Merge tag 'v4.6-rc6' into x86/cpu, to refresh the tree
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25 #include "cpuid.h"
26
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/mm.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
39
40 #include <asm/page.h>
41 #include <asm/cmpxchg.h>
42 #include <asm/io.h>
43 #include <asm/vmx.h>
44 #include <asm/kvm_page_track.h>
45
46 /*
47  * When setting this variable to true it enables Two-Dimensional-Paging
48  * where the hardware walks 2 page tables:
49  * 1. the guest-virtual to guest-physical
50  * 2. while doing 1. it walks guest-physical to host-physical
51  * If the hardware supports that we don't need to do shadow paging.
52  */
53 bool tdp_enabled = false;
54
55 enum {
56         AUDIT_PRE_PAGE_FAULT,
57         AUDIT_POST_PAGE_FAULT,
58         AUDIT_PRE_PTE_WRITE,
59         AUDIT_POST_PTE_WRITE,
60         AUDIT_PRE_SYNC,
61         AUDIT_POST_SYNC
62 };
63
64 #undef MMU_DEBUG
65
66 #ifdef MMU_DEBUG
67 static bool dbg = 0;
68 module_param(dbg, bool, 0644);
69
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
73 #else
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
77 #endif
78
79 #define PTE_PREFETCH_NUM                8
80
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
83
84 #define PT64_LEVEL_BITS 9
85
86 #define PT64_LEVEL_SHIFT(level) \
87                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
88
89 #define PT64_INDEX(address, level)\
90         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
91
92
93 #define PT32_LEVEL_BITS 10
94
95 #define PT32_LEVEL_SHIFT(level) \
96                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
97
98 #define PT32_LVL_OFFSET_MASK(level) \
99         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100                                                 * PT32_LEVEL_BITS))) - 1))
101
102 #define PT32_INDEX(address, level)\
103         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
104
105
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111                                                 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114                                                 * PT64_LEVEL_BITS))) - 1))
115
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121                                             * PT32_LEVEL_BITS))) - 1))
122
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124                         | shadow_x_mask | shadow_nx_mask)
125
126 #define ACC_EXEC_MASK    1
127 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
128 #define ACC_USER_MASK    PT_USER_MASK
129 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
130
131 #include <trace/events/kvm.h>
132
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
135
136 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
138
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
140
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
143
144 struct pte_list_desc {
145         u64 *sptes[PTE_LIST_EXT];
146         struct pte_list_desc *more;
147 };
148
149 struct kvm_shadow_walk_iterator {
150         u64 addr;
151         hpa_t shadow_addr;
152         u64 *sptep;
153         int level;
154         unsigned index;
155 };
156
157 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
158         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
159              shadow_walk_okay(&(_walker));                      \
160              shadow_walk_next(&(_walker)))
161
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
163         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
164              shadow_walk_okay(&(_walker)) &&                            \
165                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
166              __shadow_walk_next(&(_walker), spte))
167
168 static struct kmem_cache *pte_list_desc_cache;
169 static struct kmem_cache *mmu_page_header_cache;
170 static struct percpu_counter kvm_total_used_mmu_pages;
171
172 static u64 __read_mostly shadow_nx_mask;
173 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask;
175 static u64 __read_mostly shadow_accessed_mask;
176 static u64 __read_mostly shadow_dirty_mask;
177 static u64 __read_mostly shadow_mmio_mask;
178
179 static void mmu_spte_set(u64 *sptep, u64 spte);
180 static void mmu_free_roots(struct kvm_vcpu *vcpu);
181
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
183 {
184         shadow_mmio_mask = mmio_mask;
185 }
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
187
188 /*
189  * the low bit of the generation number is always presumed to be zero.
190  * This disables mmio caching during memslot updates.  The concept is
191  * similar to a seqcount but instead of retrying the access we just punt
192  * and ignore the cache.
193  *
194  * spte bits 3-11 are used as bits 1-9 of the generation number,
195  * the bits 52-61 are used as bits 10-19 of the generation number.
196  */
197 #define MMIO_SPTE_GEN_LOW_SHIFT         2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT        52
199
200 #define MMIO_GEN_SHIFT                  20
201 #define MMIO_GEN_LOW_SHIFT              10
202 #define MMIO_GEN_LOW_MASK               ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK                   ((1 << MMIO_GEN_SHIFT) - 1)
204
205 static u64 generation_mmio_spte_mask(unsigned int gen)
206 {
207         u64 mask;
208
209         WARN_ON(gen & ~MMIO_GEN_MASK);
210
211         mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
212         mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
213         return mask;
214 }
215
216 static unsigned int get_mmio_spte_generation(u64 spte)
217 {
218         unsigned int gen;
219
220         spte &= ~shadow_mmio_mask;
221
222         gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
223         gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
224         return gen;
225 }
226
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
228 {
229         return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
230 }
231
232 static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
233                            unsigned access)
234 {
235         unsigned int gen = kvm_current_mmio_generation(vcpu);
236         u64 mask = generation_mmio_spte_mask(gen);
237
238         access &= ACC_WRITE_MASK | ACC_USER_MASK;
239         mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
240
241         trace_mark_mmio_spte(sptep, gfn, access, gen);
242         mmu_spte_set(sptep, mask);
243 }
244
245 static bool is_mmio_spte(u64 spte)
246 {
247         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
248 }
249
250 static gfn_t get_mmio_spte_gfn(u64 spte)
251 {
252         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
253         return (spte & ~mask) >> PAGE_SHIFT;
254 }
255
256 static unsigned get_mmio_spte_access(u64 spte)
257 {
258         u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
259         return (spte & ~mask) & ~PAGE_MASK;
260 }
261
262 static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
263                           kvm_pfn_t pfn, unsigned access)
264 {
265         if (unlikely(is_noslot_pfn(pfn))) {
266                 mark_mmio_spte(vcpu, sptep, gfn, access);
267                 return true;
268         }
269
270         return false;
271 }
272
273 static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
274 {
275         unsigned int kvm_gen, spte_gen;
276
277         kvm_gen = kvm_current_mmio_generation(vcpu);
278         spte_gen = get_mmio_spte_generation(spte);
279
280         trace_check_mmio_spte(spte, kvm_gen, spte_gen);
281         return likely(kvm_gen == spte_gen);
282 }
283
284 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
285                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
286 {
287         shadow_user_mask = user_mask;
288         shadow_accessed_mask = accessed_mask;
289         shadow_dirty_mask = dirty_mask;
290         shadow_nx_mask = nx_mask;
291         shadow_x_mask = x_mask;
292 }
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
294
295 static int is_cpuid_PSE36(void)
296 {
297         return 1;
298 }
299
300 static int is_nx(struct kvm_vcpu *vcpu)
301 {
302         return vcpu->arch.efer & EFER_NX;
303 }
304
305 static int is_shadow_present_pte(u64 pte)
306 {
307         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
308 }
309
310 static int is_large_pte(u64 pte)
311 {
312         return pte & PT_PAGE_SIZE_MASK;
313 }
314
315 static int is_last_spte(u64 pte, int level)
316 {
317         if (level == PT_PAGE_TABLE_LEVEL)
318                 return 1;
319         if (is_large_pte(pte))
320                 return 1;
321         return 0;
322 }
323
324 static kvm_pfn_t spte_to_pfn(u64 pte)
325 {
326         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
327 }
328
329 static gfn_t pse36_gfn_delta(u32 gpte)
330 {
331         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
332
333         return (gpte & PT32_DIR_PSE36_MASK) << shift;
334 }
335
336 #ifdef CONFIG_X86_64
337 static void __set_spte(u64 *sptep, u64 spte)
338 {
339         *sptep = spte;
340 }
341
342 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343 {
344         *sptep = spte;
345 }
346
347 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348 {
349         return xchg(sptep, spte);
350 }
351
352 static u64 __get_spte_lockless(u64 *sptep)
353 {
354         return ACCESS_ONCE(*sptep);
355 }
356 #else
357 union split_spte {
358         struct {
359                 u32 spte_low;
360                 u32 spte_high;
361         };
362         u64 spte;
363 };
364
365 static void count_spte_clear(u64 *sptep, u64 spte)
366 {
367         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
368
369         if (is_shadow_present_pte(spte))
370                 return;
371
372         /* Ensure the spte is completely set before we increase the count */
373         smp_wmb();
374         sp->clear_spte_count++;
375 }
376
377 static void __set_spte(u64 *sptep, u64 spte)
378 {
379         union split_spte *ssptep, sspte;
380
381         ssptep = (union split_spte *)sptep;
382         sspte = (union split_spte)spte;
383
384         ssptep->spte_high = sspte.spte_high;
385
386         /*
387          * If we map the spte from nonpresent to present, We should store
388          * the high bits firstly, then set present bit, so cpu can not
389          * fetch this spte while we are setting the spte.
390          */
391         smp_wmb();
392
393         ssptep->spte_low = sspte.spte_low;
394 }
395
396 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397 {
398         union split_spte *ssptep, sspte;
399
400         ssptep = (union split_spte *)sptep;
401         sspte = (union split_spte)spte;
402
403         ssptep->spte_low = sspte.spte_low;
404
405         /*
406          * If we map the spte from present to nonpresent, we should clear
407          * present bit firstly to avoid vcpu fetch the old high bits.
408          */
409         smp_wmb();
410
411         ssptep->spte_high = sspte.spte_high;
412         count_spte_clear(sptep, spte);
413 }
414
415 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416 {
417         union split_spte *ssptep, sspte, orig;
418
419         ssptep = (union split_spte *)sptep;
420         sspte = (union split_spte)spte;
421
422         /* xchg acts as a barrier before the setting of the high bits */
423         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424         orig.spte_high = ssptep->spte_high;
425         ssptep->spte_high = sspte.spte_high;
426         count_spte_clear(sptep, spte);
427
428         return orig.spte;
429 }
430
431 /*
432  * The idea using the light way get the spte on x86_32 guest is from
433  * gup_get_pte(arch/x86/mm/gup.c).
434  *
435  * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436  * coalesces them and we are running out of the MMU lock.  Therefore
437  * we need to protect against in-progress updates of the spte.
438  *
439  * Reading the spte while an update is in progress may get the old value
440  * for the high part of the spte.  The race is fine for a present->non-present
441  * change (because the high part of the spte is ignored for non-present spte),
442  * but for a present->present change we must reread the spte.
443  *
444  * All such changes are done in two steps (present->non-present and
445  * non-present->present), hence it is enough to count the number of
446  * present->non-present updates: if it changed while reading the spte,
447  * we might have hit the race.  This is done using clear_spte_count.
448  */
449 static u64 __get_spte_lockless(u64 *sptep)
450 {
451         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
452         union split_spte spte, *orig = (union split_spte *)sptep;
453         int count;
454
455 retry:
456         count = sp->clear_spte_count;
457         smp_rmb();
458
459         spte.spte_low = orig->spte_low;
460         smp_rmb();
461
462         spte.spte_high = orig->spte_high;
463         smp_rmb();
464
465         if (unlikely(spte.spte_low != orig->spte_low ||
466               count != sp->clear_spte_count))
467                 goto retry;
468
469         return spte.spte;
470 }
471 #endif
472
473 static bool spte_is_locklessly_modifiable(u64 spte)
474 {
475         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
476                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
477 }
478
479 static bool spte_has_volatile_bits(u64 spte)
480 {
481         /*
482          * Always atomically update spte if it can be updated
483          * out of mmu-lock, it can ensure dirty bit is not lost,
484          * also, it can help us to get a stable is_writable_pte()
485          * to ensure tlb flush is not missed.
486          */
487         if (spte_is_locklessly_modifiable(spte))
488                 return true;
489
490         if (!shadow_accessed_mask)
491                 return false;
492
493         if (!is_shadow_present_pte(spte))
494                 return false;
495
496         if ((spte & shadow_accessed_mask) &&
497               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
498                 return false;
499
500         return true;
501 }
502
503 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
504 {
505         return (old_spte & bit_mask) && !(new_spte & bit_mask);
506 }
507
508 static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
509 {
510         return (old_spte & bit_mask) != (new_spte & bit_mask);
511 }
512
513 /* Rules for using mmu_spte_set:
514  * Set the sptep from nonpresent to present.
515  * Note: the sptep being assigned *must* be either not present
516  * or in a state where the hardware will not attempt to update
517  * the spte.
518  */
519 static void mmu_spte_set(u64 *sptep, u64 new_spte)
520 {
521         WARN_ON(is_shadow_present_pte(*sptep));
522         __set_spte(sptep, new_spte);
523 }
524
525 /* Rules for using mmu_spte_update:
526  * Update the state bits, it means the mapped pfn is not changged.
527  *
528  * Whenever we overwrite a writable spte with a read-only one we
529  * should flush remote TLBs. Otherwise rmap_write_protect
530  * will find a read-only spte, even though the writable spte
531  * might be cached on a CPU's TLB, the return value indicates this
532  * case.
533  */
534 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
535 {
536         u64 old_spte = *sptep;
537         bool ret = false;
538
539         WARN_ON(!is_shadow_present_pte(new_spte));
540
541         if (!is_shadow_present_pte(old_spte)) {
542                 mmu_spte_set(sptep, new_spte);
543                 return ret;
544         }
545
546         if (!spte_has_volatile_bits(old_spte))
547                 __update_clear_spte_fast(sptep, new_spte);
548         else
549                 old_spte = __update_clear_spte_slow(sptep, new_spte);
550
551         /*
552          * For the spte updated out of mmu-lock is safe, since
553          * we always atomically update it, see the comments in
554          * spte_has_volatile_bits().
555          */
556         if (spte_is_locklessly_modifiable(old_spte) &&
557               !is_writable_pte(new_spte))
558                 ret = true;
559
560         if (!shadow_accessed_mask) {
561                 /*
562                  * We don't set page dirty when dropping non-writable spte.
563                  * So do it now if the new spte is becoming non-writable.
564                  */
565                 if (ret)
566                         kvm_set_pfn_dirty(spte_to_pfn(old_spte));
567                 return ret;
568         }
569
570         /*
571          * Flush TLB when accessed/dirty bits are changed in the page tables,
572          * to guarantee consistency between TLB and page tables.
573          */
574         if (spte_is_bit_changed(old_spte, new_spte,
575                                 shadow_accessed_mask | shadow_dirty_mask))
576                 ret = true;
577
578         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
579                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
580         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
581                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
582
583         return ret;
584 }
585
586 /*
587  * Rules for using mmu_spte_clear_track_bits:
588  * It sets the sptep from present to nonpresent, and track the
589  * state bits, it is used to clear the last level sptep.
590  */
591 static int mmu_spte_clear_track_bits(u64 *sptep)
592 {
593         kvm_pfn_t pfn;
594         u64 old_spte = *sptep;
595
596         if (!spte_has_volatile_bits(old_spte))
597                 __update_clear_spte_fast(sptep, 0ull);
598         else
599                 old_spte = __update_clear_spte_slow(sptep, 0ull);
600
601         if (!is_shadow_present_pte(old_spte))
602                 return 0;
603
604         pfn = spte_to_pfn(old_spte);
605
606         /*
607          * KVM does not hold the refcount of the page used by
608          * kvm mmu, before reclaiming the page, we should
609          * unmap it from mmu first.
610          */
611         WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
612
613         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
614                 kvm_set_pfn_accessed(pfn);
615         if (old_spte & (shadow_dirty_mask ? shadow_dirty_mask :
616                                             PT_WRITABLE_MASK))
617                 kvm_set_pfn_dirty(pfn);
618         return 1;
619 }
620
621 /*
622  * Rules for using mmu_spte_clear_no_track:
623  * Directly clear spte without caring the state bits of sptep,
624  * it is used to set the upper level spte.
625  */
626 static void mmu_spte_clear_no_track(u64 *sptep)
627 {
628         __update_clear_spte_fast(sptep, 0ull);
629 }
630
631 static u64 mmu_spte_get_lockless(u64 *sptep)
632 {
633         return __get_spte_lockless(sptep);
634 }
635
636 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
637 {
638         /*
639          * Prevent page table teardown by making any free-er wait during
640          * kvm_flush_remote_tlbs() IPI to all active vcpus.
641          */
642         local_irq_disable();
643
644         /*
645          * Make sure a following spte read is not reordered ahead of the write
646          * to vcpu->mode.
647          */
648         smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
649 }
650
651 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
652 {
653         /*
654          * Make sure the write to vcpu->mode is not reordered in front of
655          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
656          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
657          */
658         smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
659         local_irq_enable();
660 }
661
662 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
663                                   struct kmem_cache *base_cache, int min)
664 {
665         void *obj;
666
667         if (cache->nobjs >= min)
668                 return 0;
669         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
670                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
671                 if (!obj)
672                         return -ENOMEM;
673                 cache->objects[cache->nobjs++] = obj;
674         }
675         return 0;
676 }
677
678 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
679 {
680         return cache->nobjs;
681 }
682
683 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
684                                   struct kmem_cache *cache)
685 {
686         while (mc->nobjs)
687                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
688 }
689
690 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
691                                        int min)
692 {
693         void *page;
694
695         if (cache->nobjs >= min)
696                 return 0;
697         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
698                 page = (void *)__get_free_page(GFP_KERNEL);
699                 if (!page)
700                         return -ENOMEM;
701                 cache->objects[cache->nobjs++] = page;
702         }
703         return 0;
704 }
705
706 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
707 {
708         while (mc->nobjs)
709                 free_page((unsigned long)mc->objects[--mc->nobjs]);
710 }
711
712 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
713 {
714         int r;
715
716         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
717                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
718         if (r)
719                 goto out;
720         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
721         if (r)
722                 goto out;
723         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
724                                    mmu_page_header_cache, 4);
725 out:
726         return r;
727 }
728
729 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
730 {
731         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
732                                 pte_list_desc_cache);
733         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
734         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
735                                 mmu_page_header_cache);
736 }
737
738 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
739 {
740         void *p;
741
742         BUG_ON(!mc->nobjs);
743         p = mc->objects[--mc->nobjs];
744         return p;
745 }
746
747 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
748 {
749         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
750 }
751
752 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
753 {
754         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
755 }
756
757 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
758 {
759         if (!sp->role.direct)
760                 return sp->gfns[index];
761
762         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
763 }
764
765 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
766 {
767         if (sp->role.direct)
768                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
769         else
770                 sp->gfns[index] = gfn;
771 }
772
773 /*
774  * Return the pointer to the large page information for a given gfn,
775  * handling slots that are not large page aligned.
776  */
777 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
778                                               struct kvm_memory_slot *slot,
779                                               int level)
780 {
781         unsigned long idx;
782
783         idx = gfn_to_index(gfn, slot->base_gfn, level);
784         return &slot->arch.lpage_info[level - 2][idx];
785 }
786
787 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
788                                             gfn_t gfn, int count)
789 {
790         struct kvm_lpage_info *linfo;
791         int i;
792
793         for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
794                 linfo = lpage_info_slot(gfn, slot, i);
795                 linfo->disallow_lpage += count;
796                 WARN_ON(linfo->disallow_lpage < 0);
797         }
798 }
799
800 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
801 {
802         update_gfn_disallow_lpage_count(slot, gfn, 1);
803 }
804
805 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
806 {
807         update_gfn_disallow_lpage_count(slot, gfn, -1);
808 }
809
810 static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
811 {
812         struct kvm_memslots *slots;
813         struct kvm_memory_slot *slot;
814         gfn_t gfn;
815
816         kvm->arch.indirect_shadow_pages++;
817         gfn = sp->gfn;
818         slots = kvm_memslots_for_spte_role(kvm, sp->role);
819         slot = __gfn_to_memslot(slots, gfn);
820
821         /* the non-leaf shadow pages are keeping readonly. */
822         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
823                 return kvm_slot_page_track_add_page(kvm, slot, gfn,
824                                                     KVM_PAGE_TRACK_WRITE);
825
826         kvm_mmu_gfn_disallow_lpage(slot, gfn);
827 }
828
829 static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
830 {
831         struct kvm_memslots *slots;
832         struct kvm_memory_slot *slot;
833         gfn_t gfn;
834
835         kvm->arch.indirect_shadow_pages--;
836         gfn = sp->gfn;
837         slots = kvm_memslots_for_spte_role(kvm, sp->role);
838         slot = __gfn_to_memslot(slots, gfn);
839         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
840                 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
841                                                        KVM_PAGE_TRACK_WRITE);
842
843         kvm_mmu_gfn_allow_lpage(slot, gfn);
844 }
845
846 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
847                                           struct kvm_memory_slot *slot)
848 {
849         struct kvm_lpage_info *linfo;
850
851         if (slot) {
852                 linfo = lpage_info_slot(gfn, slot, level);
853                 return !!linfo->disallow_lpage;
854         }
855
856         return true;
857 }
858
859 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
860                                         int level)
861 {
862         struct kvm_memory_slot *slot;
863
864         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
865         return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
866 }
867
868 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
869 {
870         unsigned long page_size;
871         int i, ret = 0;
872
873         page_size = kvm_host_page_size(kvm, gfn);
874
875         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
876                 if (page_size >= KVM_HPAGE_SIZE(i))
877                         ret = i;
878                 else
879                         break;
880         }
881
882         return ret;
883 }
884
885 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
886                                           bool no_dirty_log)
887 {
888         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
889                 return false;
890         if (no_dirty_log && slot->dirty_bitmap)
891                 return false;
892
893         return true;
894 }
895
896 static struct kvm_memory_slot *
897 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
898                             bool no_dirty_log)
899 {
900         struct kvm_memory_slot *slot;
901
902         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
903         if (!memslot_valid_for_gpte(slot, no_dirty_log))
904                 slot = NULL;
905
906         return slot;
907 }
908
909 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
910                          bool *force_pt_level)
911 {
912         int host_level, level, max_level;
913         struct kvm_memory_slot *slot;
914
915         if (unlikely(*force_pt_level))
916                 return PT_PAGE_TABLE_LEVEL;
917
918         slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
919         *force_pt_level = !memslot_valid_for_gpte(slot, true);
920         if (unlikely(*force_pt_level))
921                 return PT_PAGE_TABLE_LEVEL;
922
923         host_level = host_mapping_level(vcpu->kvm, large_gfn);
924
925         if (host_level == PT_PAGE_TABLE_LEVEL)
926                 return host_level;
927
928         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
929
930         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
931                 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
932                         break;
933
934         return level - 1;
935 }
936
937 /*
938  * About rmap_head encoding:
939  *
940  * If the bit zero of rmap_head->val is clear, then it points to the only spte
941  * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
942  * pte_list_desc containing more mappings.
943  */
944
945 /*
946  * Returns the number of pointers in the rmap chain, not counting the new one.
947  */
948 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
949                         struct kvm_rmap_head *rmap_head)
950 {
951         struct pte_list_desc *desc;
952         int i, count = 0;
953
954         if (!rmap_head->val) {
955                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
956                 rmap_head->val = (unsigned long)spte;
957         } else if (!(rmap_head->val & 1)) {
958                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
959                 desc = mmu_alloc_pte_list_desc(vcpu);
960                 desc->sptes[0] = (u64 *)rmap_head->val;
961                 desc->sptes[1] = spte;
962                 rmap_head->val = (unsigned long)desc | 1;
963                 ++count;
964         } else {
965                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
966                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
967                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
968                         desc = desc->more;
969                         count += PTE_LIST_EXT;
970                 }
971                 if (desc->sptes[PTE_LIST_EXT-1]) {
972                         desc->more = mmu_alloc_pte_list_desc(vcpu);
973                         desc = desc->more;
974                 }
975                 for (i = 0; desc->sptes[i]; ++i)
976                         ++count;
977                 desc->sptes[i] = spte;
978         }
979         return count;
980 }
981
982 static void
983 pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
984                            struct pte_list_desc *desc, int i,
985                            struct pte_list_desc *prev_desc)
986 {
987         int j;
988
989         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
990                 ;
991         desc->sptes[i] = desc->sptes[j];
992         desc->sptes[j] = NULL;
993         if (j != 0)
994                 return;
995         if (!prev_desc && !desc->more)
996                 rmap_head->val = (unsigned long)desc->sptes[0];
997         else
998                 if (prev_desc)
999                         prev_desc->more = desc->more;
1000                 else
1001                         rmap_head->val = (unsigned long)desc->more | 1;
1002         mmu_free_pte_list_desc(desc);
1003 }
1004
1005 static void pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
1006 {
1007         struct pte_list_desc *desc;
1008         struct pte_list_desc *prev_desc;
1009         int i;
1010
1011         if (!rmap_head->val) {
1012                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
1013                 BUG();
1014         } else if (!(rmap_head->val & 1)) {
1015                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
1016                 if ((u64 *)rmap_head->val != spte) {
1017                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
1018                         BUG();
1019                 }
1020                 rmap_head->val = 0;
1021         } else {
1022                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
1023                 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024                 prev_desc = NULL;
1025                 while (desc) {
1026                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
1027                                 if (desc->sptes[i] == spte) {
1028                                         pte_list_desc_remove_entry(rmap_head,
1029                                                         desc, i, prev_desc);
1030                                         return;
1031                                 }
1032                         }
1033                         prev_desc = desc;
1034                         desc = desc->more;
1035                 }
1036                 pr_err("pte_list_remove: %p many->many\n", spte);
1037                 BUG();
1038         }
1039 }
1040
1041 static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1042                                            struct kvm_memory_slot *slot)
1043 {
1044         unsigned long idx;
1045
1046         idx = gfn_to_index(gfn, slot->base_gfn, level);
1047         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
1048 }
1049
1050 static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1051                                          struct kvm_mmu_page *sp)
1052 {
1053         struct kvm_memslots *slots;
1054         struct kvm_memory_slot *slot;
1055
1056         slots = kvm_memslots_for_spte_role(kvm, sp->role);
1057         slot = __gfn_to_memslot(slots, gfn);
1058         return __gfn_to_rmap(gfn, sp->role.level, slot);
1059 }
1060
1061 static bool rmap_can_add(struct kvm_vcpu *vcpu)
1062 {
1063         struct kvm_mmu_memory_cache *cache;
1064
1065         cache = &vcpu->arch.mmu_pte_list_desc_cache;
1066         return mmu_memory_cache_free_objects(cache);
1067 }
1068
1069 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1070 {
1071         struct kvm_mmu_page *sp;
1072         struct kvm_rmap_head *rmap_head;
1073
1074         sp = page_header(__pa(spte));
1075         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1076         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1077         return pte_list_add(vcpu, spte, rmap_head);
1078 }
1079
1080 static void rmap_remove(struct kvm *kvm, u64 *spte)
1081 {
1082         struct kvm_mmu_page *sp;
1083         gfn_t gfn;
1084         struct kvm_rmap_head *rmap_head;
1085
1086         sp = page_header(__pa(spte));
1087         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1088         rmap_head = gfn_to_rmap(kvm, gfn, sp);
1089         pte_list_remove(spte, rmap_head);
1090 }
1091
1092 /*
1093  * Used by the following functions to iterate through the sptes linked by a
1094  * rmap.  All fields are private and not assumed to be used outside.
1095  */
1096 struct rmap_iterator {
1097         /* private fields */
1098         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1099         int pos;                        /* index of the sptep */
1100 };
1101
1102 /*
1103  * Iteration must be started by this function.  This should also be used after
1104  * removing/dropping sptes from the rmap link because in such cases the
1105  * information in the itererator may not be valid.
1106  *
1107  * Returns sptep if found, NULL otherwise.
1108  */
1109 static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1110                            struct rmap_iterator *iter)
1111 {
1112         u64 *sptep;
1113
1114         if (!rmap_head->val)
1115                 return NULL;
1116
1117         if (!(rmap_head->val & 1)) {
1118                 iter->desc = NULL;
1119                 sptep = (u64 *)rmap_head->val;
1120                 goto out;
1121         }
1122
1123         iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1124         iter->pos = 0;
1125         sptep = iter->desc->sptes[iter->pos];
1126 out:
1127         BUG_ON(!is_shadow_present_pte(*sptep));
1128         return sptep;
1129 }
1130
1131 /*
1132  * Must be used with a valid iterator: e.g. after rmap_get_first().
1133  *
1134  * Returns sptep if found, NULL otherwise.
1135  */
1136 static u64 *rmap_get_next(struct rmap_iterator *iter)
1137 {
1138         u64 *sptep;
1139
1140         if (iter->desc) {
1141                 if (iter->pos < PTE_LIST_EXT - 1) {
1142                         ++iter->pos;
1143                         sptep = iter->desc->sptes[iter->pos];
1144                         if (sptep)
1145                                 goto out;
1146                 }
1147
1148                 iter->desc = iter->desc->more;
1149
1150                 if (iter->desc) {
1151                         iter->pos = 0;
1152                         /* desc->sptes[0] cannot be NULL */
1153                         sptep = iter->desc->sptes[iter->pos];
1154                         goto out;
1155                 }
1156         }
1157
1158         return NULL;
1159 out:
1160         BUG_ON(!is_shadow_present_pte(*sptep));
1161         return sptep;
1162 }
1163
1164 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)                 \
1165         for (_spte_ = rmap_get_first(_rmap_head_, _iter_);              \
1166              _spte_; _spte_ = rmap_get_next(_iter_))
1167
1168 static void drop_spte(struct kvm *kvm, u64 *sptep)
1169 {
1170         if (mmu_spte_clear_track_bits(sptep))
1171                 rmap_remove(kvm, sptep);
1172 }
1173
1174
1175 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1176 {
1177         if (is_large_pte(*sptep)) {
1178                 WARN_ON(page_header(__pa(sptep))->role.level ==
1179                         PT_PAGE_TABLE_LEVEL);
1180                 drop_spte(kvm, sptep);
1181                 --kvm->stat.lpages;
1182                 return true;
1183         }
1184
1185         return false;
1186 }
1187
1188 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1189 {
1190         if (__drop_large_spte(vcpu->kvm, sptep))
1191                 kvm_flush_remote_tlbs(vcpu->kvm);
1192 }
1193
1194 /*
1195  * Write-protect on the specified @sptep, @pt_protect indicates whether
1196  * spte write-protection is caused by protecting shadow page table.
1197  *
1198  * Note: write protection is difference between dirty logging and spte
1199  * protection:
1200  * - for dirty logging, the spte can be set to writable at anytime if
1201  *   its dirty bitmap is properly set.
1202  * - for spte protection, the spte can be writable only after unsync-ing
1203  *   shadow page.
1204  *
1205  * Return true if tlb need be flushed.
1206  */
1207 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1208 {
1209         u64 spte = *sptep;
1210
1211         if (!is_writable_pte(spte) &&
1212               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1213                 return false;
1214
1215         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1216
1217         if (pt_protect)
1218                 spte &= ~SPTE_MMU_WRITEABLE;
1219         spte = spte & ~PT_WRITABLE_MASK;
1220
1221         return mmu_spte_update(sptep, spte);
1222 }
1223
1224 static bool __rmap_write_protect(struct kvm *kvm,
1225                                  struct kvm_rmap_head *rmap_head,
1226                                  bool pt_protect)
1227 {
1228         u64 *sptep;
1229         struct rmap_iterator iter;
1230         bool flush = false;
1231
1232         for_each_rmap_spte(rmap_head, &iter, sptep)
1233                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1234
1235         return flush;
1236 }
1237
1238 static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1239 {
1240         u64 spte = *sptep;
1241
1242         rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1243
1244         spte &= ~shadow_dirty_mask;
1245
1246         return mmu_spte_update(sptep, spte);
1247 }
1248
1249 static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1250 {
1251         u64 *sptep;
1252         struct rmap_iterator iter;
1253         bool flush = false;
1254
1255         for_each_rmap_spte(rmap_head, &iter, sptep)
1256                 flush |= spte_clear_dirty(kvm, sptep);
1257
1258         return flush;
1259 }
1260
1261 static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1262 {
1263         u64 spte = *sptep;
1264
1265         rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1266
1267         spte |= shadow_dirty_mask;
1268
1269         return mmu_spte_update(sptep, spte);
1270 }
1271
1272 static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1273 {
1274         u64 *sptep;
1275         struct rmap_iterator iter;
1276         bool flush = false;
1277
1278         for_each_rmap_spte(rmap_head, &iter, sptep)
1279                 flush |= spte_set_dirty(kvm, sptep);
1280
1281         return flush;
1282 }
1283
1284 /**
1285  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1286  * @kvm: kvm instance
1287  * @slot: slot to protect
1288  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1289  * @mask: indicates which pages we should protect
1290  *
1291  * Used when we do not need to care about huge page mappings: e.g. during dirty
1292  * logging we do not have any such mappings.
1293  */
1294 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1295                                      struct kvm_memory_slot *slot,
1296                                      gfn_t gfn_offset, unsigned long mask)
1297 {
1298         struct kvm_rmap_head *rmap_head;
1299
1300         while (mask) {
1301                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1302                                           PT_PAGE_TABLE_LEVEL, slot);
1303                 __rmap_write_protect(kvm, rmap_head, false);
1304
1305                 /* clear the first set bit */
1306                 mask &= mask - 1;
1307         }
1308 }
1309
1310 /**
1311  * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1312  * @kvm: kvm instance
1313  * @slot: slot to clear D-bit
1314  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1315  * @mask: indicates which pages we should clear D-bit
1316  *
1317  * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1318  */
1319 void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1320                                      struct kvm_memory_slot *slot,
1321                                      gfn_t gfn_offset, unsigned long mask)
1322 {
1323         struct kvm_rmap_head *rmap_head;
1324
1325         while (mask) {
1326                 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1327                                           PT_PAGE_TABLE_LEVEL, slot);
1328                 __rmap_clear_dirty(kvm, rmap_head);
1329
1330                 /* clear the first set bit */
1331                 mask &= mask - 1;
1332         }
1333 }
1334 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1335
1336 /**
1337  * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1338  * PT level pages.
1339  *
1340  * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1341  * enable dirty logging for them.
1342  *
1343  * Used when we do not need to care about huge page mappings: e.g. during dirty
1344  * logging we do not have any such mappings.
1345  */
1346 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1347                                 struct kvm_memory_slot *slot,
1348                                 gfn_t gfn_offset, unsigned long mask)
1349 {
1350         if (kvm_x86_ops->enable_log_dirty_pt_masked)
1351                 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1352                                 mask);
1353         else
1354                 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1355 }
1356
1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1358                                     struct kvm_memory_slot *slot, u64 gfn)
1359 {
1360         struct kvm_rmap_head *rmap_head;
1361         int i;
1362         bool write_protected = false;
1363
1364         for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1365                 rmap_head = __gfn_to_rmap(gfn, i, slot);
1366                 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1367         }
1368
1369         return write_protected;
1370 }
1371
1372 static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1373 {
1374         struct kvm_memory_slot *slot;
1375
1376         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1377         return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1378 }
1379
1380 static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1381 {
1382         u64 *sptep;
1383         struct rmap_iterator iter;
1384         bool flush = false;
1385
1386         while ((sptep = rmap_get_first(rmap_head, &iter))) {
1387                 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1388
1389                 drop_spte(kvm, sptep);
1390                 flush = true;
1391         }
1392
1393         return flush;
1394 }
1395
1396 static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1397                            struct kvm_memory_slot *slot, gfn_t gfn, int level,
1398                            unsigned long data)
1399 {
1400         return kvm_zap_rmapp(kvm, rmap_head);
1401 }
1402
1403 static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1404                              struct kvm_memory_slot *slot, gfn_t gfn, int level,
1405                              unsigned long data)
1406 {
1407         u64 *sptep;
1408         struct rmap_iterator iter;
1409         int need_flush = 0;
1410         u64 new_spte;
1411         pte_t *ptep = (pte_t *)data;
1412         kvm_pfn_t new_pfn;
1413
1414         WARN_ON(pte_huge(*ptep));
1415         new_pfn = pte_pfn(*ptep);
1416
1417 restart:
1418         for_each_rmap_spte(rmap_head, &iter, sptep) {
1419                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1420                              sptep, *sptep, gfn, level);
1421
1422                 need_flush = 1;
1423
1424                 if (pte_write(*ptep)) {
1425                         drop_spte(kvm, sptep);
1426                         goto restart;
1427                 } else {
1428                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1429                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1430
1431                         new_spte &= ~PT_WRITABLE_MASK;
1432                         new_spte &= ~SPTE_HOST_WRITEABLE;
1433                         new_spte &= ~shadow_accessed_mask;
1434
1435                         mmu_spte_clear_track_bits(sptep);
1436                         mmu_spte_set(sptep, new_spte);
1437                 }
1438         }
1439
1440         if (need_flush)
1441                 kvm_flush_remote_tlbs(kvm);
1442
1443         return 0;
1444 }
1445
1446 struct slot_rmap_walk_iterator {
1447         /* input fields. */
1448         struct kvm_memory_slot *slot;
1449         gfn_t start_gfn;
1450         gfn_t end_gfn;
1451         int start_level;
1452         int end_level;
1453
1454         /* output fields. */
1455         gfn_t gfn;
1456         struct kvm_rmap_head *rmap;
1457         int level;
1458
1459         /* private field. */
1460         struct kvm_rmap_head *end_rmap;
1461 };
1462
1463 static void
1464 rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1465 {
1466         iterator->level = level;
1467         iterator->gfn = iterator->start_gfn;
1468         iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1469         iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1470                                            iterator->slot);
1471 }
1472
1473 static void
1474 slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1475                     struct kvm_memory_slot *slot, int start_level,
1476                     int end_level, gfn_t start_gfn, gfn_t end_gfn)
1477 {
1478         iterator->slot = slot;
1479         iterator->start_level = start_level;
1480         iterator->end_level = end_level;
1481         iterator->start_gfn = start_gfn;
1482         iterator->end_gfn = end_gfn;
1483
1484         rmap_walk_init_level(iterator, iterator->start_level);
1485 }
1486
1487 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1488 {
1489         return !!iterator->rmap;
1490 }
1491
1492 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1493 {
1494         if (++iterator->rmap <= iterator->end_rmap) {
1495                 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1496                 return;
1497         }
1498
1499         if (++iterator->level > iterator->end_level) {
1500                 iterator->rmap = NULL;
1501                 return;
1502         }
1503
1504         rmap_walk_init_level(iterator, iterator->level);
1505 }
1506
1507 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,    \
1508            _start_gfn, _end_gfn, _iter_)                                \
1509         for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,         \
1510                                  _end_level_, _start_gfn, _end_gfn);    \
1511              slot_rmap_walk_okay(_iter_);                               \
1512              slot_rmap_walk_next(_iter_))
1513
1514 static int kvm_handle_hva_range(struct kvm *kvm,
1515                                 unsigned long start,
1516                                 unsigned long end,
1517                                 unsigned long data,
1518                                 int (*handler)(struct kvm *kvm,
1519                                                struct kvm_rmap_head *rmap_head,
1520                                                struct kvm_memory_slot *slot,
1521                                                gfn_t gfn,
1522                                                int level,
1523                                                unsigned long data))
1524 {
1525         struct kvm_memslots *slots;
1526         struct kvm_memory_slot *memslot;
1527         struct slot_rmap_walk_iterator iterator;
1528         int ret = 0;
1529         int i;
1530
1531         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1532                 slots = __kvm_memslots(kvm, i);
1533                 kvm_for_each_memslot(memslot, slots) {
1534                         unsigned long hva_start, hva_end;
1535                         gfn_t gfn_start, gfn_end;
1536
1537                         hva_start = max(start, memslot->userspace_addr);
1538                         hva_end = min(end, memslot->userspace_addr +
1539                                       (memslot->npages << PAGE_SHIFT));
1540                         if (hva_start >= hva_end)
1541                                 continue;
1542                         /*
1543                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
1544                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1545                          */
1546                         gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1547                         gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1548
1549                         for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1550                                                  PT_MAX_HUGEPAGE_LEVEL,
1551                                                  gfn_start, gfn_end - 1,
1552                                                  &iterator)
1553                                 ret |= handler(kvm, iterator.rmap, memslot,
1554                                                iterator.gfn, iterator.level, data);
1555                 }
1556         }
1557
1558         return ret;
1559 }
1560
1561 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1562                           unsigned long data,
1563                           int (*handler)(struct kvm *kvm,
1564                                          struct kvm_rmap_head *rmap_head,
1565                                          struct kvm_memory_slot *slot,
1566                                          gfn_t gfn, int level,
1567                                          unsigned long data))
1568 {
1569         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1570 }
1571
1572 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1573 {
1574         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1575 }
1576
1577 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1578 {
1579         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1580 }
1581
1582 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1583 {
1584         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1585 }
1586
1587 static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1588                          struct kvm_memory_slot *slot, gfn_t gfn, int level,
1589                          unsigned long data)
1590 {
1591         u64 *sptep;
1592         struct rmap_iterator uninitialized_var(iter);
1593         int young = 0;
1594
1595         BUG_ON(!shadow_accessed_mask);
1596
1597         for_each_rmap_spte(rmap_head, &iter, sptep) {
1598                 if (*sptep & shadow_accessed_mask) {
1599                         young = 1;
1600                         clear_bit((ffs(shadow_accessed_mask) - 1),
1601                                  (unsigned long *)sptep);
1602                 }
1603         }
1604
1605         trace_kvm_age_page(gfn, level, slot, young);
1606         return young;
1607 }
1608
1609 static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1610                               struct kvm_memory_slot *slot, gfn_t gfn,
1611                               int level, unsigned long data)
1612 {
1613         u64 *sptep;
1614         struct rmap_iterator iter;
1615         int young = 0;
1616
1617         /*
1618          * If there's no access bit in the secondary pte set by the
1619          * hardware it's up to gup-fast/gup to set the access bit in
1620          * the primary pte or in the page structure.
1621          */
1622         if (!shadow_accessed_mask)
1623                 goto out;
1624
1625         for_each_rmap_spte(rmap_head, &iter, sptep) {
1626                 if (*sptep & shadow_accessed_mask) {
1627                         young = 1;
1628                         break;
1629                 }
1630         }
1631 out:
1632         return young;
1633 }
1634
1635 #define RMAP_RECYCLE_THRESHOLD 1000
1636
1637 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1638 {
1639         struct kvm_rmap_head *rmap_head;
1640         struct kvm_mmu_page *sp;
1641
1642         sp = page_header(__pa(spte));
1643
1644         rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1645
1646         kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1647         kvm_flush_remote_tlbs(vcpu->kvm);
1648 }
1649
1650 int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1651 {
1652         /*
1653          * In case of absence of EPT Access and Dirty Bits supports,
1654          * emulate the accessed bit for EPT, by checking if this page has
1655          * an EPT mapping, and clearing it if it does. On the next access,
1656          * a new EPT mapping will be established.
1657          * This has some overhead, but not as much as the cost of swapping
1658          * out actively used pages or breaking up actively used hugepages.
1659          */
1660         if (!shadow_accessed_mask) {
1661                 /*
1662                  * We are holding the kvm->mmu_lock, and we are blowing up
1663                  * shadow PTEs. MMU notifier consumers need to be kept at bay.
1664                  * This is correct as long as we don't decouple the mmu_lock
1665                  * protected regions (like invalidate_range_start|end does).
1666                  */
1667                 kvm->mmu_notifier_seq++;
1668                 return kvm_handle_hva_range(kvm, start, end, 0,
1669                                             kvm_unmap_rmapp);
1670         }
1671
1672         return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1673 }
1674
1675 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1676 {
1677         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1678 }
1679
1680 #ifdef MMU_DEBUG
1681 static int is_empty_shadow_page(u64 *spt)
1682 {
1683         u64 *pos;
1684         u64 *end;
1685
1686         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1687                 if (is_shadow_present_pte(*pos)) {
1688                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1689                                pos, *pos);
1690                         return 0;
1691                 }
1692         return 1;
1693 }
1694 #endif
1695
1696 /*
1697  * This value is the sum of all of the kvm instances's
1698  * kvm->arch.n_used_mmu_pages values.  We need a global,
1699  * aggregate version in order to make the slab shrinker
1700  * faster
1701  */
1702 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1703 {
1704         kvm->arch.n_used_mmu_pages += nr;
1705         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1706 }
1707
1708 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1709 {
1710         MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1711         hlist_del(&sp->hash_link);
1712         list_del(&sp->link);
1713         free_page((unsigned long)sp->spt);
1714         if (!sp->role.direct)
1715                 free_page((unsigned long)sp->gfns);
1716         kmem_cache_free(mmu_page_header_cache, sp);
1717 }
1718
1719 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1720 {
1721         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1722 }
1723
1724 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1725                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1726 {
1727         if (!parent_pte)
1728                 return;
1729
1730         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1731 }
1732
1733 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1734                                        u64 *parent_pte)
1735 {
1736         pte_list_remove(parent_pte, &sp->parent_ptes);
1737 }
1738
1739 static void drop_parent_pte(struct kvm_mmu_page *sp,
1740                             u64 *parent_pte)
1741 {
1742         mmu_page_remove_parent_pte(sp, parent_pte);
1743         mmu_spte_clear_no_track(parent_pte);
1744 }
1745
1746 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1747 {
1748         struct kvm_mmu_page *sp;
1749
1750         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1751         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1752         if (!direct)
1753                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1754         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1755
1756         /*
1757          * The active_mmu_pages list is the FIFO list, do not move the
1758          * page until it is zapped. kvm_zap_obsolete_pages depends on
1759          * this feature. See the comments in kvm_zap_obsolete_pages().
1760          */
1761         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1762         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1763         return sp;
1764 }
1765
1766 static void mark_unsync(u64 *spte);
1767 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1768 {
1769         u64 *sptep;
1770         struct rmap_iterator iter;
1771
1772         for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1773                 mark_unsync(sptep);
1774         }
1775 }
1776
1777 static void mark_unsync(u64 *spte)
1778 {
1779         struct kvm_mmu_page *sp;
1780         unsigned int index;
1781
1782         sp = page_header(__pa(spte));
1783         index = spte - sp->spt;
1784         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1785                 return;
1786         if (sp->unsync_children++)
1787                 return;
1788         kvm_mmu_mark_parents_unsync(sp);
1789 }
1790
1791 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1792                                struct kvm_mmu_page *sp)
1793 {
1794         return 0;
1795 }
1796
1797 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1798 {
1799 }
1800
1801 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1802                                  struct kvm_mmu_page *sp, u64 *spte,
1803                                  const void *pte)
1804 {
1805         WARN_ON(1);
1806 }
1807
1808 #define KVM_PAGE_ARRAY_NR 16
1809
1810 struct kvm_mmu_pages {
1811         struct mmu_page_and_offset {
1812                 struct kvm_mmu_page *sp;
1813                 unsigned int idx;
1814         } page[KVM_PAGE_ARRAY_NR];
1815         unsigned int nr;
1816 };
1817
1818 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1819                          int idx)
1820 {
1821         int i;
1822
1823         if (sp->unsync)
1824                 for (i=0; i < pvec->nr; i++)
1825                         if (pvec->page[i].sp == sp)
1826                                 return 0;
1827
1828         pvec->page[pvec->nr].sp = sp;
1829         pvec->page[pvec->nr].idx = idx;
1830         pvec->nr++;
1831         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1832 }
1833
1834 static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1835 {
1836         --sp->unsync_children;
1837         WARN_ON((int)sp->unsync_children < 0);
1838         __clear_bit(idx, sp->unsync_child_bitmap);
1839 }
1840
1841 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1842                            struct kvm_mmu_pages *pvec)
1843 {
1844         int i, ret, nr_unsync_leaf = 0;
1845
1846         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1847                 struct kvm_mmu_page *child;
1848                 u64 ent = sp->spt[i];
1849
1850                 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1851                         clear_unsync_child_bit(sp, i);
1852                         continue;
1853                 }
1854
1855                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1856
1857                 if (child->unsync_children) {
1858                         if (mmu_pages_add(pvec, child, i))
1859                                 return -ENOSPC;
1860
1861                         ret = __mmu_unsync_walk(child, pvec);
1862                         if (!ret) {
1863                                 clear_unsync_child_bit(sp, i);
1864                                 continue;
1865                         } else if (ret > 0) {
1866                                 nr_unsync_leaf += ret;
1867                         } else
1868                                 return ret;
1869                 } else if (child->unsync) {
1870                         nr_unsync_leaf++;
1871                         if (mmu_pages_add(pvec, child, i))
1872                                 return -ENOSPC;
1873                 } else
1874                         clear_unsync_child_bit(sp, i);
1875         }
1876
1877         return nr_unsync_leaf;
1878 }
1879
1880 #define INVALID_INDEX (-1)
1881
1882 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1883                            struct kvm_mmu_pages *pvec)
1884 {
1885         pvec->nr = 0;
1886         if (!sp->unsync_children)
1887                 return 0;
1888
1889         mmu_pages_add(pvec, sp, INVALID_INDEX);
1890         return __mmu_unsync_walk(sp, pvec);
1891 }
1892
1893 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1894 {
1895         WARN_ON(!sp->unsync);
1896         trace_kvm_mmu_sync_page(sp);
1897         sp->unsync = 0;
1898         --kvm->stat.mmu_unsync;
1899 }
1900
1901 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1902                                     struct list_head *invalid_list);
1903 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1904                                     struct list_head *invalid_list);
1905
1906 /*
1907  * NOTE: we should pay more attention on the zapped-obsolete page
1908  * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1909  * since it has been deleted from active_mmu_pages but still can be found
1910  * at hast list.
1911  *
1912  * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1913  * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1914  * all the obsolete pages.
1915  */
1916 #define for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1917         hlist_for_each_entry(_sp,                                       \
1918           &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1919                 if ((_sp)->gfn != (_gfn)) {} else
1920
1921 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)                 \
1922         for_each_gfn_sp(_kvm, _sp, _gfn)                                \
1923                 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1924
1925 /* @sp->gfn should be write-protected at the call site */
1926 static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1927                             struct list_head *invalid_list)
1928 {
1929         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1930                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1931                 return false;
1932         }
1933
1934         if (vcpu->arch.mmu.sync_page(vcpu, sp) == 0) {
1935                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1936                 return false;
1937         }
1938
1939         return true;
1940 }
1941
1942 static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1943                                  struct list_head *invalid_list,
1944                                  bool remote_flush, bool local_flush)
1945 {
1946         if (!list_empty(invalid_list)) {
1947                 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
1948                 return;
1949         }
1950
1951         if (remote_flush)
1952                 kvm_flush_remote_tlbs(vcpu->kvm);
1953         else if (local_flush)
1954                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1955 }
1956
1957 #ifdef CONFIG_KVM_MMU_AUDIT
1958 #include "mmu_audit.c"
1959 #else
1960 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1961 static void mmu_audit_disable(void) { }
1962 #endif
1963
1964 static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1965                          struct list_head *invalid_list)
1966 {
1967         kvm_unlink_unsync_page(vcpu->kvm, sp);
1968         return __kvm_sync_page(vcpu, sp, invalid_list);
1969 }
1970
1971 /* @gfn should be write-protected at the call site */
1972 static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1973                            struct list_head *invalid_list)
1974 {
1975         struct kvm_mmu_page *s;
1976         bool ret = false;
1977
1978         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1979                 if (!s->unsync)
1980                         continue;
1981
1982                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1983                 ret |= kvm_sync_page(vcpu, s, invalid_list);
1984         }
1985
1986         return ret;
1987 }
1988
1989 struct mmu_page_path {
1990         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL];
1991         unsigned int idx[PT64_ROOT_LEVEL];
1992 };
1993
1994 #define for_each_sp(pvec, sp, parents, i)                       \
1995                 for (i = mmu_pages_first(&pvec, &parents);      \
1996                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1997                         i = mmu_pages_next(&pvec, &parents, i))
1998
1999 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2000                           struct mmu_page_path *parents,
2001                           int i)
2002 {
2003         int n;
2004
2005         for (n = i+1; n < pvec->nr; n++) {
2006                 struct kvm_mmu_page *sp = pvec->page[n].sp;
2007                 unsigned idx = pvec->page[n].idx;
2008                 int level = sp->role.level;
2009
2010                 parents->idx[level-1] = idx;
2011                 if (level == PT_PAGE_TABLE_LEVEL)
2012                         break;
2013
2014                 parents->parent[level-2] = sp;
2015         }
2016
2017         return n;
2018 }
2019
2020 static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2021                            struct mmu_page_path *parents)
2022 {
2023         struct kvm_mmu_page *sp;
2024         int level;
2025
2026         if (pvec->nr == 0)
2027                 return 0;
2028
2029         WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2030
2031         sp = pvec->page[0].sp;
2032         level = sp->role.level;
2033         WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2034
2035         parents->parent[level-2] = sp;
2036
2037         /* Also set up a sentinel.  Further entries in pvec are all
2038          * children of sp, so this element is never overwritten.
2039          */
2040         parents->parent[level-1] = NULL;
2041         return mmu_pages_next(pvec, parents, 0);
2042 }
2043
2044 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2045 {
2046         struct kvm_mmu_page *sp;
2047         unsigned int level = 0;
2048
2049         do {
2050                 unsigned int idx = parents->idx[level];
2051                 sp = parents->parent[level];
2052                 if (!sp)
2053                         return;
2054
2055                 WARN_ON(idx == INVALID_INDEX);
2056                 clear_unsync_child_bit(sp, idx);
2057                 level++;
2058         } while (!sp->unsync_children);
2059 }
2060
2061 static void mmu_sync_children(struct kvm_vcpu *vcpu,
2062                               struct kvm_mmu_page *parent)
2063 {
2064         int i;
2065         struct kvm_mmu_page *sp;
2066         struct mmu_page_path parents;
2067         struct kvm_mmu_pages pages;
2068         LIST_HEAD(invalid_list);
2069         bool flush = false;
2070
2071         while (mmu_unsync_walk(parent, &pages)) {
2072                 bool protected = false;
2073
2074                 for_each_sp(pages, sp, parents, i)
2075                         protected |= rmap_write_protect(vcpu, sp->gfn);
2076
2077                 if (protected) {
2078                         kvm_flush_remote_tlbs(vcpu->kvm);
2079                         flush = false;
2080                 }
2081
2082                 for_each_sp(pages, sp, parents, i) {
2083                         flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2084                         mmu_pages_clear_parents(&parents);
2085                 }
2086                 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2087                         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2088                         cond_resched_lock(&vcpu->kvm->mmu_lock);
2089                         flush = false;
2090                 }
2091         }
2092
2093         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2094 }
2095
2096 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2097 {
2098         atomic_set(&sp->write_flooding_count,  0);
2099 }
2100
2101 static void clear_sp_write_flooding_count(u64 *spte)
2102 {
2103         struct kvm_mmu_page *sp =  page_header(__pa(spte));
2104
2105         __clear_sp_write_flooding_count(sp);
2106 }
2107
2108 static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2109 {
2110         return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2111 }
2112
2113 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2114                                              gfn_t gfn,
2115                                              gva_t gaddr,
2116                                              unsigned level,
2117                                              int direct,
2118                                              unsigned access)
2119 {
2120         union kvm_mmu_page_role role;
2121         unsigned quadrant;
2122         struct kvm_mmu_page *sp;
2123         bool need_sync = false;
2124         bool flush = false;
2125         LIST_HEAD(invalid_list);
2126
2127         role = vcpu->arch.mmu.base_role;
2128         role.level = level;
2129         role.direct = direct;
2130         if (role.direct)
2131                 role.cr4_pae = 0;
2132         role.access = access;
2133         if (!vcpu->arch.mmu.direct_map
2134             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
2135                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2136                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2137                 role.quadrant = quadrant;
2138         }
2139         for_each_gfn_sp(vcpu->kvm, sp, gfn) {
2140                 if (is_obsolete_sp(vcpu->kvm, sp))
2141                         continue;
2142
2143                 if (!need_sync && sp->unsync)
2144                         need_sync = true;
2145
2146                 if (sp->role.word != role.word)
2147                         continue;
2148
2149                 if (sp->unsync) {
2150                         /* The page is good, but __kvm_sync_page might still end
2151                          * up zapping it.  If so, break in order to rebuild it.
2152                          */
2153                         if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2154                                 break;
2155
2156                         WARN_ON(!list_empty(&invalid_list));
2157                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2158                 }
2159
2160                 if (sp->unsync_children)
2161                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2162
2163                 __clear_sp_write_flooding_count(sp);
2164                 trace_kvm_mmu_get_page(sp, false);
2165                 return sp;
2166         }
2167
2168         ++vcpu->kvm->stat.mmu_cache_miss;
2169
2170         sp = kvm_mmu_alloc_page(vcpu, direct);
2171
2172         sp->gfn = gfn;
2173         sp->role = role;
2174         hlist_add_head(&sp->hash_link,
2175                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
2176         if (!direct) {
2177                 /*
2178                  * we should do write protection before syncing pages
2179                  * otherwise the content of the synced shadow page may
2180                  * be inconsistent with guest page table.
2181                  */
2182                 account_shadowed(vcpu->kvm, sp);
2183                 if (level == PT_PAGE_TABLE_LEVEL &&
2184                       rmap_write_protect(vcpu, gfn))
2185                         kvm_flush_remote_tlbs(vcpu->kvm);
2186
2187                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2188                         flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2189         }
2190         sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
2191         clear_page(sp->spt);
2192         trace_kvm_mmu_get_page(sp, true);
2193
2194         kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2195         return sp;
2196 }
2197
2198 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2199                              struct kvm_vcpu *vcpu, u64 addr)
2200 {
2201         iterator->addr = addr;
2202         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2203         iterator->level = vcpu->arch.mmu.shadow_root_level;
2204
2205         if (iterator->level == PT64_ROOT_LEVEL &&
2206             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2207             !vcpu->arch.mmu.direct_map)
2208                 --iterator->level;
2209
2210         if (iterator->level == PT32E_ROOT_LEVEL) {
2211                 iterator->shadow_addr
2212                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2213                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2214                 --iterator->level;
2215                 if (!iterator->shadow_addr)
2216                         iterator->level = 0;
2217         }
2218 }
2219
2220 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2221 {
2222         if (iterator->level < PT_PAGE_TABLE_LEVEL)
2223                 return false;
2224
2225         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2226         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2227         return true;
2228 }
2229
2230 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2231                                u64 spte)
2232 {
2233         if (is_last_spte(spte, iterator->level)) {
2234                 iterator->level = 0;
2235                 return;
2236         }
2237
2238         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2239         --iterator->level;
2240 }
2241
2242 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2243 {
2244         return __shadow_walk_next(iterator, *iterator->sptep);
2245 }
2246
2247 static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2248                              struct kvm_mmu_page *sp)
2249 {
2250         u64 spte;
2251
2252         BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2253                         VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2254
2255         spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2256                shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2257
2258         mmu_spte_set(sptep, spte);
2259
2260         mmu_page_add_parent_pte(vcpu, sp, sptep);
2261
2262         if (sp->unsync_children || sp->unsync)
2263                 mark_unsync(sptep);
2264 }
2265
2266 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2267                                    unsigned direct_access)
2268 {
2269         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2270                 struct kvm_mmu_page *child;
2271
2272                 /*
2273                  * For the direct sp, if the guest pte's dirty bit
2274                  * changed form clean to dirty, it will corrupt the
2275                  * sp's access: allow writable in the read-only sp,
2276                  * so we should update the spte at this point to get
2277                  * a new sp with the correct access.
2278                  */
2279                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2280                 if (child->role.access == direct_access)
2281                         return;
2282
2283                 drop_parent_pte(child, sptep);
2284                 kvm_flush_remote_tlbs(vcpu->kvm);
2285         }
2286 }
2287
2288 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2289                              u64 *spte)
2290 {
2291         u64 pte;
2292         struct kvm_mmu_page *child;
2293
2294         pte = *spte;
2295         if (is_shadow_present_pte(pte)) {
2296                 if (is_last_spte(pte, sp->role.level)) {
2297                         drop_spte(kvm, spte);
2298                         if (is_large_pte(pte))
2299                                 --kvm->stat.lpages;
2300                 } else {
2301                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2302                         drop_parent_pte(child, spte);
2303                 }
2304                 return true;
2305         }
2306
2307         if (is_mmio_spte(pte))
2308                 mmu_spte_clear_no_track(spte);
2309
2310         return false;
2311 }
2312
2313 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2314                                          struct kvm_mmu_page *sp)
2315 {
2316         unsigned i;
2317
2318         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2319                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2320 }
2321
2322 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2323 {
2324         u64 *sptep;
2325         struct rmap_iterator iter;
2326
2327         while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2328                 drop_parent_pte(sp, sptep);
2329 }
2330
2331 static int mmu_zap_unsync_children(struct kvm *kvm,
2332                                    struct kvm_mmu_page *parent,
2333                                    struct list_head *invalid_list)
2334 {
2335         int i, zapped = 0;
2336         struct mmu_page_path parents;
2337         struct kvm_mmu_pages pages;
2338
2339         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2340                 return 0;
2341
2342         while (mmu_unsync_walk(parent, &pages)) {
2343                 struct kvm_mmu_page *sp;
2344
2345                 for_each_sp(pages, sp, parents, i) {
2346                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2347                         mmu_pages_clear_parents(&parents);
2348                         zapped++;
2349                 }
2350         }
2351
2352         return zapped;
2353 }
2354
2355 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2356                                     struct list_head *invalid_list)
2357 {
2358         int ret;
2359
2360         trace_kvm_mmu_prepare_zap_page(sp);
2361         ++kvm->stat.mmu_shadow_zapped;
2362         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2363         kvm_mmu_page_unlink_children(kvm, sp);
2364         kvm_mmu_unlink_parents(kvm, sp);
2365
2366         if (!sp->role.invalid && !sp->role.direct)
2367                 unaccount_shadowed(kvm, sp);
2368
2369         if (sp->unsync)
2370                 kvm_unlink_unsync_page(kvm, sp);
2371         if (!sp->root_count) {
2372                 /* Count self */
2373                 ret++;
2374                 list_move(&sp->link, invalid_list);
2375                 kvm_mod_used_mmu_pages(kvm, -1);
2376         } else {
2377                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2378
2379                 /*
2380                  * The obsolete pages can not be used on any vcpus.
2381                  * See the comments in kvm_mmu_invalidate_zap_all_pages().
2382                  */
2383                 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2384                         kvm_reload_remote_mmus(kvm);
2385         }
2386
2387         sp->role.invalid = 1;
2388         return ret;
2389 }
2390
2391 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2392                                     struct list_head *invalid_list)
2393 {
2394         struct kvm_mmu_page *sp, *nsp;
2395
2396         if (list_empty(invalid_list))
2397                 return;
2398
2399         /*
2400          * We need to make sure everyone sees our modifications to
2401          * the page tables and see changes to vcpu->mode here. The barrier
2402          * in the kvm_flush_remote_tlbs() achieves this. This pairs
2403          * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2404          *
2405          * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2406          * guest mode and/or lockless shadow page table walks.
2407          */
2408         kvm_flush_remote_tlbs(kvm);
2409
2410         list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2411                 WARN_ON(!sp->role.invalid || sp->root_count);
2412                 kvm_mmu_free_page(sp);
2413         }
2414 }
2415
2416 static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2417                                         struct list_head *invalid_list)
2418 {
2419         struct kvm_mmu_page *sp;
2420
2421         if (list_empty(&kvm->arch.active_mmu_pages))
2422                 return false;
2423
2424         sp = list_last_entry(&kvm->arch.active_mmu_pages,
2425                              struct kvm_mmu_page, link);
2426         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2427
2428         return true;
2429 }
2430
2431 /*
2432  * Changing the number of mmu pages allocated to the vm
2433  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2434  */
2435 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2436 {
2437         LIST_HEAD(invalid_list);
2438
2439         spin_lock(&kvm->mmu_lock);
2440
2441         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2442                 /* Need to free some mmu pages to achieve the goal. */
2443                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2444                         if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2445                                 break;
2446
2447                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2448                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2449         }
2450
2451         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2452
2453         spin_unlock(&kvm->mmu_lock);
2454 }
2455
2456 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2457 {
2458         struct kvm_mmu_page *sp;
2459         LIST_HEAD(invalid_list);
2460         int r;
2461
2462         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2463         r = 0;
2464         spin_lock(&kvm->mmu_lock);
2465         for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2466                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2467                          sp->role.word);
2468                 r = 1;
2469                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2470         }
2471         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2472         spin_unlock(&kvm->mmu_lock);
2473
2474         return r;
2475 }
2476 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2477
2478 static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2479 {
2480         trace_kvm_mmu_unsync_page(sp);
2481         ++vcpu->kvm->stat.mmu_unsync;
2482         sp->unsync = 1;
2483
2484         kvm_mmu_mark_parents_unsync(sp);
2485 }
2486
2487 static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2488                                    bool can_unsync)
2489 {
2490         struct kvm_mmu_page *sp;
2491
2492         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2493                 return true;
2494
2495         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2496                 if (!can_unsync)
2497                         return true;
2498
2499                 if (sp->unsync)
2500                         continue;
2501
2502                 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2503                 kvm_unsync_page(vcpu, sp);
2504         }
2505
2506         return false;
2507 }
2508
2509 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
2510 {
2511         if (pfn_valid(pfn))
2512                 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn));
2513
2514         return true;
2515 }
2516
2517 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2518                     unsigned pte_access, int level,
2519                     gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2520                     bool can_unsync, bool host_writable)
2521 {
2522         u64 spte;
2523         int ret = 0;
2524
2525         if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2526                 return 0;
2527
2528         spte = PT_PRESENT_MASK;
2529         if (!speculative)
2530                 spte |= shadow_accessed_mask;
2531
2532         if (pte_access & ACC_EXEC_MASK)
2533                 spte |= shadow_x_mask;
2534         else
2535                 spte |= shadow_nx_mask;
2536
2537         if (pte_access & ACC_USER_MASK)
2538                 spte |= shadow_user_mask;
2539
2540         if (level > PT_PAGE_TABLE_LEVEL)
2541                 spte |= PT_PAGE_SIZE_MASK;
2542         if (tdp_enabled)
2543                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2544                         kvm_is_mmio_pfn(pfn));
2545
2546         if (host_writable)
2547                 spte |= SPTE_HOST_WRITEABLE;
2548         else
2549                 pte_access &= ~ACC_WRITE_MASK;
2550
2551         spte |= (u64)pfn << PAGE_SHIFT;
2552
2553         if (pte_access & ACC_WRITE_MASK) {
2554
2555                 /*
2556                  * Other vcpu creates new sp in the window between
2557                  * mapping_level() and acquiring mmu-lock. We can
2558                  * allow guest to retry the access, the mapping can
2559                  * be fixed if guest refault.
2560                  */
2561                 if (level > PT_PAGE_TABLE_LEVEL &&
2562                     mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
2563                         goto done;
2564
2565                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2566
2567                 /*
2568                  * Optimization: for pte sync, if spte was writable the hash
2569                  * lookup is unnecessary (and expensive). Write protection
2570                  * is responsibility of mmu_get_page / kvm_sync_page.
2571                  * Same reasoning can be applied to dirty page accounting.
2572                  */
2573                 if (!can_unsync && is_writable_pte(*sptep))
2574                         goto set_pte;
2575
2576                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2577                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2578                                  __func__, gfn);
2579                         ret = 1;
2580                         pte_access &= ~ACC_WRITE_MASK;
2581                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2582                 }
2583         }
2584
2585         if (pte_access & ACC_WRITE_MASK) {
2586                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2587                 spte |= shadow_dirty_mask;
2588         }
2589
2590 set_pte:
2591         if (mmu_spte_update(sptep, spte))
2592                 kvm_flush_remote_tlbs(vcpu->kvm);
2593 done:
2594         return ret;
2595 }
2596
2597 static bool mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2598                          int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2599                          bool speculative, bool host_writable)
2600 {
2601         int was_rmapped = 0;
2602         int rmap_count;
2603         bool emulate = false;
2604
2605         pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2606                  *sptep, write_fault, gfn);
2607
2608         if (is_shadow_present_pte(*sptep)) {
2609                 /*
2610                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2611                  * the parent of the now unreachable PTE.
2612                  */
2613                 if (level > PT_PAGE_TABLE_LEVEL &&
2614                     !is_large_pte(*sptep)) {
2615                         struct kvm_mmu_page *child;
2616                         u64 pte = *sptep;
2617
2618                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2619                         drop_parent_pte(child, sptep);
2620                         kvm_flush_remote_tlbs(vcpu->kvm);
2621                 } else if (pfn != spte_to_pfn(*sptep)) {
2622                         pgprintk("hfn old %llx new %llx\n",
2623                                  spte_to_pfn(*sptep), pfn);
2624                         drop_spte(vcpu->kvm, sptep);
2625                         kvm_flush_remote_tlbs(vcpu->kvm);
2626                 } else
2627                         was_rmapped = 1;
2628         }
2629
2630         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2631               true, host_writable)) {
2632                 if (write_fault)
2633                         emulate = true;
2634                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2635         }
2636
2637         if (unlikely(is_mmio_spte(*sptep)))
2638                 emulate = true;
2639
2640         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2641         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2642                  is_large_pte(*sptep)? "2MB" : "4kB",
2643                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2644                  *sptep, sptep);
2645         if (!was_rmapped && is_large_pte(*sptep))
2646                 ++vcpu->kvm->stat.lpages;
2647
2648         if (is_shadow_present_pte(*sptep)) {
2649                 if (!was_rmapped) {
2650                         rmap_count = rmap_add(vcpu, sptep, gfn);
2651                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2652                                 rmap_recycle(vcpu, sptep, gfn);
2653                 }
2654         }
2655
2656         kvm_release_pfn_clean(pfn);
2657
2658         return emulate;
2659 }
2660
2661 static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2662                                      bool no_dirty_log)
2663 {
2664         struct kvm_memory_slot *slot;
2665
2666         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2667         if (!slot)
2668                 return KVM_PFN_ERR_FAULT;
2669
2670         return gfn_to_pfn_memslot_atomic(slot, gfn);
2671 }
2672
2673 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2674                                     struct kvm_mmu_page *sp,
2675                                     u64 *start, u64 *end)
2676 {
2677         struct page *pages[PTE_PREFETCH_NUM];
2678         struct kvm_memory_slot *slot;
2679         unsigned access = sp->role.access;
2680         int i, ret;
2681         gfn_t gfn;
2682
2683         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2684         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2685         if (!slot)
2686                 return -1;
2687
2688         ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2689         if (ret <= 0)
2690                 return -1;
2691
2692         for (i = 0; i < ret; i++, gfn++, start++)
2693                 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
2694                              page_to_pfn(pages[i]), true, true);
2695
2696         return 0;
2697 }
2698
2699 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2700                                   struct kvm_mmu_page *sp, u64 *sptep)
2701 {
2702         u64 *spte, *start = NULL;
2703         int i;
2704
2705         WARN_ON(!sp->role.direct);
2706
2707         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2708         spte = sp->spt + i;
2709
2710         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2711                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2712                         if (!start)
2713                                 continue;
2714                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2715                                 break;
2716                         start = NULL;
2717                 } else if (!start)
2718                         start = spte;
2719         }
2720 }
2721
2722 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2723 {
2724         struct kvm_mmu_page *sp;
2725
2726         /*
2727          * Since it's no accessed bit on EPT, it's no way to
2728          * distinguish between actually accessed translations
2729          * and prefetched, so disable pte prefetch if EPT is
2730          * enabled.
2731          */
2732         if (!shadow_accessed_mask)
2733                 return;
2734
2735         sp = page_header(__pa(sptep));
2736         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2737                 return;
2738
2739         __direct_pte_prefetch(vcpu, sp, sptep);
2740 }
2741
2742 static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
2743                         int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
2744 {
2745         struct kvm_shadow_walk_iterator iterator;
2746         struct kvm_mmu_page *sp;
2747         int emulate = 0;
2748         gfn_t pseudo_gfn;
2749
2750         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2751                 return 0;
2752
2753         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2754                 if (iterator.level == level) {
2755                         emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
2756                                                write, level, gfn, pfn, prefault,
2757                                                map_writable);
2758                         direct_pte_prefetch(vcpu, iterator.sptep);
2759                         ++vcpu->stat.pf_fixed;
2760                         break;
2761                 }
2762
2763                 drop_large_spte(vcpu, iterator.sptep);
2764                 if (!is_shadow_present_pte(*iterator.sptep)) {
2765                         u64 base_addr = iterator.addr;
2766
2767                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2768                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2769                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2770                                               iterator.level - 1, 1, ACC_ALL);
2771
2772                         link_shadow_page(vcpu, iterator.sptep, sp);
2773                 }
2774         }
2775         return emulate;
2776 }
2777
2778 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2779 {
2780         siginfo_t info;
2781
2782         info.si_signo   = SIGBUS;
2783         info.si_errno   = 0;
2784         info.si_code    = BUS_MCEERR_AR;
2785         info.si_addr    = (void __user *)address;
2786         info.si_addr_lsb = PAGE_SHIFT;
2787
2788         send_sig_info(SIGBUS, &info, tsk);
2789 }
2790
2791 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2792 {
2793         /*
2794          * Do not cache the mmio info caused by writing the readonly gfn
2795          * into the spte otherwise read access on readonly gfn also can
2796          * caused mmio page fault and treat it as mmio access.
2797          * Return 1 to tell kvm to emulate it.
2798          */
2799         if (pfn == KVM_PFN_ERR_RO_FAULT)
2800                 return 1;
2801
2802         if (pfn == KVM_PFN_ERR_HWPOISON) {
2803                 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2804                 return 0;
2805         }
2806
2807         return -EFAULT;
2808 }
2809
2810 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2811                                         gfn_t *gfnp, kvm_pfn_t *pfnp,
2812                                         int *levelp)
2813 {
2814         kvm_pfn_t pfn = *pfnp;
2815         gfn_t gfn = *gfnp;
2816         int level = *levelp;
2817
2818         /*
2819          * Check if it's a transparent hugepage. If this would be an
2820          * hugetlbfs page, level wouldn't be set to
2821          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2822          * here.
2823          */
2824         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
2825             level == PT_PAGE_TABLE_LEVEL &&
2826             PageTransCompound(pfn_to_page(pfn)) &&
2827             !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
2828                 unsigned long mask;
2829                 /*
2830                  * mmu_notifier_retry was successful and we hold the
2831                  * mmu_lock here, so the pmd can't become splitting
2832                  * from under us, and in turn
2833                  * __split_huge_page_refcount() can't run from under
2834                  * us and we can safely transfer the refcount from
2835                  * PG_tail to PG_head as we switch the pfn to tail to
2836                  * head.
2837                  */
2838                 *levelp = level = PT_DIRECTORY_LEVEL;
2839                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2840                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2841                 if (pfn & mask) {
2842                         gfn &= ~mask;
2843                         *gfnp = gfn;
2844                         kvm_release_pfn_clean(pfn);
2845                         pfn &= ~mask;
2846                         kvm_get_pfn(pfn);
2847                         *pfnp = pfn;
2848                 }
2849         }
2850 }
2851
2852 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2853                                 kvm_pfn_t pfn, unsigned access, int *ret_val)
2854 {
2855         /* The pfn is invalid, report the error! */
2856         if (unlikely(is_error_pfn(pfn))) {
2857                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2858                 return true;
2859         }
2860
2861         if (unlikely(is_noslot_pfn(pfn)))
2862                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2863
2864         return false;
2865 }
2866
2867 static bool page_fault_can_be_fast(u32 error_code)
2868 {
2869         /*
2870          * Do not fix the mmio spte with invalid generation number which
2871          * need to be updated by slow page fault path.
2872          */
2873         if (unlikely(error_code & PFERR_RSVD_MASK))
2874                 return false;
2875
2876         /*
2877          * #PF can be fast only if the shadow page table is present and it
2878          * is caused by write-protect, that means we just need change the
2879          * W bit of the spte which can be done out of mmu-lock.
2880          */
2881         if (!(error_code & PFERR_PRESENT_MASK) ||
2882               !(error_code & PFERR_WRITE_MASK))
2883                 return false;
2884
2885         return true;
2886 }
2887
2888 static bool
2889 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2890                         u64 *sptep, u64 spte)
2891 {
2892         gfn_t gfn;
2893
2894         WARN_ON(!sp->role.direct);
2895
2896         /*
2897          * The gfn of direct spte is stable since it is calculated
2898          * by sp->gfn.
2899          */
2900         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2901
2902         /*
2903          * Theoretically we could also set dirty bit (and flush TLB) here in
2904          * order to eliminate unnecessary PML logging. See comments in
2905          * set_spte. But fast_page_fault is very unlikely to happen with PML
2906          * enabled, so we do not do this. This might result in the same GPA
2907          * to be logged in PML buffer again when the write really happens, and
2908          * eventually to be called by mark_page_dirty twice. But it's also no
2909          * harm. This also avoids the TLB flush needed after setting dirty bit
2910          * so non-PML cases won't be impacted.
2911          *
2912          * Compare with set_spte where instead shadow_dirty_mask is set.
2913          */
2914         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2915                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
2916
2917         return true;
2918 }
2919
2920 /*
2921  * Return value:
2922  * - true: let the vcpu to access on the same address again.
2923  * - false: let the real page fault path to fix it.
2924  */
2925 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2926                             u32 error_code)
2927 {
2928         struct kvm_shadow_walk_iterator iterator;
2929         struct kvm_mmu_page *sp;
2930         bool ret = false;
2931         u64 spte = 0ull;
2932
2933         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2934                 return false;
2935
2936         if (!page_fault_can_be_fast(error_code))
2937                 return false;
2938
2939         walk_shadow_page_lockless_begin(vcpu);
2940         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2941                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2942                         break;
2943
2944         /*
2945          * If the mapping has been changed, let the vcpu fault on the
2946          * same address again.
2947          */
2948         if (!is_shadow_present_pte(spte)) {
2949                 ret = true;
2950                 goto exit;
2951         }
2952
2953         sp = page_header(__pa(iterator.sptep));
2954         if (!is_last_spte(spte, sp->role.level))
2955                 goto exit;
2956
2957         /*
2958          * Check if it is a spurious fault caused by TLB lazily flushed.
2959          *
2960          * Need not check the access of upper level table entries since
2961          * they are always ACC_ALL.
2962          */
2963          if (is_writable_pte(spte)) {
2964                 ret = true;
2965                 goto exit;
2966         }
2967
2968         /*
2969          * Currently, to simplify the code, only the spte write-protected
2970          * by dirty-log can be fast fixed.
2971          */
2972         if (!spte_is_locklessly_modifiable(spte))
2973                 goto exit;
2974
2975         /*
2976          * Do not fix write-permission on the large spte since we only dirty
2977          * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2978          * that means other pages are missed if its slot is dirty-logged.
2979          *
2980          * Instead, we let the slow page fault path create a normal spte to
2981          * fix the access.
2982          *
2983          * See the comments in kvm_arch_commit_memory_region().
2984          */
2985         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2986                 goto exit;
2987
2988         /*
2989          * Currently, fast page fault only works for direct mapping since
2990          * the gfn is not stable for indirect shadow page.
2991          * See Documentation/virtual/kvm/locking.txt to get more detail.
2992          */
2993         ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
2994 exit:
2995         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2996                               spte, ret);
2997         walk_shadow_page_lockless_end(vcpu);
2998
2999         return ret;
3000 }
3001
3002 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3003                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
3004 static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
3005
3006 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3007                          gfn_t gfn, bool prefault)
3008 {
3009         int r;
3010         int level;
3011         bool force_pt_level = false;
3012         kvm_pfn_t pfn;
3013         unsigned long mmu_seq;
3014         bool map_writable, write = error_code & PFERR_WRITE_MASK;
3015
3016         level = mapping_level(vcpu, gfn, &force_pt_level);
3017         if (likely(!force_pt_level)) {
3018                 /*
3019                  * This path builds a PAE pagetable - so we can map
3020                  * 2mb pages at maximum. Therefore check if the level
3021                  * is larger than that.
3022                  */
3023                 if (level > PT_DIRECTORY_LEVEL)
3024                         level = PT_DIRECTORY_LEVEL;
3025
3026                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3027         }
3028
3029         if (fast_page_fault(vcpu, v, level, error_code))
3030                 return 0;
3031
3032         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3033         smp_rmb();
3034
3035         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
3036                 return 0;
3037
3038         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3039                 return r;
3040
3041         spin_lock(&vcpu->kvm->mmu_lock);
3042         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3043                 goto out_unlock;
3044         make_mmu_pages_available(vcpu);
3045         if (likely(!force_pt_level))
3046                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3047         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3048         spin_unlock(&vcpu->kvm->mmu_lock);
3049
3050         return r;
3051
3052 out_unlock:
3053         spin_unlock(&vcpu->kvm->mmu_lock);
3054         kvm_release_pfn_clean(pfn);
3055         return 0;
3056 }
3057
3058
3059 static void mmu_free_roots(struct kvm_vcpu *vcpu)
3060 {
3061         int i;
3062         struct kvm_mmu_page *sp;
3063         LIST_HEAD(invalid_list);
3064
3065         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3066                 return;
3067
3068         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3069             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3070              vcpu->arch.mmu.direct_map)) {
3071                 hpa_t root = vcpu->arch.mmu.root_hpa;
3072
3073                 spin_lock(&vcpu->kvm->mmu_lock);
3074                 sp = page_header(root);
3075                 --sp->root_count;
3076                 if (!sp->root_count && sp->role.invalid) {
3077                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3078                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3079                 }
3080                 spin_unlock(&vcpu->kvm->mmu_lock);
3081                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3082                 return;
3083         }
3084
3085         spin_lock(&vcpu->kvm->mmu_lock);
3086         for (i = 0; i < 4; ++i) {
3087                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3088
3089                 if (root) {
3090                         root &= PT64_BASE_ADDR_MASK;
3091                         sp = page_header(root);
3092                         --sp->root_count;
3093                         if (!sp->root_count && sp->role.invalid)
3094                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3095                                                          &invalid_list);
3096                 }
3097                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3098         }
3099         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3100         spin_unlock(&vcpu->kvm->mmu_lock);
3101         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3102 }
3103
3104 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3105 {
3106         int ret = 0;
3107
3108         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
3109                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3110                 ret = 1;
3111         }
3112
3113         return ret;
3114 }
3115
3116 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3117 {
3118         struct kvm_mmu_page *sp;
3119         unsigned i;
3120
3121         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3122                 spin_lock(&vcpu->kvm->mmu_lock);
3123                 make_mmu_pages_available(vcpu);
3124                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL, 1, ACC_ALL);
3125                 ++sp->root_count;
3126                 spin_unlock(&vcpu->kvm->mmu_lock);
3127                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3128         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3129                 for (i = 0; i < 4; ++i) {
3130                         hpa_t root = vcpu->arch.mmu.pae_root[i];
3131
3132                         MMU_WARN_ON(VALID_PAGE(root));
3133                         spin_lock(&vcpu->kvm->mmu_lock);
3134                         make_mmu_pages_available(vcpu);
3135                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3136                                         i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
3137                         root = __pa(sp->spt);
3138                         ++sp->root_count;
3139                         spin_unlock(&vcpu->kvm->mmu_lock);
3140                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
3141                 }
3142                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3143         } else
3144                 BUG();
3145
3146         return 0;
3147 }
3148
3149 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3150 {
3151         struct kvm_mmu_page *sp;
3152         u64 pdptr, pm_mask;
3153         gfn_t root_gfn;
3154         int i;
3155
3156         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3157
3158         if (mmu_check_root(vcpu, root_gfn))
3159                 return 1;
3160
3161         /*
3162          * Do we shadow a long mode page table? If so we need to
3163          * write-protect the guests page table root.
3164          */
3165         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3166                 hpa_t root = vcpu->arch.mmu.root_hpa;
3167
3168                 MMU_WARN_ON(VALID_PAGE(root));
3169
3170                 spin_lock(&vcpu->kvm->mmu_lock);
3171                 make_mmu_pages_available(vcpu);
3172                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3173                                       0, ACC_ALL);
3174                 root = __pa(sp->spt);
3175                 ++sp->root_count;
3176                 spin_unlock(&vcpu->kvm->mmu_lock);
3177                 vcpu->arch.mmu.root_hpa = root;
3178                 return 0;
3179         }
3180
3181         /*
3182          * We shadow a 32 bit page table. This may be a legacy 2-level
3183          * or a PAE 3-level page table. In either case we need to be aware that
3184          * the shadow page table may be a PAE or a long mode page table.
3185          */
3186         pm_mask = PT_PRESENT_MASK;
3187         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3188                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3189
3190         for (i = 0; i < 4; ++i) {
3191                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3192
3193                 MMU_WARN_ON(VALID_PAGE(root));
3194                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3195                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3196                         if (!is_present_gpte(pdptr)) {
3197                                 vcpu->arch.mmu.pae_root[i] = 0;
3198                                 continue;
3199                         }
3200                         root_gfn = pdptr >> PAGE_SHIFT;
3201                         if (mmu_check_root(vcpu, root_gfn))
3202                                 return 1;
3203                 }
3204                 spin_lock(&vcpu->kvm->mmu_lock);
3205                 make_mmu_pages_available(vcpu);
3206                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3207                                       0, ACC_ALL);
3208                 root = __pa(sp->spt);
3209                 ++sp->root_count;
3210                 spin_unlock(&vcpu->kvm->mmu_lock);
3211
3212                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3213         }
3214         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3215
3216         /*
3217          * If we shadow a 32 bit page table with a long mode page
3218          * table we enter this path.
3219          */
3220         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3221                 if (vcpu->arch.mmu.lm_root == NULL) {
3222                         /*
3223                          * The additional page necessary for this is only
3224                          * allocated on demand.
3225                          */
3226
3227                         u64 *lm_root;
3228
3229                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3230                         if (lm_root == NULL)
3231                                 return 1;
3232
3233                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3234
3235                         vcpu->arch.mmu.lm_root = lm_root;
3236                 }
3237
3238                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3239         }
3240
3241         return 0;
3242 }
3243
3244 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3245 {
3246         if (vcpu->arch.mmu.direct_map)
3247                 return mmu_alloc_direct_roots(vcpu);
3248         else
3249                 return mmu_alloc_shadow_roots(vcpu);
3250 }
3251
3252 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3253 {
3254         int i;
3255         struct kvm_mmu_page *sp;
3256
3257         if (vcpu->arch.mmu.direct_map)
3258                 return;
3259
3260         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3261                 return;
3262
3263         vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3264         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3265         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3266                 hpa_t root = vcpu->arch.mmu.root_hpa;
3267                 sp = page_header(root);
3268                 mmu_sync_children(vcpu, sp);
3269                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3270                 return;
3271         }
3272         for (i = 0; i < 4; ++i) {
3273                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3274
3275                 if (root && VALID_PAGE(root)) {
3276                         root &= PT64_BASE_ADDR_MASK;
3277                         sp = page_header(root);
3278                         mmu_sync_children(vcpu, sp);
3279                 }
3280         }
3281         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3282 }
3283
3284 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3285 {
3286         spin_lock(&vcpu->kvm->mmu_lock);
3287         mmu_sync_roots(vcpu);
3288         spin_unlock(&vcpu->kvm->mmu_lock);
3289 }
3290 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3291
3292 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3293                                   u32 access, struct x86_exception *exception)
3294 {
3295         if (exception)
3296                 exception->error_code = 0;
3297         return vaddr;
3298 }
3299
3300 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3301                                          u32 access,
3302                                          struct x86_exception *exception)
3303 {
3304         if (exception)
3305                 exception->error_code = 0;
3306         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3307 }
3308
3309 static bool
3310 __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3311 {
3312         int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3313
3314         return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3315                 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3316 }
3317
3318 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3319 {
3320         return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3321 }
3322
3323 static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3324 {
3325         return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3326 }
3327
3328 static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3329 {
3330         if (direct)
3331                 return vcpu_match_mmio_gpa(vcpu, addr);
3332
3333         return vcpu_match_mmio_gva(vcpu, addr);
3334 }
3335
3336 /* return true if reserved bit is detected on spte. */
3337 static bool
3338 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3339 {
3340         struct kvm_shadow_walk_iterator iterator;
3341         u64 sptes[PT64_ROOT_LEVEL], spte = 0ull;
3342         int root, leaf;
3343         bool reserved = false;
3344
3345         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3346                 goto exit;
3347
3348         walk_shadow_page_lockless_begin(vcpu);
3349
3350         for (shadow_walk_init(&iterator, vcpu, addr),
3351                  leaf = root = iterator.level;
3352              shadow_walk_okay(&iterator);
3353              __shadow_walk_next(&iterator, spte)) {
3354                 spte = mmu_spte_get_lockless(iterator.sptep);
3355
3356                 sptes[leaf - 1] = spte;
3357                 leaf--;
3358
3359                 if (!is_shadow_present_pte(spte))
3360                         break;
3361
3362                 reserved |= is_shadow_zero_bits_set(&vcpu->arch.mmu, spte,
3363                                                     iterator.level);
3364         }
3365
3366         walk_shadow_page_lockless_end(vcpu);
3367
3368         if (reserved) {
3369                 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3370                        __func__, addr);
3371                 while (root > leaf) {
3372                         pr_err("------ spte 0x%llx level %d.\n",
3373                                sptes[root - 1], root);
3374                         root--;
3375                 }
3376         }
3377 exit:
3378         *sptep = spte;
3379         return reserved;
3380 }
3381
3382 int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3383 {
3384         u64 spte;
3385         bool reserved;
3386
3387         if (mmio_info_in_cache(vcpu, addr, direct))
3388                 return RET_MMIO_PF_EMULATE;
3389
3390         reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
3391         if (WARN_ON(reserved))
3392                 return RET_MMIO_PF_BUG;
3393
3394         if (is_mmio_spte(spte)) {
3395                 gfn_t gfn = get_mmio_spte_gfn(spte);
3396                 unsigned access = get_mmio_spte_access(spte);
3397
3398                 if (!check_mmio_spte(vcpu, spte))
3399                         return RET_MMIO_PF_INVALID;
3400
3401                 if (direct)
3402                         addr = 0;
3403
3404                 trace_handle_mmio_page_fault(addr, gfn, access);
3405                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3406                 return RET_MMIO_PF_EMULATE;
3407         }
3408
3409         /*
3410          * If the page table is zapped by other cpus, let CPU fault again on
3411          * the address.
3412          */
3413         return RET_MMIO_PF_RETRY;
3414 }
3415 EXPORT_SYMBOL_GPL(handle_mmio_page_fault);
3416
3417 static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3418                                          u32 error_code, gfn_t gfn)
3419 {
3420         if (unlikely(error_code & PFERR_RSVD_MASK))
3421                 return false;
3422
3423         if (!(error_code & PFERR_PRESENT_MASK) ||
3424               !(error_code & PFERR_WRITE_MASK))
3425                 return false;
3426
3427         /*
3428          * guest is writing the page which is write tracked which can
3429          * not be fixed by page fault handler.
3430          */
3431         if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3432                 return true;
3433
3434         return false;
3435 }
3436
3437 static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3438 {
3439         struct kvm_shadow_walk_iterator iterator;
3440         u64 spte;
3441
3442         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3443                 return;
3444
3445         walk_shadow_page_lockless_begin(vcpu);
3446         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3447                 clear_sp_write_flooding_count(iterator.sptep);
3448                 if (!is_shadow_present_pte(spte))
3449                         break;
3450         }
3451         walk_shadow_page_lockless_end(vcpu);
3452 }
3453
3454 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3455                                 u32 error_code, bool prefault)
3456 {
3457         gfn_t gfn = gva >> PAGE_SHIFT;
3458         int r;
3459
3460         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3461
3462         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3463                 return 1;
3464
3465         r = mmu_topup_memory_caches(vcpu);
3466         if (r)
3467                 return r;
3468
3469         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3470
3471
3472         return nonpaging_map(vcpu, gva & PAGE_MASK,
3473                              error_code, gfn, prefault);
3474 }
3475
3476 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3477 {
3478         struct kvm_arch_async_pf arch;
3479
3480         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3481         arch.gfn = gfn;
3482         arch.direct_map = vcpu->arch.mmu.direct_map;
3483         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3484
3485         return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3486 }
3487
3488 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3489 {
3490         if (unlikely(!lapic_in_kernel(vcpu) ||
3491                      kvm_event_needs_reinjection(vcpu)))
3492                 return false;
3493
3494         return kvm_x86_ops->interrupt_allowed(vcpu);
3495 }
3496
3497 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3498                          gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
3499 {
3500         struct kvm_memory_slot *slot;
3501         bool async;
3502
3503         slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3504         async = false;
3505         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3506         if (!async)
3507                 return false; /* *pfn has correct page already */
3508
3509         if (!prefault && can_do_async_pf(vcpu)) {
3510                 trace_kvm_try_async_get_page(gva, gfn);
3511                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3512                         trace_kvm_async_pf_doublefault(gva, gfn);
3513                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3514                         return true;
3515                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3516                         return true;
3517         }
3518
3519         *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3520         return false;
3521 }
3522
3523 static bool
3524 check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
3525 {
3526         int page_num = KVM_PAGES_PER_HPAGE(level);
3527
3528         gfn &= ~(page_num - 1);
3529
3530         return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
3531 }
3532
3533 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3534                           bool prefault)
3535 {
3536         kvm_pfn_t pfn;
3537         int r;
3538         int level;
3539         bool force_pt_level;
3540         gfn_t gfn = gpa >> PAGE_SHIFT;
3541         unsigned long mmu_seq;
3542         int write = error_code & PFERR_WRITE_MASK;
3543         bool map_writable;
3544
3545         MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3546
3547         if (page_fault_handle_page_track(vcpu, error_code, gfn))
3548                 return 1;
3549
3550         r = mmu_topup_memory_caches(vcpu);
3551         if (r)
3552                 return r;
3553
3554         force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
3555                                                            PT_DIRECTORY_LEVEL);
3556         level = mapping_level(vcpu, gfn, &force_pt_level);
3557         if (likely(!force_pt_level)) {
3558                 if (level > PT_DIRECTORY_LEVEL &&
3559                     !check_hugepage_cache_consistency(vcpu, gfn, level))
3560                         level = PT_DIRECTORY_LEVEL;
3561                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3562         }
3563
3564         if (fast_page_fault(vcpu, gpa, level, error_code))
3565                 return 0;
3566
3567         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3568         smp_rmb();
3569
3570         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3571                 return 0;
3572
3573         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3574                 return r;
3575
3576         spin_lock(&vcpu->kvm->mmu_lock);
3577         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3578                 goto out_unlock;
3579         make_mmu_pages_available(vcpu);
3580         if (likely(!force_pt_level))
3581                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3582         r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
3583         spin_unlock(&vcpu->kvm->mmu_lock);
3584
3585         return r;
3586
3587 out_unlock:
3588         spin_unlock(&vcpu->kvm->mmu_lock);
3589         kvm_release_pfn_clean(pfn);
3590         return 0;
3591 }
3592
3593 static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3594                                    struct kvm_mmu *context)
3595 {
3596         context->page_fault = nonpaging_page_fault;
3597         context->gva_to_gpa = nonpaging_gva_to_gpa;
3598         context->sync_page = nonpaging_sync_page;
3599         context->invlpg = nonpaging_invlpg;
3600         context->update_pte = nonpaging_update_pte;
3601         context->root_level = 0;
3602         context->shadow_root_level = PT32E_ROOT_LEVEL;
3603         context->root_hpa = INVALID_PAGE;
3604         context->direct_map = true;
3605         context->nx = false;
3606 }
3607
3608 void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
3609 {
3610         mmu_free_roots(vcpu);
3611 }
3612
3613 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3614 {
3615         return kvm_read_cr3(vcpu);
3616 }
3617
3618 static void inject_page_fault(struct kvm_vcpu *vcpu,
3619                               struct x86_exception *fault)
3620 {
3621         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3622 }
3623
3624 static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3625                            unsigned access, int *nr_present)
3626 {
3627         if (unlikely(is_mmio_spte(*sptep))) {
3628                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3629                         mmu_spte_clear_no_track(sptep);
3630                         return true;
3631                 }
3632
3633                 (*nr_present)++;
3634                 mark_mmio_spte(vcpu, sptep, gfn, access);
3635                 return true;
3636         }
3637
3638         return false;
3639 }
3640
3641 static inline bool is_last_gpte(struct kvm_mmu *mmu,
3642                                 unsigned level, unsigned gpte)
3643 {
3644         /*
3645          * PT_PAGE_TABLE_LEVEL always terminates.  The RHS has bit 7 set
3646          * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3647          * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3648          */
3649         gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
3650
3651         /*
3652          * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3653          * If it is clear, there are no large pages at this level, so clear
3654          * PT_PAGE_SIZE_MASK in gpte if that is the case.
3655          */
3656         gpte &= level - mmu->last_nonleaf_level;
3657
3658         return gpte & PT_PAGE_SIZE_MASK;
3659 }
3660
3661 #define PTTYPE_EPT 18 /* arbitrary */
3662 #define PTTYPE PTTYPE_EPT
3663 #include "paging_tmpl.h"
3664 #undef PTTYPE
3665
3666 #define PTTYPE 64
3667 #include "paging_tmpl.h"
3668 #undef PTTYPE
3669
3670 #define PTTYPE 32
3671 #include "paging_tmpl.h"
3672 #undef PTTYPE
3673
3674 static void
3675 __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3676                         struct rsvd_bits_validate *rsvd_check,
3677                         int maxphyaddr, int level, bool nx, bool gbpages,
3678                         bool pse, bool amd)
3679 {
3680         u64 exb_bit_rsvd = 0;
3681         u64 gbpages_bit_rsvd = 0;
3682         u64 nonleaf_bit8_rsvd = 0;
3683
3684         rsvd_check->bad_mt_xwr = 0;
3685
3686         if (!nx)
3687                 exb_bit_rsvd = rsvd_bits(63, 63);
3688         if (!gbpages)
3689                 gbpages_bit_rsvd = rsvd_bits(7, 7);
3690
3691         /*
3692          * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3693          * leaf entries) on AMD CPUs only.
3694          */
3695         if (amd)
3696                 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3697
3698         switch (level) {
3699         case PT32_ROOT_LEVEL:
3700                 /* no rsvd bits for 2 level 4K page table entries */
3701                 rsvd_check->rsvd_bits_mask[0][1] = 0;
3702                 rsvd_check->rsvd_bits_mask[0][0] = 0;
3703                 rsvd_check->rsvd_bits_mask[1][0] =
3704                         rsvd_check->rsvd_bits_mask[0][0];
3705
3706                 if (!pse) {
3707                         rsvd_check->rsvd_bits_mask[1][1] = 0;
3708                         break;
3709                 }
3710
3711                 if (is_cpuid_PSE36())
3712                         /* 36bits PSE 4MB page */
3713                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3714                 else
3715                         /* 32 bits PSE 4MB page */
3716                         rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3717                 break;
3718         case PT32E_ROOT_LEVEL:
3719                 rsvd_check->rsvd_bits_mask[0][2] =
3720                         rsvd_bits(maxphyaddr, 63) |
3721                         rsvd_bits(5, 8) | rsvd_bits(1, 2);      /* PDPTE */
3722                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3723                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3724                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3725                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3726                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3727                         rsvd_bits(maxphyaddr, 62) |
3728                         rsvd_bits(13, 20);              /* large page */
3729                 rsvd_check->rsvd_bits_mask[1][0] =
3730                         rsvd_check->rsvd_bits_mask[0][0];
3731                 break;
3732         case PT64_ROOT_LEVEL:
3733                 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3734                         nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
3735                         rsvd_bits(maxphyaddr, 51);
3736                 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3737                         nonleaf_bit8_rsvd | gbpages_bit_rsvd |
3738                         rsvd_bits(maxphyaddr, 51);
3739                 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3740                         rsvd_bits(maxphyaddr, 51);
3741                 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3742                         rsvd_bits(maxphyaddr, 51);
3743                 rsvd_check->rsvd_bits_mask[1][3] =
3744                         rsvd_check->rsvd_bits_mask[0][3];
3745                 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3746                         gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
3747                         rsvd_bits(13, 29);
3748                 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3749                         rsvd_bits(maxphyaddr, 51) |
3750                         rsvd_bits(13, 20);              /* large page */
3751                 rsvd_check->rsvd_bits_mask[1][0] =
3752                         rsvd_check->rsvd_bits_mask[0][0];
3753                 break;
3754         }
3755 }
3756
3757 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3758                                   struct kvm_mmu *context)
3759 {
3760         __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
3761                                 cpuid_maxphyaddr(vcpu), context->root_level,
3762                                 context->nx, guest_cpuid_has_gbpages(vcpu),
3763                                 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
3764 }
3765
3766 static void
3767 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
3768                             int maxphyaddr, bool execonly)
3769 {
3770         u64 bad_mt_xwr;
3771
3772         rsvd_check->rsvd_bits_mask[0][3] =
3773                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3774         rsvd_check->rsvd_bits_mask[0][2] =
3775                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3776         rsvd_check->rsvd_bits_mask[0][1] =
3777                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3778         rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3779
3780         /* large page */
3781         rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
3782         rsvd_check->rsvd_bits_mask[1][2] =
3783                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3784         rsvd_check->rsvd_bits_mask[1][1] =
3785                 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3786         rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
3787
3788         bad_mt_xwr = 0xFFull << (2 * 8);        /* bits 3..5 must not be 2 */
3789         bad_mt_xwr |= 0xFFull << (3 * 8);       /* bits 3..5 must not be 3 */
3790         bad_mt_xwr |= 0xFFull << (7 * 8);       /* bits 3..5 must not be 7 */
3791         bad_mt_xwr |= REPEAT_BYTE(1ull << 2);   /* bits 0..2 must not be 010 */
3792         bad_mt_xwr |= REPEAT_BYTE(1ull << 6);   /* bits 0..2 must not be 110 */
3793         if (!execonly) {
3794                 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3795                 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
3796         }
3797         rsvd_check->bad_mt_xwr = bad_mt_xwr;
3798 }
3799
3800 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3801                 struct kvm_mmu *context, bool execonly)
3802 {
3803         __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
3804                                     cpuid_maxphyaddr(vcpu), execonly);
3805 }
3806
3807 /*
3808  * the page table on host is the shadow page table for the page
3809  * table in guest or amd nested guest, its mmu features completely
3810  * follow the features in guest.
3811  */
3812 void
3813 reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3814 {
3815         bool uses_nx = context->nx || context->base_role.smep_andnot_wp;
3816
3817         /*
3818          * Passing "true" to the last argument is okay; it adds a check
3819          * on bit 8 of the SPTEs which KVM doesn't use anyway.
3820          */
3821         __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3822                                 boot_cpu_data.x86_phys_bits,
3823                                 context->shadow_root_level, uses_nx,
3824                                 guest_cpuid_has_gbpages(vcpu), is_pse(vcpu),
3825                                 true);
3826 }
3827 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
3828
3829 static inline bool boot_cpu_is_amd(void)
3830 {
3831         WARN_ON_ONCE(!tdp_enabled);
3832         return shadow_x_mask == 0;
3833 }
3834
3835 /*
3836  * the direct page table on host, use as much mmu features as
3837  * possible, however, kvm currently does not do execution-protection.
3838  */
3839 static void
3840 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3841                                 struct kvm_mmu *context)
3842 {
3843         if (boot_cpu_is_amd())
3844                 __reset_rsvds_bits_mask(vcpu, &context->shadow_zero_check,
3845                                         boot_cpu_data.x86_phys_bits,
3846                                         context->shadow_root_level, false,
3847                                         boot_cpu_has(X86_FEATURE_GBPAGES),
3848                                         true, true);
3849         else
3850                 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3851                                             boot_cpu_data.x86_phys_bits,
3852                                             false);
3853
3854 }
3855
3856 /*
3857  * as the comments in reset_shadow_zero_bits_mask() except it
3858  * is the shadow page table for intel nested guest.
3859  */
3860 static void
3861 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
3862                                 struct kvm_mmu *context, bool execonly)
3863 {
3864         __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
3865                                     boot_cpu_data.x86_phys_bits, execonly);
3866 }
3867
3868 static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3869                                       struct kvm_mmu *mmu, bool ept)
3870 {
3871         unsigned bit, byte, pfec;
3872         u8 map;
3873         bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
3874
3875         cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3876         cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
3877         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3878                 pfec = byte << 1;
3879                 map = 0;
3880                 wf = pfec & PFERR_WRITE_MASK;
3881                 uf = pfec & PFERR_USER_MASK;
3882                 ff = pfec & PFERR_FETCH_MASK;
3883                 /*
3884                  * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3885                  * subject to SMAP restrictions, and cleared otherwise. The
3886                  * bit is only meaningful if the SMAP bit is set in CR4.
3887                  */
3888                 smapf = !(pfec & PFERR_RSVD_MASK);
3889                 for (bit = 0; bit < 8; ++bit) {
3890                         x = bit & ACC_EXEC_MASK;
3891                         w = bit & ACC_WRITE_MASK;
3892                         u = bit & ACC_USER_MASK;
3893
3894                         if (!ept) {
3895                                 /* Not really needed: !nx will cause pte.nx to fault */
3896                                 x |= !mmu->nx;
3897                                 /* Allow supervisor writes if !cr0.wp */
3898                                 w |= !is_write_protection(vcpu) && !uf;
3899                                 /* Disallow supervisor fetches of user code if cr4.smep */
3900                                 x &= !(cr4_smep && u && !uf);
3901
3902                                 /*
3903                                  * SMAP:kernel-mode data accesses from user-mode
3904                                  * mappings should fault. A fault is considered
3905                                  * as a SMAP violation if all of the following
3906                                  * conditions are ture:
3907                                  *   - X86_CR4_SMAP is set in CR4
3908                                  *   - An user page is accessed
3909                                  *   - Page fault in kernel mode
3910                                  *   - if CPL = 3 or X86_EFLAGS_AC is clear
3911                                  *
3912                                  *   Here, we cover the first three conditions.
3913                                  *   The fourth is computed dynamically in
3914                                  *   permission_fault() and is in smapf.
3915                                  *
3916                                  *   Also, SMAP does not affect instruction
3917                                  *   fetches, add the !ff check here to make it
3918                                  *   clearer.
3919                                  */
3920                                 smap = cr4_smap && u && !uf && !ff;
3921                         } else
3922                                 /* Not really needed: no U/S accesses on ept  */
3923                                 u = 1;
3924
3925                         fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3926                                 (smapf && smap);
3927                         map |= fault << bit;
3928                 }
3929                 mmu->permissions[byte] = map;
3930         }
3931 }
3932
3933 /*
3934 * PKU is an additional mechanism by which the paging controls access to
3935 * user-mode addresses based on the value in the PKRU register.  Protection
3936 * key violations are reported through a bit in the page fault error code.
3937 * Unlike other bits of the error code, the PK bit is not known at the
3938 * call site of e.g. gva_to_gpa; it must be computed directly in
3939 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3940 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3941 *
3942 * In particular the following conditions come from the error code, the
3943 * page tables and the machine state:
3944 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3945 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3946 * - PK is always zero if U=0 in the page tables
3947 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3948 *
3949 * The PKRU bitmask caches the result of these four conditions.  The error
3950 * code (minus the P bit) and the page table's U bit form an index into the
3951 * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
3952 * with the two bits of the PKRU register corresponding to the protection key.
3953 * For the first three conditions above the bits will be 00, thus masking
3954 * away both AD and WD.  For all reads or if the last condition holds, WD
3955 * only will be masked away.
3956 */
3957 static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3958                                 bool ept)
3959 {
3960         unsigned bit;
3961         bool wp;
3962
3963         if (ept) {
3964                 mmu->pkru_mask = 0;
3965                 return;
3966         }
3967
3968         /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3969         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
3970                 mmu->pkru_mask = 0;
3971                 return;
3972         }
3973
3974         wp = is_write_protection(vcpu);
3975
3976         for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
3977                 unsigned pfec, pkey_bits;
3978                 bool check_pkey, check_write, ff, uf, wf, pte_user;
3979
3980                 pfec = bit << 1;
3981                 ff = pfec & PFERR_FETCH_MASK;
3982                 uf = pfec & PFERR_USER_MASK;
3983                 wf = pfec & PFERR_WRITE_MASK;
3984
3985                 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3986                 pte_user = pfec & PFERR_RSVD_MASK;
3987
3988                 /*
3989                  * Only need to check the access which is not an
3990                  * instruction fetch and is to a user page.
3991                  */
3992                 check_pkey = (!ff && pte_user);
3993                 /*
3994                  * write access is controlled by PKRU if it is a
3995                  * user access or CR0.WP = 1.
3996                  */
3997                 check_write = check_pkey && wf && (uf || wp);
3998
3999                 /* PKRU.AD stops both read and write access. */
4000                 pkey_bits = !!check_pkey;
4001                 /* PKRU.WD stops write access. */
4002                 pkey_bits |= (!!check_write) << 1;
4003
4004                 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4005         }
4006 }
4007
4008 static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4009 {
4010         unsigned root_level = mmu->root_level;
4011
4012         mmu->last_nonleaf_level = root_level;
4013         if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4014                 mmu->last_nonleaf_level++;
4015 }
4016
4017 static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4018                                          struct kvm_mmu *context,
4019                                          int level)
4020 {
4021         context->nx = is_nx(vcpu);
4022         context->root_level = level;
4023
4024         reset_rsvds_bits_mask(vcpu, context);
4025         update_permission_bitmask(vcpu, context, false);
4026         update_pkru_bitmask(vcpu, context, false);
4027         update_last_nonleaf_level(vcpu, context);
4028
4029         MMU_WARN_ON(!is_pae(vcpu));
4030         context->page_fault = paging64_page_fault;
4031         context->gva_to_gpa = paging64_gva_to_gpa;
4032         context->sync_page = paging64_sync_page;
4033         context->invlpg = paging64_invlpg;
4034         context->update_pte = paging64_update_pte;
4035         context->shadow_root_level = level;
4036         context->root_hpa = INVALID_PAGE;
4037         context->direct_map = false;
4038 }
4039
4040 static void paging64_init_context(struct kvm_vcpu *vcpu,
4041                                   struct kvm_mmu *context)
4042 {
4043         paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
4044 }
4045
4046 static void paging32_init_context(struct kvm_vcpu *vcpu,
4047                                   struct kvm_mmu *context)
4048 {
4049         context->nx = false;
4050         context->root_level = PT32_ROOT_LEVEL;
4051
4052         reset_rsvds_bits_mask(vcpu, context);
4053         update_permission_bitmask(vcpu, context, false);
4054         update_pkru_bitmask(vcpu, context, false);
4055         update_last_nonleaf_level(vcpu, context);
4056
4057         context->page_fault = paging32_page_fault;
4058         context->gva_to_gpa = paging32_gva_to_gpa;
4059         context->sync_page = paging32_sync_page;
4060         context->invlpg = paging32_invlpg;
4061         context->update_pte = paging32_update_pte;
4062         context->shadow_root_level = PT32E_ROOT_LEVEL;
4063         context->root_hpa = INVALID_PAGE;
4064         context->direct_map = false;
4065 }
4066
4067 static void paging32E_init_context(struct kvm_vcpu *vcpu,
4068                                    struct kvm_mmu *context)
4069 {
4070         paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4071 }
4072
4073 static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4074 {
4075         struct kvm_mmu *context = &vcpu->arch.mmu;
4076
4077         context->base_role.word = 0;
4078         context->base_role.smm = is_smm(vcpu);
4079         context->page_fault = tdp_page_fault;
4080         context->sync_page = nonpaging_sync_page;
4081         context->invlpg = nonpaging_invlpg;
4082         context->update_pte = nonpaging_update_pte;
4083         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4084         context->root_hpa = INVALID_PAGE;
4085         context->direct_map = true;
4086         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
4087         context->get_cr3 = get_cr3;
4088         context->get_pdptr = kvm_pdptr_read;
4089         context->inject_page_fault = kvm_inject_page_fault;
4090
4091         if (!is_paging(vcpu)) {
4092                 context->nx = false;
4093                 context->gva_to_gpa = nonpaging_gva_to_gpa;
4094                 context->root_level = 0;
4095         } else if (is_long_mode(vcpu)) {
4096                 context->nx = is_nx(vcpu);
4097                 context->root_level = PT64_ROOT_LEVEL;
4098                 reset_rsvds_bits_mask(vcpu, context);
4099                 context->gva_to_gpa = paging64_gva_to_gpa;
4100         } else if (is_pae(vcpu)) {
4101                 context->nx = is_nx(vcpu);
4102                 context->root_level = PT32E_ROOT_LEVEL;
4103                 reset_rsvds_bits_mask(vcpu, context);
4104                 context->gva_to_gpa = paging64_gva_to_gpa;
4105         } else {
4106                 context->nx = false;
4107                 context->root_level = PT32_ROOT_LEVEL;
4108                 reset_rsvds_bits_mask(vcpu, context);
4109                 context->gva_to_gpa = paging32_gva_to_gpa;
4110         }
4111
4112         update_permission_bitmask(vcpu, context, false);
4113         update_pkru_bitmask(vcpu, context, false);
4114         update_last_nonleaf_level(vcpu, context);
4115         reset_tdp_shadow_zero_bits_mask(vcpu, context);
4116 }
4117
4118 void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4119 {
4120         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4121         bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4122         struct kvm_mmu *context = &vcpu->arch.mmu;
4123
4124         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4125
4126         if (!is_paging(vcpu))
4127                 nonpaging_init_context(vcpu, context);
4128         else if (is_long_mode(vcpu))
4129                 paging64_init_context(vcpu, context);
4130         else if (is_pae(vcpu))
4131                 paging32E_init_context(vcpu, context);
4132         else
4133                 paging32_init_context(vcpu, context);
4134
4135         context->base_role.nxe = is_nx(vcpu);
4136         context->base_role.cr4_pae = !!is_pae(vcpu);
4137         context->base_role.cr0_wp  = is_write_protection(vcpu);
4138         context->base_role.smep_andnot_wp
4139                 = smep && !is_write_protection(vcpu);
4140         context->base_role.smap_andnot_wp
4141                 = smap && !is_write_protection(vcpu);
4142         context->base_role.smm = is_smm(vcpu);
4143         reset_shadow_zero_bits_mask(vcpu, context);
4144 }
4145 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4146
4147 void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
4148 {
4149         struct kvm_mmu *context = &vcpu->arch.mmu;
4150
4151         MMU_WARN_ON(VALID_PAGE(context->root_hpa));
4152
4153         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
4154
4155         context->nx = true;
4156         context->page_fault = ept_page_fault;
4157         context->gva_to_gpa = ept_gva_to_gpa;
4158         context->sync_page = ept_sync_page;
4159         context->invlpg = ept_invlpg;
4160         context->update_pte = ept_update_pte;
4161         context->root_level = context->shadow_root_level;
4162         context->root_hpa = INVALID_PAGE;
4163         context->direct_map = false;
4164
4165         update_permission_bitmask(vcpu, context, true);
4166         update_pkru_bitmask(vcpu, context, true);
4167         reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4168         reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4169 }
4170 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4171
4172 static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4173 {
4174         struct kvm_mmu *context = &vcpu->arch.mmu;
4175
4176         kvm_init_shadow_mmu(vcpu);
4177         context->set_cr3           = kvm_x86_ops->set_cr3;
4178         context->get_cr3           = get_cr3;
4179         context->get_pdptr         = kvm_pdptr_read;
4180         context->inject_page_fault = kvm_inject_page_fault;
4181 }
4182
4183 static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4184 {
4185         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4186
4187         g_context->get_cr3           = get_cr3;
4188         g_context->get_pdptr         = kvm_pdptr_read;
4189         g_context->inject_page_fault = kvm_inject_page_fault;
4190
4191         /*
4192          * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4193          * L1's nested page tables (e.g. EPT12). The nested translation
4194          * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4195          * L2's page tables as the first level of translation and L1's
4196          * nested page tables as the second level of translation. Basically
4197          * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4198          */
4199         if (!is_paging(vcpu)) {
4200                 g_context->nx = false;
4201                 g_context->root_level = 0;
4202                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4203         } else if (is_long_mode(vcpu)) {
4204                 g_context->nx = is_nx(vcpu);
4205                 g_context->root_level = PT64_ROOT_LEVEL;
4206                 reset_rsvds_bits_mask(vcpu, g_context);
4207                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4208         } else if (is_pae(vcpu)) {
4209                 g_context->nx = is_nx(vcpu);
4210                 g_context->root_level = PT32E_ROOT_LEVEL;
4211                 reset_rsvds_bits_mask(vcpu, g_context);
4212                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4213         } else {
4214                 g_context->nx = false;
4215                 g_context->root_level = PT32_ROOT_LEVEL;
4216                 reset_rsvds_bits_mask(vcpu, g_context);
4217                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4218         }
4219
4220         update_permission_bitmask(vcpu, g_context, false);
4221         update_pkru_bitmask(vcpu, g_context, false);
4222         update_last_nonleaf_level(vcpu, g_context);
4223 }
4224
4225 static void init_kvm_mmu(struct kvm_vcpu *vcpu)
4226 {
4227         if (mmu_is_nested(vcpu))
4228                 init_kvm_nested_mmu(vcpu);
4229         else if (tdp_enabled)
4230                 init_kvm_tdp_mmu(vcpu);
4231         else
4232                 init_kvm_softmmu(vcpu);
4233 }
4234
4235 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4236 {
4237         kvm_mmu_unload(vcpu);
4238         init_kvm_mmu(vcpu);
4239 }
4240 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4241
4242 int kvm_mmu_load(struct kvm_vcpu *vcpu)
4243 {
4244         int r;
4245
4246         r = mmu_topup_memory_caches(vcpu);
4247         if (r)
4248                 goto out;
4249         r = mmu_alloc_roots(vcpu);
4250         kvm_mmu_sync_roots(vcpu);
4251         if (r)
4252                 goto out;
4253         /* set_cr3() should ensure TLB has been flushed */
4254         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
4255 out:
4256         return r;
4257 }
4258 EXPORT_SYMBOL_GPL(kvm_mmu_load);
4259
4260 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4261 {
4262         mmu_free_roots(vcpu);
4263         WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4264 }
4265 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4266
4267 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4268                                   struct kvm_mmu_page *sp, u64 *spte,
4269                                   const void *new)
4270 {
4271         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
4272                 ++vcpu->kvm->stat.mmu_pde_zapped;
4273                 return;
4274         }
4275
4276         ++vcpu->kvm->stat.mmu_pte_updated;
4277         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
4278 }
4279
4280 static bool need_remote_flush(u64 old, u64 new)
4281 {
4282         if (!is_shadow_present_pte(old))
4283                 return false;
4284         if (!is_shadow_present_pte(new))
4285                 return true;
4286         if ((old ^ new) & PT64_BASE_ADDR_MASK)
4287                 return true;
4288         old ^= shadow_nx_mask;
4289         new ^= shadow_nx_mask;
4290         return (old & ~new & PT64_PERM_MASK) != 0;
4291 }
4292
4293 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4294                                     const u8 *new, int *bytes)
4295 {
4296         u64 gentry;
4297         int r;
4298
4299         /*
4300          * Assume that the pte write on a page table of the same type
4301          * as the current vcpu paging mode since we update the sptes only
4302          * when they have the same mode.
4303          */
4304         if (is_pae(vcpu) && *bytes == 4) {
4305                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4306                 *gpa &= ~(gpa_t)7;
4307                 *bytes = 8;
4308                 r = kvm_vcpu_read_guest(vcpu, *gpa, &gentry, 8);
4309                 if (r)
4310                         gentry = 0;
4311                 new = (const u8 *)&gentry;
4312         }
4313
4314         switch (*bytes) {
4315         case 4:
4316                 gentry = *(const u32 *)new;
4317                 break;
4318         case 8:
4319                 gentry = *(const u64 *)new;
4320                 break;
4321         default:
4322                 gentry = 0;
4323                 break;
4324         }
4325
4326         return gentry;
4327 }
4328
4329 /*
4330  * If we're seeing too many writes to a page, it may no longer be a page table,
4331  * or we may be forking, in which case it is better to unmap the page.
4332  */
4333 static bool detect_write_flooding(struct kvm_mmu_page *sp)
4334 {
4335         /*
4336          * Skip write-flooding detected for the sp whose level is 1, because
4337          * it can become unsync, then the guest page is not write-protected.
4338          */
4339         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
4340                 return false;
4341
4342         atomic_inc(&sp->write_flooding_count);
4343         return atomic_read(&sp->write_flooding_count) >= 3;
4344 }
4345
4346 /*
4347  * Misaligned accesses are too much trouble to fix up; also, they usually
4348  * indicate a page is not used as a page table.
4349  */
4350 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4351                                     int bytes)
4352 {
4353         unsigned offset, pte_size, misaligned;
4354
4355         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4356                  gpa, bytes, sp->role.word);
4357
4358         offset = offset_in_page(gpa);
4359         pte_size = sp->role.cr4_pae ? 8 : 4;
4360
4361         /*
4362          * Sometimes, the OS only writes the last one bytes to update status
4363          * bits, for example, in linux, andb instruction is used in clear_bit().
4364          */
4365         if (!(offset & (pte_size - 1)) && bytes == 1)
4366                 return false;
4367
4368         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4369         misaligned |= bytes < 4;
4370
4371         return misaligned;
4372 }
4373
4374 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4375 {
4376         unsigned page_offset, quadrant;
4377         u64 *spte;
4378         int level;
4379
4380         page_offset = offset_in_page(gpa);
4381         level = sp->role.level;
4382         *nspte = 1;
4383         if (!sp->role.cr4_pae) {
4384                 page_offset <<= 1;      /* 32->64 */
4385                 /*
4386                  * A 32-bit pde maps 4MB while the shadow pdes map
4387                  * only 2MB.  So we need to double the offset again
4388                  * and zap two pdes instead of one.
4389                  */
4390                 if (level == PT32_ROOT_LEVEL) {
4391                         page_offset &= ~7; /* kill rounding error */
4392                         page_offset <<= 1;
4393                         *nspte = 2;
4394                 }
4395                 quadrant = page_offset >> PAGE_SHIFT;
4396                 page_offset &= ~PAGE_MASK;
4397                 if (quadrant != sp->role.quadrant)
4398                         return NULL;
4399         }
4400
4401         spte = &sp->spt[page_offset / sizeof(*spte)];
4402         return spte;
4403 }
4404
4405 static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4406                               const u8 *new, int bytes)
4407 {
4408         gfn_t gfn = gpa >> PAGE_SHIFT;
4409         struct kvm_mmu_page *sp;
4410         LIST_HEAD(invalid_list);
4411         u64 entry, gentry, *spte;
4412         int npte;
4413         bool remote_flush, local_flush;
4414         union kvm_mmu_page_role mask = { };
4415
4416         mask.cr0_wp = 1;
4417         mask.cr4_pae = 1;
4418         mask.nxe = 1;
4419         mask.smep_andnot_wp = 1;
4420         mask.smap_andnot_wp = 1;
4421         mask.smm = 1;
4422
4423         /*
4424          * If we don't have indirect shadow pages, it means no page is
4425          * write-protected, so we can exit simply.
4426          */
4427         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4428                 return;
4429
4430         remote_flush = local_flush = false;
4431
4432         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4433
4434         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4435
4436         /*
4437          * No need to care whether allocation memory is successful
4438          * or not since pte prefetch is skiped if it does not have
4439          * enough objects in the cache.
4440          */
4441         mmu_topup_memory_caches(vcpu);
4442
4443         spin_lock(&vcpu->kvm->mmu_lock);
4444         ++vcpu->kvm->stat.mmu_pte_write;
4445         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4446
4447         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4448                 if (detect_write_misaligned(sp, gpa, bytes) ||
4449                       detect_write_flooding(sp)) {
4450                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4451                         ++vcpu->kvm->stat.mmu_flooded;
4452                         continue;
4453                 }
4454
4455                 spte = get_written_sptes(sp, gpa, &npte);
4456                 if (!spte)
4457                         continue;
4458
4459                 local_flush = true;
4460                 while (npte--) {
4461                         entry = *spte;
4462                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4463                         if (gentry &&
4464                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4465                               & mask.word) && rmap_can_add(vcpu))
4466                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4467                         if (need_remote_flush(entry, *spte))
4468                                 remote_flush = true;
4469                         ++spte;
4470                 }
4471         }
4472         kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
4473         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4474         spin_unlock(&vcpu->kvm->mmu_lock);
4475 }
4476
4477 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4478 {
4479         gpa_t gpa;
4480         int r;
4481
4482         if (vcpu->arch.mmu.direct_map)
4483                 return 0;
4484
4485         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4486
4487         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4488
4489         return r;
4490 }
4491 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4492
4493 static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
4494 {
4495         LIST_HEAD(invalid_list);
4496
4497         if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4498                 return;
4499
4500         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4501                 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4502                         break;
4503
4504                 ++vcpu->kvm->stat.mmu_recycled;
4505         }
4506         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4507 }
4508
4509 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4510                        void *insn, int insn_len)
4511 {
4512         int r, emulation_type = EMULTYPE_RETRY;
4513         enum emulation_result er;
4514         bool direct = vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu);
4515
4516         if (unlikely(error_code & PFERR_RSVD_MASK)) {
4517                 r = handle_mmio_page_fault(vcpu, cr2, direct);
4518                 if (r == RET_MMIO_PF_EMULATE) {
4519                         emulation_type = 0;
4520                         goto emulate;
4521                 }
4522                 if (r == RET_MMIO_PF_RETRY)
4523                         return 1;
4524                 if (r < 0)
4525                         return r;
4526         }
4527
4528         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4529         if (r < 0)
4530                 return r;
4531         if (!r)
4532                 return 1;
4533
4534         if (mmio_info_in_cache(vcpu, cr2, direct))
4535                 emulation_type = 0;
4536 emulate:
4537         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4538
4539         switch (er) {
4540         case EMULATE_DONE:
4541                 return 1;
4542         case EMULATE_USER_EXIT:
4543                 ++vcpu->stat.mmio_exits;
4544                 /* fall through */
4545         case EMULATE_FAIL:
4546                 return 0;
4547         default:
4548                 BUG();
4549         }
4550 }
4551 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4552
4553 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4554 {
4555         vcpu->arch.mmu.invlpg(vcpu, gva);
4556         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4557         ++vcpu->stat.invlpg;
4558 }
4559 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4560
4561 void kvm_enable_tdp(void)
4562 {
4563         tdp_enabled = true;
4564 }
4565 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4566
4567 void kvm_disable_tdp(void)
4568 {
4569         tdp_enabled = false;
4570 }
4571 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4572
4573 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4574 {
4575         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4576         if (vcpu->arch.mmu.lm_root != NULL)
4577                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4578 }
4579
4580 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4581 {
4582         struct page *page;
4583         int i;
4584
4585         /*
4586          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4587          * Therefore we need to allocate shadow page tables in the first
4588          * 4GB of memory, which happens to fit the DMA32 zone.
4589          */
4590         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4591         if (!page)
4592                 return -ENOMEM;
4593
4594         vcpu->arch.mmu.pae_root = page_address(page);
4595         for (i = 0; i < 4; ++i)
4596                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4597
4598         return 0;
4599 }
4600
4601 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4602 {
4603         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4604         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4605         vcpu->arch.mmu.translate_gpa = translate_gpa;
4606         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4607
4608         return alloc_mmu_pages(vcpu);
4609 }
4610
4611 void kvm_mmu_setup(struct kvm_vcpu *vcpu)
4612 {
4613         MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
4614
4615         init_kvm_mmu(vcpu);
4616 }
4617
4618 void kvm_mmu_init_vm(struct kvm *kvm)
4619 {
4620         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4621
4622         node->track_write = kvm_mmu_pte_write;
4623         kvm_page_track_register_notifier(kvm, node);
4624 }
4625
4626 void kvm_mmu_uninit_vm(struct kvm *kvm)
4627 {
4628         struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
4629
4630         kvm_page_track_unregister_notifier(kvm, node);
4631 }
4632
4633 /* The return value indicates if tlb flush on all vcpus is needed. */
4634 typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
4635
4636 /* The caller should hold mmu-lock before calling this function. */
4637 static bool
4638 slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4639                         slot_level_handler fn, int start_level, int end_level,
4640                         gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4641 {
4642         struct slot_rmap_walk_iterator iterator;
4643         bool flush = false;
4644
4645         for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4646                         end_gfn, &iterator) {
4647                 if (iterator.rmap)
4648                         flush |= fn(kvm, iterator.rmap);
4649
4650                 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4651                         if (flush && lock_flush_tlb) {
4652                                 kvm_flush_remote_tlbs(kvm);
4653                                 flush = false;
4654                         }
4655                         cond_resched_lock(&kvm->mmu_lock);
4656                 }
4657         }
4658
4659         if (flush && lock_flush_tlb) {
4660                 kvm_flush_remote_tlbs(kvm);
4661                 flush = false;
4662         }
4663
4664         return flush;
4665 }
4666
4667 static bool
4668 slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4669                   slot_level_handler fn, int start_level, int end_level,
4670                   bool lock_flush_tlb)
4671 {
4672         return slot_handle_level_range(kvm, memslot, fn, start_level,
4673                         end_level, memslot->base_gfn,
4674                         memslot->base_gfn + memslot->npages - 1,
4675                         lock_flush_tlb);
4676 }
4677
4678 static bool
4679 slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4680                       slot_level_handler fn, bool lock_flush_tlb)
4681 {
4682         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4683                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4684 }
4685
4686 static bool
4687 slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4688                         slot_level_handler fn, bool lock_flush_tlb)
4689 {
4690         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4691                                  PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4692 }
4693
4694 static bool
4695 slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4696                  slot_level_handler fn, bool lock_flush_tlb)
4697 {
4698         return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4699                                  PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4700 }
4701
4702 void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
4703 {
4704         struct kvm_memslots *slots;
4705         struct kvm_memory_slot *memslot;
4706         int i;
4707
4708         spin_lock(&kvm->mmu_lock);
4709         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4710                 slots = __kvm_memslots(kvm, i);
4711                 kvm_for_each_memslot(memslot, slots) {
4712                         gfn_t start, end;
4713
4714                         start = max(gfn_start, memslot->base_gfn);
4715                         end = min(gfn_end, memslot->base_gfn + memslot->npages);
4716                         if (start >= end)
4717                                 continue;
4718
4719                         slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
4720                                                 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
4721                                                 start, end - 1, true);
4722                 }
4723         }
4724
4725         spin_unlock(&kvm->mmu_lock);
4726 }
4727
4728 static bool slot_rmap_write_protect(struct kvm *kvm,
4729                                     struct kvm_rmap_head *rmap_head)
4730 {
4731         return __rmap_write_protect(kvm, rmap_head, false);
4732 }
4733
4734 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4735                                       struct kvm_memory_slot *memslot)
4736 {
4737         bool flush;
4738
4739         spin_lock(&kvm->mmu_lock);
4740         flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4741                                       false);
4742         spin_unlock(&kvm->mmu_lock);
4743
4744         /*
4745          * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4746          * which do tlb flush out of mmu-lock should be serialized by
4747          * kvm->slots_lock otherwise tlb flush would be missed.
4748          */
4749         lockdep_assert_held(&kvm->slots_lock);
4750
4751         /*
4752          * We can flush all the TLBs out of the mmu lock without TLB
4753          * corruption since we just change the spte from writable to
4754          * readonly so that we only need to care the case of changing
4755          * spte from present to present (changing the spte from present
4756          * to nonpresent will flush all the TLBs immediately), in other
4757          * words, the only case we care is mmu_spte_update() where we
4758          * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4759          * instead of PT_WRITABLE_MASK, that means it does not depend
4760          * on PT_WRITABLE_MASK anymore.
4761          */
4762         if (flush)
4763                 kvm_flush_remote_tlbs(kvm);
4764 }
4765
4766 static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4767                                          struct kvm_rmap_head *rmap_head)
4768 {
4769         u64 *sptep;
4770         struct rmap_iterator iter;
4771         int need_tlb_flush = 0;
4772         kvm_pfn_t pfn;
4773         struct kvm_mmu_page *sp;
4774
4775 restart:
4776         for_each_rmap_spte(rmap_head, &iter, sptep) {
4777                 sp = page_header(__pa(sptep));
4778                 pfn = spte_to_pfn(*sptep);
4779
4780                 /*
4781                  * We cannot do huge page mapping for indirect shadow pages,
4782                  * which are found on the last rmap (level = 1) when not using
4783                  * tdp; such shadow pages are synced with the page table in
4784                  * the guest, and the guest page table is using 4K page size
4785                  * mapping if the indirect sp has level = 1.
4786                  */
4787                 if (sp->role.direct &&
4788                         !kvm_is_reserved_pfn(pfn) &&
4789                         PageTransCompound(pfn_to_page(pfn))) {
4790                         drop_spte(kvm, sptep);
4791                         need_tlb_flush = 1;
4792                         goto restart;
4793                 }
4794         }
4795
4796         return need_tlb_flush;
4797 }
4798
4799 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4800                                    const struct kvm_memory_slot *memslot)
4801 {
4802         /* FIXME: const-ify all uses of struct kvm_memory_slot.  */
4803         spin_lock(&kvm->mmu_lock);
4804         slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
4805                          kvm_mmu_zap_collapsible_spte, true);
4806         spin_unlock(&kvm->mmu_lock);
4807 }
4808
4809 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4810                                    struct kvm_memory_slot *memslot)
4811 {
4812         bool flush;
4813
4814         spin_lock(&kvm->mmu_lock);
4815         flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
4816         spin_unlock(&kvm->mmu_lock);
4817
4818         lockdep_assert_held(&kvm->slots_lock);
4819
4820         /*
4821          * It's also safe to flush TLBs out of mmu lock here as currently this
4822          * function is only used for dirty logging, in which case flushing TLB
4823          * out of mmu lock also guarantees no dirty pages will be lost in
4824          * dirty_bitmap.
4825          */
4826         if (flush)
4827                 kvm_flush_remote_tlbs(kvm);
4828 }
4829 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4830
4831 void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4832                                         struct kvm_memory_slot *memslot)
4833 {
4834         bool flush;
4835
4836         spin_lock(&kvm->mmu_lock);
4837         flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4838                                         false);
4839         spin_unlock(&kvm->mmu_lock);
4840
4841         /* see kvm_mmu_slot_remove_write_access */
4842         lockdep_assert_held(&kvm->slots_lock);
4843
4844         if (flush)
4845                 kvm_flush_remote_tlbs(kvm);
4846 }
4847 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4848
4849 void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4850                             struct kvm_memory_slot *memslot)
4851 {
4852         bool flush;
4853
4854         spin_lock(&kvm->mmu_lock);
4855         flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
4856         spin_unlock(&kvm->mmu_lock);
4857
4858         lockdep_assert_held(&kvm->slots_lock);
4859
4860         /* see kvm_mmu_slot_leaf_clear_dirty */
4861         if (flush)
4862                 kvm_flush_remote_tlbs(kvm);
4863 }
4864 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4865
4866 #define BATCH_ZAP_PAGES 10
4867 static void kvm_zap_obsolete_pages(struct kvm *kvm)
4868 {
4869         struct kvm_mmu_page *sp, *node;
4870         int batch = 0;
4871
4872 restart:
4873         list_for_each_entry_safe_reverse(sp, node,
4874               &kvm->arch.active_mmu_pages, link) {
4875                 int ret;
4876
4877                 /*
4878                  * No obsolete page exists before new created page since
4879                  * active_mmu_pages is the FIFO list.
4880                  */
4881                 if (!is_obsolete_sp(kvm, sp))
4882                         break;
4883
4884                 /*
4885                  * Since we are reversely walking the list and the invalid
4886                  * list will be moved to the head, skip the invalid page
4887                  * can help us to avoid the infinity list walking.
4888                  */
4889                 if (sp->role.invalid)
4890                         continue;
4891
4892                 /*
4893                  * Need not flush tlb since we only zap the sp with invalid
4894                  * generation number.
4895                  */
4896                 if (batch >= BATCH_ZAP_PAGES &&
4897                       cond_resched_lock(&kvm->mmu_lock)) {
4898                         batch = 0;
4899                         goto restart;
4900                 }
4901
4902                 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4903                                 &kvm->arch.zapped_obsolete_pages);
4904                 batch += ret;
4905
4906                 if (ret)
4907                         goto restart;
4908         }
4909
4910         /*
4911          * Should flush tlb before free page tables since lockless-walking
4912          * may use the pages.
4913          */
4914         kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
4915 }
4916
4917 /*
4918  * Fast invalidate all shadow pages and use lock-break technique
4919  * to zap obsolete pages.
4920  *
4921  * It's required when memslot is being deleted or VM is being
4922  * destroyed, in these cases, we should ensure that KVM MMU does
4923  * not use any resource of the being-deleted slot or all slots
4924  * after calling the function.
4925  */
4926 void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4927 {
4928         spin_lock(&kvm->mmu_lock);
4929         trace_kvm_mmu_invalidate_zap_all_pages(kvm);
4930         kvm->arch.mmu_valid_gen++;
4931
4932         /*
4933          * Notify all vcpus to reload its shadow page table
4934          * and flush TLB. Then all vcpus will switch to new
4935          * shadow page table with the new mmu_valid_gen.
4936          *
4937          * Note: we should do this under the protection of
4938          * mmu-lock, otherwise, vcpu would purge shadow page
4939          * but miss tlb flush.
4940          */
4941         kvm_reload_remote_mmus(kvm);
4942
4943         kvm_zap_obsolete_pages(kvm);
4944         spin_unlock(&kvm->mmu_lock);
4945 }
4946
4947 static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4948 {
4949         return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4950 }
4951
4952 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
4953 {
4954         /*
4955          * The very rare case: if the generation-number is round,
4956          * zap all shadow pages.
4957          */
4958         if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
4959                 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
4960                 kvm_mmu_invalidate_zap_all_pages(kvm);
4961         }
4962 }
4963
4964 static unsigned long
4965 mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
4966 {
4967         struct kvm *kvm;
4968         int nr_to_scan = sc->nr_to_scan;
4969         unsigned long freed = 0;
4970
4971         spin_lock(&kvm_lock);
4972
4973         list_for_each_entry(kvm, &vm_list, vm_list) {
4974                 int idx;
4975                 LIST_HEAD(invalid_list);
4976
4977                 /*
4978                  * Never scan more than sc->nr_to_scan VM instances.
4979                  * Will not hit this condition practically since we do not try
4980                  * to shrink more than one VM and it is very unlikely to see
4981                  * !n_used_mmu_pages so many times.
4982                  */
4983                 if (!nr_to_scan--)
4984                         break;
4985                 /*
4986                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4987                  * here. We may skip a VM instance errorneosly, but we do not
4988                  * want to shrink a VM that only started to populate its MMU
4989                  * anyway.
4990                  */
4991                 if (!kvm->arch.n_used_mmu_pages &&
4992                       !kvm_has_zapped_obsolete_pages(kvm))
4993                         continue;
4994
4995                 idx = srcu_read_lock(&kvm->srcu);
4996                 spin_lock(&kvm->mmu_lock);
4997
4998                 if (kvm_has_zapped_obsolete_pages(kvm)) {
4999                         kvm_mmu_commit_zap_page(kvm,
5000                               &kvm->arch.zapped_obsolete_pages);
5001                         goto unlock;
5002                 }
5003
5004                 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5005                         freed++;
5006                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5007
5008 unlock:
5009                 spin_unlock(&kvm->mmu_lock);
5010                 srcu_read_unlock(&kvm->srcu, idx);
5011
5012                 /*
5013                  * unfair on small ones
5014                  * per-vm shrinkers cry out
5015                  * sadness comes quickly
5016                  */
5017                 list_move_tail(&kvm->vm_list, &vm_list);
5018                 break;
5019         }
5020
5021         spin_unlock(&kvm_lock);
5022         return freed;
5023 }
5024
5025 static unsigned long
5026 mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5027 {
5028         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5029 }
5030
5031 static struct shrinker mmu_shrinker = {
5032         .count_objects = mmu_shrink_count,
5033         .scan_objects = mmu_shrink_scan,
5034         .seeks = DEFAULT_SEEKS * 10,
5035 };
5036
5037 static void mmu_destroy_caches(void)
5038 {
5039         if (pte_list_desc_cache)
5040                 kmem_cache_destroy(pte_list_desc_cache);
5041         if (mmu_page_header_cache)
5042                 kmem_cache_destroy(mmu_page_header_cache);
5043 }
5044
5045 int kvm_mmu_module_init(void)
5046 {
5047         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5048                                             sizeof(struct pte_list_desc),
5049                                             0, 0, NULL);
5050         if (!pte_list_desc_cache)
5051                 goto nomem;
5052
5053         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5054                                                   sizeof(struct kvm_mmu_page),
5055                                                   0, 0, NULL);
5056         if (!mmu_page_header_cache)
5057                 goto nomem;
5058
5059         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5060                 goto nomem;
5061
5062         register_shrinker(&mmu_shrinker);
5063
5064         return 0;
5065
5066 nomem:
5067         mmu_destroy_caches();
5068         return -ENOMEM;
5069 }
5070
5071 /*
5072  * Caculate mmu pages needed for kvm.
5073  */
5074 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
5075 {
5076         unsigned int nr_mmu_pages;
5077         unsigned int  nr_pages = 0;
5078         struct kvm_memslots *slots;
5079         struct kvm_memory_slot *memslot;
5080         int i;
5081
5082         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5083                 slots = __kvm_memslots(kvm, i);
5084
5085                 kvm_for_each_memslot(memslot, slots)
5086                         nr_pages += memslot->npages;
5087         }
5088
5089         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5090         nr_mmu_pages = max(nr_mmu_pages,
5091                            (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
5092
5093         return nr_mmu_pages;
5094 }
5095
5096 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5097 {
5098         kvm_mmu_unload(vcpu);
5099         free_mmu_pages(vcpu);
5100         mmu_free_memory_caches(vcpu);
5101 }
5102
5103 void kvm_mmu_module_exit(void)
5104 {
5105         mmu_destroy_caches();
5106         percpu_counter_destroy(&kvm_total_used_mmu_pages);
5107         unregister_shrinker(&mmu_shrinker);
5108         mmu_audit_disable();
5109 }