",
367                             ps->period, min_period);
368                         ps->period = min_period;
369                 }
370         }
371
372         hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
373                       HRTIMER_MODE_ABS);
374 }
375
376 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
377 {
378         struct kvm_kpit_state *ps = &pit->pit_state;
379
380         pr_debug("load_count val is %d, channel is %d\n", val, channel);
381
382         /*
383          * The largest possible initial count is 0; this is equivalent
384          * to 216 for binary counting and 104 for BCD counting.
385          */
386         if (val == 0)
387                 val = 0x10000;
388
389         ps->channels[channel].count = val;
390
391         if (channel != 0) {
392                 ps->channels[channel].count_load_time = ktime_get();
393                 return;
394         }
395
396         /* Two types of timer
397          * mode 1 is one shot, mode 2 is period, otherwise del timer */
398         switch (ps->channels[0].mode) {
399         case 0:
400         case 1:
401         /* FIXME: enhance mode 4 precision */
402         case 4:
403                 create_pit_timer(pit, val, 0);
404                 break;
405         case 2:
406         case 3:
407                 create_pit_timer(pit, val, 1);
408                 break;
409         default:
410                 destroy_pit_timer(pit);
411         }
412 }
413
414 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
415                 int hpet_legacy_start)
416 {
417         u8 saved_mode;
418
419         WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
420
421         if (hpet_legacy_start) {
422                 /* save existing mode for later reenablement */
423                 WARN_ON(channel != 0);
424                 saved_mode = pit->pit_state.channels[0].mode;
425                 pit->pit_state.channels[0].mode = 0xff; /* disable timer */
426                 pit_load_count(pit, channel, val);
427                 pit->pit_state.channels[0].mode = saved_mode;
428         } else {
429                 pit_load_count(pit, channel, val);
430         }
431 }
432
433 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
434 {
435         return container_of(dev, struct kvm_pit, dev);
436 }
437
438 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
439 {
440         return container_of(dev, struct kvm_pit, speaker_dev);
441 }
442
443 static inline int pit_in_range(gpa_t addr)
444 {
445         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
446                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
447 }
448
449 static int pit_ioport_write(struct kvm_vcpu *vcpu,
450                                 struct kvm_io_device *this,
451                             gpa_t addr, int len, const void *data)
452 {
453         struct kvm_pit *pit = dev_to_pit(this);
454         struct kvm_kpit_state *pit_state = &pit->pit_state;
455         int channel, access;
456         struct kvm_kpit_channel_state *s;
457         u32 val = *(u32 *) data;
458         if (!pit_in_range(addr))
459                 return -EOPNOTSUPP;
460
461         val  &= 0xff;
462         addr &= KVM_PIT_CHANNEL_MASK;
463
464         mutex_lock(&pit_state->lock);
465
466         if (val != 0)
467                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
468                          (unsigned int)addr, len, val);
469
470         if (addr == 3) {
471                 channel = val >> 6;
472                 if (channel == 3) {
473                         /* Read-Back Command. */
474                         for (channel = 0; channel < 3; channel++) {
475                                 s = &pit_state->channels[channel];
476                                 if (val & (2 << channel)) {
477                                         if (!(val & 0x20))
478                                                 pit_latch_count(pit, channel);
479                                         if (!(val & 0x10))
480                                                 pit_latch_status(pit, channel);
481                                 }
482                         }
483                 } else {
484                         /* Select Counter <channel>. */
485                         s = &pit_state->channels[channel];
486                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
487                         if (access == 0) {
488                                 pit_latch_count(pit, channel);
489                         } else {
490                                 s->rw_mode = access;
491                                 s->read_state = access;
492                                 s->write_state = access;
493                                 s->mode = (val >> 1) & 7;
494                                 if (s->mode > 5)
495                                         s->mode -= 4;
496                                 s->bcd = val & 1;
497                         }
498                 }
499         } else {
500                 /* Write Count. */
501                 s = &pit_state->channels[addr];
502                 switch (s->write_state) {
503                 default:
504                 case RW_STATE_LSB:
505                         pit_load_count(pit, addr, val);
506                         break;
507                 case RW_STATE_MSB:
508                         pit_load_count(pit, addr, val << 8);
509                         break;
510                 case RW_STATE_WORD0:
511                         s->write_latch = val;
512                         s->write_state = RW_STATE_WORD1;
513                         break;
514                 case RW_STATE_WORD1:
515                         pit_load_count(pit, addr, s->write_latch | (val << 8));
516                         s->write_state = RW_STATE_WORD0;
517                         break;
518                 }
519         }
520
521         mutex_unlock(&pit_state->lock);
522         return 0;
523 }
524
525 static int pit_ioport_read(struct kvm_vcpu *vcpu,
526                            struct kvm_io_device *this,
527                            gpa_t addr, int len, void *data)
528 {
529         struct kvm_pit *pit = dev_to_pit(this);
530         struct kvm_kpit_state *pit_state = &pit->pit_state;
531         int ret, count;
532         struct kvm_kpit_channel_state *s;
533         if (!pit_in_range(addr))
534                 return -EOPNOTSUPP;
535
536         addr &= KVM_PIT_CHANNEL_MASK;
537         if (addr == 3)
538                 return 0;
539
540         s = &pit_state->channels[addr];
541
542         mutex_lock(&pit_state->lock);
543
544         if (s->status_latched) {
545                 s->status_latched = 0;
546                 ret = s->status;
547         } else if (s->count_latched) {
548                 switch (s->count_latched) {
549                 default:
550                 case RW_STATE_LSB:
551                         ret = s->latched_count & 0xff;
552                         s->count_latched = 0;
553                         break;
554                 case RW_STATE_MSB:
555                         ret = s->latched_count >> 8;
556                         s->count_latched = 0;
557                         break;
558                 case RW_STATE_WORD0:
559                         ret = s->latched_count & 0xff;
560                         s->count_latched = RW_STATE_MSB;
561                         break;
562                 }
563         } else {
564                 switch (s->read_state) {
565                 default:
566                 case RW_STATE_LSB:
567                         count = pit_get_count(pit, addr);
568                         ret = count & 0xff;
569                         break;
570                 case RW_STATE_MSB:
571                         count = pit_get_count(pit, addr);
572                         ret = (count >> 8) & 0xff;
573                         break;
574                 case RW_STATE_WORD0:
575                         count = pit_get_count(pit, addr);
576                         ret = count & 0xff;
577                         s->read_state = RW_STATE_WORD1;
578                         break;
579                 case RW_STATE_WORD1:
580                         count = pit_get_count(pit, addr);
581                         ret = (count >> 8) & 0xff;
582                         s->read_state = RW_STATE_WORD0;
583                         break;
584                 }
585         }
586
587         if (len > sizeof(ret))
588                 len = sizeof(ret);
589         memcpy(data, (char *)&ret, len);
590
591         mutex_unlock(&pit_state->lock);
592         return 0;
593 }
594
595 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
596                                 struct kvm_io_device *this,
597                                 gpa_t addr, int len, const void *data)
598 {
599         struct kvm_pit *pit = speaker_to_pit(this);
600         struct kvm_kpit_state *pit_state = &pit->pit_state;
601         u32 val = *(u32 *) data;
602         if (addr != KVM_SPEAKER_BASE_ADDRESS)
603                 return -EOPNOTSUPP;
604
605         mutex_lock(&pit_state->lock);
606         pit_state->speaker_data_on = (val >> 1) & 1;
607         pit_set_gate(pit, 2, val & 1);
608         mutex_unlock(&pit_state->lock);
609         return 0;
610 }
611
612 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
613                                    struct kvm_io_device *this,
614                                    gpa_t addr, int len, void *data)
615 {
616         struct kvm_pit *pit = speaker_to_pit(this);
617         struct kvm_kpit_state *pit_state = &pit->pit_state;
618         unsigned int refresh_clock;
619         int ret;
620         if (addr != KVM_SPEAKER_BASE_ADDRESS)
621                 return -EOPNOTSUPP;
622
623         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
624         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
625
626         mutex_lock(&pit_state->lock);
627         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
628                 (pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
629         if (len > sizeof(ret))
630                 len = sizeof(ret);
631         memcpy(data, (char *)&ret, len);
632         mutex_unlock(&pit_state->lock);
633         return 0;
634 }
635
636 static void kvm_pit_reset(struct kvm_pit *pit)
637 {
638         int i;
639         struct kvm_kpit_channel_state *c;
640
641         pit->pit_state.flags = 0;
642         for (i = 0; i < 3; i++) {
643                 c = &pit->pit_state.channels[i];
644                 c->mode = 0xff;
645                 c->gate = (i != 2);
646                 pit_load_count(pit, i, 0);
647         }
648
649         kvm_pit_reset_reinject(pit);
650 }
651
652 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
653 {
654         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
655
656         if (!mask)
657                 kvm_pit_reset_reinject(pit);
658 }
659
660 static const struct kvm_io_device_ops pit_dev_ops = {
661         .read     = pit_ioport_read,
662         .write    = pit_ioport_write,
663 };
664
665 static const struct kvm_io_device_ops speaker_dev_ops = {
666         .read     = speaker_ioport_read,
667         .write    = speaker_ioport_write,
668 };
669
670 /* Caller must hold slots_lock */
671 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
672 {
673         struct kvm_pit *pit;
674         struct kvm_kpit_state *pit_state;
675         struct pid *pid;
676         pid_t pid_nr;
677         int ret;
678
679         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
680         if (!pit)
681                 return NULL;
682
683         pit->irq_source_id = kvm_request_irq_source_id(kvm);
684         if (pit->irq_source_id < 0)
685                 goto fail_request;
686
687         mutex_init(&pit->pit_state.lock);
688
689         pid = get_pid(task_tgid(current));
690         pid_nr = pid_vnr(pid);
691         put_pid(pid);
692
693         init_kthread_worker(&pit->worker);
694         pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
695                                        "kvm-pit/%d", pid_nr);
696         if (IS_ERR(pit->worker_task))
697                 goto fail_kthread;
698
699         init_kthread_work(&pit->expired, pit_do_work);
700
701         pit->kvm = kvm;
702
703         pit_state = &pit->pit_state;
704         hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
705
706         pit_state->irq_ack_notifier.gsi = 0;
707         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
708         pit->mask_notifier.func = pit_mask_notifer;
709
710         kvm_pit_reset(pit);
711
712         kvm_pit_set_reinject(pit, true);
713
714         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
715         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
716                                       KVM_PIT_MEM_LENGTH, &pit->dev);
717         if (ret < 0)
718                 goto fail_register_pit;
719
720         if (flags & KVM_PIT_SPEAKER_DUMMY) {
721                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
722                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
723                                               KVM_SPEAKER_BASE_ADDRESS, 4,
724                                               &pit->speaker_dev);
725                 if (ret < 0)
726                         goto fail_register_speaker;
727         }
728
729         return pit;
730
731 fail_register_speaker:
732         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
733 fail_register_pit:
734         kvm_pit_set_reinject(pit, false);
735         kthread_stop(pit->worker_task);
736 fail_kthread:
737         kvm_free_irq_source_id(kvm, pit->irq_source_id);
738 fail_request:
739         kfree(pit);
740         return NULL;
741 }
742
743 void kvm_free_pit(struct kvm *kvm)
744 {
745         struct kvm_pit *pit = kvm->arch.vpit;
746
747         if (pit) {
748                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
749                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->speaker_dev);
750                 kvm_pit_set_reinject(pit, false);
751                 hrtimer_cancel(&pit->pit_state.timer);
752                 flush_kthread_work(&pit->expired);
753                 kthread_stop(pit->worker_task);
754                 kvm_free_irq_source_id(kvm, pit->irq_source_id);
755                 kfree(pit);
756         }
757 }