KVM: i8254: refactor kvm_create_pit
[cascardo/linux.git] / arch / x86 / kvm / i8254.c
1 /*
2  * 8253/8254 interval timer emulation
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  * Copyright (c) 2006 Intel Corporation
6  * Copyright (c) 2007 Keir Fraser, XenSource Inc
7  * Copyright (c) 2008 Intel Corporation
8  * Copyright 2009 Red Hat, Inc. and/or its affiliates.
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  *
28  * Authors:
29  *   Sheng Yang <sheng.yang@intel.com>
30  *   Based on QEMU and Xen.
31  */
32
33 #define pr_fmt(fmt) "pit: " fmt
34
35 #include <linux/kvm_host.h>
36 #include <linux/slab.h>
37
38 #include "ioapic.h"
39 #include "irq.h"
40 #include "i8254.h"
41 #include "x86.h"
42
43 #ifndef CONFIG_X86_64
44 #define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
45 #else
46 #define mod_64(x, y) ((x) % (y))
47 #endif
48
49 #define RW_STATE_LSB 1
50 #define RW_STATE_MSB 2
51 #define RW_STATE_WORD0 3
52 #define RW_STATE_WORD1 4
53
54 /* Compute with 96 bit intermediate result: (a*b)/c */
55 static u64 muldiv64(u64 a, u32 b, u32 c)
56 {
57         union {
58                 u64 ll;
59                 struct {
60                         u32 low, high;
61                 } l;
62         } u, res;
63         u64 rl, rh;
64
65         u.ll = a;
66         rl = (u64)u.l.low * (u64)b;
67         rh = (u64)u.l.high * (u64)b;
68         rh += (rl >> 32);
69         res.l.high = div64_u64(rh, c);
70         res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
71         return res.ll;
72 }
73
74 static void pit_set_gate(struct kvm_pit *pit, int channel, u32 val)
75 {
76         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
77
78         switch (c->mode) {
79         default:
80         case 0:
81         case 4:
82                 /* XXX: just disable/enable counting */
83                 break;
84         case 1:
85         case 2:
86         case 3:
87         case 5:
88                 /* Restart counting on rising edge. */
89                 if (c->gate < val)
90                         c->count_load_time = ktime_get();
91                 break;
92         }
93
94         c->gate = val;
95 }
96
97 static int pit_get_gate(struct kvm_pit *pit, int channel)
98 {
99         return pit->pit_state.channels[channel].gate;
100 }
101
102 static s64 __kpit_elapsed(struct kvm_pit *pit)
103 {
104         s64 elapsed;
105         ktime_t remaining;
106         struct kvm_kpit_state *ps = &pit->pit_state;
107
108         if (!ps->period)
109                 return 0;
110
111         /*
112          * The Counter does not stop when it reaches zero. In
113          * Modes 0, 1, 4, and 5 the Counter ``wraps around'' to
114          * the highest count, either FFFF hex for binary counting
115          * or 9999 for BCD counting, and continues counting.
116          * Modes 2 and 3 are periodic; the Counter reloads
117          * itself with the initial count and continues counting
118          * from there.
119          */
120         remaining = hrtimer_get_remaining(&ps->timer);
121         elapsed = ps->period - ktime_to_ns(remaining);
122
123         return elapsed;
124 }
125
126 static s64 kpit_elapsed(struct kvm_pit *pit, struct kvm_kpit_channel_state *c,
127                         int channel)
128 {
129         if (channel == 0)
130                 return __kpit_elapsed(pit);
131
132         return ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
133 }
134
135 static int pit_get_count(struct kvm_pit *pit, int channel)
136 {
137         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
138         s64 d, t;
139         int counter;
140
141         t = kpit_elapsed(pit, c, channel);
142         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
143
144         switch (c->mode) {
145         case 0:
146         case 1:
147         case 4:
148         case 5:
149                 counter = (c->count - d) & 0xffff;
150                 break;
151         case 3:
152                 /* XXX: may be incorrect for odd counts */
153                 counter = c->count - (mod_64((2 * d), c->count));
154                 break;
155         default:
156                 counter = c->count - mod_64(d, c->count);
157                 break;
158         }
159         return counter;
160 }
161
162 static int pit_get_out(struct kvm_pit *pit, int channel)
163 {
164         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
165         s64 d, t;
166         int out;
167
168         t = kpit_elapsed(pit, c, channel);
169         d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);
170
171         switch (c->mode) {
172         default:
173         case 0:
174                 out = (d >= c->count);
175                 break;
176         case 1:
177                 out = (d < c->count);
178                 break;
179         case 2:
180                 out = ((mod_64(d, c->count) == 0) && (d != 0));
181                 break;
182         case 3:
183                 out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
184                 break;
185         case 4:
186         case 5:
187                 out = (d == c->count);
188                 break;
189         }
190
191         return out;
192 }
193
194 static void pit_latch_count(struct kvm_pit *pit, int channel)
195 {
196         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
197
198         if (!c->count_latched) {
199                 c->latched_count = pit_get_count(pit, channel);
200                 c->count_latched = c->rw_mode;
201         }
202 }
203
204 static void pit_latch_status(struct kvm_pit *pit, int channel)
205 {
206         struct kvm_kpit_channel_state *c = &pit->pit_state.channels[channel];
207
208         if (!c->status_latched) {
209                 /* TODO: Return NULL COUNT (bit 6). */
210                 c->status = ((pit_get_out(pit, channel) << 7) |
211                                 (c->rw_mode << 4) |
212                                 (c->mode << 1) |
213                                 c->bcd);
214                 c->status_latched = 1;
215         }
216 }
217
218 static void kvm_pit_ack_irq(struct kvm_irq_ack_notifier *kian)
219 {
220         struct kvm_kpit_state *ps = container_of(kian, struct kvm_kpit_state,
221                                                  irq_ack_notifier);
222
223         atomic_set(&ps->irq_ack, 1);
224         /* irq_ack should be set before pending is read.  Order accesses with
225          * inc(pending) in pit_timer_fn and xchg(irq_ack, 0) in pit_do_work.
226          */
227         smp_mb();
228         if (atomic_dec_if_positive(&ps->pending) > 0)
229                 queue_kthread_work(&ps->pit->worker, &ps->pit->expired);
230 }
231
232 void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
233 {
234         struct kvm_pit *pit = vcpu->kvm->arch.vpit;
235         struct hrtimer *timer;
236
237         if (!kvm_vcpu_is_bsp(vcpu) || !pit)
238                 return;
239
240         timer = &pit->pit_state.timer;
241         mutex_lock(&pit->pit_state.lock);
242         if (hrtimer_cancel(timer))
243                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
244         mutex_unlock(&pit->pit_state.lock);
245 }
246
247 static void destroy_pit_timer(struct kvm_pit *pit)
248 {
249         hrtimer_cancel(&pit->pit_state.timer);
250         flush_kthread_work(&pit->expired);
251 }
252
253 static void pit_do_work(struct kthread_work *work)
254 {
255         struct kvm_pit *pit = container_of(work, struct kvm_pit, expired);
256         struct kvm *kvm = pit->kvm;
257         struct kvm_vcpu *vcpu;
258         int i;
259         struct kvm_kpit_state *ps = &pit->pit_state;
260
261         if (ps->reinject && !atomic_xchg(&ps->irq_ack, 0))
262                 return;
263
264         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 1, false);
265         kvm_set_irq(kvm, kvm->arch.vpit->irq_source_id, 0, 0, false);
266
267         /*
268          * Provides NMI watchdog support via Virtual Wire mode.
269          * The route is: PIT -> LVT0 in NMI mode.
270          *
271          * Note: Our Virtual Wire implementation does not follow
272          * the MP specification.  We propagate a PIT interrupt to all
273          * VCPUs and only when LVT0 is in NMI mode.  The interrupt can
274          * also be simultaneously delivered through PIC and IOAPIC.
275          */
276         if (atomic_read(&kvm->arch.vapics_in_nmi_mode) > 0)
277                 kvm_for_each_vcpu(i, vcpu, kvm)
278                         kvm_apic_nmi_wd_deliver(vcpu);
279 }
280
281 static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
282 {
283         struct kvm_kpit_state *ps = container_of(data, struct kvm_kpit_state, timer);
284         struct kvm_pit *pt = ps->kvm->arch.vpit;
285
286         if (ps->reinject)
287                 atomic_inc(&ps->pending);
288
289         queue_kthread_work(&pt->worker, &pt->expired);
290
291         if (ps->is_periodic) {
292                 hrtimer_add_expires_ns(&ps->timer, ps->period);
293                 return HRTIMER_RESTART;
294         } else
295                 return HRTIMER_NORESTART;
296 }
297
298 static inline void kvm_pit_reset_reinject(struct kvm_pit *pit)
299 {
300         atomic_set(&pit->pit_state.pending, 0);
301         atomic_set(&pit->pit_state.irq_ack, 1);
302 }
303
304 void kvm_pit_set_reinject(struct kvm_pit *pit, bool reinject)
305 {
306         struct kvm_kpit_state *ps = &pit->pit_state;
307         struct kvm *kvm = pit->kvm;
308
309         if (ps->reinject == reinject)
310                 return;
311
312         if (reinject) {
313                 /* The initial state is preserved while ps->reinject == 0. */
314                 kvm_pit_reset_reinject(pit);
315                 kvm_register_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
316                 kvm_register_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
317         } else {
318                 kvm_unregister_irq_ack_notifier(kvm, &ps->irq_ack_notifier);
319                 kvm_unregister_irq_mask_notifier(kvm, 0, &pit->mask_notifier);
320         }
321
322         ps->reinject = reinject;
323 }
324
325 static void create_pit_timer(struct kvm_pit *pit, u32 val, int is_period)
326 {
327         struct kvm_kpit_state *ps = &pit->pit_state;
328         struct kvm *kvm = pit->kvm;
329         s64 interval;
330
331         if (!ioapic_in_kernel(kvm) ||
332             ps->flags & KVM_PIT_FLAGS_HPET_LEGACY)
333                 return;
334
335         interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);
336
337         pr_debug("create pit timer, interval is %llu nsec\n", interval);
338
339         /* TODO The new value only affected after the retriggered */
340         hrtimer_cancel(&ps->timer);
341         flush_kthread_work(&ps->pit->expired);
342         ps->period = interval;
343         ps->is_periodic = is_period;
344
345         ps->timer.function = pit_timer_fn;
346         ps->kvm = pit->kvm;
347
348         kvm_pit_reset_reinject(pit);
349
350         /*
351          * Do not allow the guest to program periodic timers with small
352          * interval, since the hrtimers are not throttled by the host
353          * scheduler.
354          */
355         if (ps->is_periodic) {
356                 s64 min_period = min_timer_period_us * 1000LL;
357
358                 if (ps->period < min_period) {
359                         pr_info_ratelimited(
360                             "kvm: requested %lld ns "
361                             "i8254 timer period limited to %lld ns\n",
362                             ps->period, min_period);
363                         ps->period = min_period;
364                 }
365         }
366
367         hrtimer_start(&ps->timer, ktime_add_ns(ktime_get(), interval),
368                       HRTIMER_MODE_ABS);
369 }
370
371 static void pit_load_count(struct kvm_pit *pit, int channel, u32 val)
372 {
373         struct kvm_kpit_state *ps = &pit->pit_state;
374
375         pr_debug("load_count val is %d, channel is %d\n", val, channel);
376
377         /*
378          * The largest possible initial count is 0; this is equivalent
379          * to 216 for binary counting and 104 for BCD counting.
380          */
381         if (val == 0)
382                 val = 0x10000;
383
384         ps->channels[channel].count = val;
385
386         if (channel != 0) {
387                 ps->channels[channel].count_load_time = ktime_get();
388                 return;
389         }
390
391         /* Two types of timer
392          * mode 1 is one shot, mode 2 is period, otherwise del timer */
393         switch (ps->channels[0].mode) {
394         case 0:
395         case 1:
396         /* FIXME: enhance mode 4 precision */
397         case 4:
398                 create_pit_timer(pit, val, 0);
399                 break;
400         case 2:
401         case 3:
402                 create_pit_timer(pit, val, 1);
403                 break;
404         default:
405                 destroy_pit_timer(pit);
406         }
407 }
408
409 void kvm_pit_load_count(struct kvm_pit *pit, int channel, u32 val,
410                 int hpet_legacy_start)
411 {
412         u8 saved_mode;
413
414         WARN_ON_ONCE(!mutex_is_locked(&pit->pit_state.lock));
415
416         if (hpet_legacy_start) {
417                 /* save existing mode for later reenablement */
418                 WARN_ON(channel != 0);
419                 saved_mode = pit->pit_state.channels[0].mode;
420                 pit->pit_state.channels[0].mode = 0xff; /* disable timer */
421                 pit_load_count(pit, channel, val);
422                 pit->pit_state.channels[0].mode = saved_mode;
423         } else {
424                 pit_load_count(pit, channel, val);
425         }
426 }
427
428 static inline struct kvm_pit *dev_to_pit(struct kvm_io_device *dev)
429 {
430         return container_of(dev, struct kvm_pit, dev);
431 }
432
433 static inline struct kvm_pit *speaker_to_pit(struct kvm_io_device *dev)
434 {
435         return container_of(dev, struct kvm_pit, speaker_dev);
436 }
437
438 static inline int pit_in_range(gpa_t addr)
439 {
440         return ((addr >= KVM_PIT_BASE_ADDRESS) &&
441                 (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
442 }
443
444 static int pit_ioport_write(struct kvm_vcpu *vcpu,
445                                 struct kvm_io_device *this,
446                             gpa_t addr, int len, const void *data)
447 {
448         struct kvm_pit *pit = dev_to_pit(this);
449         struct kvm_kpit_state *pit_state = &pit->pit_state;
450         int channel, access;
451         struct kvm_kpit_channel_state *s;
452         u32 val = *(u32 *) data;
453         if (!pit_in_range(addr))
454                 return -EOPNOTSUPP;
455
456         val  &= 0xff;
457         addr &= KVM_PIT_CHANNEL_MASK;
458
459         mutex_lock(&pit_state->lock);
460
461         if (val != 0)
462                 pr_debug("write addr is 0x%x, len is %d, val is 0x%x\n",
463                          (unsigned int)addr, len, val);
464
465         if (addr == 3) {
466                 channel = val >> 6;
467                 if (channel == 3) {
468                         /* Read-Back Command. */
469                         for (channel = 0; channel < 3; channel++) {
470                                 s = &pit_state->channels[channel];
471                                 if (val & (2 << channel)) {
472                                         if (!(val & 0x20))
473                                                 pit_latch_count(pit, channel);
474                                         if (!(val & 0x10))
475                                                 pit_latch_status(pit, channel);
476                                 }
477                         }
478                 } else {
479                         /* Select Counter <channel>. */
480                         s = &pit_state->channels[channel];
481                         access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
482                         if (access == 0) {
483                                 pit_latch_count(pit, channel);
484                         } else {
485                                 s->rw_mode = access;
486                                 s->read_state = access;
487                                 s->write_state = access;
488                                 s->mode = (val >> 1) & 7;
489                                 if (s->mode > 5)
490                                         s->mode -= 4;
491                                 s->bcd = val & 1;
492                         }
493                 }
494         } else {
495                 /* Write Count. */
496                 s = &pit_state->channels[addr];
497                 switch (s->write_state) {
498                 default:
499                 case RW_STATE_LSB:
500                         pit_load_count(pit, addr, val);
501                         break;
502                 case RW_STATE_MSB:
503                         pit_load_count(pit, addr, val << 8);
504                         break;
505                 case RW_STATE_WORD0:
506                         s->write_latch = val;
507                         s->write_state = RW_STATE_WORD1;
508                         break;
509                 case RW_STATE_WORD1:
510                         pit_load_count(pit, addr, s->write_latch | (val << 8));
511                         s->write_state = RW_STATE_WORD0;
512                         break;
513                 }
514         }
515
516         mutex_unlock(&pit_state->lock);
517         return 0;
518 }
519
520 static int pit_ioport_read(struct kvm_vcpu *vcpu,
521                            struct kvm_io_device *this,
522                            gpa_t addr, int len, void *data)
523 {
524         struct kvm_pit *pit = dev_to_pit(this);
525         struct kvm_kpit_state *pit_state = &pit->pit_state;
526         int ret, count;
527         struct kvm_kpit_channel_state *s;
528         if (!pit_in_range(addr))
529                 return -EOPNOTSUPP;
530
531         addr &= KVM_PIT_CHANNEL_MASK;
532         if (addr == 3)
533                 return 0;
534
535         s = &pit_state->channels[addr];
536
537         mutex_lock(&pit_state->lock);
538
539         if (s->status_latched) {
540                 s->status_latched = 0;
541                 ret = s->status;
542         } else if (s->count_latched) {
543                 switch (s->count_latched) {
544                 default:
545                 case RW_STATE_LSB:
546                         ret = s->latched_count & 0xff;
547                         s->count_latched = 0;
548                         break;
549                 case RW_STATE_MSB:
550                         ret = s->latched_count >> 8;
551                         s->count_latched = 0;
552                         break;
553                 case RW_STATE_WORD0:
554                         ret = s->latched_count & 0xff;
555                         s->count_latched = RW_STATE_MSB;
556                         break;
557                 }
558         } else {
559                 switch (s->read_state) {
560                 default:
561                 case RW_STATE_LSB:
562                         count = pit_get_count(pit, addr);
563                         ret = count & 0xff;
564                         break;
565                 case RW_STATE_MSB:
566                         count = pit_get_count(pit, addr);
567                         ret = (count >> 8) & 0xff;
568                         break;
569                 case RW_STATE_WORD0:
570                         count = pit_get_count(pit, addr);
571                         ret = count & 0xff;
572                         s->read_state = RW_STATE_WORD1;
573                         break;
574                 case RW_STATE_WORD1:
575                         count = pit_get_count(pit, addr);
576                         ret = (count >> 8) & 0xff;
577                         s->read_state = RW_STATE_WORD0;
578                         break;
579                 }
580         }
581
582         if (len > sizeof(ret))
583                 len = sizeof(ret);
584         memcpy(data, (char *)&ret, len);
585
586         mutex_unlock(&pit_state->lock);
587         return 0;
588 }
589
590 static int speaker_ioport_write(struct kvm_vcpu *vcpu,
591                                 struct kvm_io_device *this,
592                                 gpa_t addr, int len, const void *data)
593 {
594         struct kvm_pit *pit = speaker_to_pit(this);
595         struct kvm_kpit_state *pit_state = &pit->pit_state;
596         u32 val = *(u32 *) data;
597         if (addr != KVM_SPEAKER_BASE_ADDRESS)
598                 return -EOPNOTSUPP;
599
600         mutex_lock(&pit_state->lock);
601         pit_state->speaker_data_on = (val >> 1) & 1;
602         pit_set_gate(pit, 2, val & 1);
603         mutex_unlock(&pit_state->lock);
604         return 0;
605 }
606
607 static int speaker_ioport_read(struct kvm_vcpu *vcpu,
608                                    struct kvm_io_device *this,
609                                    gpa_t addr, int len, void *data)
610 {
611         struct kvm_pit *pit = speaker_to_pit(this);
612         struct kvm_kpit_state *pit_state = &pit->pit_state;
613         unsigned int refresh_clock;
614         int ret;
615         if (addr != KVM_SPEAKER_BASE_ADDRESS)
616                 return -EOPNOTSUPP;
617
618         /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
619         refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;
620
621         mutex_lock(&pit_state->lock);
622         ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(pit, 2) |
623                 (pit_get_out(pit, 2) << 5) | (refresh_clock << 4));
624         if (len > sizeof(ret))
625                 len = sizeof(ret);
626         memcpy(data, (char *)&ret, len);
627         mutex_unlock(&pit_state->lock);
628         return 0;
629 }
630
631 static void kvm_pit_reset(struct kvm_pit *pit)
632 {
633         int i;
634         struct kvm_kpit_channel_state *c;
635
636         pit->pit_state.flags = 0;
637         for (i = 0; i < 3; i++) {
638                 c = &pit->pit_state.channels[i];
639                 c->mode = 0xff;
640                 c->gate = (i != 2);
641                 pit_load_count(pit, i, 0);
642         }
643
644         kvm_pit_reset_reinject(pit);
645 }
646
647 static void pit_mask_notifer(struct kvm_irq_mask_notifier *kimn, bool mask)
648 {
649         struct kvm_pit *pit = container_of(kimn, struct kvm_pit, mask_notifier);
650
651         if (!mask)
652                 kvm_pit_reset_reinject(pit);
653 }
654
655 static const struct kvm_io_device_ops pit_dev_ops = {
656         .read     = pit_ioport_read,
657         .write    = pit_ioport_write,
658 };
659
660 static const struct kvm_io_device_ops speaker_dev_ops = {
661         .read     = speaker_ioport_read,
662         .write    = speaker_ioport_write,
663 };
664
665 /* Caller must hold slots_lock */
666 struct kvm_pit *kvm_create_pit(struct kvm *kvm, u32 flags)
667 {
668         struct kvm_pit *pit;
669         struct kvm_kpit_state *pit_state;
670         struct pid *pid;
671         pid_t pid_nr;
672         int ret;
673
674         pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
675         if (!pit)
676                 return NULL;
677
678         pit->irq_source_id = kvm_request_irq_source_id(kvm);
679         if (pit->irq_source_id < 0)
680                 goto fail_request;
681
682         mutex_init(&pit->pit_state.lock);
683
684         pid = get_pid(task_tgid(current));
685         pid_nr = pid_vnr(pid);
686         put_pid(pid);
687
688         init_kthread_worker(&pit->worker);
689         pit->worker_task = kthread_run(kthread_worker_fn, &pit->worker,
690                                        "kvm-pit/%d", pid_nr);
691         if (IS_ERR(pit->worker_task))
692                 goto fail_kthread;
693
694         init_kthread_work(&pit->expired, pit_do_work);
695
696         pit->kvm = kvm;
697
698         pit_state = &pit->pit_state;
699         pit_state->pit = pit;
700         hrtimer_init(&pit_state->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
701
702         pit_state->irq_ack_notifier.gsi = 0;
703         pit_state->irq_ack_notifier.irq_acked = kvm_pit_ack_irq;
704         pit->mask_notifier.func = pit_mask_notifer;
705
706         kvm_pit_reset(pit);
707
708         kvm_pit_set_reinject(pit, true);
709
710         kvm_iodevice_init(&pit->dev, &pit_dev_ops);
711         ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS, KVM_PIT_BASE_ADDRESS,
712                                       KVM_PIT_MEM_LENGTH, &pit->dev);
713         if (ret < 0)
714                 goto fail_register_pit;
715
716         if (flags & KVM_PIT_SPEAKER_DUMMY) {
717                 kvm_iodevice_init(&pit->speaker_dev, &speaker_dev_ops);
718                 ret = kvm_io_bus_register_dev(kvm, KVM_PIO_BUS,
719                                               KVM_SPEAKER_BASE_ADDRESS, 4,
720                                               &pit->speaker_dev);
721                 if (ret < 0)
722                         goto fail_register_speaker;
723         }
724
725         return pit;
726
727 fail_register_speaker:
728         kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &pit->dev);
729 fail_register_pit:
730         kvm_pit_set_reinject(pit, false);
731         kthread_stop(pit->worker_task);
732 fail_kthread:
733         kvm_free_irq_source_id(kvm, pit->irq_source_id);
734 fail_request:
735         kfree(pit);
736         return NULL;
737 }
738
739 void kvm_free_pit(struct kvm *kvm)
740 {
741         struct hrtimer *timer;
742
743         if (kvm->arch.vpit) {
744                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, &kvm->arch.vpit->dev);
745                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
746                                               &kvm->arch.vpit->speaker_dev);
747                 kvm_pit_set_reinject(kvm->arch.vpit, false);
748                 timer = &kvm->arch.vpit->pit_state.timer;
749                 hrtimer_cancel(timer);
750                 flush_kthread_work(&kvm->arch.vpit->expired);
751                 kthread_stop(kvm->arch.vpit->worker_task);
752                 kvm_free_irq_source_id(kvm, kvm->arch.vpit->irq_source_id);
753                 kfree(kvm->arch.vpit);
754         }
755 }