1c87102efb3d37b95bb935286bedb0f69431fe09
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184         shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189  * the low bit of the generation number is always presumed to be zero.
190  * This disables mmio caching during memslot updates.  The concept is
191  * similar to a seqcount but instead of retrying the access we just punt
192  * and ignore the cache.
193  *
194  * spte bits 3-11 are used as bits 1-9 of the generation number,
195  * the bits 52-61 are used as bits 10-19 of the generation number.
196  */
197 #define MMIO_SPTE_GEN_LOW_SHIFT         2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
199
200 #define MMIO_GEN_SHIFT                  20
201 #define MMIO_GEN_LOW_SHIFT              10
202 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207         u64 mask;
208
209         WARN_ON(gen & ~MMIO_GEN_MASK);
210
211         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213         return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218         unsigned int gen;
219
220         spte &= ~shadow_mmio_mask;
221
222         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224         return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233                            unsigned access)
234 {
235         unsigned int gen = kvm_current_mmio_generation(vcpu);
236         u64 mask = generation_mmio_spte_mask(gen);
237
238         access &= ACC_WRITE_MASK | ACC_USER_MASK;
239         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241         trace_mark_mmio_spte(sptep, gfn, access, gen);
242         mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253         return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259         return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263                           kvm_pfn_t pfn, unsigned access)
264 {
265         if (unlikely(is_noslot_pfn(pfn))) {
266                 mark_mmio_spte(vcpu, sptep, gfn, access);
267                 return true;
268         }
269
270         return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275         unsigned int kvm_gen, spte_gen;
276
277         kvm_gen = kvm_current_mmio_generation(vcpu);
278         spte_gen = get_mmio_spte_generation(spte);
279
280         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281         return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287         shadow_user_mask = user_mask;
288         shadow_accessed_mask = accessed_mask;
289         shadow_dirty_mask = dirty_mask;
290         shadow_nx_mask = nx_mask;
291         shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297         return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302         return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312         return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317         if (level == PT_PAGE_TABLE_LEVEL)
318                 return 1;
319         if (is_large_pte(pte))
320                 return 1;
321         return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333         return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         ssptep->spte_low = sspte.spte_low;
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte(arch/x86/mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481         /*
482          * Always atomicly update spte if it can be updated
483          * out of mmu-lock, it can ensure dirty bit is not lost,
484          * also, it can help us to get a stable is_writable_pte()
485          * to ensure tlb flush is not missed.
486          */
487         if (spte_is_locklessly_modifiable(spte))
488                 return true;
489
490         if (!shadow_accessed_mask)
491                 return false;
492
493         if (!is_shadow_present_pte(spte))
494                 return false;
495
496         if ((spte & shadow_accessed_mask) &&
497               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498                 return false;
499
500         return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505         return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510         return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526  * Update the state bits, it means the mapped pfn is not changged.
527  *
528  * Whenever we overwrite a writable spte with a read-only one we
529  * should flush remote TLBs. Otherwise rmap_write_protect
530  * will find a read-only spte, even though the writable spte
531  * might be cached on a CPU's TLB, the return value indicates this
532  * case.
533  */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536         u64 old_spte = *sptep;
537         bool ret = false;
538
539         WARN_ON(!is_shadow_present_pte(new_spte));
540
541         if (!is_shadow_present_pte(old_spte)) {
542                 mmu_spte_set(sptep, new_spte);
543                 return ret;
544         }
545
546         if (!spte_has_volatile_bits(old_spte))
547                 __update_clear_spte_fast(sptep, new_spte);
548         else
549                 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551         /*
552          * For the spte updated out of mmu-lock is safe, since
553          * we always atomicly update it, see the comments in
554          * spte_has_volatile_bits().
555          */
556         if (spte_is_locklessly_modifiable(old_spte) &&
557               !is_writable_pte(new_spte))
558                 ret = true;
559
560         if (!shadow_accessed_mask)
561                 return ret;
562
563         /*
564          * Flush TLB when accessed/dirty bits are changed in the page tables,
565          * to guarantee consistency between TLB and page tables.
566          */
567         if (spte_is_bit_changed(old_spte, new_spte,
568                                 shadow_accessed_mask | shadow_dirty_mask))
569                 ret = true;
570
571         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
572                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
573         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
574                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
575
576         return ret;
577 }
578
579 /*
580  * Rules for using mmu_spte_clear_track_bits:
581  * It sets the sptep from present to nonpresent, and track the
582  * state bits, it is used to clear the last level sptep.
583  */
584 static int mmu_spte_clear_track_bits(u64 *sptep)
585 {
586         kvm_pfn_t pfn;
587         u64 old_spte = *sptep;
588
589         if (!spte_has_volatile_bits(old_spte))
590                 __update_clear_spte_fast(sptep, 0ull);
591         else
592                 old_spte = __update_clear_spte_slow(sptep, 0ull);
593
594         if (!is_shadow_present_pte(old_spte))
595                 return 0;
596
597         pfn = spte_to_pfn(old_spte);
598
599         /*
600          * KVM does not hold the refcount of the page used by
601          * kvm mmu, before reclaiming the page, we should
602          * unmap it from mmu first.
603          */
604         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
605
606         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
607                 kvm_set_pfn_accessed(pfn);
608         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
609                 kvm_set_pfn_dirty(pfn);
610         return 1;
611 }
612
613 /*
614  * Rules for using mmu_spte_clear_no_track:
615  * Directly clear spte without caring the state bits of sptep,
616  * it is used to set the upper level spte.
617  */
618 static void mmu_spte_clear_no_track(u64 *sptep)
619 {
620         __update_clear_spte_fast(sptep, 0ull);
621 }
622
623 static u64 mmu_spte_get_lockless(u64 *sptep)
624 {
625         return __get_spte_lockless(sptep);
626 }
627
628 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
629 {
630         /*
631          * Prevent page table teardown by making any free-er wait during
632          * kvm_flush_remote_tlbs() IPI to all active vcpus.
633          */
634         local_irq_disable();
635         vcpu->mode = READING_SHADOW_PAGE_TABLES;
636         /*
637          * Make sure a following spte read is not reordered ahead of the write
638          * to vcpu->mode.
639          */
640         smp_mb();
641 }
642
643 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
644 {
645         /*
646          * Make sure the write to vcpu->mode is not reordered in front of
647          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
648          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
649          */
650         smp_mb();
651         vcpu->mode = OUTSIDE_GUEST_MODE;
652         local_irq_enable();
653 }
654
655 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
656                                   struct kmem_cache *base_cache, int min)
657 {
658         void *obj;
659
660         if (cache->nobjs >= min)
661                 return 0;
662         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
663                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
664                 if (!obj)
665                         return -ENOMEM;
666                 cache->objects[cache->nobjs++] = obj;
667         }
668         return 0;
669 }
670
671 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
672 {
673         return cache->nobjs;
674 }
675
676 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
677                                   struct kmem_cache *cache)
678 {
679         while (mc->nobjs)
680                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
681 }
682
683 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
684                                        int min)
685 {
686         void *page;
687
688         if (cache->nobjs >= min)
689                 return 0;
690         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
691                 page = (void *)__get_free_page(GFP_KERNEL);
692                 if (!page)
693                         return -ENOMEM;
694                 cache->objects[cache->nobjs++] = page;
695         }
696         return 0;
697 }
698
699 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
700 {
701         while (mc->nobjs)
702                 free_page((unsigned long)mc->objects[--mc->nobjs]);
703 }
704
705 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
706 {
707         int r;
708
709         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
710                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
711         if (r)
712                 goto out;
713         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
714         if (r)
715                 goto out;
716         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
717                                    mmu_page_header_cache, 4);
718 out:
719         return r;
720 }
721
722 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
723 {
724         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
725                                 pte_list_desc_cache);
726         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
727         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
728                                 mmu_page_header_cache);
729 }
730
731 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
732 {
733         void *p;
734
735         BUG_ON(!mc->nobjs);
736         p = mc->objects[--mc->nobjs];
737         return p;
738 }
739
740 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
741 {
742         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
743 }
744
745 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
746 {
747         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
748 }
749
750 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
751 {
752         if (!sp->role.direct)
753                 return sp->gfns[index];
754
755         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
756 }
757
758 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
759 {
760         if (sp->role.direct)
761                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
762         else
763                 sp->gfns[index] = gfn;
764 }
765
766 /*
767  * Return the pointer to the large page information for a given gfn,
768  * handling slots that are not large page aligned.
769  */
770 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
771                                               struct kvm_memory_slot *slot,
772                                               int level)
773 {
774         unsigned long idx;
775
776         idx = gfn_to_index(gfn, slot->base_gfn, level);
777         return &slot->arch.lpage_info[level - 2][idx];
778 }
779
780 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
781                                             gfn_t gfn, int count)
782 {
783         struct kvm_lpage_info *linfo;
784         int i;
785
786         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
787                 linfo = lpage_info_slot(gfn, slot, i);
788                 linfo->disallow_lpage += count;
789                 WARN_ON(linfo->disallow_lpage < 0);
790         }
791 }
792
793 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
794 {
795         update_gfn_disallow_lpage_count(slot, gfn, 1);
796 }
797
798 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
799 {
800         update_gfn_disallow_lpage_count(slot, gfn, -1);
801 }
802
803 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
804 {
805         struct kvm_memslots *slots;
806         struct kvm_memory_slot *slot;
807         gfn_t gfn;
808
809         kvm->arch.indirect_shadow_pages++;
810         gfn = sp->gfn;
811         slots = kvm_memslots_for_spte_role(kvm, sp->role);
812         slot = __gfn_to_memslot(slots, gfn);
813
814         /* the non-leaf shadow pages are keeping readonly. */
815         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
816                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
817                                                     KVM_PAGE_TRACK_WRITE);
818
819         kvm_mmu_gfn_disallow_lpage(slot, gfn);
820 }
821
822 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
823 {
824         struct kvm_memslots *slots;
825         struct kvm_memory_slot *slot;
826         gfn_t gfn;
827
828         kvm->arch.indirect_shadow_pages--;
829         gfn = sp->gfn;
830         slots = kvm_memslots_for_spte_role(kvm, sp->role);
831         slot = __gfn_to_memslot(slots, gfn);
832         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
833                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
834                                                        KVM_PAGE_TRACK_WRITE);
835
836         kvm_mmu_gfn_allow_lpage(slot, gfn);
837 }
838
839 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
840                                           struct kvm_memory_slot *slot)
841 {
842         struct kvm_lpage_info *linfo;
843
844         if (slot) {
845                 linfo = lpage_info_slot(gfn, slot, level);
846                 return !!linfo->disallow_lpage;
847         }
848
849         return true;
850 }
851
852 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
853                                         int level)
854 {
855         struct kvm_memory_slot *slot;
856
857         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
858         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
859 }
860
861 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
862 {
863         unsigned long page_size;
864         int i, ret = 0;
865
866         page_size = kvm_host_page_size(kvm, gfn);
867
868         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
869                 if (page_size >= KVM_HPAGE_SIZE(i))
870                         ret = i;
871                 else
872                         break;
873         }
874
875         return ret;
876 }
877
878 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
879                                           bool no_dirty_log)
880 {
881         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
882                 return false;
883         if (no_dirty_log && slot->dirty_bitmap)
884                 return false;
885
886         return true;
887 }
888
889 static struct kvm_memory_slot *
890 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
891                             bool no_dirty_log)
892 {
893         struct kvm_memory_slot *slot;
894
895         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
896         if (!memslot_valid_for_gpte(slot, no_dirty_log))
897                 slot = NULL;
898
899         return slot;
900 }
901
902 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
903                          bool *force_pt_level)
904 {
905         int host_level, level, max_level;
906         struct kvm_memory_slot *slot;
907
908         if (unlikely(*force_pt_level))
909                 return PT_PAGE_TABLE_LEVEL;
910
911         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
912         *force_pt_level = !memslot_valid_for_gpte(slot, true);
913         if (unlikely(*force_pt_level))
914                 return PT_PAGE_TABLE_LEVEL;
915
916         host_level = host_mapping_level(vcpu->kvm, large_gfn);
917
918         if (host_level == PT_PAGE_TABLE_LEVEL)
919                 return host_level;
920
921         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
922
923         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
924                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
925                         break;
926
927         return level - 1;
928 }
929
930 /*
931  * About rmap_head encoding:
932  *
933  * If the bit zero of rmap_head->val is clear, then it points to the only spte
934  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
935  * pte_list_desc containing more mappings.
936  */
937
938 /*
939  * Returns the number of pointers in the rmap chain, not counting the new one.
940  */
941 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
942                         struct kvm_rmap_head *rmap_head)
943 {
944         struct pte_list_desc *desc;
945         int i, count = 0;
946
947         if (!rmap_head->val) {
948                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
949                 rmap_head->val = (unsigned long)spte;
950         } else if (!(rmap_head->val & 1)) {
951                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
952                 desc = mmu_alloc_pte_list_desc(vcpu);
953                 desc->sptes[0] = (u64 *)rmap_head->val;
954                 desc->sptes[1] = spte;
955                 rmap_head->val = (unsigned long)desc | 1;
956                 ++count;
957         } else {
958                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
959                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
961                         desc = desc->more;
962                         count += PTE_LIST_EXT;
963                 }
964                 if (desc->sptes[PTE_LIST_EXT-1]) {
965                         desc->more = mmu_alloc_pte_list_desc(vcpu);
966                         desc = desc->more;
967                 }
968                 for (i = 0; desc->sptes[i]; ++i)
969                         ++count;
970                 desc->sptes[i] = spte;
971         }
972         return count;
973 }
974
975 static void
976 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
977                            struct pte_list_desc *desc, int i,
978                            struct pte_list_desc *prev_desc)
979 {
980         int j;
981
982         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
983                 ;
984         desc->sptes[i] = desc->sptes[j];
985         desc->sptes[j] = NULL;
986         if (j != 0)
987                 return;
988         if (!prev_desc && !desc->more)
989                 rmap_head->val = (unsigned long)desc->sptes[0];
990         else
991                 if (prev_desc)
992                         prev_desc->more = desc->more;
993                 else
994                         rmap_head->val = (unsigned long)desc->more | 1;
995         mmu_free_pte_list_desc(desc);
996 }
997
998 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
999 {
1000         struct pte_list_desc *desc;
1001         struct pte_list_desc *prev_desc;
1002         int i;
1003
1004         if (!rmap_head->val) {
1005                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1006                 BUG();
1007         } else if (!(rmap_head->val & 1)) {
1008                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1009                 if ((u64 *)rmap_head->val != spte) {
1010                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1011                         BUG();
1012                 }
1013                 rmap_head->val = 0;
1014         } else {
1015                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1016                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1017                 prev_desc = NULL;
1018                 while (desc) {
1019                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1020                                 if (desc->sptes[i] == spte) {
1021                                         pte_list_desc_remove_entry(rmap_head,
1022                                                         desc, i, prev_desc);
1023                                         return;
1024                                 }
1025                         }
1026                         prev_desc = desc;
1027                         desc = desc->more;
1028                 }
1029                 pr_err("pte_list_remove: %p many->many\n", spte);
1030                 BUG();
1031         }
1032 }
1033
1034 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1035                                            struct kvm_memory_slot *slot)
1036 {
1037         unsigned long idx;
1038
1039         idx = gfn_to_index(gfn, slot->base_gfn, level);
1040         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1041 }
1042
1043 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1044                                          struct kvm_mmu_page *sp)
1045 {
1046         struct kvm_memslots *slots;
1047         struct kvm_memory_slot *slot;
1048
1049         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1050         slot = __gfn_to_memslot(slots, gfn);
1051         return __gfn_to_rmap(gfn, sp->role.level, slot);
1052 }
1053
1054 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1055 {
1056         struct kvm_mmu_memory_cache *cache;
1057
1058         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1059         return mmu_memory_cache_free_objects(cache);
1060 }
1061
1062 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1063 {
1064         struct kvm_mmu_page *sp;
1065         struct kvm_rmap_head *rmap_head;
1066
1067         sp = page_header(__pa(spte));
1068         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1069         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1070         return pte_list_add(vcpu, spte, rmap_head);
1071 }
1072
1073 static void rmap_remove(struct kvm *kvm, u64 *spte)
1074 {
1075         struct kvm_mmu_page *sp;
1076         gfn_t gfn;
1077         struct kvm_rmap_head *rmap_head;
1078
1079         sp = page_header(__pa(spte));
1080         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1081         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1082         pte_list_remove(spte, rmap_head);
1083 }
1084
1085 /*
1086  * Used by the following functions to iterate through the sptes linked by a
1087  * rmap.  All fields are private and not assumed to be used outside.
1088  */
1089 struct rmap_iterator {
1090         /* private fields */
1091         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1092         int pos;                        /* index of the sptep */
1093 };
1094
1095 /*
1096  * Iteration must be started by this function.  This should also be used after
1097  * removing/dropping sptes from the rmap link because in such cases the
1098  * information in the itererator may not be valid.
1099  *
1100  * Returns sptep if found, NULL otherwise.
1101  */
1102 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1103                            struct rmap_iterator *iter)
1104 {
1105         u64 *sptep;
1106
1107         if (!rmap_head->val)
1108                 return NULL;
1109
1110         if (!(rmap_head->val & 1)) {
1111                 iter->desc = NULL;
1112                 sptep = (u64 *)rmap_head->val;
1113                 goto out;
1114         }
1115
1116         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1117         iter->pos = 0;
1118         sptep = iter->desc->sptes[iter->pos];
1119 out:
1120         BUG_ON(!is_shadow_present_pte(*sptep));
1121         return sptep;
1122 }
1123
1124 /*
1125  * Must be used with a valid iterator: e.g. after rmap_get_first().
1126  *
1127  * Returns sptep if found, NULL otherwise.
1128  */
1129 static u64 *rmap_get_next(struct rmap_iterator *iter)
1130 {
1131         u64 *sptep;
1132
1133         if (iter->desc) {
1134                 if (iter->pos < PTE_LIST_EXT - 1) {
1135                         ++iter->pos;
1136                         sptep = iter->desc->sptes[iter->pos];
1137                         if (sptep)
1138                                 goto out;
1139                 }
1140
1141                 iter->desc = iter->desc->more;
1142
1143                 if (iter->desc) {
1144                         iter->pos = 0;
1145                         /* desc->sptes[0] cannot be NULL */
1146                         sptep = iter->desc->sptes[iter->pos];
1147                         goto out;
1148                 }
1149         }
1150
1151         return NULL;
1152 out:
1153         BUG_ON(!is_shadow_present_pte(*sptep));
1154         return sptep;
1155 }
1156
1157 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1158         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1159              _spte_; _spte_ = rmap_get_next(_iter_))
1160
1161 static void drop_spte(struct kvm *kvm, u64 *sptep)
1162 {
1163         if (mmu_spte_clear_track_bits(sptep))
1164                 rmap_remove(kvm, sptep);
1165 }
1166
1167
1168 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1169 {
1170         if (is_large_pte(*sptep)) {
1171                 WARN_ON(page_header(__pa(sptep))->role.level ==
1172                         PT_PAGE_TABLE_LEVEL);
1173                 drop_spte(kvm, sptep);
1174                 --kvm->stat.lpages;
1175                 return true;
1176         }
1177
1178         return false;
1179 }
1180
1181 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1182 {
1183         if (__drop_large_spte(vcpu->kvm, sptep))
1184                 kvm_flush_remote_tlbs(vcpu->kvm);
1185 }
1186
1187 /*
1188  * Write-protect on the specified @sptep, @pt_protect indicates whether
1189  * spte write-protection is caused by protecting shadow page table.
1190  *
1191  * Note: write protection is difference between dirty logging and spte
1192  * protection:
1193  * - for dirty logging, the spte can be set to writable at anytime if
1194  *   its dirty bitmap is properly set.
1195  * - for spte protection, the spte can be writable only after unsync-ing
1196  *   shadow page.
1197  *
1198  * Return true if tlb need be flushed.
1199  */
1200 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1201 {
1202         u64 spte = *sptep;
1203
1204         if (!is_writable_pte(spte) &&
1205               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1206                 return false;
1207
1208         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1209
1210         if (pt_protect)
1211                 spte &= ~SPTE_MMU_WRITEABLE;
1212         spte = spte & ~PT_WRITABLE_MASK;
1213
1214         return mmu_spte_update(sptep, spte);
1215 }
1216
1217 static bool __rmap_write_protect(struct kvm *kvm,
1218                                  struct kvm_rmap_head *rmap_head,
1219                                  bool pt_protect)
1220 {
1221         u64 *sptep;
1222         struct rmap_iterator iter;
1223         bool flush = false;
1224
1225         for_each_rmap_spte(rmap_head, &iter, sptep)
1226                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1227
1228         return flush;
1229 }
1230
1231 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1232 {
1233         u64 spte = *sptep;
1234
1235         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1236
1237         spte &= ~shadow_dirty_mask;
1238
1239         return mmu_spte_update(sptep, spte);
1240 }
1241
1242 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1243 {
1244         u64 *sptep;
1245         struct rmap_iterator iter;
1246         bool flush = false;
1247
1248         for_each_rmap_spte(rmap_head, &iter, sptep)
1249                 flush |= spte_clear_dirty(kvm, sptep);
1250
1251         return flush;
1252 }
1253
1254 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1255 {
1256         u64 spte = *sptep;
1257
1258         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1259
1260         spte |= shadow_dirty_mask;
1261
1262         return mmu_spte_update(sptep, spte);
1263 }
1264
1265 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1266 {
1267         u64 *sptep;
1268         struct rmap_iterator iter;
1269         bool flush = false;
1270
1271         for_each_rmap_spte(rmap_head, &iter, sptep)
1272                 flush |= spte_set_dirty(kvm, sptep);
1273
1274         return flush;
1275 }
1276
1277 /**
1278  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1279  * @kvm: kvm instance
1280  * @slot: slot to protect
1281  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1282  * @mask: indicates which pages we should protect
1283  *
1284  * Used when we do not need to care about huge page mappings: e.g. during dirty
1285  * logging we do not have any such mappings.
1286  */
1287 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1288                                      struct kvm_memory_slot *slot,
1289                                      gfn_t gfn_offset, unsigned long mask)
1290 {
1291         struct kvm_rmap_head *rmap_head;
1292
1293         while (mask) {
1294                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1295                                           PT_PAGE_TABLE_LEVEL, slot);
1296                 __rmap_write_protect(kvm, rmap_head, false);
1297
1298                 /* clear the first set bit */
1299                 mask &= mask - 1;
1300         }
1301 }
1302
1303 /**
1304  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1305  * @kvm: kvm instance
1306  * @slot: slot to clear D-bit
1307  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1308  * @mask: indicates which pages we should clear D-bit
1309  *
1310  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1311  */
1312 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1313                                      struct kvm_memory_slot *slot,
1314                                      gfn_t gfn_offset, unsigned long mask)
1315 {
1316         struct kvm_rmap_head *rmap_head;
1317
1318         while (mask) {
1319                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1320                                           PT_PAGE_TABLE_LEVEL, slot);
1321                 __rmap_clear_dirty(kvm, rmap_head);
1322
1323                 /* clear the first set bit */
1324                 mask &= mask - 1;
1325         }
1326 }
1327 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1328
1329 /**
1330  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1331  * PT level pages.
1332  *
1333  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1334  * enable dirty logging for them.
1335  *
1336  * Used when we do not need to care about huge page mappings: e.g. during dirty
1337  * logging we do not have any such mappings.
1338  */
1339 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1340                                 struct kvm_memory_slot *slot,
1341                                 gfn_t gfn_offset, unsigned long mask)
1342 {
1343         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1344                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1345                                 mask);
1346         else
1347                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1348 }
1349
1350 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1351                                     struct kvm_memory_slot *slot, u64 gfn)
1352 {
1353         struct kvm_rmap_head *rmap_head;
1354         int i;
1355         bool write_protected = false;
1356
1357         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1358                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1359                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1360         }
1361
1362         return write_protected;
1363 }
1364
1365 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1366 {
1367         struct kvm_memory_slot *slot;
1368
1369         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1370         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1371 }
1372
1373 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1374 {
1375         u64 *sptep;
1376         struct rmap_iterator iter;
1377         bool flush = false;
1378
1379         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1380                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1381
1382                 drop_spte(kvm, sptep);
1383                 flush = true;
1384         }
1385
1386         return flush;
1387 }
1388
1389 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1390                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1391                            unsigned long data)
1392 {
1393         return kvm_zap_rmapp(kvm, rmap_head);
1394 }
1395
1396 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398                              unsigned long data)
1399 {
1400         u64 *sptep;
1401         struct rmap_iterator iter;
1402         int need_flush = 0;
1403         u64 new_spte;
1404         pte_t *ptep = (pte_t *)data;
1405         kvm_pfn_t new_pfn;
1406
1407         WARN_ON(pte_huge(*ptep));
1408         new_pfn = pte_pfn(*ptep);
1409
1410 restart:
1411         for_each_rmap_spte(rmap_head, &iter, sptep) {
1412                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1413                              sptep, *sptep, gfn, level);
1414
1415                 need_flush = 1;
1416
1417                 if (pte_write(*ptep)) {
1418                         drop_spte(kvm, sptep);
1419                         goto restart;
1420                 } else {
1421                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1422                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1423
1424                         new_spte &= ~PT_WRITABLE_MASK;
1425                         new_spte &= ~SPTE_HOST_WRITEABLE;
1426                         new_spte &= ~shadow_accessed_mask;
1427
1428                         mmu_spte_clear_track_bits(sptep);
1429                         mmu_spte_set(sptep, new_spte);
1430                 }
1431         }
1432
1433         if (need_flush)
1434                 kvm_flush_remote_tlbs(kvm);
1435
1436         return 0;
1437 }
1438
1439 struct slot_rmap_walk_iterator {
1440         /* input fields. */
1441         struct kvm_memory_slot *slot;
1442         gfn_t start_gfn;
1443         gfn_t end_gfn;
1444         int start_level;
1445         int end_level;
1446
1447         /* output fields. */
1448         gfn_t gfn;
1449         struct kvm_rmap_head *rmap;
1450         int level;
1451
1452         /* private field. */
1453         struct kvm_rmap_head *end_rmap;
1454 };
1455
1456 static void
1457 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1458 {
1459         iterator->level = level;
1460         iterator->gfn = iterator->start_gfn;
1461         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1462         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1463                                            iterator->slot);
1464 }
1465
1466 static void
1467 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1468                     struct kvm_memory_slot *slot, int start_level,
1469                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1470 {
1471         iterator->slot = slot;
1472         iterator->start_level = start_level;
1473         iterator->end_level = end_level;
1474         iterator->start_gfn = start_gfn;
1475         iterator->end_gfn = end_gfn;
1476
1477         rmap_walk_init_level(iterator, iterator->start_level);
1478 }
1479
1480 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1481 {
1482         return !!iterator->rmap;
1483 }
1484
1485 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1486 {
1487         if (++iterator->rmap <= iterator->end_rmap) {
1488                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1489                 return;
1490         }
1491
1492         if (++iterator->level > iterator->end_level) {
1493                 iterator->rmap = NULL;
1494                 return;
1495         }
1496
1497         rmap_walk_init_level(iterator, iterator->level);
1498 }
1499
1500 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1501            _start_gfn, _end_gfn, _iter_)                                \
1502         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1503                                  _end_level_, _start_gfn, _end_gfn);    \
1504              slot_rmap_walk_okay(_iter_);                               \
1505              slot_rmap_walk_next(_iter_))
1506
1507 static int kvm_handle_hva_range(struct kvm *kvm,
1508                                 unsigned long start,
1509                                 unsigned long end,
1510                                 unsigned long data,
1511                                 int (*handler)(struct kvm *kvm,
1512                                                struct kvm_rmap_head *rmap_head,
1513                                                struct kvm_memory_slot *slot,
1514                                                gfn_t gfn,
1515                                                int level,
1516                                                unsigned long data))
1517 {
1518         struct kvm_memslots *slots;
1519         struct kvm_memory_slot *memslot;
1520         struct slot_rmap_walk_iterator iterator;
1521         int ret = 0;
1522         int i;
1523
1524         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1525                 slots = __kvm_memslots(kvm, i);
1526                 kvm_for_each_memslot(memslot, slots) {
1527                         unsigned long hva_start, hva_end;
1528                         gfn_t gfn_start, gfn_end;
1529
1530                         hva_start = max(start, memslot->userspace_addr);
1531                         hva_end = min(end, memslot->userspace_addr +
1532                                       (memslot->npages << PAGE_SHIFT));
1533                         if (hva_start >= hva_end)
1534                                 continue;
1535                         /*
1536                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1537                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1538                          */
1539                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1540                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1541
1542                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1543                                                  PT_MAX_HUGEPAGE_LEVEL,
1544                                                  gfn_start, gfn_end - 1,
1545                                                  &iterator)
1546                                 ret |= handler(kvm, iterator.rmap, memslot,
1547                                                iterator.gfn, iterator.level, data);
1548                 }
1549         }
1550
1551         return ret;
1552 }
1553
1554 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1555                           unsigned long data,
1556                           int (*handler)(struct kvm *kvm,
1557                                          struct kvm_rmap_head *rmap_head,
1558                                          struct kvm_memory_slot *slot,
1559                                          gfn_t gfn, int level,
1560                                          unsigned long data))
1561 {
1562         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1563 }
1564
1565 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1566 {
1567         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1568 }
1569
1570 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1571 {
1572         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1573 }
1574
1575 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1576 {
1577         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1578 }
1579
1580 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1581                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1582                          unsigned long data)
1583 {
1584         u64 *sptep;
1585         struct rmap_iterator uninitialized_var(iter);
1586         int young = 0;
1587
1588         BUG_ON(!shadow_accessed_mask);
1589
1590         for_each_rmap_spte(rmap_head, &iter, sptep) {
1591                 if (*sptep & shadow_accessed_mask) {
1592                         young = 1;
1593                         clear_bit((ffs(shadow_accessed_mask) - 1),
1594                                  (unsigned long *)sptep);
1595                 }
1596         }
1597
1598         trace_kvm_age_page(gfn, level, slot, young);
1599         return young;
1600 }
1601
1602 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1603                               struct kvm_memory_slot *slot, gfn_t gfn,
1604                               int level, unsigned long data)
1605 {
1606         u64 *sptep;
1607         struct rmap_iterator iter;
1608         int young = 0;
1609
1610         /*
1611          * If there's no access bit in the secondary pte set by the
1612          * hardware it's up to gup-fast/gup to set the access bit in
1613          * the primary pte or in the page structure.
1614          */
1615         if (!shadow_accessed_mask)
1616                 goto out;
1617
1618         for_each_rmap_spte(rmap_head, &iter, sptep) {
1619                 if (*sptep & shadow_accessed_mask) {
1620                         young = 1;
1621                         break;
1622                 }
1623         }
1624 out:
1625         return young;
1626 }
1627
1628 #define RMAP_RECYCLE_THRESHOLD 1000
1629
1630 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1631 {
1632         struct kvm_rmap_head *rmap_head;
1633         struct kvm_mmu_page *sp;
1634
1635         sp = page_header(__pa(spte));
1636
1637         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1638
1639         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1640         kvm_flush_remote_tlbs(vcpu->kvm);
1641 }
1642
1643 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1644 {
1645         /*
1646          * In case of absence of EPT Access and Dirty Bits supports,
1647          * emulate the accessed bit for EPT, by checking if this page has
1648          * an EPT mapping, and clearing it if it does. On the next access,
1649          * a new EPT mapping will be established.
1650          * This has some overhead, but not as much as the cost of swapping
1651          * out actively used pages or breaking up actively used hugepages.
1652          */
1653         if (!shadow_accessed_mask) {
1654                 /*
1655                  * We are holding the kvm->mmu_lock, and we are blowing up
1656                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1657                  * This is correct as long as we don't decouple the mmu_lock
1658                  * protected regions (like invalidate_range_start|end does).
1659                  */
1660                 kvm->mmu_notifier_seq++;
1661                 return kvm_handle_hva_range(kvm, start, end, 0,
1662                                             kvm_unmap_rmapp);
1663         }
1664
1665         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1666 }
1667
1668 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1669 {
1670         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1671 }
1672
1673 #ifdef MMU_DEBUG
1674 static int is_empty_shadow_page(u64 *spt)
1675 {
1676         u64 *pos;
1677         u64 *end;
1678
1679         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1680                 if (is_shadow_present_pte(*pos)) {
1681                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1682                                pos, *pos);
1683                         return 0;
1684                 }
1685         return 1;
1686 }
1687 #endif
1688
1689 /*
1690  * This value is the sum of all of the kvm instances's
1691  * kvm->arch.n_used_mmu_pages values.  We need a global,
1692  * aggregate version in order to make the slab shrinker
1693  * faster
1694  */
1695 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1696 {
1697         kvm->arch.n_used_mmu_pages += nr;
1698         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1699 }
1700
1701 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1702 {
1703         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1704         hlist_del(&sp->hash_link);
1705         list_del(&sp->link);
1706         free_page((unsigned long)sp->spt);
1707         if (!sp->role.direct)
1708                 free_page((unsigned long)sp->gfns);
1709         kmem_cache_free(mmu_page_header_cache, sp);
1710 }
1711
1712 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1713 {
1714         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1715 }
1716
1717 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1718                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1719 {
1720         if (!parent_pte)
1721                 return;
1722
1723         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1724 }
1725
1726 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1727                                        u64 *parent_pte)
1728 {
1729         pte_list_remove(parent_pte, &sp->parent_ptes);
1730 }
1731
1732 static void drop_parent_pte(struct kvm_mmu_page *sp,
1733                             u64 *parent_pte)
1734 {
1735         mmu_page_remove_parent_pte(sp, parent_pte);
1736         mmu_spte_clear_no_track(parent_pte);
1737 }
1738
1739 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1740 {
1741         struct kvm_mmu_page *sp;
1742
1743         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1744         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1745         if (!direct)
1746                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1747         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1748
1749         /*
1750          * The active_mmu_pages list is the FIFO list, do not move the
1751          * page until it is zapped. kvm_zap_obsolete_pages depends on
1752          * this feature. See the comments in kvm_zap_obsolete_pages().
1753          */
1754         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1755         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1756         return sp;
1757 }
1758
1759 static void mark_unsync(u64 *spte);
1760 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1761 {
1762         u64 *sptep;
1763         struct rmap_iterator iter;
1764
1765         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1766                 mark_unsync(sptep);
1767         }
1768 }
1769
1770 static void mark_unsync(u64 *spte)
1771 {
1772         struct kvm_mmu_page *sp;
1773         unsigned int index;
1774
1775         sp = page_header(__pa(spte));
1776         index = spte - sp->spt;
1777         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1778                 return;
1779         if (sp->unsync_children++)
1780                 return;
1781         kvm_mmu_mark_parents_unsync(sp);
1782 }
1783
1784 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1785                                struct kvm_mmu_page *sp)
1786 {
1787         return 0;
1788 }
1789
1790 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1791 {
1792 }
1793
1794 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1795                                  struct kvm_mmu_page *sp, u64 *spte,
1796                                  const void *pte)
1797 {
1798         WARN_ON(1);
1799 }
1800
1801 #define KVM_PAGE_ARRAY_NR 16
1802
1803 struct kvm_mmu_pages {
1804         struct mmu_page_and_offset {
1805                 struct kvm_mmu_page *sp;
1806                 unsigned int idx;
1807         } page[KVM_PAGE_ARRAY_NR];
1808         unsigned int nr;
1809 };
1810
1811 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1812                          int idx)
1813 {
1814         int i;
1815
1816         if (sp->unsync)
1817                 for (i=0; i < pvec->nr; i++)
1818                         if (pvec->page[i].sp == sp)
1819                                 return 0;
1820
1821         pvec->page[pvec->nr].sp = sp;
1822         pvec->page[pvec->nr].idx = idx;
1823         pvec->nr++;
1824         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1825 }
1826
1827 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1828 {
1829         --sp->unsync_children;
1830         WARN_ON((int)sp->unsync_children < 0);
1831         __clear_bit(idx, sp->unsync_child_bitmap);
1832 }
1833
1834 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1835                            struct kvm_mmu_pages *pvec)
1836 {
1837         int i, ret, nr_unsync_leaf = 0;
1838
1839         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1840                 struct kvm_mmu_page *child;
1841                 u64 ent = sp->spt[i];
1842
1843                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1844                         clear_unsync_child_bit(sp, i);
1845                         continue;
1846                 }
1847
1848                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1849
1850                 if (child->unsync_children) {
1851                         if (mmu_pages_add(pvec, child, i))
1852                                 return -ENOSPC;
1853
1854                         ret = __mmu_unsync_walk(child, pvec);
1855                         if (!ret) {
1856                                 clear_unsync_child_bit(sp, i);
1857                                 continue;
1858                         } else if (ret > 0) {
1859                                 nr_unsync_leaf += ret;
1860                         } else
1861                                 return ret;
1862                 } else if (child->unsync) {
1863                         nr_unsync_leaf++;
1864                         if (mmu_pages_add(pvec, child, i))
1865                                 return -ENOSPC;
1866                 } else
1867                         clear_unsync_child_bit(sp, i);
1868         }
1869
1870         return nr_unsync_leaf;
1871 }
1872
1873 #define INVALID_INDEX (-1)
1874
1875 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1876                            struct kvm_mmu_pages *pvec)
1877 {
1878         pvec->nr = 0;
1879         if (!sp->unsync_children)
1880                 return 0;
1881
1882         mmu_pages_add(pvec, sp, INVALID_INDEX);
1883         return __mmu_unsync_walk(sp, pvec);
1884 }
1885
1886 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1887 {
1888         WARN_ON(!sp->unsync);
1889         trace_kvm_mmu_sync_page(sp);
1890         sp->unsync = 0;
1891         --kvm->stat.mmu_unsync;
1892 }
1893
1894 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1895                                     struct list_head *invalid_list);
1896 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1897                                     struct list_head *invalid_list);
1898
1899 /*
1900  * NOTE: we should pay more attention on the zapped-obsolete page
1901  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1902  * since it has been deleted from active_mmu_pages but still can be found
1903  * at hast list.
1904  *
1905  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1906  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1907  * all the obsolete pages.
1908  */
1909 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1910         hlist_for_each_entry(_sp,                                       \
1911           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1912                 if ((_sp)->gfn != (_gfn)) {} else
1913
1914 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1915         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1916                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1917
1918 /* @sp->gfn should be write-protected at the call site */
1919 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1920                             struct list_head *invalid_list)
1921 {
1922         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1923                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1924                 return false;
1925         }
1926
1927         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1928                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1929                 return false;
1930         }
1931
1932         return true;
1933 }
1934
1935 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1936                                  struct list_head *invalid_list,
1937                                  bool remote_flush, bool local_flush)
1938 {
1939         if (!list_empty(invalid_list)) {
1940                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1941                 return;
1942         }
1943
1944         if (remote_flush)
1945                 kvm_flush_remote_tlbs(vcpu->kvm);
1946         else if (local_flush)
1947                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1948 }
1949
1950 static bool kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1951                                     struct kvm_mmu_page *sp)
1952 {
1953         LIST_HEAD(invalid_list);
1954         int ret;
1955
1956         ret = __kvm_sync_page(vcpu, sp, &invalid_list);
1957         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, ret);
1958
1959         return ret;
1960 }
1961
1962 #ifdef CONFIG_KVM_MMU_AUDIT
1963 #include "mmu_audit.c"
1964 #else
1965 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1966 static void mmu_audit_disable(void) { }
1967 #endif
1968
1969 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1970                          struct list_head *invalid_list)
1971 {
1972         kvm_unlink_unsync_page(vcpu->kvm, sp);
1973         return __kvm_sync_page(vcpu, sp, invalid_list);
1974 }
1975
1976 /* @gfn should be write-protected at the call site */
1977 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1978 {
1979         struct kvm_mmu_page *s;
1980         LIST_HEAD(invalid_list);
1981         bool flush = false;
1982
1983         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1984                 if (!s->unsync)
1985                         continue;
1986
1987                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1988                 flush |= kvm_sync_page(vcpu, s, &invalid_list);
1989         }
1990
1991         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
1992 }
1993
1994 struct mmu_page_path {
1995         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1996         unsigned int idx[PT64_ROOT_LEVEL];
1997 };
1998
1999 #define for_each_sp(pvec, sp, parents, i)                       \
2000                 for (i = mmu_pages_first(&pvec, &parents);      \
2001                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
2002                         i = mmu_pages_next(&pvec, &parents, i))
2003
2004 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2005                           struct mmu_page_path *parents,
2006                           int i)
2007 {
2008         int n;
2009
2010         for (n = i+1; n < pvec->nr; n++) {
2011                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2012                 unsigned idx = pvec->page[n].idx;
2013                 int level = sp->role.level;
2014
2015                 parents->idx[level-1] = idx;
2016                 if (level == PT_PAGE_TABLE_LEVEL)
2017                         break;
2018
2019                 parents->parent[level-2] = sp;
2020         }
2021
2022         return n;
2023 }
2024
2025 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2026                            struct mmu_page_path *parents)
2027 {
2028         struct kvm_mmu_page *sp;
2029         int level;
2030
2031         if (pvec->nr == 0)
2032                 return 0;
2033
2034         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2035
2036         sp = pvec->page[0].sp;
2037         level = sp->role.level;
2038         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2039
2040         parents->parent[level-2] = sp;
2041
2042         /* Also set up a sentinel.  Further entries in pvec are all
2043          * children of sp, so this element is never overwritten.
2044          */
2045         parents->parent[level-1] = NULL;
2046         return mmu_pages_next(pvec, parents, 0);
2047 }
2048
2049 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2050 {
2051         struct kvm_mmu_page *sp;
2052         unsigned int level = 0;
2053
2054         do {
2055                 unsigned int idx = parents->idx[level];
2056                 sp = parents->parent[level];
2057                 if (!sp)
2058                         return;
2059
2060                 WARN_ON(idx == INVALID_INDEX);
2061                 clear_unsync_child_bit(sp, idx);
2062                 level++;
2063         } while (!sp->unsync_children);
2064 }
2065
2066 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2067                               struct kvm_mmu_page *parent)
2068 {
2069         int i;
2070         struct kvm_mmu_page *sp;
2071         struct mmu_page_path parents;
2072         struct kvm_mmu_pages pages;
2073         LIST_HEAD(invalid_list);
2074
2075         while (mmu_unsync_walk(parent, &pages)) {
2076                 bool protected = false;
2077                 bool flush = false;
2078
2079                 for_each_sp(pages, sp, parents, i)
2080                         protected |= rmap_write_protect(vcpu, sp->gfn);
2081
2082                 if (protected)
2083                         kvm_flush_remote_tlbs(vcpu->kvm);
2084
2085                 for_each_sp(pages, sp, parents, i) {
2086                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2087                         mmu_pages_clear_parents(&parents);
2088                 }
2089                 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2090                 cond_resched_lock(&vcpu->kvm->mmu_lock);
2091         }
2092 }
2093
2094 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2095 {
2096         atomic_set(&sp->write_flooding_count,  0);
2097 }
2098
2099 static void clear_sp_write_flooding_count(u64 *spte)
2100 {
2101         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2102
2103         __clear_sp_write_flooding_count(sp);
2104 }
2105
2106 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2107 {
2108         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2109 }
2110
2111 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2112                                              gfn_t gfn,
2113                                              gva_t gaddr,
2114                                              unsigned level,
2115                                              int direct,
2116                                              unsigned access)
2117 {
2118         union kvm_mmu_page_role role;
2119         unsigned quadrant;
2120         struct kvm_mmu_page *sp;
2121         bool need_sync = false;
2122
2123         role = vcpu->arch.mmu.base_role;
2124         role.level = level;
2125         role.direct = direct;
2126         if (role.direct)
2127                 role.cr4_pae = 0;
2128         role.access = access;
2129         if (!vcpu->arch.mmu.direct_map
2130             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2131                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2132                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2133                 role.quadrant = quadrant;
2134         }
2135         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2136                 if (is_obsolete_sp(vcpu->kvm, sp))
2137                         continue;
2138
2139                 if (!need_sync && sp->unsync)
2140                         need_sync = true;
2141
2142                 if (sp->role.word != role.word)
2143                         continue;
2144
2145                 if (sp->unsync && !kvm_sync_page_transient(vcpu, sp))
2146                         break;
2147
2148                 if (sp->unsync_children)
2149                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2150
2151                 __clear_sp_write_flooding_count(sp);
2152                 trace_kvm_mmu_get_page(sp, false);
2153                 return sp;
2154         }
2155
2156         ++vcpu->kvm->stat.mmu_cache_miss;
2157
2158         sp = kvm_mmu_alloc_page(vcpu, direct);
2159
2160         sp->gfn = gfn;
2161         sp->role = role;
2162         hlist_add_head(&sp->hash_link,
2163                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2164         if (!direct) {
2165                 /*
2166                  * we should do write protection before syncing pages
2167                  * otherwise the content of the synced shadow page may
2168                  * be inconsistent with guest page table.
2169                  */
2170                 account_shadowed(vcpu->kvm, sp);
2171                 if (level == PT_PAGE_TABLE_LEVEL &&
2172                       rmap_write_protect(vcpu, gfn))
2173                         kvm_flush_remote_tlbs(vcpu->kvm);
2174
2175                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2176                         kvm_sync_pages(vcpu, gfn);
2177         }
2178         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2179         clear_page(sp->spt);
2180         trace_kvm_mmu_get_page(sp, true);
2181         return sp;
2182 }
2183
2184 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2185                              struct kvm_vcpu *vcpu, u64 addr)
2186 {
2187         iterator->addr = addr;
2188         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2189         iterator->level = vcpu->arch.mmu.shadow_root_level;
2190
2191         if (iterator->level == PT64_ROOT_LEVEL &&
2192             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2193             !vcpu->arch.mmu.direct_map)
2194                 --iterator->level;
2195
2196         if (iterator->level == PT32E_ROOT_LEVEL) {
2197                 iterator->shadow_addr
2198                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2199                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2200                 --iterator->level;
2201                 if (!iterator->shadow_addr)
2202                         iterator->level = 0;
2203         }
2204 }
2205
2206 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2207 {
2208         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2209                 return false;
2210
2211         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2212         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2213         return true;
2214 }
2215
2216 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2217                                u64 spte)
2218 {
2219         if (is_last_spte(spte, iterator->level)) {
2220                 iterator->level = 0;
2221                 return;
2222         }
2223
2224         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2225         --iterator->level;
2226 }
2227
2228 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2229 {
2230         return __shadow_walk_next(iterator, *iterator->sptep);
2231 }
2232
2233 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2234                              struct kvm_mmu_page *sp)
2235 {
2236         u64 spte;
2237
2238         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2239                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2240
2241         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2242                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2243
2244         mmu_spte_set(sptep, spte);
2245
2246         mmu_page_add_parent_pte(vcpu, sp, sptep);
2247
2248         if (sp->unsync_children || sp->unsync)
2249                 mark_unsync(sptep);
2250 }
2251
2252 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2253                                    unsigned direct_access)
2254 {
2255         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2256                 struct kvm_mmu_page *child;
2257
2258                 /*
2259                  * For the direct sp, if the guest pte's dirty bit
2260                  * changed form clean to dirty, it will corrupt the
2261                  * sp's access: allow writable in the read-only sp,
2262                  * so we should update the spte at this point to get
2263                  * a new sp with the correct access.
2264                  */
2265                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2266                 if (child->role.access == direct_access)
2267                         return;
2268
2269                 drop_parent_pte(child, sptep);
2270                 kvm_flush_remote_tlbs(vcpu->kvm);
2271         }
2272 }
2273
2274 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2275                              u64 *spte)
2276 {
2277         u64 pte;
2278         struct kvm_mmu_page *child;
2279
2280         pte = *spte;
2281         if (is_shadow_present_pte(pte)) {
2282                 if (is_last_spte(pte, sp->role.level)) {
2283                         drop_spte(kvm, spte);
2284                         if (is_large_pte(pte))
2285                                 --kvm->stat.lpages;
2286                 } else {
2287                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2288                         drop_parent_pte(child, spte);
2289                 }
2290                 return true;
2291         }
2292
2293         if (is_mmio_spte(pte))
2294                 mmu_spte_clear_no_track(spte);
2295
2296         return false;
2297 }
2298
2299 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2300                                          struct kvm_mmu_page *sp)
2301 {
2302         unsigned i;
2303
2304         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2305                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2306 }
2307
2308 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2309 {
2310         u64 *sptep;
2311         struct rmap_iterator iter;
2312
2313         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2314                 drop_parent_pte(sp, sptep);
2315 }
2316
2317 static int mmu_zap_unsync_children(struct kvm *kvm,
2318                                    struct kvm_mmu_page *parent,
2319                                    struct list_head *invalid_list)
2320 {
2321         int i, zapped = 0;
2322         struct mmu_page_path parents;
2323         struct kvm_mmu_pages pages;
2324
2325         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2326                 return 0;
2327
2328         while (mmu_unsync_walk(parent, &pages)) {
2329                 struct kvm_mmu_page *sp;
2330
2331                 for_each_sp(pages, sp, parents, i) {
2332                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2333                         mmu_pages_clear_parents(&parents);
2334                         zapped++;
2335                 }
2336         }
2337
2338         return zapped;
2339 }
2340
2341 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2342                                     struct list_head *invalid_list)
2343 {
2344         int ret;
2345
2346         trace_kvm_mmu_prepare_zap_page(sp);
2347         ++kvm->stat.mmu_shadow_zapped;
2348         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2349         kvm_mmu_page_unlink_children(kvm, sp);
2350         kvm_mmu_unlink_parents(kvm, sp);
2351
2352         if (!sp->role.invalid && !sp->role.direct)
2353                 unaccount_shadowed(kvm, sp);
2354
2355         if (sp->unsync)
2356                 kvm_unlink_unsync_page(kvm, sp);
2357         if (!sp->root_count) {
2358                 /* Count self */
2359                 ret++;
2360                 list_move(&sp->link, invalid_list);
2361                 kvm_mod_used_mmu_pages(kvm, -1);
2362         } else {
2363                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2364
2365                 /*
2366                  * The obsolete pages can not be used on any vcpus.
2367                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2368                  */
2369                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2370                         kvm_reload_remote_mmus(kvm);
2371         }
2372
2373         sp->role.invalid = 1;
2374         return ret;
2375 }
2376
2377 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2378                                     struct list_head *invalid_list)
2379 {
2380         struct kvm_mmu_page *sp, *nsp;
2381
2382         if (list_empty(invalid_list))
2383                 return;
2384
2385         /*
2386          * wmb: make sure everyone sees our modifications to the page tables
2387          * rmb: make sure we see changes to vcpu->mode
2388          */
2389         smp_mb();
2390
2391         /*
2392          * Wait for all vcpus to exit guest mode and/or lockless shadow
2393          * page table walks.
2394          */
2395         kvm_flush_remote_tlbs(kvm);
2396
2397         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2398                 WARN_ON(!sp->role.invalid || sp->root_count);
2399                 kvm_mmu_free_page(sp);
2400         }
2401 }
2402
2403 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2404                                         struct list_head *invalid_list)
2405 {
2406         struct kvm_mmu_page *sp;
2407
2408         if (list_empty(&kvm->arch.active_mmu_pages))
2409                 return false;
2410
2411         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2412                              struct kvm_mmu_page, link);
2413         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2414
2415         return true;
2416 }
2417
2418 /*
2419  * Changing the number of mmu pages allocated to the vm
2420  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2421  */
2422 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2423 {
2424         LIST_HEAD(invalid_list);
2425
2426         spin_lock(&kvm->mmu_lock);
2427
2428         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2429                 /* Need to free some mmu pages to achieve the goal. */
2430                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2431                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2432                                 break;
2433
2434                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2435                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2436         }
2437
2438         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2439
2440         spin_unlock(&kvm->mmu_lock);
2441 }
2442
2443 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2444 {
2445         struct kvm_mmu_page *sp;
2446         LIST_HEAD(invalid_list);
2447         int r;
2448
2449         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2450         r = 0;
2451         spin_lock(&kvm->mmu_lock);
2452         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2453                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2454                          sp->role.word);
2455                 r = 1;
2456                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2457         }
2458         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2459         spin_unlock(&kvm->mmu_lock);
2460
2461         return r;
2462 }
2463 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2464
2465 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2466 {
2467         trace_kvm_mmu_unsync_page(sp);
2468         ++vcpu->kvm->stat.mmu_unsync;
2469         sp->unsync = 1;
2470
2471         kvm_mmu_mark_parents_unsync(sp);
2472 }
2473
2474 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2475                                    bool can_unsync)
2476 {
2477         struct kvm_mmu_page *sp;
2478
2479         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2480                 return true;
2481
2482         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2483                 if (!can_unsync)
2484                         return true;
2485
2486                 if (sp->unsync)
2487                         continue;
2488
2489                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2490                 kvm_unsync_page(vcpu, sp);
2491         }
2492
2493         return false;
2494 }
2495
2496 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2497 {
2498         if (pfn_valid(pfn))
2499                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2500
2501         return true;
2502 }
2503
2504 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2505                     unsigned pte_access, int level,
2506                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2507                     bool can_unsync, bool host_writable)
2508 {
2509         u64 spte;
2510         int ret = 0;
2511
2512         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2513                 return 0;
2514
2515         spte = PT_PRESENT_MASK;
2516         if (!speculative)
2517                 spte |= shadow_accessed_mask;
2518
2519         if (pte_access & ACC_EXEC_MASK)
2520                 spte |= shadow_x_mask;
2521         else
2522                 spte |= shadow_nx_mask;
2523
2524         if (pte_access & ACC_USER_MASK)
2525                 spte |= shadow_user_mask;
2526
2527         if (level > PT_PAGE_TABLE_LEVEL)
2528                 spte |= PT_PAGE_SIZE_MASK;
2529         if (tdp_enabled)
2530                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2531                         kvm_is_mmio_pfn(pfn));
2532
2533         if (host_writable)
2534                 spte |= SPTE_HOST_WRITEABLE;
2535         else
2536                 pte_access &= ~ACC_WRITE_MASK;
2537
2538         spte |= (u64)pfn << PAGE_SHIFT;
2539
2540         if (pte_access & ACC_WRITE_MASK) {
2541
2542                 /*
2543                  * Other vcpu creates new sp in the window between
2544                  * mapping_level() and acquiring mmu-lock. We can
2545                  * allow guest to retry the access, the mapping can
2546                  * be fixed if guest refault.
2547                  */
2548                 if (level > PT_PAGE_TABLE_LEVEL &&
2549                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2550                         goto done;
2551
2552                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2553
2554                 /*
2555                  * Optimization: for pte sync, if spte was writable the hash
2556                  * lookup is unnecessary (and expensive). Write protection
2557                  * is responsibility of mmu_get_page / kvm_sync_page.
2558                  * Same reasoning can be applied to dirty page accounting.
2559                  */
2560                 if (!can_unsync && is_writable_pte(*sptep))
2561                         goto set_pte;
2562
2563                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2564                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2565                                  __func__, gfn);
2566                         ret = 1;
2567                         pte_access &= ~ACC_WRITE_MASK;
2568                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2569                 }
2570         }
2571
2572         if (pte_access & ACC_WRITE_MASK) {
2573                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2574                 spte |= shadow_dirty_mask;
2575         }
2576
2577 set_pte:
2578         if (mmu_spte_update(sptep, spte))
2579                 kvm_flush_remote_tlbs(vcpu->kvm);
2580 done:
2581         return ret;
2582 }
2583
2584 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2585                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2586                          bool speculative, bool host_writable)
2587 {
2588         int was_rmapped = 0;
2589         int rmap_count;
2590         bool emulate = false;
2591
2592         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2593                  *sptep, write_fault, gfn);
2594
2595         if (is_shadow_present_pte(*sptep)) {
2596                 /*
2597                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2598                  * the parent of the now unreachable PTE.
2599                  */
2600                 if (level > PT_PAGE_TABLE_LEVEL &&
2601                     !is_large_pte(*sptep)) {
2602                         struct kvm_mmu_page *child;
2603                         u64 pte = *sptep;
2604
2605                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2606                         drop_parent_pte(child, sptep);
2607                         kvm_flush_remote_tlbs(vcpu->kvm);
2608                 } else if (pfn != spte_to_pfn(*sptep)) {
2609                         pgprintk("hfn old %llx new %llx\n",
2610                                  spte_to_pfn(*sptep), pfn);
2611                         drop_spte(vcpu->kvm, sptep);
2612                         kvm_flush_remote_tlbs(vcpu->kvm);
2613                 } else
2614                         was_rmapped = 1;
2615         }
2616
2617         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2618               true, host_writable)) {
2619                 if (write_fault)
2620                         emulate = true;
2621                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2622         }
2623
2624         if (unlikely(is_mmio_spte(*sptep)))
2625                 emulate = true;
2626
2627         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2628         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2629                  is_large_pte(*sptep)? "2MB" : "4kB",
2630                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2631                  *sptep, sptep);
2632         if (!was_rmapped && is_large_pte(*sptep))
2633                 ++vcpu->kvm->stat.lpages;
2634
2635         if (is_shadow_present_pte(*sptep)) {
2636                 if (!was_rmapped) {
2637                         rmap_count = rmap_add(vcpu, sptep, gfn);
2638                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2639                                 rmap_recycle(vcpu, sptep, gfn);
2640                 }
2641         }
2642
2643         kvm_release_pfn_clean(pfn);
2644
2645         return emulate;
2646 }
2647
2648 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2649                                      bool no_dirty_log)
2650 {
2651         struct kvm_memory_slot *slot;
2652
2653         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2654         if (!slot)
2655                 return KVM_PFN_ERR_FAULT;
2656
2657         return gfn_to_pfn_memslot_atomic(slot, gfn);
2658 }
2659
2660 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2661                                     struct kvm_mmu_page *sp,
2662                                     u64 *start, u64 *end)
2663 {
2664         struct page *pages[PTE_PREFETCH_NUM];
2665         struct kvm_memory_slot *slot;
2666         unsigned access = sp->role.access;
2667         int i, ret;
2668         gfn_t gfn;
2669
2670         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2671         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2672         if (!slot)
2673                 return -1;
2674
2675         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2676         if (ret <= 0)
2677                 return -1;
2678
2679         for (i = 0; i < ret; i++, gfn++, start++)
2680                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2681                              page_to_pfn(pages[i]), true, true);
2682
2683         return 0;
2684 }
2685
2686 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2687                                   struct kvm_mmu_page *sp, u64 *sptep)
2688 {
2689         u64 *spte, *start = NULL;
2690         int i;
2691
2692         WARN_ON(!sp->role.direct);
2693
2694         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2695         spte = sp->spt + i;
2696
2697         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2698                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2699                         if (!start)
2700                                 continue;
2701                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2702                                 break;
2703                         start = NULL;
2704                 } else if (!start)
2705                         start = spte;
2706         }
2707 }
2708
2709 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2710 {
2711         struct kvm_mmu_page *sp;
2712
2713         /*
2714          * Since it's no accessed bit on EPT, it's no way to
2715          * distinguish between actually accessed translations
2716          * and prefetched, so disable pte prefetch if EPT is
2717          * enabled.
2718          */
2719         if (!shadow_accessed_mask)
2720                 return;
2721
2722         sp = page_header(__pa(sptep));
2723         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2724                 return;
2725
2726         __direct_pte_prefetch(vcpu, sp, sptep);
2727 }
2728
2729 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2730                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2731 {
2732         struct kvm_shadow_walk_iterator iterator;
2733         struct kvm_mmu_page *sp;
2734         int emulate = 0;
2735         gfn_t pseudo_gfn;
2736
2737         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2738                 return 0;
2739
2740         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2741                 if (iterator.level == level) {
2742                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2743                                                write, level, gfn, pfn, prefault,
2744                                                map_writable);
2745                         direct_pte_prefetch(vcpu, iterator.sptep);
2746                         ++vcpu->stat.pf_fixed;
2747                         break;
2748                 }
2749
2750                 drop_large_spte(vcpu, iterator.sptep);
2751                 if (!is_shadow_present_pte(*iterator.sptep)) {
2752                         u64 base_addr = iterator.addr;
2753
2754                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2755                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2756                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2757                                               iterator.level - 1, 1, ACC_ALL);
2758
2759                         link_shadow_page(vcpu, iterator.sptep, sp);
2760                 }
2761         }
2762         return emulate;
2763 }
2764
2765 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2766 {
2767         siginfo_t info;
2768
2769         info.si_signo   = SIGBUS;
2770         info.si_errno   = 0;
2771         info.si_code    = BUS_MCEERR_AR;
2772         info.si_addr    = (void __user *)address;
2773         info.si_addr_lsb = PAGE_SHIFT;
2774
2775         send_sig_info(SIGBUS, &info, tsk);
2776 }
2777
2778 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2779 {
2780         /*
2781          * Do not cache the mmio info caused by writing the readonly gfn
2782          * into the spte otherwise read access on readonly gfn also can
2783          * caused mmio page fault and treat it as mmio access.
2784          * Return 1 to tell kvm to emulate it.
2785          */
2786         if (pfn == KVM_PFN_ERR_RO_FAULT)
2787                 return 1;
2788
2789         if (pfn == KVM_PFN_ERR_HWPOISON) {
2790                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2791                 return 0;
2792         }
2793
2794         return -EFAULT;
2795 }
2796
2797 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2798                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2799                                         int *levelp)
2800 {
2801         kvm_pfn_t pfn = *pfnp;
2802         gfn_t gfn = *gfnp;
2803         int level = *levelp;
2804
2805         /*
2806          * Check if it's a transparent hugepage. If this would be an
2807          * hugetlbfs page, level wouldn't be set to
2808          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2809          * here.
2810          */
2811         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2812             level == PT_PAGE_TABLE_LEVEL &&
2813             PageTransCompound(pfn_to_page(pfn)) &&
2814             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2815                 unsigned long mask;
2816                 /*
2817                  * mmu_notifier_retry was successful and we hold the
2818                  * mmu_lock here, so the pmd can't become splitting
2819                  * from under us, and in turn
2820                  * __split_huge_page_refcount() can't run from under
2821                  * us and we can safely transfer the refcount from
2822                  * PG_tail to PG_head as we switch the pfn to tail to
2823                  * head.
2824                  */
2825                 *levelp = level = PT_DIRECTORY_LEVEL;
2826                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2827                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2828                 if (pfn & mask) {
2829                         gfn &= ~mask;
2830                         *gfnp = gfn;
2831                         kvm_release_pfn_clean(pfn);
2832                         pfn &= ~mask;
2833                         kvm_get_pfn(pfn);
2834                         *pfnp = pfn;
2835                 }
2836         }
2837 }
2838
2839 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2840                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2841 {
2842         /* The pfn is invalid, report the error! */
2843         if (unlikely(is_error_pfn(pfn))) {
2844                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2845                 return true;
2846         }
2847
2848         if (unlikely(is_noslot_pfn(pfn)))
2849                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2850
2851         return false;
2852 }
2853
2854 static bool page_fault_can_be_fast(u32 error_code)
2855 {
2856         /*
2857          * Do not fix the mmio spte with invalid generation number which
2858          * need to be updated by slow page fault path.
2859          */
2860         if (unlikely(error_code & PFERR_RSVD_MASK))
2861                 return false;
2862
2863         /*
2864          * #PF can be fast only if the shadow page table is present and it
2865          * is caused by write-protect, that means we just need change the
2866          * W bit of the spte which can be done out of mmu-lock.
2867          */
2868         if (!(error_code & PFERR_PRESENT_MASK) ||
2869               !(error_code & PFERR_WRITE_MASK))
2870                 return false;
2871
2872         return true;
2873 }
2874
2875 static bool
2876 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2877                         u64 *sptep, u64 spte)
2878 {
2879         gfn_t gfn;
2880
2881         WARN_ON(!sp->role.direct);
2882
2883         /*
2884          * The gfn of direct spte is stable since it is calculated
2885          * by sp->gfn.
2886          */
2887         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2888
2889         /*
2890          * Theoretically we could also set dirty bit (and flush TLB) here in
2891          * order to eliminate unnecessary PML logging. See comments in
2892          * set_spte. But fast_page_fault is very unlikely to happen with PML
2893          * enabled, so we do not do this. This might result in the same GPA
2894          * to be logged in PML buffer again when the write really happens, and
2895          * eventually to be called by mark_page_dirty twice. But it's also no
2896          * harm. This also avoids the TLB flush needed after setting dirty bit
2897          * so non-PML cases won't be impacted.
2898          *
2899          * Compare with set_spte where instead shadow_dirty_mask is set.
2900          */
2901         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2902                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2903
2904         return true;
2905 }
2906
2907 /*
2908  * Return value:
2909  * - true: let the vcpu to access on the same address again.
2910  * - false: let the real page fault path to fix it.
2911  */
2912 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2913                             u32 error_code)
2914 {
2915         struct kvm_shadow_walk_iterator iterator;
2916         struct kvm_mmu_page *sp;
2917         bool ret = false;
2918         u64 spte = 0ull;
2919
2920         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2921                 return false;
2922
2923         if (!page_fault_can_be_fast(error_code))
2924                 return false;
2925
2926         walk_shadow_page_lockless_begin(vcpu);
2927         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2928                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2929                         break;
2930
2931         /*
2932          * If the mapping has been changed, let the vcpu fault on the
2933          * same address again.
2934          */
2935         if (!is_shadow_present_pte(spte)) {
2936                 ret = true;
2937                 goto exit;
2938         }
2939
2940         sp = page_header(__pa(iterator.sptep));
2941         if (!is_last_spte(spte, sp->role.level))
2942                 goto exit;
2943
2944         /*
2945          * Check if it is a spurious fault caused by TLB lazily flushed.
2946          *
2947          * Need not check the access of upper level table entries since
2948          * they are always ACC_ALL.
2949          */
2950          if (is_writable_pte(spte)) {
2951                 ret = true;
2952                 goto exit;
2953         }
2954
2955         /*
2956          * Currently, to simplify the code, only the spte write-protected
2957          * by dirty-log can be fast fixed.
2958          */
2959         if (!spte_is_locklessly_modifiable(spte))
2960                 goto exit;
2961
2962         /*
2963          * Do not fix write-permission on the large spte since we only dirty
2964          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2965          * that means other pages are missed if its slot is dirty-logged.
2966          *
2967          * Instead, we let the slow page fault path create a normal spte to
2968          * fix the access.
2969          *
2970          * See the comments in kvm_arch_commit_memory_region().
2971          */
2972         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2973                 goto exit;
2974
2975         /*
2976          * Currently, fast page fault only works for direct mapping since
2977          * the gfn is not stable for indirect shadow page.
2978          * See Documentation/virtual/kvm/locking.txt to get more detail.
2979          */
2980         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2981 exit:
2982         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2983                               spte, ret);
2984         walk_shadow_page_lockless_end(vcpu);
2985
2986         return ret;
2987 }
2988
2989 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2990                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
2991 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
2992
2993 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2994                          gfn_t gfn, bool prefault)
2995 {
2996         int r;
2997         int level;
2998         bool force_pt_level = false;
2999         kvm_pfn_t pfn;
3000         unsigned long mmu_seq;
3001         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3002
3003         level = mapping_level(vcpu, gfn, &force_pt_level);
3004         if (likely(!force_pt_level)) {
3005                 /*
3006                  * This path builds a PAE pagetable - so we can map
3007                  * 2mb pages at maximum. Therefore check if the level
3008                  * is larger than that.
3009                  */
3010                 if (level > PT_DIRECTORY_LEVEL)
3011                         level = PT_DIRECTORY_LEVEL;
3012
3013                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3014         }
3015
3016         if (fast_page_fault(vcpu, v, level, error_code))
3017                 return 0;
3018
3019         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3020         smp_rmb();
3021
3022         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3023                 return 0;
3024
3025         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3026                 return r;
3027
3028         spin_lock(&vcpu->kvm->mmu_lock);
3029         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3030                 goto out_unlock;
3031         make_mmu_pages_available(vcpu);
3032         if (likely(!force_pt_level))
3033                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3034         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3035         spin_unlock(&vcpu->kvm->mmu_lock);
3036
3037         return r;
3038
3039 out_unlock:
3040         spin_unlock(&vcpu->kvm->mmu_lock);
3041         kvm_release_pfn_clean(pfn);
3042         return 0;
3043 }
3044
3045
3046 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3047 {
3048         int i;
3049         struct kvm_mmu_page *sp;
3050         LIST_HEAD(invalid_list);
3051
3052         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3053                 return;
3054
3055         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3056             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3057              vcpu->arch.mmu.direct_map)) {
3058                 hpa_t root = vcpu->arch.mmu.root_hpa;
3059
3060                 spin_lock(&vcpu->kvm->mmu_lock);
3061                 sp = page_header(root);
3062                 --sp->root_count;
3063                 if (!sp->root_count && sp->role.invalid) {
3064                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3065                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3066                 }
3067                 spin_unlock(&vcpu->kvm->mmu_lock);
3068                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3069                 return;
3070         }
3071
3072         spin_lock(&vcpu->kvm->mmu_lock);
3073         for (i = 0; i < 4; ++i) {
3074                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3075
3076                 if (root) {
3077                         root &= PT64_BASE_ADDR_MASK;
3078                         sp = page_header(root);
3079                         --sp->root_count;
3080                         if (!sp->root_count && sp->role.invalid)
3081                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3082                                                          &invalid_list);
3083                 }
3084                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3085         }
3086         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3087         spin_unlock(&vcpu->kvm->mmu_lock);
3088         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3089 }
3090
3091 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3092 {
3093         int ret = 0;
3094
3095         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3096                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3097                 ret = 1;
3098         }
3099
3100         return ret;
3101 }
3102
3103 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3104 {
3105         struct kvm_mmu_page *sp;
3106         unsigned i;
3107
3108         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3109                 spin_lock(&vcpu->kvm->mmu_lock);
3110                 make_mmu_pages_available(vcpu);
3111                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3112                 ++sp->root_count;
3113                 spin_unlock(&vcpu->kvm->mmu_lock);
3114                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3115         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3116                 for (i = 0; i < 4; ++i) {
3117                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3118
3119                         MMU_WARN_ON(VALID_PAGE(root));
3120                         spin_lock(&vcpu->kvm->mmu_lock);
3121                         make_mmu_pages_available(vcpu);
3122                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3123                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3124                         root = __pa(sp->spt);
3125                         ++sp->root_count;
3126                         spin_unlock(&vcpu->kvm->mmu_lock);
3127                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3128                 }
3129                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3130         } else
3131                 BUG();
3132
3133         return 0;
3134 }
3135
3136 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3137 {
3138         struct kvm_mmu_page *sp;
3139         u64 pdptr, pm_mask;
3140         gfn_t root_gfn;
3141         int i;
3142
3143         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3144
3145         if (mmu_check_root(vcpu, root_gfn))
3146                 return 1;
3147
3148         /*
3149          * Do we shadow a long mode page table? If so we need to
3150          * write-protect the guests page table root.
3151          */
3152         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3153                 hpa_t root = vcpu->arch.mmu.root_hpa;
3154
3155                 MMU_WARN_ON(VALID_PAGE(root));
3156
3157                 spin_lock(&vcpu->kvm->mmu_lock);
3158                 make_mmu_pages_available(vcpu);
3159                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3160                                       0, ACC_ALL);
3161                 root = __pa(sp->spt);
3162                 ++sp->root_count;
3163                 spin_unlock(&vcpu->kvm->mmu_lock);
3164                 vcpu->arch.mmu.root_hpa = root;
3165                 return 0;
3166         }
3167
3168         /*
3169          * We shadow a 32 bit page table. This may be a legacy 2-level
3170          * or a PAE 3-level page table. In either case we need to be aware that
3171          * the shadow page table may be a PAE or a long mode page table.
3172          */
3173         pm_mask = PT_PRESENT_MASK;
3174         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3175                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3176
3177         for (i = 0; i < 4; ++i) {
3178                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3179
3180                 MMU_WARN_ON(VALID_PAGE(root));
3181                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3182                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3183                         if (!is_present_gpte(pdptr)) {
3184                                 vcpu->arch.mmu.pae_root[i] = 0;
3185                                 continue;
3186                         }
3187                         root_gfn = pdptr >> PAGE_SHIFT;
3188                         if (mmu_check_root(vcpu, root_gfn))
3189                                 return 1;
3190                 }
3191                 spin_lock(&vcpu->kvm->mmu_lock);
3192                 make_mmu_pages_available(vcpu);
3193                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3194                                       0, ACC_ALL);
3195                 root = __pa(sp->spt);
3196                 ++sp->root_count;
3197                 spin_unlock(&vcpu->kvm->mmu_lock);
3198
3199                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3200         }
3201         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3202
3203         /*
3204          * If we shadow a 32 bit page table with a long mode page
3205          * table we enter this path.
3206          */
3207         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3208                 if (vcpu->arch.mmu.lm_root == NULL) {
3209                         /*
3210                          * The additional page necessary for this is only
3211                          * allocated on demand.
3212                          */
3213
3214                         u64 *lm_root;
3215
3216                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3217                         if (lm_root == NULL)
3218                                 return 1;
3219
3220                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3221
3222                         vcpu->arch.mmu.lm_root = lm_root;
3223                 }
3224
3225                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3226         }
3227
3228         return 0;
3229 }
3230
3231 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3232 {
3233         if (vcpu->arch.mmu.direct_map)
3234                 return mmu_alloc_direct_roots(vcpu);
3235         else
3236                 return mmu_alloc_shadow_roots(vcpu);
3237 }
3238
3239 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3240 {
3241         int i;
3242         struct kvm_mmu_page *sp;
3243
3244         if (vcpu->arch.mmu.direct_map)
3245                 return;
3246
3247         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3248                 return;
3249
3250         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3251         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3252         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3253                 hpa_t root = vcpu->arch.mmu.root_hpa;
3254                 sp = page_header(root);
3255                 mmu_sync_children(vcpu, sp);
3256                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3257                 return;
3258         }
3259         for (i = 0; i < 4; ++i) {
3260                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3261
3262                 if (root && VALID_PAGE(root)) {
3263                         root &= PT64_BASE_ADDR_MASK;
3264                         sp = page_header(root);
3265                         mmu_sync_children(vcpu, sp);
3266                 }
3267         }
3268         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3269 }
3270
3271 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3272 {
3273         spin_lock(&vcpu->kvm->mmu_lock);
3274         mmu_sync_roots(vcpu);
3275         spin_unlock(&vcpu->kvm->mmu_lock);
3276 }
3277 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3278
3279 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3280                                   u32 access, struct x86_exception *exception)
3281 {
3282         if (exception)
3283                 exception->error_code = 0;
3284         return vaddr;
3285 }
3286
3287 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3288                                          u32 access,
3289                                          struct x86_exception *exception)
3290 {
3291         if (exception)
3292                 exception->error_code = 0;
3293         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3294 }
3295
3296 static bool
3297 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3298 {
3299         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3300
3301         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3302                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3303 }
3304
3305 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3306 {
3307         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3308 }
3309
3310 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3311 {
3312         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3313 }
3314
3315 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3316 {
3317         if (direct)
3318                 return vcpu_match_mmio_gpa(vcpu, addr);
3319
3320         return vcpu_match_mmio_gva(vcpu, addr);
3321 }
3322
3323 /* return true if reserved bit is detected on spte. */
3324 static bool
3325 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3326 {
3327         struct kvm_shadow_walk_iterator iterator;
3328         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3329         int root, leaf;
3330         bool reserved = false;
3331
3332         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3333                 goto exit;
3334
3335         walk_shadow_page_lockless_begin(vcpu);
3336
3337         for (shadow_walk_init(&iterator, vcpu, addr),
3338                  leaf = root = iterator.level;
3339              shadow_walk_okay(&iterator);
3340              __shadow_walk_next(&iterator, spte)) {
3341                 spte = mmu_spte_get_lockless(iterator.sptep);
3342
3343                 sptes[leaf - 1] = spte;
3344                 leaf--;
3345
3346                 if (!is_shadow_present_pte(spte))
3347                         break;
3348
3349                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3350                                                     iterator.level);
3351         }
3352
3353         walk_shadow_page_lockless_end(vcpu);
3354
3355         if (reserved) {
3356                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3357                        __func__, addr);
3358                 while (root > leaf) {
3359                         pr_err("------ spte 0x%llx level %d.\n",
3360                                sptes[root - 1], root);
3361                         root--;
3362                 }
3363         }
3364 exit:
3365         *sptep = spte;
3366         return reserved;
3367 }
3368
3369 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3370 {
3371         u64 spte;
3372         bool reserved;
3373
3374         if (mmio_info_in_cache(vcpu, addr, direct))
3375                 return RET_MMIO_PF_EMULATE;
3376
3377         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3378         if (WARN_ON(reserved))
3379                 return RET_MMIO_PF_BUG;
3380
3381         if (is_mmio_spte(spte)) {
3382                 gfn_t gfn = get_mmio_spte_gfn(spte);
3383                 unsigned access = get_mmio_spte_access(spte);
3384
3385                 if (!check_mmio_spte(vcpu, spte))
3386                         return RET_MMIO_PF_INVALID;
3387
3388                 if (direct)
3389                         addr = 0;
3390
3391                 trace_handle_mmio_page_fault(addr, gfn, access);
3392                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3393                 return RET_MMIO_PF_EMULATE;
3394         }
3395
3396         /*
3397          * If the page table is zapped by other cpus, let CPU fault again on
3398          * the address.
3399          */
3400         return RET_MMIO_PF_RETRY;
3401 }
3402 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3403
3404 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3405                                          u32 error_code, gfn_t gfn)
3406 {
3407         if (unlikely(error_code & PFERR_RSVD_MASK))
3408                 return false;
3409
3410         if (!(error_code & PFERR_PRESENT_MASK) ||
3411               !(error_code & PFERR_WRITE_MASK))
3412                 return false;
3413
3414         /*
3415          * guest is writing the page which is write tracked which can
3416          * not be fixed by page fault handler.
3417          */
3418         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3419                 return true;
3420
3421         return false;
3422 }
3423
3424 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3425 {
3426         struct kvm_shadow_walk_iterator iterator;
3427         u64 spte;
3428
3429         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3430                 return;
3431
3432         walk_shadow_page_lockless_begin(vcpu);
3433         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3434                 clear_sp_write_flooding_count(iterator.sptep);
3435                 if (!is_shadow_present_pte(spte))
3436                         break;
3437         }
3438         walk_shadow_page_lockless_end(vcpu);
3439 }
3440
3441 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3442                                 u32 error_code, bool prefault)
3443 {
3444         gfn_t gfn = gva >> PAGE_SHIFT;
3445         int r;
3446
3447         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3448
3449         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3450                 return 1;
3451
3452         r = mmu_topup_memory_caches(vcpu);
3453         if (r)
3454                 return r;
3455
3456         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3457
3458
3459         return nonpaging_map(vcpu, gva & PAGE_MASK,
3460                              error_code, gfn, prefault);
3461 }
3462
3463 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3464 {
3465         struct kvm_arch_async_pf arch;
3466
3467         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3468         arch.gfn = gfn;
3469         arch.direct_map = vcpu->arch.mmu.direct_map;
3470         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3471
3472         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3473 }
3474
3475 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3476 {
3477         if (unlikely(!lapic_in_kernel(vcpu) ||
3478                      kvm_event_needs_reinjection(vcpu)))
3479                 return false;
3480
3481         return kvm_x86_ops->interrupt_allowed(vcpu);
3482 }
3483
3484 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3485                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3486 {
3487         struct kvm_memory_slot *slot;
3488         bool async;
3489
3490         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3491         async = false;
3492         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3493         if (!async)
3494                 return false; /* *pfn has correct page already */
3495
3496         if (!prefault && can_do_async_pf(vcpu)) {
3497                 trace_kvm_try_async_get_page(gva, gfn);
3498                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3499                         trace_kvm_async_pf_doublefault(gva, gfn);
3500                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3501                         return true;
3502                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3503                         return true;
3504         }
3505
3506         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3507         return false;
3508 }
3509
3510 static bool
3511 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3512 {
3513         int page_num = KVM_PAGES_PER_HPAGE(level);
3514
3515         gfn &= ~(page_num - 1);
3516
3517         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3518 }
3519
3520 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3521                           bool prefault)
3522 {
3523         kvm_pfn_t pfn;
3524         int r;
3525         int level;
3526         bool force_pt_level;
3527         gfn_t gfn = gpa >> PAGE_SHIFT;
3528         unsigned long mmu_seq;
3529         int write = error_code & PFERR_WRITE_MASK;
3530         bool map_writable;
3531
3532         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3533
3534         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3535                 return 1;
3536
3537         r = mmu_topup_memory_caches(vcpu);
3538         if (r)
3539                 return r;
3540
3541         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3542                                                            PT_DIRECTORY_LEVEL);
3543         level = mapping_level(vcpu, gfn, &force_pt_level);
3544         if (likely(!force_pt_level)) {
3545                 if (level > PT_DIRECTORY_LEVEL &&
3546                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3547                         level = PT_DIRECTORY_LEVEL;
3548                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3549         }
3550
3551         if (fast_page_fault(vcpu, gpa, level, error_code))
3552                 return 0;
3553
3554         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3555         smp_rmb();
3556
3557         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3558                 return 0;
3559
3560         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3561                 return r;
3562
3563         spin_lock(&vcpu->kvm->mmu_lock);
3564         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3565                 goto out_unlock;
3566         make_mmu_pages_available(vcpu);
3567         if (likely(!force_pt_level))
3568                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3569         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3570         spin_unlock(&vcpu->kvm->mmu_lock);
3571
3572         return r;
3573
3574 out_unlock:
3575         spin_unlock(&vcpu->kvm->mmu_lock);
3576         kvm_release_pfn_clean(pfn);
3577         return 0;
3578 }
3579
3580 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3581                                    struct kvm_mmu *context)
3582 {
3583         context->page_fault = nonpaging_page_fault;
3584         context->gva_to_gpa = nonpaging_gva_to_gpa;
3585         context->sync_page = nonpaging_sync_page;
3586         context->invlpg = nonpaging_invlpg;
3587         context->update_pte = nonpaging_update_pte;
3588         context->root_level = 0;
3589         context->shadow_root_level = PT32E_ROOT_LEVEL;
3590         context->root_hpa = INVALID_PAGE;
3591         context->direct_map = true;
3592         context->nx = false;
3593 }
3594
3595 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3596 {
3597         mmu_free_roots(vcpu);
3598 }
3599
3600 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3601 {
3602         return kvm_read_cr3(vcpu);
3603 }
3604
3605 static void inject_page_fault(struct kvm_vcpu *vcpu,
3606                               struct x86_exception *fault)
3607 {
3608         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3609 }
3610
3611 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3612                            unsigned access, int *nr_present)
3613 {
3614         if (unlikely(is_mmio_spte(*sptep))) {
3615                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3616                         mmu_spte_clear_no_track(sptep);
3617                         return true;
3618                 }
3619
3620                 (*nr_present)++;
3621                 mark_mmio_spte(vcpu, sptep, gfn, access);
3622                 return true;
3623         }
3624
3625         return false;
3626 }
3627
3628 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3629 {
3630         unsigned index;
3631
3632         index = level - 1;
3633         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3634         return mmu->last_pte_bitmap & (1 << index);
3635 }
3636
3637 #define PTTYPE_EPT 18 /* arbitrary */
3638 #define PTTYPE PTTYPE_EPT
3639 #include "paging_tmpl.h"
3640 #undef PTTYPE
3641
3642 #define PTTYPE 64
3643 #include "paging_tmpl.h"
3644 #undef PTTYPE
3645
3646 #define PTTYPE 32
3647 #include "paging_tmpl.h"
3648 #undef PTTYPE
3649
3650 static void
3651 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3652                         struct rsvd_bits_validate *rsvd_check,
3653                         int maxphyaddr, int level, bool nx, bool gbpages,
3654                         bool pse, bool amd)
3655 {
3656         u64 exb_bit_rsvd = 0;
3657         u64 gbpages_bit_rsvd = 0;
3658         u64 nonleaf_bit8_rsvd = 0;
3659
3660         rsvd_check->bad_mt_xwr = 0;
3661
3662         if (!nx)
3663                 exb_bit_rsvd = rsvd_bits(63, 63);
3664         if (!gbpages)
3665                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3666
3667         /*
3668          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3669          * leaf entries) on AMD CPUs only.
3670          */
3671         if (amd)
3672                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3673
3674         switch (level) {
3675         case PT32_ROOT_LEVEL:
3676                 /* no rsvd bits for 2 level 4K page table entries */
3677                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3678                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3679                 rsvd_check->rsvd_bits_mask[1][0] =
3680                         rsvd_check->rsvd_bits_mask[0][0];
3681
3682                 if (!pse) {
3683                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3684                         break;
3685                 }
3686
3687                 if (is_cpuid_PSE36())
3688                         /* 36bits PSE 4MB page */
3689                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3690                 else
3691                         /* 32 bits PSE 4MB page */
3692                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3693                 break;
3694         case PT32E_ROOT_LEVEL:
3695                 rsvd_check->rsvd_bits_mask[0][2] =
3696                         rsvd_bits(maxphyaddr, 63) |
3697                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3698                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3699                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3700                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3701                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3702                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3703                         rsvd_bits(maxphyaddr, 62) |
3704                         rsvd_bits(13, 20);              /* large page */
3705                 rsvd_check->rsvd_bits_mask[1][0] =
3706                         rsvd_check->rsvd_bits_mask[0][0];
3707                 break;
3708         case PT64_ROOT_LEVEL:
3709                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3710                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3711                         rsvd_bits(maxphyaddr, 51);
3712                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3713                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3714                         rsvd_bits(maxphyaddr, 51);
3715                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3716                         rsvd_bits(maxphyaddr, 51);
3717                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3718                         rsvd_bits(maxphyaddr, 51);
3719                 rsvd_check->rsvd_bits_mask[1][3] =
3720                         rsvd_check->rsvd_bits_mask[0][3];
3721                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3722                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3723                         rsvd_bits(13, 29);
3724                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3725                         rsvd_bits(maxphyaddr, 51) |
3726                         rsvd_bits(13, 20);              /* large page */
3727                 rsvd_check->rsvd_bits_mask[1][0] =
3728                         rsvd_check->rsvd_bits_mask[0][0];
3729                 break;
3730         }
3731 }
3732
3733 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3734                                   struct kvm_mmu *context)
3735 {
3736         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3737                                 cpuid_maxphyaddr(vcpu), context->root_level,
3738                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3739                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3740 }
3741
3742 static void
3743 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3744                             int maxphyaddr, bool execonly)
3745 {
3746         u64 bad_mt_xwr;
3747
3748         rsvd_check->rsvd_bits_mask[0][3] =
3749                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3750         rsvd_check->rsvd_bits_mask[0][2] =
3751                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3752         rsvd_check->rsvd_bits_mask[0][1] =
3753                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3754         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3755
3756         /* large page */
3757         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3758         rsvd_check->rsvd_bits_mask[1][2] =
3759                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3760         rsvd_check->rsvd_bits_mask[1][1] =
3761                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3762         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3763
3764         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3765         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3766         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3767         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3768         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3769         if (!execonly) {
3770                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3771                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3772         }
3773         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3774 }
3775
3776 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3777                 struct kvm_mmu *context, bool execonly)
3778 {
3779         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3780                                     cpuid_maxphyaddr(vcpu), execonly);
3781 }
3782
3783 /*
3784  * the page table on host is the shadow page table for the page
3785  * table in guest or amd nested guest, its mmu features completely
3786  * follow the features in guest.
3787  */
3788 void
3789 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3790 {
3791         /*
3792          * Passing "true" to the last argument is okay; it adds a check
3793          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3794          */
3795         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3796                                 boot_cpu_data.x86_phys_bits,
3797                                 context->shadow_root_level, context->nx,
3798                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3799                                 true);
3800 }
3801 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3802
3803 static inline bool boot_cpu_is_amd(void)
3804 {
3805         WARN_ON_ONCE(!tdp_enabled);
3806         return shadow_x_mask == 0;
3807 }
3808
3809 /*
3810  * the direct page table on host, use as much mmu features as
3811  * possible, however, kvm currently does not do execution-protection.
3812  */
3813 static void
3814 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3815                                 struct kvm_mmu *context)
3816 {
3817         if (boot_cpu_is_amd())
3818                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3819                                         boot_cpu_data.x86_phys_bits,
3820                                         context->shadow_root_level, false,
3821                                         cpu_has_gbpages, true, true);
3822         else
3823                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3824                                             boot_cpu_data.x86_phys_bits,
3825                                             false);
3826
3827 }
3828
3829 /*
3830  * as the comments in reset_shadow_zero_bits_mask() except it
3831  * is the shadow page table for intel nested guest.
3832  */
3833 static void
3834 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3835                                 struct kvm_mmu *context, bool execonly)
3836 {
3837         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3838                                     boot_cpu_data.x86_phys_bits, execonly);
3839 }
3840
3841 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3842                                       struct kvm_mmu *mmu, bool ept)
3843 {
3844         unsigned bit, byte, pfec;
3845         u8 map;
3846         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3847
3848         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3849         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3850         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3851                 pfec = byte << 1;
3852                 map = 0;
3853                 wf = pfec & PFERR_WRITE_MASK;
3854                 uf = pfec & PFERR_USER_MASK;
3855                 ff = pfec & PFERR_FETCH_MASK;
3856                 /*
3857                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3858                  * subject to SMAP restrictions, and cleared otherwise. The
3859                  * bit is only meaningful if the SMAP bit is set in CR4.
3860                  */
3861                 smapf = !(pfec & PFERR_RSVD_MASK);
3862                 for (bit = 0; bit < 8; ++bit) {
3863                         x = bit & ACC_EXEC_MASK;
3864                         w = bit & ACC_WRITE_MASK;
3865                         u = bit & ACC_USER_MASK;
3866
3867                         if (!ept) {
3868                                 /* Not really needed: !nx will cause pte.nx to fault */
3869                                 x |= !mmu->nx;
3870                                 /* Allow supervisor writes if !cr0.wp */
3871                                 w |= !is_write_protection(vcpu) && !uf;
3872                                 /* Disallow supervisor fetches of user code if cr4.smep */
3873                                 x &= !(cr4_smep && u && !uf);
3874
3875                                 /*
3876                                  * SMAP:kernel-mode data accesses from user-mode
3877                                  * mappings should fault. A fault is considered
3878                                  * as a SMAP violation if all of the following
3879                                  * conditions are ture:
3880                                  *   - X86_CR4_SMAP is set in CR4
3881                                  *   - An user page is accessed
3882                                  *   - Page fault in kernel mode
3883                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3884                                  *
3885                                  *   Here, we cover the first three conditions.
3886                                  *   The fourth is computed dynamically in
3887                                  *   permission_fault() and is in smapf.
3888                                  *
3889                                  *   Also, SMAP does not affect instruction
3890                                  *   fetches, add the !ff check here to make it
3891                                  *   clearer.
3892                                  */
3893                                 smap = cr4_smap && u && !uf && !ff;
3894                         } else
3895                                 /* Not really needed: no U/S accesses on ept  */
3896                                 u = 1;
3897
3898                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3899                                 (smapf && smap);
3900                         map |= fault << bit;
3901                 }
3902                 mmu->permissions[byte] = map;
3903         }
3904 }
3905
3906 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3907 {
3908         u8 map;
3909         unsigned level, root_level = mmu->root_level;
3910         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3911
3912         if (root_level == PT32E_ROOT_LEVEL)
3913                 --root_level;
3914         /* PT_PAGE_TABLE_LEVEL always terminates */
3915         map = 1 | (1 << ps_set_index);
3916         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3917                 if (level <= PT_PDPE_LEVEL
3918                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3919                         map |= 1 << (ps_set_index | (level - 1));
3920         }
3921         mmu->last_pte_bitmap = map;
3922 }
3923
3924 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3925                                          struct kvm_mmu *context,
3926                                          int level)
3927 {
3928         context->nx = is_nx(vcpu);
3929         context->root_level = level;
3930
3931         reset_rsvds_bits_mask(vcpu, context);
3932         update_permission_bitmask(vcpu, context, false);
3933         update_last_pte_bitmap(vcpu, context);
3934
3935         MMU_WARN_ON(!is_pae(vcpu));
3936         context->page_fault = paging64_page_fault;
3937         context->gva_to_gpa = paging64_gva_to_gpa;
3938         context->sync_page = paging64_sync_page;
3939         context->invlpg = paging64_invlpg;
3940         context->update_pte = paging64_update_pte;
3941         context->shadow_root_level = level;
3942         context->root_hpa = INVALID_PAGE;
3943         context->direct_map = false;
3944 }
3945
3946 static void paging64_init_context(struct kvm_vcpu *vcpu,
3947                                   struct kvm_mmu *context)
3948 {
3949         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3950 }
3951
3952 static void paging32_init_context(struct kvm_vcpu *vcpu,
3953                                   struct kvm_mmu *context)
3954 {
3955         context->nx = false;
3956         context->root_level = PT32_ROOT_LEVEL;
3957
3958         reset_rsvds_bits_mask(vcpu, context);
3959         update_permission_bitmask(vcpu, context, false);
3960         update_last_pte_bitmap(vcpu, context);
3961
3962         context->page_fault = paging32_page_fault;
3963         context->gva_to_gpa = paging32_gva_to_gpa;
3964         context->sync_page = paging32_sync_page;
3965         context->invlpg = paging32_invlpg;
3966         context->update_pte = paging32_update_pte;
3967         context->shadow_root_level = PT32E_ROOT_LEVEL;
3968         context->root_hpa = INVALID_PAGE;
3969         context->direct_map = false;
3970 }
3971
3972 static void paging32E_init_context(struct kvm_vcpu *vcpu,
3973                                    struct kvm_mmu *context)
3974 {
3975         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3976 }
3977
3978 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3979 {
3980         struct kvm_mmu *context = &vcpu->arch.mmu;
3981
3982         context->base_role.word = 0;
3983         context->base_role.smm = is_smm(vcpu);
3984         context->page_fault = tdp_page_fault;
3985         context->sync_page = nonpaging_sync_page;
3986         context->invlpg = nonpaging_invlpg;
3987         context->update_pte = nonpaging_update_pte;
3988         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3989         context->root_hpa = INVALID_PAGE;
3990         context->direct_map = true;
3991         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3992         context->get_cr3 = get_cr3;
3993         context->get_pdptr = kvm_pdptr_read;
3994         context->inject_page_fault = kvm_inject_page_fault;
3995
3996         if (!is_paging(vcpu)) {
3997                 context->nx = false;
3998                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3999                 context->root_level = 0;
4000         } else if (is_long_mode(vcpu)) {
4001                 context->nx = is_nx(vcpu);
4002                 context->root_level = PT64_ROOT_LEVEL;
4003                 reset_rsvds_bits_mask(vcpu, context);
4004                 context->gva_to_gpa = paging64_gva_to_gpa;
4005         } else if (is_pae(vcpu)) {
4006                 context->nx = is_nx(vcpu);
4007                 context->root_level = PT32E_ROOT_LEVEL;
4008                 reset_rsvds_bits_mask(vcpu, context);
4009                 context->gva_to_gpa = paging64_gva_to_gpa;
4010         } else {
4011                 context->nx = false;
4012                 context->root_level = PT32_ROOT_LEVEL;
4013                 reset_rsvds_bits_mask(vcpu, context);
4014                 context->gva_to_gpa = paging32_gva_to_gpa;
4015         }
4016
4017         update_permission_bitmask(vcpu, context, false);
4018         update_last_pte_bitmap(vcpu, context);
4019         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4020 }
4021
4022 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4023 {
4024         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4025         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4026         struct kvm_mmu *context = &vcpu->arch.mmu;
4027
4028         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4029
4030         if (!is_paging(vcpu))
4031                 nonpaging_init_context(vcpu, context);
4032         else if (is_long_mode(vcpu))
4033                 paging64_init_context(vcpu, context);
4034         else if (is_pae(vcpu))
4035                 paging32E_init_context(vcpu, context);
4036         else
4037                 paging32_init_context(vcpu, context);
4038
4039         context->base_role.nxe = is_nx(vcpu);
4040         context->base_role.cr4_pae = !!is_pae(vcpu);
4041         context->base_role.cr0_wp  = is_write_protection(vcpu);
4042         context->base_role.smep_andnot_wp
4043                 = smep && !is_write_protection(vcpu);
4044         context->base_role.smap_andnot_wp
4045                 = smap && !is_write_protection(vcpu);
4046         context->base_role.smm = is_smm(vcpu);
4047         reset_shadow_zero_bits_mask(vcpu, context);
4048 }
4049 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4050
4051 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4052 {
4053         struct kvm_mmu *context = &vcpu->arch.mmu;
4054
4055         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4056
4057         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4058
4059         context->nx = true;
4060         context->page_fault = ept_page_fault;
4061         context->gva_to_gpa = ept_gva_to_gpa;
4062         context->sync_page = ept_sync_page;
4063         context->invlpg = ept_invlpg;
4064         context->update_pte = ept_update_pte;
4065         context->root_level = context->shadow_root_level;
4066         context->root_hpa = INVALID_PAGE;
4067         context->direct_map = false;
4068
4069         update_permission_bitmask(vcpu, context, true);
4070         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4071         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4072 }
4073 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4074
4075 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4076 {
4077         struct kvm_mmu *context = &vcpu->arch.mmu;
4078
4079         kvm_init_shadow_mmu(vcpu);
4080         context->set_cr3           = kvm_x86_ops->set_cr3;
4081         context->get_cr3           = get_cr3;
4082         context->get_pdptr         = kvm_pdptr_read;
4083         context->inject_page_fault = kvm_inject_page_fault;
4084 }
4085
4086 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4087 {
4088         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4089
4090         g_context->get_cr3           = get_cr3;
4091         g_context->get_pdptr         = kvm_pdptr_read;
4092         g_context->inject_page_fault = kvm_inject_page_fault;
4093
4094         /*
4095          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4096          * L1's nested page tables (e.g. EPT12). The nested translation
4097          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4098          * L2's page tables as the first level of translation and L1's
4099          * nested page tables as the second level of translation. Basically
4100          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4101          */
4102         if (!is_paging(vcpu)) {
4103                 g_context->nx = false;
4104                 g_context->root_level = 0;
4105                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4106         } else if (is_long_mode(vcpu)) {
4107                 g_context->nx = is_nx(vcpu);
4108                 g_context->root_level = PT64_ROOT_LEVEL;
4109                 reset_rsvds_bits_mask(vcpu, g_context);
4110                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4111         } else if (is_pae(vcpu)) {
4112                 g_context->nx = is_nx(vcpu);
4113                 g_context->root_level = PT32E_ROOT_LEVEL;
4114                 reset_rsvds_bits_mask(vcpu, g_context);
4115                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4116         } else {
4117                 g_context->nx = false;
4118                 g_context->root_level = PT32_ROOT_LEVEL;
4119                 reset_rsvds_bits_mask(vcpu, g_context);
4120                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4121         }
4122
4123         update_permission_bitmask(vcpu, g_context, false);
4124         update_last_pte_bitmap(vcpu, g_context);
4125 }
4126
4127 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4128 {
4129         if (mmu_is_nested(vcpu))
4130                 init_kvm_nested_mmu(vcpu);
4131         else if (tdp_enabled)
4132                 init_kvm_tdp_mmu(vcpu);
4133         else
4134                 init_kvm_softmmu(vcpu);
4135 }
4136
4137 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4138 {
4139         kvm_mmu_unload(vcpu);
4140         init_kvm_mmu(vcpu);
4141 }
4142 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4143
4144 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4145 {
4146         int r;
4147
4148         r = mmu_topup_memory_caches(vcpu);
4149         if (r)
4150                 goto out;
4151         r = mmu_alloc_roots(vcpu);
4152         kvm_mmu_sync_roots(vcpu);
4153         if (r)
4154                 goto out;
4155         /* set_cr3() should ensure TLB has been flushed */
4156         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4157 out:
4158         return r;
4159 }
4160 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4161
4162 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4163 {
4164         mmu_free_roots(vcpu);
4165         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4166 }
4167 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4168
4169 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4170                                   struct kvm_mmu_page *sp, u64 *spte,
4171                                   const void *new)
4172 {
4173         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4174                 ++vcpu->kvm->stat.mmu_pde_zapped;
4175                 return;
4176         }
4177
4178         ++vcpu->kvm->stat.mmu_pte_updated;
4179         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4180 }
4181
4182 static bool need_remote_flush(u64 old, u64 new)
4183 {
4184         if (!is_shadow_present_pte(old))
4185                 return false;
4186         if (!is_shadow_present_pte(new))
4187                 return true;
4188         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4189                 return true;
4190         old ^= shadow_nx_mask;
4191         new ^= shadow_nx_mask;
4192         return (old & ~new & PT64_PERM_MASK) != 0;
4193 }
4194
4195 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4196                                     const u8 *new, int *bytes)
4197 {
4198         u64 gentry;
4199         int r;
4200
4201         /*
4202          * Assume that the pte write on a page table of the same type
4203          * as the current vcpu paging mode since we update the sptes only
4204          * when they have the same mode.
4205          */
4206         if (is_pae(vcpu) && *bytes == 4) {
4207                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4208                 *gpa &= ~(gpa_t)7;
4209                 *bytes = 8;
4210                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4211                 if (r)
4212                         gentry = 0;
4213                 new = (const u8 *)&gentry;
4214         }
4215
4216         switch (*bytes) {
4217         case 4:
4218                 gentry = *(const u32 *)new;
4219                 break;
4220         case 8:
4221                 gentry = *(const u64 *)new;
4222                 break;
4223         default:
4224                 gentry = 0;
4225                 break;
4226         }
4227
4228         return gentry;
4229 }
4230
4231 /*
4232  * If we're seeing too many writes to a page, it may no longer be a page table,
4233  * or we may be forking, in which case it is better to unmap the page.
4234  */
4235 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4236 {
4237         /*
4238          * Skip write-flooding detected for the sp whose level is 1, because
4239          * it can become unsync, then the guest page is not write-protected.
4240          */
4241         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4242                 return false;
4243
4244         atomic_inc(&sp->write_flooding_count);
4245         return atomic_read(&sp->write_flooding_count) >= 3;
4246 }
4247
4248 /*
4249  * Misaligned accesses are too much trouble to fix up; also, they usually
4250  * indicate a page is not used as a page table.
4251  */
4252 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4253                                     int bytes)
4254 {
4255         unsigned offset, pte_size, misaligned;
4256
4257         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4258                  gpa, bytes, sp->role.word);
4259
4260         offset = offset_in_page(gpa);
4261         pte_size = sp->role.cr4_pae ? 8 : 4;
4262
4263         /*
4264          * Sometimes, the OS only writes the last one bytes to update status
4265          * bits, for example, in linux, andb instruction is used in clear_bit().
4266          */
4267         if (!(offset & (pte_size - 1)) && bytes == 1)
4268                 return false;
4269
4270         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4271         misaligned |= bytes < 4;
4272
4273         return misaligned;
4274 }
4275
4276 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4277 {
4278         unsigned page_offset, quadrant;
4279         u64 *spte;
4280         int level;
4281
4282         page_offset = offset_in_page(gpa);
4283         level = sp->role.level;
4284         *nspte = 1;
4285         if (!sp->role.cr4_pae) {
4286                 page_offset <<= 1;      /* 32->64 */
4287                 /*
4288                  * A 32-bit pde maps 4MB while the shadow pdes map
4289                  * only 2MB.  So we need to double the offset again
4290                  * and zap two pdes instead of one.
4291                  */
4292                 if (level == PT32_ROOT_LEVEL) {
4293                         page_offset &= ~7; /* kill rounding error */
4294                         page_offset <<= 1;
4295                         *nspte = 2;
4296                 }
4297                 quadrant = page_offset >> PAGE_SHIFT;
4298                 page_offset &= ~PAGE_MASK;
4299                 if (quadrant != sp->role.quadrant)
4300                         return NULL;
4301         }
4302
4303         spte = &sp->spt[page_offset / sizeof(*spte)];
4304         return spte;
4305 }
4306
4307 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4308                               const u8 *new, int bytes)
4309 {
4310         gfn_t gfn = gpa >> PAGE_SHIFT;
4311         struct kvm_mmu_page *sp;
4312         LIST_HEAD(invalid_list);
4313         u64 entry, gentry, *spte;
4314         int npte;
4315         bool remote_flush, local_flush;
4316         union kvm_mmu_page_role mask = { };
4317
4318         mask.cr0_wp = 1;
4319         mask.cr4_pae = 1;
4320         mask.nxe = 1;
4321         mask.smep_andnot_wp = 1;
4322         mask.smap_andnot_wp = 1;
4323         mask.smm = 1;
4324
4325         /*
4326          * If we don't have indirect shadow pages, it means no page is
4327          * write-protected, so we can exit simply.
4328          */
4329         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4330                 return;
4331
4332         remote_flush = local_flush = false;
4333
4334         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4335
4336         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4337
4338         /*
4339          * No need to care whether allocation memory is successful
4340          * or not since pte prefetch is skiped if it does not have
4341          * enough objects in the cache.
4342          */
4343         mmu_topup_memory_caches(vcpu);
4344
4345         spin_lock(&vcpu->kvm->mmu_lock);
4346         ++vcpu->kvm->stat.mmu_pte_write;
4347         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4348
4349         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4350                 if (detect_write_misaligned(sp, gpa, bytes) ||
4351                       detect_write_flooding(sp)) {
4352                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4353                         ++vcpu->kvm->stat.mmu_flooded;
4354                         continue;
4355                 }
4356
4357                 spte = get_written_sptes(sp, gpa, &npte);
4358                 if (!spte)
4359                         continue;
4360
4361                 local_flush = true;
4362                 while (npte--) {
4363                         entry = *spte;
4364                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4365                         if (gentry &&
4366                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4367                               & mask.word) && rmap_can_add(vcpu))
4368                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4369                         if (need_remote_flush(entry, *spte))
4370                                 remote_flush = true;
4371                         ++spte;
4372                 }
4373         }
4374         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4375         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4376         spin_unlock(&vcpu->kvm->mmu_lock);
4377 }
4378
4379 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4380 {
4381         gpa_t gpa;
4382         int r;
4383
4384         if (vcpu->arch.mmu.direct_map)
4385                 return 0;
4386
4387         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4388
4389         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4390
4391         return r;
4392 }
4393 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4394
4395 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4396 {
4397         LIST_HEAD(invalid_list);
4398
4399         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4400                 return;
4401
4402         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4403                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4404                         break;
4405
4406                 ++vcpu->kvm->stat.mmu_recycled;
4407         }
4408         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4409 }
4410
4411 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4412                        void *insn, int insn_len)
4413 {
4414         int r, emulation_type = EMULTYPE_RETRY;
4415         enum emulation_result er;
4416         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4417
4418         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4419                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4420                 if (r == RET_MMIO_PF_EMULATE) {
4421                         emulation_type = 0;
4422                         goto emulate;
4423                 }
4424                 if (r == RET_MMIO_PF_RETRY)
4425                         return 1;
4426                 if (r < 0)
4427                         return r;
4428         }
4429
4430         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4431         if (r < 0)
4432                 return r;
4433         if (!r)
4434                 return 1;
4435
4436         if (mmio_info_in_cache(vcpu, cr2, direct))
4437                 emulation_type = 0;
4438 emulate:
4439         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4440
4441         switch (er) {
4442         case EMULATE_DONE:
4443                 return 1;
4444         case EMULATE_USER_EXIT:
4445                 ++vcpu->stat.mmio_exits;
4446                 /* fall through */
4447         case EMULATE_FAIL:
4448                 return 0;
4449         default:
4450                 BUG();
4451         }
4452 }
4453 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4454
4455 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4456 {
4457         vcpu->arch.mmu.invlpg(vcpu, gva);
4458         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4459         ++vcpu->stat.invlpg;
4460 }
4461 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4462
4463 void kvm_enable_tdp(void)
4464 {
4465         tdp_enabled = true;
4466 }
4467 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4468
4469 void kvm_disable_tdp(void)
4470 {
4471         tdp_enabled = false;
4472 }
4473 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4474
4475 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4476 {
4477         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4478         if (vcpu->arch.mmu.lm_root != NULL)
4479                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4480 }
4481
4482 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4483 {
4484         struct page *page;
4485         int i;
4486
4487         /*
4488          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4489          * Therefore we need to allocate shadow page tables in the first
4490          * 4GB of memory, which happens to fit the DMA32 zone.
4491          */
4492         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4493         if (!page)
4494                 return -ENOMEM;
4495
4496         vcpu->arch.mmu.pae_root = page_address(page);
4497         for (i = 0; i < 4; ++i)
4498                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4499
4500         return 0;
4501 }
4502
4503 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4504 {
4505         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4506         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4507         vcpu->arch.mmu.translate_gpa = translate_gpa;
4508         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4509
4510         return alloc_mmu_pages(vcpu);
4511 }
4512
4513 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4514 {
4515         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4516
4517         init_kvm_mmu(vcpu);
4518 }
4519
4520 void kvm_mmu_init_vm(struct kvm *kvm)
4521 {
4522         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4523
4524         node->track_write = kvm_mmu_pte_write;
4525         kvm_page_track_register_notifier(kvm, node);
4526 }
4527
4528 void kvm_mmu_uninit_vm(struct kvm *kvm)
4529 {
4530         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4531
4532         kvm_page_track_unregister_notifier(kvm, node);
4533 }
4534
4535 /* The return value indicates if tlb flush on all vcpus is needed. */
4536 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4537
4538 /* The caller should hold mmu-lock before calling this function. */
4539 static bool
4540 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4541                         slot_level_handler fn, int start_level, int end_level,
4542                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4543 {
4544         struct slot_rmap_walk_iterator iterator;
4545         bool flush = false;
4546
4547         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4548                         end_gfn, &iterator) {
4549                 if (iterator.rmap)
4550                         flush |= fn(kvm, iterator.rmap);
4551
4552                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4553                         if (flush && lock_flush_tlb) {
4554                                 kvm_flush_remote_tlbs(kvm);
4555                                 flush = false;
4556                         }
4557                         cond_resched_lock(&kvm->mmu_lock);
4558                 }
4559         }
4560
4561         if (flush && lock_flush_tlb) {
4562                 kvm_flush_remote_tlbs(kvm);
4563                 flush = false;
4564         }
4565
4566         return flush;
4567 }
4568
4569 static bool
4570 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4571                   slot_level_handler fn, int start_level, int end_level,
4572                   bool lock_flush_tlb)
4573 {
4574         return slot_handle_level_range(kvm, memslot, fn, start_level,
4575                         end_level, memslot->base_gfn,
4576                         memslot->base_gfn + memslot->npages - 1,
4577                         lock_flush_tlb);
4578 }
4579
4580 static bool
4581 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4582                       slot_level_handler fn, bool lock_flush_tlb)
4583 {
4584         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4585                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4586 }
4587
4588 static bool
4589 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4590                         slot_level_handler fn, bool lock_flush_tlb)
4591 {
4592         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4593                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4594 }
4595
4596 static bool
4597 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4598                  slot_level_handler fn, bool lock_flush_tlb)
4599 {
4600         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4601                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4602 }
4603
4604 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4605 {
4606         struct kvm_memslots *slots;
4607         struct kvm_memory_slot *memslot;
4608         int i;
4609
4610         spin_lock(&kvm->mmu_lock);
4611         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4612                 slots = __kvm_memslots(kvm, i);
4613                 kvm_for_each_memslot(memslot, slots) {
4614                         gfn_t start, end;
4615
4616                         start = max(gfn_start, memslot->base_gfn);
4617                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4618                         if (start >= end)
4619                                 continue;
4620
4621                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4622                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4623                                                 start, end - 1, true);
4624                 }
4625         }
4626
4627         spin_unlock(&kvm->mmu_lock);
4628 }
4629
4630 static bool slot_rmap_write_protect(struct kvm *kvm,
4631                                     struct kvm_rmap_head *rmap_head)
4632 {
4633         return __rmap_write_protect(kvm, rmap_head, false);
4634 }
4635
4636 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4637                                       struct kvm_memory_slot *memslot)
4638 {
4639         bool flush;
4640
4641         spin_lock(&kvm->mmu_lock);
4642         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4643                                       false);
4644         spin_unlock(&kvm->mmu_lock);
4645
4646         /*
4647          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4648          * which do tlb flush out of mmu-lock should be serialized by
4649          * kvm->slots_lock otherwise tlb flush would be missed.
4650          */
4651         lockdep_assert_held(&kvm->slots_lock);
4652
4653         /*
4654          * We can flush all the TLBs out of the mmu lock without TLB
4655          * corruption since we just change the spte from writable to
4656          * readonly so that we only need to care the case of changing
4657          * spte from present to present (changing the spte from present
4658          * to nonpresent will flush all the TLBs immediately), in other
4659          * words, the only case we care is mmu_spte_update() where we
4660          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4661          * instead of PT_WRITABLE_MASK, that means it does not depend
4662          * on PT_WRITABLE_MASK anymore.
4663          */
4664         if (flush)
4665                 kvm_flush_remote_tlbs(kvm);
4666 }
4667
4668 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4669                                          struct kvm_rmap_head *rmap_head)
4670 {
4671         u64 *sptep;
4672         struct rmap_iterator iter;
4673         int need_tlb_flush = 0;
4674         kvm_pfn_t pfn;
4675         struct kvm_mmu_page *sp;
4676
4677 restart:
4678         for_each_rmap_spte(rmap_head, &iter, sptep) {
4679                 sp = page_header(__pa(sptep));
4680                 pfn = spte_to_pfn(*sptep);
4681
4682                 /*
4683                  * We cannot do huge page mapping for indirect shadow pages,
4684                  * which are found on the last rmap (level = 1) when not using
4685                  * tdp; such shadow pages are synced with the page table in
4686                  * the guest, and the guest page table is using 4K page size
4687                  * mapping if the indirect sp has level = 1.
4688                  */
4689                 if (sp->role.direct &&
4690                         !kvm_is_reserved_pfn(pfn) &&
4691                         PageTransCompound(pfn_to_page(pfn))) {
4692                         drop_spte(kvm, sptep);
4693                         need_tlb_flush = 1;
4694                         goto restart;
4695                 }
4696         }
4697
4698         return need_tlb_flush;
4699 }
4700
4701 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4702                                    const struct kvm_memory_slot *memslot)
4703 {
4704         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4705         spin_lock(&kvm->mmu_lock);
4706         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4707                          kvm_mmu_zap_collapsible_spte, true);
4708         spin_unlock(&kvm->mmu_lock);
4709 }
4710
4711 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4712                                    struct kvm_memory_slot *memslot)
4713 {
4714         bool flush;
4715
4716         spin_lock(&kvm->mmu_lock);
4717         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4718         spin_unlock(&kvm->mmu_lock);
4719
4720         lockdep_assert_held(&kvm->slots_lock);
4721
4722         /*
4723          * It's also safe to flush TLBs out of mmu lock here as currently this
4724          * function is only used for dirty logging, in which case flushing TLB
4725          * out of mmu lock also guarantees no dirty pages will be lost in
4726          * dirty_bitmap.
4727          */
4728         if (flush)
4729                 kvm_flush_remote_tlbs(kvm);
4730 }
4731 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4732
4733 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4734                                         struct kvm_memory_slot *memslot)
4735 {
4736         bool flush;
4737
4738         spin_lock(&kvm->mmu_lock);
4739         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4740                                         false);
4741         spin_unlock(&kvm->mmu_lock);
4742
4743         /* see kvm_mmu_slot_remove_write_access */
4744         lockdep_assert_held(&kvm->slots_lock);
4745
4746         if (flush)
4747                 kvm_flush_remote_tlbs(kvm);
4748 }
4749 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4750
4751 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4752                             struct kvm_memory_slot *memslot)
4753 {
4754         bool flush;
4755
4756         spin_lock(&kvm->mmu_lock);
4757         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4758         spin_unlock(&kvm->mmu_lock);
4759
4760         lockdep_assert_held(&kvm->slots_lock);
4761
4762         /* see kvm_mmu_slot_leaf_clear_dirty */
4763         if (flush)
4764                 kvm_flush_remote_tlbs(kvm);
4765 }
4766 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4767
4768 #define BATCH_ZAP_PAGES 10
4769 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4770 {
4771         struct kvm_mmu_page *sp, *node;
4772         int batch = 0;
4773
4774 restart:
4775         list_for_each_entry_safe_reverse(sp, node,
4776               &kvm->arch.active_mmu_pages, link) {
4777                 int ret;
4778
4779                 /*
4780                  * No obsolete page exists before new created page since
4781                  * active_mmu_pages is the FIFO list.
4782                  */
4783                 if (!is_obsolete_sp(kvm, sp))
4784                         break;
4785
4786                 /*
4787                  * Since we are reversely walking the list and the invalid
4788                  * list will be moved to the head, skip the invalid page
4789                  * can help us to avoid the infinity list walking.
4790                  */
4791                 if (sp->role.invalid)
4792                         continue;
4793
4794                 /*
4795                  * Need not flush tlb since we only zap the sp with invalid
4796                  * generation number.
4797                  */
4798                 if (batch >= BATCH_ZAP_PAGES &&
4799                       cond_resched_lock(&kvm->mmu_lock)) {
4800                         batch = 0;
4801                         goto restart;
4802                 }
4803
4804                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4805                                 &kvm->arch.zapped_obsolete_pages);
4806                 batch += ret;
4807
4808                 if (ret)
4809                         goto restart;
4810         }
4811
4812         /*
4813          * Should flush tlb before free page tables since lockless-walking
4814          * may use the pages.
4815          */
4816         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4817 }
4818
4819 /*
4820  * Fast invalidate all shadow pages and use lock-break technique
4821  * to zap obsolete pages.
4822  *
4823  * It's required when memslot is being deleted or VM is being
4824  * destroyed, in these cases, we should ensure that KVM MMU does
4825  * not use any resource of the being-deleted slot or all slots
4826  * after calling the function.
4827  */
4828 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4829 {
4830         spin_lock(&kvm->mmu_lock);
4831         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4832         kvm->arch.mmu_valid_gen++;
4833
4834         /*
4835          * Notify all vcpus to reload its shadow page table
4836          * and flush TLB. Then all vcpus will switch to new
4837          * shadow page table with the new mmu_valid_gen.
4838          *
4839          * Note: we should do this under the protection of
4840          * mmu-lock, otherwise, vcpu would purge shadow page
4841          * but miss tlb flush.
4842          */
4843         kvm_reload_remote_mmus(kvm);
4844
4845         kvm_zap_obsolete_pages(kvm);
4846         spin_unlock(&kvm->mmu_lock);
4847 }
4848
4849 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4850 {
4851         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4852 }
4853
4854 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4855 {
4856         /*
4857          * The very rare case: if the generation-number is round,
4858          * zap all shadow pages.
4859          */
4860         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4861                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4862                 kvm_mmu_invalidate_zap_all_pages(kvm);
4863         }
4864 }
4865
4866 static unsigned long
4867 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4868 {
4869         struct kvm *kvm;
4870         int nr_to_scan = sc->nr_to_scan;
4871         unsigned long freed = 0;
4872
4873         spin_lock(&kvm_lock);
4874
4875         list_for_each_entry(kvm, &vm_list, vm_list) {
4876                 int idx;
4877                 LIST_HEAD(invalid_list);
4878
4879                 /*
4880                  * Never scan more than sc->nr_to_scan VM instances.
4881                  * Will not hit this condition practically since we do not try
4882                  * to shrink more than one VM and it is very unlikely to see
4883                  * !n_used_mmu_pages so many times.
4884                  */
4885                 if (!nr_to_scan--)
4886                         break;
4887                 /*
4888                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4889                  * here. We may skip a VM instance errorneosly, but we do not
4890                  * want to shrink a VM that only started to populate its MMU
4891                  * anyway.
4892                  */
4893                 if (!kvm->arch.n_used_mmu_pages &&
4894                       !kvm_has_zapped_obsolete_pages(kvm))
4895                         continue;
4896
4897                 idx = srcu_read_lock(&kvm->srcu);
4898                 spin_lock(&kvm->mmu_lock);
4899
4900                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4901                         kvm_mmu_commit_zap_page(kvm,
4902                               &kvm->arch.zapped_obsolete_pages);
4903                         goto unlock;
4904                 }
4905
4906                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4907                         freed++;
4908                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4909
4910 unlock:
4911                 spin_unlock(&kvm->mmu_lock);
4912                 srcu_read_unlock(&kvm->srcu, idx);
4913
4914                 /*
4915                  * unfair on small ones
4916                  * per-vm shrinkers cry out
4917                  * sadness comes quickly
4918                  */
4919                 list_move_tail(&kvm->vm_list, &vm_list);
4920                 break;
4921         }
4922
4923         spin_unlock(&kvm_lock);
4924         return freed;
4925 }
4926
4927 static unsigned long
4928 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4929 {
4930         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4931 }
4932
4933 static struct shrinker mmu_shrinker = {
4934         .count_objects = mmu_shrink_count,
4935         .scan_objects = mmu_shrink_scan,
4936         .seeks = DEFAULT_SEEKS * 10,
4937 };
4938
4939 static void mmu_destroy_caches(void)
4940 {
4941         if (pte_list_desc_cache)
4942                 kmem_cache_destroy(pte_list_desc_cache);
4943         if (mmu_page_header_cache)
4944                 kmem_cache_destroy(mmu_page_header_cache);
4945 }
4946
4947 int kvm_mmu_module_init(void)
4948 {
4949         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4950                                             sizeof(struct pte_list_desc),
4951                                             0, 0, NULL);
4952         if (!pte_list_desc_cache)
4953                 goto nomem;
4954
4955         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4956                                                   sizeof(struct kvm_mmu_page),
4957                                                   0, 0, NULL);
4958         if (!mmu_page_header_cache)
4959                 goto nomem;
4960
4961         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
4962                 goto nomem;
4963
4964         register_shrinker(&mmu_shrinker);
4965
4966         return 0;
4967
4968 nomem:
4969         mmu_destroy_caches();
4970         return -ENOMEM;
4971 }
4972
4973 /*
4974  * Caculate mmu pages needed for kvm.
4975  */
4976 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4977 {
4978         unsigned int nr_mmu_pages;
4979         unsigned int  nr_pages = 0;
4980         struct kvm_memslots *slots;
4981         struct kvm_memory_slot *memslot;
4982         int i;
4983
4984         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4985                 slots = __kvm_memslots(kvm, i);
4986
4987                 kvm_for_each_memslot(memslot, slots)
4988                         nr_pages += memslot->npages;
4989         }
4990
4991         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4992         nr_mmu_pages = max(nr_mmu_pages,
4993                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4994
4995         return nr_mmu_pages;
4996 }
4997
4998 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4999 {
5000         kvm_mmu_unload(vcpu);
5001         free_mmu_pages(vcpu);
5002         mmu_free_memory_caches(vcpu);
5003 }
5004
5005 void kvm_mmu_module_exit(void)
5006 {
5007         mmu_destroy_caches();
5008         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5009         unregister_shrinker(&mmu_shrinker);
5010         mmu_audit_disable();
5011 }