Merge tag 'fixes-for-v3.8-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[cascardo/linux.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204         trace_mark_mmio_spte(sptep, gfn, access);
205         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225         if (unlikely(is_noslot_pfn(pfn))) {
226                 mark_mmio_spte(sptep, gfn, access);
227                 return true;
228         }
229
230         return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235         return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241         shadow_user_mask = user_mask;
242         shadow_accessed_mask = accessed_mask;
243         shadow_dirty_mask = dirty_mask;
244         shadow_nx_mask = nx_mask;
245         shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251         return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266         return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271         return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276         return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281         if (level == PT_PAGE_TABLE_LEVEL)
282                 return 1;
283         if (is_large_pte(pte))
284                 return 1;
285         return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297         return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303         *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308         *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313         return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318         return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323         /* It is valid if the spte is zapped. */
324         return spte == 0ull;
325 }
326 #else
327 union split_spte {
328         struct {
329                 u32 spte_low;
330                 u32 spte_high;
331         };
332         u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
338
339         if (is_shadow_present_pte(spte))
340                 return;
341
342         /* Ensure the spte is completely set before we increase the count */
343         smp_wmb();
344         sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349         union split_spte *ssptep, sspte;
350
351         ssptep = (union split_spte *)sptep;
352         sspte = (union split_spte)spte;
353
354         ssptep->spte_high = sspte.spte_high;
355
356         /*
357          * If we map the spte from nonpresent to present, We should store
358          * the high bits firstly, then set present bit, so cpu can not
359          * fetch this spte while we are setting the spte.
360          */
361         smp_wmb();
362
363         ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368         union split_spte *ssptep, sspte;
369
370         ssptep = (union split_spte *)sptep;
371         sspte = (union split_spte)spte;
372
373         ssptep->spte_low = sspte.spte_low;
374
375         /*
376          * If we map the spte from present to nonpresent, we should clear
377          * present bit firstly to avoid vcpu fetch the old high bits.
378          */
379         smp_wmb();
380
381         ssptep->spte_high = sspte.spte_high;
382         count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387         union split_spte *ssptep, sspte, orig;
388
389         ssptep = (union split_spte *)sptep;
390         sspte = (union split_spte)spte;
391
392         /* xchg acts as a barrier before the setting of the high bits */
393         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394         orig.spte_high = ssptep->spte_high;
395         ssptep->spte_high = sspte.spte_high;
396         count_spte_clear(sptep, spte);
397
398         return orig.spte;
399 }
400
401 /*
402  * The idea using the light way get the spte on x86_32 guest is from
403  * gup_get_pte(arch/x86/mm/gup.c).
404  * The difference is we can not catch the spte tlb flush if we leave
405  * guest mode, so we emulate it by increase clear_spte_count when spte
406  * is cleared.
407  */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
411         union split_spte spte, *orig = (union split_spte *)sptep;
412         int count;
413
414 retry:
415         count = sp->clear_spte_count;
416         smp_rmb();
417
418         spte.spte_low = orig->spte_low;
419         smp_rmb();
420
421         spte.spte_high = orig->spte_high;
422         smp_rmb();
423
424         if (unlikely(spte.spte_low != orig->spte_low ||
425               count != sp->clear_spte_count))
426                 goto retry;
427
428         return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433         union split_spte sspte = (union split_spte)spte;
434         u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436         /* It is valid if the spte is zapped. */
437         if (spte == 0ull)
438                 return true;
439
440         /* It is valid if the spte is being zapped. */
441         if (sspte.spte_low == 0ull &&
442             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443                 return true;
444
445         return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451         return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452 }
453
454 static bool spte_has_volatile_bits(u64 spte)
455 {
456         /*
457          * Always atomicly update spte if it can be updated
458          * out of mmu-lock, it can ensure dirty bit is not lost,
459          * also, it can help us to get a stable is_writable_pte()
460          * to ensure tlb flush is not missed.
461          */
462         if (spte_is_locklessly_modifiable(spte))
463                 return true;
464
465         if (!shadow_accessed_mask)
466                 return false;
467
468         if (!is_shadow_present_pte(spte))
469                 return false;
470
471         if ((spte & shadow_accessed_mask) &&
472               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
473                 return false;
474
475         return true;
476 }
477
478 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479 {
480         return (old_spte & bit_mask) && !(new_spte & bit_mask);
481 }
482
483 /* Rules for using mmu_spte_set:
484  * Set the sptep from nonpresent to present.
485  * Note: the sptep being assigned *must* be either not present
486  * or in a state where the hardware will not attempt to update
487  * the spte.
488  */
489 static void mmu_spte_set(u64 *sptep, u64 new_spte)
490 {
491         WARN_ON(is_shadow_present_pte(*sptep));
492         __set_spte(sptep, new_spte);
493 }
494
495 /* Rules for using mmu_spte_update:
496  * Update the state bits, it means the mapped pfn is not changged.
497  *
498  * Whenever we overwrite a writable spte with a read-only one we
499  * should flush remote TLBs. Otherwise rmap_write_protect
500  * will find a read-only spte, even though the writable spte
501  * might be cached on a CPU's TLB, the return value indicates this
502  * case.
503  */
504 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
505 {
506         u64 old_spte = *sptep;
507         bool ret = false;
508
509         WARN_ON(!is_rmap_spte(new_spte));
510
511         if (!is_shadow_present_pte(old_spte)) {
512                 mmu_spte_set(sptep, new_spte);
513                 return ret;
514         }
515
516         if (!spte_has_volatile_bits(old_spte))
517                 __update_clear_spte_fast(sptep, new_spte);
518         else
519                 old_spte = __update_clear_spte_slow(sptep, new_spte);
520
521         /*
522          * For the spte updated out of mmu-lock is safe, since
523          * we always atomicly update it, see the comments in
524          * spte_has_volatile_bits().
525          */
526         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527                 ret = true;
528
529         if (!shadow_accessed_mask)
530                 return ret;
531
532         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
536
537         return ret;
538 }
539
540 /*
541  * Rules for using mmu_spte_clear_track_bits:
542  * It sets the sptep from present to nonpresent, and track the
543  * state bits, it is used to clear the last level sptep.
544  */
545 static int mmu_spte_clear_track_bits(u64 *sptep)
546 {
547         pfn_t pfn;
548         u64 old_spte = *sptep;
549
550         if (!spte_has_volatile_bits(old_spte))
551                 __update_clear_spte_fast(sptep, 0ull);
552         else
553                 old_spte = __update_clear_spte_slow(sptep, 0ull);
554
555         if (!is_rmap_spte(old_spte))
556                 return 0;
557
558         pfn = spte_to_pfn(old_spte);
559
560         /*
561          * KVM does not hold the refcount of the page used by
562          * kvm mmu, before reclaiming the page, we should
563          * unmap it from mmu first.
564          */
565         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
567         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568                 kvm_set_pfn_accessed(pfn);
569         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570                 kvm_set_pfn_dirty(pfn);
571         return 1;
572 }
573
574 /*
575  * Rules for using mmu_spte_clear_no_track:
576  * Directly clear spte without caring the state bits of sptep,
577  * it is used to set the upper level spte.
578  */
579 static void mmu_spte_clear_no_track(u64 *sptep)
580 {
581         __update_clear_spte_fast(sptep, 0ull);
582 }
583
584 static u64 mmu_spte_get_lockless(u64 *sptep)
585 {
586         return __get_spte_lockless(sptep);
587 }
588
589 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590 {
591         /*
592          * Prevent page table teardown by making any free-er wait during
593          * kvm_flush_remote_tlbs() IPI to all active vcpus.
594          */
595         local_irq_disable();
596         vcpu->mode = READING_SHADOW_PAGE_TABLES;
597         /*
598          * Make sure a following spte read is not reordered ahead of the write
599          * to vcpu->mode.
600          */
601         smp_mb();
602 }
603
604 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605 {
606         /*
607          * Make sure the write to vcpu->mode is not reordered in front of
608          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
609          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610          */
611         smp_mb();
612         vcpu->mode = OUTSIDE_GUEST_MODE;
613         local_irq_enable();
614 }
615
616 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
617                                   struct kmem_cache *base_cache, int min)
618 {
619         void *obj;
620
621         if (cache->nobjs >= min)
622                 return 0;
623         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
624                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
625                 if (!obj)
626                         return -ENOMEM;
627                 cache->objects[cache->nobjs++] = obj;
628         }
629         return 0;
630 }
631
632 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633 {
634         return cache->nobjs;
635 }
636
637 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638                                   struct kmem_cache *cache)
639 {
640         while (mc->nobjs)
641                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
642 }
643
644 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
645                                        int min)
646 {
647         void *page;
648
649         if (cache->nobjs >= min)
650                 return 0;
651         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
652                 page = (void *)__get_free_page(GFP_KERNEL);
653                 if (!page)
654                         return -ENOMEM;
655                 cache->objects[cache->nobjs++] = page;
656         }
657         return 0;
658 }
659
660 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661 {
662         while (mc->nobjs)
663                 free_page((unsigned long)mc->objects[--mc->nobjs]);
664 }
665
666 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
667 {
668         int r;
669
670         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
671                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
672         if (r)
673                 goto out;
674         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
675         if (r)
676                 goto out;
677         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
678                                    mmu_page_header_cache, 4);
679 out:
680         return r;
681 }
682
683 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684 {
685         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686                                 pte_list_desc_cache);
687         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
688         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689                                 mmu_page_header_cache);
690 }
691
692 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
693 {
694         void *p;
695
696         BUG_ON(!mc->nobjs);
697         p = mc->objects[--mc->nobjs];
698         return p;
699 }
700
701 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
702 {
703         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
704 }
705
706 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
707 {
708         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
709 }
710
711 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712 {
713         if (!sp->role.direct)
714                 return sp->gfns[index];
715
716         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717 }
718
719 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720 {
721         if (sp->role.direct)
722                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723         else
724                 sp->gfns[index] = gfn;
725 }
726
727 /*
728  * Return the pointer to the large page information for a given gfn,
729  * handling slots that are not large page aligned.
730  */
731 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732                                               struct kvm_memory_slot *slot,
733                                               int level)
734 {
735         unsigned long idx;
736
737         idx = gfn_to_index(gfn, slot->base_gfn, level);
738         return &slot->arch.lpage_info[level - 2][idx];
739 }
740
741 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742 {
743         struct kvm_memory_slot *slot;
744         struct kvm_lpage_info *linfo;
745         int i;
746
747         slot = gfn_to_memslot(kvm, gfn);
748         for (i = PT_DIRECTORY_LEVEL;
749              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
750                 linfo = lpage_info_slot(gfn, slot, i);
751                 linfo->write_count += 1;
752         }
753         kvm->arch.indirect_shadow_pages++;
754 }
755
756 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757 {
758         struct kvm_memory_slot *slot;
759         struct kvm_lpage_info *linfo;
760         int i;
761
762         slot = gfn_to_memslot(kvm, gfn);
763         for (i = PT_DIRECTORY_LEVEL;
764              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
765                 linfo = lpage_info_slot(gfn, slot, i);
766                 linfo->write_count -= 1;
767                 WARN_ON(linfo->write_count < 0);
768         }
769         kvm->arch.indirect_shadow_pages--;
770 }
771
772 static int has_wrprotected_page(struct kvm *kvm,
773                                 gfn_t gfn,
774                                 int level)
775 {
776         struct kvm_memory_slot *slot;
777         struct kvm_lpage_info *linfo;
778
779         slot = gfn_to_memslot(kvm, gfn);
780         if (slot) {
781                 linfo = lpage_info_slot(gfn, slot, level);
782                 return linfo->write_count;
783         }
784
785         return 1;
786 }
787
788 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
789 {
790         unsigned long page_size;
791         int i, ret = 0;
792
793         page_size = kvm_host_page_size(kvm, gfn);
794
795         for (i = PT_PAGE_TABLE_LEVEL;
796              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797                 if (page_size >= KVM_HPAGE_SIZE(i))
798                         ret = i;
799                 else
800                         break;
801         }
802
803         return ret;
804 }
805
806 static struct kvm_memory_slot *
807 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808                             bool no_dirty_log)
809 {
810         struct kvm_memory_slot *slot;
811
812         slot = gfn_to_memslot(vcpu->kvm, gfn);
813         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814               (no_dirty_log && slot->dirty_bitmap))
815                 slot = NULL;
816
817         return slot;
818 }
819
820 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821 {
822         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
823 }
824
825 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826 {
827         int host_level, level, max_level;
828
829         host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831         if (host_level == PT_PAGE_TABLE_LEVEL)
832                 return host_level;
833
834         max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835                 kvm_x86_ops->get_lpage_level() : host_level;
836
837         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839                         break;
840
841         return level - 1;
842 }
843
844 /*
845  * Pte mapping structures:
846  *
847  * If pte_list bit zero is zero, then pte_list point to the spte.
848  *
849  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850  * pte_list_desc containing more mappings.
851  *
852  * Returns the number of pte entries before the spte was added or zero if
853  * the spte was not added.
854  *
855  */
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857                         unsigned long *pte_list)
858 {
859         struct pte_list_desc *desc;
860         int i, count = 0;
861
862         if (!*pte_list) {
863                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864                 *pte_list = (unsigned long)spte;
865         } else if (!(*pte_list & 1)) {
866                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867                 desc = mmu_alloc_pte_list_desc(vcpu);
868                 desc->sptes[0] = (u64 *)*pte_list;
869                 desc->sptes[1] = spte;
870                 *pte_list = (unsigned long)desc | 1;
871                 ++count;
872         } else {
873                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876                         desc = desc->more;
877                         count += PTE_LIST_EXT;
878                 }
879                 if (desc->sptes[PTE_LIST_EXT-1]) {
880                         desc->more = mmu_alloc_pte_list_desc(vcpu);
881                         desc = desc->more;
882                 }
883                 for (i = 0; desc->sptes[i]; ++i)
884                         ++count;
885                 desc->sptes[i] = spte;
886         }
887         return count;
888 }
889
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892                            int i, struct pte_list_desc *prev_desc)
893 {
894         int j;
895
896         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897                 ;
898         desc->sptes[i] = desc->sptes[j];
899         desc->sptes[j] = NULL;
900         if (j != 0)
901                 return;
902         if (!prev_desc && !desc->more)
903                 *pte_list = (unsigned long)desc->sptes[0];
904         else
905                 if (prev_desc)
906                         prev_desc->more = desc->more;
907                 else
908                         *pte_list = (unsigned long)desc->more | 1;
909         mmu_free_pte_list_desc(desc);
910 }
911
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913 {
914         struct pte_list_desc *desc;
915         struct pte_list_desc *prev_desc;
916         int i;
917
918         if (!*pte_list) {
919                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920                 BUG();
921         } else if (!(*pte_list & 1)) {
922                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
923                 if ((u64 *)*pte_list != spte) {
924                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
925                         BUG();
926                 }
927                 *pte_list = 0;
928         } else {
929                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
930                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931                 prev_desc = NULL;
932                 while (desc) {
933                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934                                 if (desc->sptes[i] == spte) {
935                                         pte_list_desc_remove_entry(pte_list,
936                                                                desc, i,
937                                                                prev_desc);
938                                         return;
939                                 }
940                         prev_desc = desc;
941                         desc = desc->more;
942                 }
943                 pr_err("pte_list_remove: %p many->many\n", spte);
944                 BUG();
945         }
946 }
947
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950 {
951         struct pte_list_desc *desc;
952         int i;
953
954         if (!*pte_list)
955                 return;
956
957         if (!(*pte_list & 1))
958                 return fn((u64 *)*pte_list);
959
960         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961         while (desc) {
962                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963                         fn(desc->sptes[i]);
964                 desc = desc->more;
965         }
966 }
967
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969                                     struct kvm_memory_slot *slot)
970 {
971         unsigned long idx;
972
973         idx = gfn_to_index(gfn, slot->base_gfn, level);
974         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975 }
976
977 /*
978  * Take gfn and return the reverse mapping to it.
979  */
980 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981 {
982         struct kvm_memory_slot *slot;
983
984         slot = gfn_to_memslot(kvm, gfn);
985         return __gfn_to_rmap(gfn, level, slot);
986 }
987
988 static bool rmap_can_add(struct kvm_vcpu *vcpu)
989 {
990         struct kvm_mmu_memory_cache *cache;
991
992         cache = &vcpu->arch.mmu_pte_list_desc_cache;
993         return mmu_memory_cache_free_objects(cache);
994 }
995
996 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997 {
998         struct kvm_mmu_page *sp;
999         unsigned long *rmapp;
1000
1001         sp = page_header(__pa(spte));
1002         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004         return pte_list_add(vcpu, spte, rmapp);
1005 }
1006
1007 static void rmap_remove(struct kvm *kvm, u64 *spte)
1008 {
1009         struct kvm_mmu_page *sp;
1010         gfn_t gfn;
1011         unsigned long *rmapp;
1012
1013         sp = page_header(__pa(spte));
1014         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016         pte_list_remove(spte, rmapp);
1017 }
1018
1019 /*
1020  * Used by the following functions to iterate through the sptes linked by a
1021  * rmap.  All fields are private and not assumed to be used outside.
1022  */
1023 struct rmap_iterator {
1024         /* private fields */
1025         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1026         int pos;                        /* index of the sptep */
1027 };
1028
1029 /*
1030  * Iteration must be started by this function.  This should also be used after
1031  * removing/dropping sptes from the rmap link because in such cases the
1032  * information in the itererator may not be valid.
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037 {
1038         if (!rmap)
1039                 return NULL;
1040
1041         if (!(rmap & 1)) {
1042                 iter->desc = NULL;
1043                 return (u64 *)rmap;
1044         }
1045
1046         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047         iter->pos = 0;
1048         return iter->desc->sptes[iter->pos];
1049 }
1050
1051 /*
1052  * Must be used with a valid iterator: e.g. after rmap_get_first().
1053  *
1054  * Returns sptep if found, NULL otherwise.
1055  */
1056 static u64 *rmap_get_next(struct rmap_iterator *iter)
1057 {
1058         if (iter->desc) {
1059                 if (iter->pos < PTE_LIST_EXT - 1) {
1060                         u64 *sptep;
1061
1062                         ++iter->pos;
1063                         sptep = iter->desc->sptes[iter->pos];
1064                         if (sptep)
1065                                 return sptep;
1066                 }
1067
1068                 iter->desc = iter->desc->more;
1069
1070                 if (iter->desc) {
1071                         iter->pos = 0;
1072                         /* desc->sptes[0] cannot be NULL */
1073                         return iter->desc->sptes[iter->pos];
1074                 }
1075         }
1076
1077         return NULL;
1078 }
1079
1080 static void drop_spte(struct kvm *kvm, u64 *sptep)
1081 {
1082         if (mmu_spte_clear_track_bits(sptep))
1083                 rmap_remove(kvm, sptep);
1084 }
1085
1086
1087 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088 {
1089         if (is_large_pte(*sptep)) {
1090                 WARN_ON(page_header(__pa(sptep))->role.level ==
1091                         PT_PAGE_TABLE_LEVEL);
1092                 drop_spte(kvm, sptep);
1093                 --kvm->stat.lpages;
1094                 return true;
1095         }
1096
1097         return false;
1098 }
1099
1100 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101 {
1102         if (__drop_large_spte(vcpu->kvm, sptep))
1103                 kvm_flush_remote_tlbs(vcpu->kvm);
1104 }
1105
1106 /*
1107  * Write-protect on the specified @sptep, @pt_protect indicates whether
1108  * spte writ-protection is caused by protecting shadow page table.
1109  * @flush indicates whether tlb need be flushed.
1110  *
1111  * Note: write protection is difference between drity logging and spte
1112  * protection:
1113  * - for dirty logging, the spte can be set to writable at anytime if
1114  *   its dirty bitmap is properly set.
1115  * - for spte protection, the spte can be writable only after unsync-ing
1116  *   shadow page.
1117  *
1118  * Return true if the spte is dropped.
1119  */
1120 static bool
1121 spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
1122 {
1123         u64 spte = *sptep;
1124
1125         if (!is_writable_pte(spte) &&
1126               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1127                 return false;
1128
1129         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1130
1131         if (__drop_large_spte(kvm, sptep)) {
1132                 *flush |= true;
1133                 return true;
1134         }
1135
1136         if (pt_protect)
1137                 spte &= ~SPTE_MMU_WRITEABLE;
1138         spte = spte & ~PT_WRITABLE_MASK;
1139
1140         *flush |= mmu_spte_update(sptep, spte);
1141         return false;
1142 }
1143
1144 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1145                                  int level, bool pt_protect)
1146 {
1147         u64 *sptep;
1148         struct rmap_iterator iter;
1149         bool flush = false;
1150
1151         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1152                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1153                 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1154                         sptep = rmap_get_first(*rmapp, &iter);
1155                         continue;
1156                 }
1157
1158                 sptep = rmap_get_next(&iter);
1159         }
1160
1161         return flush;
1162 }
1163
1164 /**
1165  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1166  * @kvm: kvm instance
1167  * @slot: slot to protect
1168  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1169  * @mask: indicates which pages we should protect
1170  *
1171  * Used when we do not need to care about huge page mappings: e.g. during dirty
1172  * logging we do not have any such mappings.
1173  */
1174 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1175                                      struct kvm_memory_slot *slot,
1176                                      gfn_t gfn_offset, unsigned long mask)
1177 {
1178         unsigned long *rmapp;
1179
1180         while (mask) {
1181                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1182                                       PT_PAGE_TABLE_LEVEL, slot);
1183                 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
1184
1185                 /* clear the first set bit */
1186                 mask &= mask - 1;
1187         }
1188 }
1189
1190 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1191 {
1192         struct kvm_memory_slot *slot;
1193         unsigned long *rmapp;
1194         int i;
1195         bool write_protected = false;
1196
1197         slot = gfn_to_memslot(kvm, gfn);
1198
1199         for (i = PT_PAGE_TABLE_LEVEL;
1200              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1201                 rmapp = __gfn_to_rmap(gfn, i, slot);
1202                 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
1203         }
1204
1205         return write_protected;
1206 }
1207
1208 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1209                            struct kvm_memory_slot *slot, unsigned long data)
1210 {
1211         u64 *sptep;
1212         struct rmap_iterator iter;
1213         int need_tlb_flush = 0;
1214
1215         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1216                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1217                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1218
1219                 drop_spte(kvm, sptep);
1220                 need_tlb_flush = 1;
1221         }
1222
1223         return need_tlb_flush;
1224 }
1225
1226 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1227                              struct kvm_memory_slot *slot, unsigned long data)
1228 {
1229         u64 *sptep;
1230         struct rmap_iterator iter;
1231         int need_flush = 0;
1232         u64 new_spte;
1233         pte_t *ptep = (pte_t *)data;
1234         pfn_t new_pfn;
1235
1236         WARN_ON(pte_huge(*ptep));
1237         new_pfn = pte_pfn(*ptep);
1238
1239         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1240                 BUG_ON(!is_shadow_present_pte(*sptep));
1241                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1242
1243                 need_flush = 1;
1244
1245                 if (pte_write(*ptep)) {
1246                         drop_spte(kvm, sptep);
1247                         sptep = rmap_get_first(*rmapp, &iter);
1248                 } else {
1249                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1250                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1251
1252                         new_spte &= ~PT_WRITABLE_MASK;
1253                         new_spte &= ~SPTE_HOST_WRITEABLE;
1254                         new_spte &= ~shadow_accessed_mask;
1255
1256                         mmu_spte_clear_track_bits(sptep);
1257                         mmu_spte_set(sptep, new_spte);
1258                         sptep = rmap_get_next(&iter);
1259                 }
1260         }
1261
1262         if (need_flush)
1263                 kvm_flush_remote_tlbs(kvm);
1264
1265         return 0;
1266 }
1267
1268 static int kvm_handle_hva_range(struct kvm *kvm,
1269                                 unsigned long start,
1270                                 unsigned long end,
1271                                 unsigned long data,
1272                                 int (*handler)(struct kvm *kvm,
1273                                                unsigned long *rmapp,
1274                                                struct kvm_memory_slot *slot,
1275                                                unsigned long data))
1276 {
1277         int j;
1278         int ret = 0;
1279         struct kvm_memslots *slots;
1280         struct kvm_memory_slot *memslot;
1281
1282         slots = kvm_memslots(kvm);
1283
1284         kvm_for_each_memslot(memslot, slots) {
1285                 unsigned long hva_start, hva_end;
1286                 gfn_t gfn_start, gfn_end;
1287
1288                 hva_start = max(start, memslot->userspace_addr);
1289                 hva_end = min(end, memslot->userspace_addr +
1290                                         (memslot->npages << PAGE_SHIFT));
1291                 if (hva_start >= hva_end)
1292                         continue;
1293                 /*
1294                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1295                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1296                  */
1297                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1298                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1299
1300                 for (j = PT_PAGE_TABLE_LEVEL;
1301                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1302                         unsigned long idx, idx_end;
1303                         unsigned long *rmapp;
1304
1305                         /*
1306                          * {idx(page_j) | page_j intersects with
1307                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1308                          */
1309                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1310                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1311
1312                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1313
1314                         for (; idx <= idx_end; ++idx)
1315                                 ret |= handler(kvm, rmapp++, memslot, data);
1316                 }
1317         }
1318
1319         return ret;
1320 }
1321
1322 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1323                           unsigned long data,
1324                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1325                                          struct kvm_memory_slot *slot,
1326                                          unsigned long data))
1327 {
1328         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1329 }
1330
1331 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1332 {
1333         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1334 }
1335
1336 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1337 {
1338         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1339 }
1340
1341 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1342 {
1343         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1344 }
1345
1346 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1347                          struct kvm_memory_slot *slot, unsigned long data)
1348 {
1349         u64 *sptep;
1350         struct rmap_iterator uninitialized_var(iter);
1351         int young = 0;
1352
1353         /*
1354          * In case of absence of EPT Access and Dirty Bits supports,
1355          * emulate the accessed bit for EPT, by checking if this page has
1356          * an EPT mapping, and clearing it if it does. On the next access,
1357          * a new EPT mapping will be established.
1358          * This has some overhead, but not as much as the cost of swapping
1359          * out actively used pages or breaking up actively used hugepages.
1360          */
1361         if (!shadow_accessed_mask) {
1362                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1363                 goto out;
1364         }
1365
1366         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1367              sptep = rmap_get_next(&iter)) {
1368                 BUG_ON(!is_shadow_present_pte(*sptep));
1369
1370                 if (*sptep & shadow_accessed_mask) {
1371                         young = 1;
1372                         clear_bit((ffs(shadow_accessed_mask) - 1),
1373                                  (unsigned long *)sptep);
1374                 }
1375         }
1376 out:
1377         /* @data has hva passed to kvm_age_hva(). */
1378         trace_kvm_age_page(data, slot, young);
1379         return young;
1380 }
1381
1382 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1383                               struct kvm_memory_slot *slot, unsigned long data)
1384 {
1385         u64 *sptep;
1386         struct rmap_iterator iter;
1387         int young = 0;
1388
1389         /*
1390          * If there's no access bit in the secondary pte set by the
1391          * hardware it's up to gup-fast/gup to set the access bit in
1392          * the primary pte or in the page structure.
1393          */
1394         if (!shadow_accessed_mask)
1395                 goto out;
1396
1397         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1398              sptep = rmap_get_next(&iter)) {
1399                 BUG_ON(!is_shadow_present_pte(*sptep));
1400
1401                 if (*sptep & shadow_accessed_mask) {
1402                         young = 1;
1403                         break;
1404                 }
1405         }
1406 out:
1407         return young;
1408 }
1409
1410 #define RMAP_RECYCLE_THRESHOLD 1000
1411
1412 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1413 {
1414         unsigned long *rmapp;
1415         struct kvm_mmu_page *sp;
1416
1417         sp = page_header(__pa(spte));
1418
1419         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1420
1421         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1422         kvm_flush_remote_tlbs(vcpu->kvm);
1423 }
1424
1425 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1426 {
1427         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1428 }
1429
1430 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1431 {
1432         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1433 }
1434
1435 #ifdef MMU_DEBUG
1436 static int is_empty_shadow_page(u64 *spt)
1437 {
1438         u64 *pos;
1439         u64 *end;
1440
1441         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1442                 if (is_shadow_present_pte(*pos)) {
1443                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1444                                pos, *pos);
1445                         return 0;
1446                 }
1447         return 1;
1448 }
1449 #endif
1450
1451 /*
1452  * This value is the sum of all of the kvm instances's
1453  * kvm->arch.n_used_mmu_pages values.  We need a global,
1454  * aggregate version in order to make the slab shrinker
1455  * faster
1456  */
1457 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1458 {
1459         kvm->arch.n_used_mmu_pages += nr;
1460         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1461 }
1462
1463 /*
1464  * Remove the sp from shadow page cache, after call it,
1465  * we can not find this sp from the cache, and the shadow
1466  * page table is still valid.
1467  * It should be under the protection of mmu lock.
1468  */
1469 static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1470 {
1471         ASSERT(is_empty_shadow_page(sp->spt));
1472         hlist_del(&sp->hash_link);
1473         if (!sp->role.direct)
1474                 free_page((unsigned long)sp->gfns);
1475 }
1476
1477 /*
1478  * Free the shadow page table and the sp, we can do it
1479  * out of the protection of mmu lock.
1480  */
1481 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1482 {
1483         list_del(&sp->link);
1484         free_page((unsigned long)sp->spt);
1485         kmem_cache_free(mmu_page_header_cache, sp);
1486 }
1487
1488 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1489 {
1490         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1491 }
1492
1493 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1494                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1495 {
1496         if (!parent_pte)
1497                 return;
1498
1499         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1500 }
1501
1502 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1503                                        u64 *parent_pte)
1504 {
1505         pte_list_remove(parent_pte, &sp->parent_ptes);
1506 }
1507
1508 static void drop_parent_pte(struct kvm_mmu_page *sp,
1509                             u64 *parent_pte)
1510 {
1511         mmu_page_remove_parent_pte(sp, parent_pte);
1512         mmu_spte_clear_no_track(parent_pte);
1513 }
1514
1515 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1516                                                u64 *parent_pte, int direct)
1517 {
1518         struct kvm_mmu_page *sp;
1519         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1520         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1521         if (!direct)
1522                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1523         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1524         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1525         bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
1526         sp->parent_ptes = 0;
1527         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1528         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1529         return sp;
1530 }
1531
1532 static void mark_unsync(u64 *spte);
1533 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1534 {
1535         pte_list_walk(&sp->parent_ptes, mark_unsync);
1536 }
1537
1538 static void mark_unsync(u64 *spte)
1539 {
1540         struct kvm_mmu_page *sp;
1541         unsigned int index;
1542
1543         sp = page_header(__pa(spte));
1544         index = spte - sp->spt;
1545         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1546                 return;
1547         if (sp->unsync_children++)
1548                 return;
1549         kvm_mmu_mark_parents_unsync(sp);
1550 }
1551
1552 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1553                                struct kvm_mmu_page *sp)
1554 {
1555         return 1;
1556 }
1557
1558 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1559 {
1560 }
1561
1562 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1563                                  struct kvm_mmu_page *sp, u64 *spte,
1564                                  const void *pte)
1565 {
1566         WARN_ON(1);
1567 }
1568
1569 #define KVM_PAGE_ARRAY_NR 16
1570
1571 struct kvm_mmu_pages {
1572         struct mmu_page_and_offset {
1573                 struct kvm_mmu_page *sp;
1574                 unsigned int idx;
1575         } page[KVM_PAGE_ARRAY_NR];
1576         unsigned int nr;
1577 };
1578
1579 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1580                          int idx)
1581 {
1582         int i;
1583
1584         if (sp->unsync)
1585                 for (i=0; i < pvec->nr; i++)
1586                         if (pvec->page[i].sp == sp)
1587                                 return 0;
1588
1589         pvec->page[pvec->nr].sp = sp;
1590         pvec->page[pvec->nr].idx = idx;
1591         pvec->nr++;
1592         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1593 }
1594
1595 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1596                            struct kvm_mmu_pages *pvec)
1597 {
1598         int i, ret, nr_unsync_leaf = 0;
1599
1600         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1601                 struct kvm_mmu_page *child;
1602                 u64 ent = sp->spt[i];
1603
1604                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1605                         goto clear_child_bitmap;
1606
1607                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1608
1609                 if (child->unsync_children) {
1610                         if (mmu_pages_add(pvec, child, i))
1611                                 return -ENOSPC;
1612
1613                         ret = __mmu_unsync_walk(child, pvec);
1614                         if (!ret)
1615                                 goto clear_child_bitmap;
1616                         else if (ret > 0)
1617                                 nr_unsync_leaf += ret;
1618                         else
1619                                 return ret;
1620                 } else if (child->unsync) {
1621                         nr_unsync_leaf++;
1622                         if (mmu_pages_add(pvec, child, i))
1623                                 return -ENOSPC;
1624                 } else
1625                          goto clear_child_bitmap;
1626
1627                 continue;
1628
1629 clear_child_bitmap:
1630                 __clear_bit(i, sp->unsync_child_bitmap);
1631                 sp->unsync_children--;
1632                 WARN_ON((int)sp->unsync_children < 0);
1633         }
1634
1635
1636         return nr_unsync_leaf;
1637 }
1638
1639 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1640                            struct kvm_mmu_pages *pvec)
1641 {
1642         if (!sp->unsync_children)
1643                 return 0;
1644
1645         mmu_pages_add(pvec, sp, 0);
1646         return __mmu_unsync_walk(sp, pvec);
1647 }
1648
1649 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1650 {
1651         WARN_ON(!sp->unsync);
1652         trace_kvm_mmu_sync_page(sp);
1653         sp->unsync = 0;
1654         --kvm->stat.mmu_unsync;
1655 }
1656
1657 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1658                                     struct list_head *invalid_list);
1659 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1660                                     struct list_head *invalid_list);
1661
1662 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1663   hlist_for_each_entry(sp, pos,                                         \
1664    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1665         if ((sp)->gfn != (gfn)) {} else
1666
1667 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1668   hlist_for_each_entry(sp, pos,                                         \
1669    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1670                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1671                         (sp)->role.invalid) {} else
1672
1673 /* @sp->gfn should be write-protected at the call site */
1674 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1675                            struct list_head *invalid_list, bool clear_unsync)
1676 {
1677         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1678                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1679                 return 1;
1680         }
1681
1682         if (clear_unsync)
1683                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1684
1685         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1686                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1687                 return 1;
1688         }
1689
1690         kvm_mmu_flush_tlb(vcpu);
1691         return 0;
1692 }
1693
1694 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1695                                    struct kvm_mmu_page *sp)
1696 {
1697         LIST_HEAD(invalid_list);
1698         int ret;
1699
1700         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1701         if (ret)
1702                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1703
1704         return ret;
1705 }
1706
1707 #ifdef CONFIG_KVM_MMU_AUDIT
1708 #include "mmu_audit.c"
1709 #else
1710 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1711 static void mmu_audit_disable(void) { }
1712 #endif
1713
1714 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1715                          struct list_head *invalid_list)
1716 {
1717         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1718 }
1719
1720 /* @gfn should be write-protected at the call site */
1721 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1722 {
1723         struct kvm_mmu_page *s;
1724         struct hlist_node *node;
1725         LIST_HEAD(invalid_list);
1726         bool flush = false;
1727
1728         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1729                 if (!s->unsync)
1730                         continue;
1731
1732                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1733                 kvm_unlink_unsync_page(vcpu->kvm, s);
1734                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1735                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1736                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1737                         continue;
1738                 }
1739                 flush = true;
1740         }
1741
1742         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1743         if (flush)
1744                 kvm_mmu_flush_tlb(vcpu);
1745 }
1746
1747 struct mmu_page_path {
1748         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1749         unsigned int idx[PT64_ROOT_LEVEL-1];
1750 };
1751
1752 #define for_each_sp(pvec, sp, parents, i)                       \
1753                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1754                         sp = pvec.page[i].sp;                   \
1755                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1756                         i = mmu_pages_next(&pvec, &parents, i))
1757
1758 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1759                           struct mmu_page_path *parents,
1760                           int i)
1761 {
1762         int n;
1763
1764         for (n = i+1; n < pvec->nr; n++) {
1765                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1766
1767                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1768                         parents->idx[0] = pvec->page[n].idx;
1769                         return n;
1770                 }
1771
1772                 parents->parent[sp->role.level-2] = sp;
1773                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1774         }
1775
1776         return n;
1777 }
1778
1779 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1780 {
1781         struct kvm_mmu_page *sp;
1782         unsigned int level = 0;
1783
1784         do {
1785                 unsigned int idx = parents->idx[level];
1786
1787                 sp = parents->parent[level];
1788                 if (!sp)
1789                         return;
1790
1791                 --sp->unsync_children;
1792                 WARN_ON((int)sp->unsync_children < 0);
1793                 __clear_bit(idx, sp->unsync_child_bitmap);
1794                 level++;
1795         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1796 }
1797
1798 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1799                                struct mmu_page_path *parents,
1800                                struct kvm_mmu_pages *pvec)
1801 {
1802         parents->parent[parent->role.level-1] = NULL;
1803         pvec->nr = 0;
1804 }
1805
1806 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1807                               struct kvm_mmu_page *parent)
1808 {
1809         int i;
1810         struct kvm_mmu_page *sp;
1811         struct mmu_page_path parents;
1812         struct kvm_mmu_pages pages;
1813         LIST_HEAD(invalid_list);
1814
1815         kvm_mmu_pages_init(parent, &parents, &pages);
1816         while (mmu_unsync_walk(parent, &pages)) {
1817                 bool protected = false;
1818
1819                 for_each_sp(pages, sp, parents, i)
1820                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1821
1822                 if (protected)
1823                         kvm_flush_remote_tlbs(vcpu->kvm);
1824
1825                 for_each_sp(pages, sp, parents, i) {
1826                         kvm_sync_page(vcpu, sp, &invalid_list);
1827                         mmu_pages_clear_parents(&parents);
1828                 }
1829                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1830                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1831                 kvm_mmu_pages_init(parent, &parents, &pages);
1832         }
1833 }
1834
1835 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1836 {
1837         int i;
1838
1839         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1840                 sp->spt[i] = 0ull;
1841 }
1842
1843 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1844 {
1845         sp->write_flooding_count = 0;
1846 }
1847
1848 static void clear_sp_write_flooding_count(u64 *spte)
1849 {
1850         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1851
1852         __clear_sp_write_flooding_count(sp);
1853 }
1854
1855 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1856                                              gfn_t gfn,
1857                                              gva_t gaddr,
1858                                              unsigned level,
1859                                              int direct,
1860                                              unsigned access,
1861                                              u64 *parent_pte)
1862 {
1863         union kvm_mmu_page_role role;
1864         unsigned quadrant;
1865         struct kvm_mmu_page *sp;
1866         struct hlist_node *node;
1867         bool need_sync = false;
1868
1869         role = vcpu->arch.mmu.base_role;
1870         role.level = level;
1871         role.direct = direct;
1872         if (role.direct)
1873                 role.cr4_pae = 0;
1874         role.access = access;
1875         if (!vcpu->arch.mmu.direct_map
1876             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1877                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1878                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1879                 role.quadrant = quadrant;
1880         }
1881         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1882                 if (!need_sync && sp->unsync)
1883                         need_sync = true;
1884
1885                 if (sp->role.word != role.word)
1886                         continue;
1887
1888                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1889                         break;
1890
1891                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1892                 if (sp->unsync_children) {
1893                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1894                         kvm_mmu_mark_parents_unsync(sp);
1895                 } else if (sp->unsync)
1896                         kvm_mmu_mark_parents_unsync(sp);
1897
1898                 __clear_sp_write_flooding_count(sp);
1899                 trace_kvm_mmu_get_page(sp, false);
1900                 return sp;
1901         }
1902         ++vcpu->kvm->stat.mmu_cache_miss;
1903         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1904         if (!sp)
1905                 return sp;
1906         sp->gfn = gfn;
1907         sp->role = role;
1908         hlist_add_head(&sp->hash_link,
1909                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1910         if (!direct) {
1911                 if (rmap_write_protect(vcpu->kvm, gfn))
1912                         kvm_flush_remote_tlbs(vcpu->kvm);
1913                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1914                         kvm_sync_pages(vcpu, gfn);
1915
1916                 account_shadowed(vcpu->kvm, gfn);
1917         }
1918         init_shadow_page_table(sp);
1919         trace_kvm_mmu_get_page(sp, true);
1920         return sp;
1921 }
1922
1923 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1924                              struct kvm_vcpu *vcpu, u64 addr)
1925 {
1926         iterator->addr = addr;
1927         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1928         iterator->level = vcpu->arch.mmu.shadow_root_level;
1929
1930         if (iterator->level == PT64_ROOT_LEVEL &&
1931             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1932             !vcpu->arch.mmu.direct_map)
1933                 --iterator->level;
1934
1935         if (iterator->level == PT32E_ROOT_LEVEL) {
1936                 iterator->shadow_addr
1937                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1938                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1939                 --iterator->level;
1940                 if (!iterator->shadow_addr)
1941                         iterator->level = 0;
1942         }
1943 }
1944
1945 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1946 {
1947         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1948                 return false;
1949
1950         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1951         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1952         return true;
1953 }
1954
1955 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1956                                u64 spte)
1957 {
1958         if (is_last_spte(spte, iterator->level)) {
1959                 iterator->level = 0;
1960                 return;
1961         }
1962
1963         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1964         --iterator->level;
1965 }
1966
1967 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1968 {
1969         return __shadow_walk_next(iterator, *iterator->sptep);
1970 }
1971
1972 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1973 {
1974         u64 spte;
1975
1976         spte = __pa(sp->spt)
1977                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1978                 | PT_WRITABLE_MASK | PT_USER_MASK;
1979         mmu_spte_set(sptep, spte);
1980 }
1981
1982 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1983                                    unsigned direct_access)
1984 {
1985         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1986                 struct kvm_mmu_page *child;
1987
1988                 /*
1989                  * For the direct sp, if the guest pte's dirty bit
1990                  * changed form clean to dirty, it will corrupt the
1991                  * sp's access: allow writable in the read-only sp,
1992                  * so we should update the spte at this point to get
1993                  * a new sp with the correct access.
1994                  */
1995                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1996                 if (child->role.access == direct_access)
1997                         return;
1998
1999                 drop_parent_pte(child, sptep);
2000                 kvm_flush_remote_tlbs(vcpu->kvm);
2001         }
2002 }
2003
2004 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2005                              u64 *spte)
2006 {
2007         u64 pte;
2008         struct kvm_mmu_page *child;
2009
2010         pte = *spte;
2011         if (is_shadow_present_pte(pte)) {
2012                 if (is_last_spte(pte, sp->role.level)) {
2013                         drop_spte(kvm, spte);
2014                         if (is_large_pte(pte))
2015                                 --kvm->stat.lpages;
2016                 } else {
2017                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2018                         drop_parent_pte(child, spte);
2019                 }
2020                 return true;
2021         }
2022
2023         if (is_mmio_spte(pte))
2024                 mmu_spte_clear_no_track(spte);
2025
2026         return false;
2027 }
2028
2029 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2030                                          struct kvm_mmu_page *sp)
2031 {
2032         unsigned i;
2033
2034         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2035                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2036 }
2037
2038 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2039 {
2040         mmu_page_remove_parent_pte(sp, parent_pte);
2041 }
2042
2043 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2044 {
2045         u64 *sptep;
2046         struct rmap_iterator iter;
2047
2048         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2049                 drop_parent_pte(sp, sptep);
2050 }
2051
2052 static int mmu_zap_unsync_children(struct kvm *kvm,
2053                                    struct kvm_mmu_page *parent,
2054                                    struct list_head *invalid_list)
2055 {
2056         int i, zapped = 0;
2057         struct mmu_page_path parents;
2058         struct kvm_mmu_pages pages;
2059
2060         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2061                 return 0;
2062
2063         kvm_mmu_pages_init(parent, &parents, &pages);
2064         while (mmu_unsync_walk(parent, &pages)) {
2065                 struct kvm_mmu_page *sp;
2066
2067                 for_each_sp(pages, sp, parents, i) {
2068                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2069                         mmu_pages_clear_parents(&parents);
2070                         zapped++;
2071                 }
2072                 kvm_mmu_pages_init(parent, &parents, &pages);
2073         }
2074
2075         return zapped;
2076 }
2077
2078 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2079                                     struct list_head *invalid_list)
2080 {
2081         int ret;
2082
2083         trace_kvm_mmu_prepare_zap_page(sp);
2084         ++kvm->stat.mmu_shadow_zapped;
2085         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2086         kvm_mmu_page_unlink_children(kvm, sp);
2087         kvm_mmu_unlink_parents(kvm, sp);
2088         if (!sp->role.invalid && !sp->role.direct)
2089                 unaccount_shadowed(kvm, sp->gfn);
2090         if (sp->unsync)
2091                 kvm_unlink_unsync_page(kvm, sp);
2092         if (!sp->root_count) {
2093                 /* Count self */
2094                 ret++;
2095                 list_move(&sp->link, invalid_list);
2096                 kvm_mod_used_mmu_pages(kvm, -1);
2097         } else {
2098                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2099                 kvm_reload_remote_mmus(kvm);
2100         }
2101
2102         sp->role.invalid = 1;
2103         return ret;
2104 }
2105
2106 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2107                                     struct list_head *invalid_list)
2108 {
2109         struct kvm_mmu_page *sp;
2110
2111         if (list_empty(invalid_list))
2112                 return;
2113
2114         /*
2115          * wmb: make sure everyone sees our modifications to the page tables
2116          * rmb: make sure we see changes to vcpu->mode
2117          */
2118         smp_mb();
2119
2120         /*
2121          * Wait for all vcpus to exit guest mode and/or lockless shadow
2122          * page table walks.
2123          */
2124         kvm_flush_remote_tlbs(kvm);
2125
2126         do {
2127                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2128                 WARN_ON(!sp->role.invalid || sp->root_count);
2129                 kvm_mmu_isolate_page(sp);
2130                 kvm_mmu_free_page(sp);
2131         } while (!list_empty(invalid_list));
2132 }
2133
2134 /*
2135  * Changing the number of mmu pages allocated to the vm
2136  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2137  */
2138 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2139 {
2140         LIST_HEAD(invalid_list);
2141         /*
2142          * If we set the number of mmu pages to be smaller be than the
2143          * number of actived pages , we must to free some mmu pages before we
2144          * change the value
2145          */
2146
2147         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2148                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2149                         !list_empty(&kvm->arch.active_mmu_pages)) {
2150                         struct kvm_mmu_page *page;
2151
2152                         page = container_of(kvm->arch.active_mmu_pages.prev,
2153                                             struct kvm_mmu_page, link);
2154                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2155                 }
2156                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2157                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2158         }
2159
2160         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2161 }
2162
2163 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2164 {
2165         struct kvm_mmu_page *sp;
2166         struct hlist_node *node;
2167         LIST_HEAD(invalid_list);
2168         int r;
2169
2170         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2171         r = 0;
2172         spin_lock(&kvm->mmu_lock);
2173         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2174                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2175                          sp->role.word);
2176                 r = 1;
2177                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2178         }
2179         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2180         spin_unlock(&kvm->mmu_lock);
2181
2182         return r;
2183 }
2184 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2185
2186 static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2187 {
2188         int slot = memslot_id(kvm, gfn);
2189         struct kvm_mmu_page *sp = page_header(__pa(pte));
2190
2191         __set_bit(slot, sp->slot_bitmap);
2192 }
2193
2194 /*
2195  * The function is based on mtrr_type_lookup() in
2196  * arch/x86/kernel/cpu/mtrr/generic.c
2197  */
2198 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2199                          u64 start, u64 end)
2200 {
2201         int i;
2202         u64 base, mask;
2203         u8 prev_match, curr_match;
2204         int num_var_ranges = KVM_NR_VAR_MTRR;
2205
2206         if (!mtrr_state->enabled)
2207                 return 0xFF;
2208
2209         /* Make end inclusive end, instead of exclusive */
2210         end--;
2211
2212         /* Look in fixed ranges. Just return the type as per start */
2213         if (mtrr_state->have_fixed && (start < 0x100000)) {
2214                 int idx;
2215
2216                 if (start < 0x80000) {
2217                         idx = 0;
2218                         idx += (start >> 16);
2219                         return mtrr_state->fixed_ranges[idx];
2220                 } else if (start < 0xC0000) {
2221                         idx = 1 * 8;
2222                         idx += ((start - 0x80000) >> 14);
2223                         return mtrr_state->fixed_ranges[idx];
2224                 } else if (start < 0x1000000) {
2225                         idx = 3 * 8;
2226                         idx += ((start - 0xC0000) >> 12);
2227                         return mtrr_state->fixed_ranges[idx];
2228                 }
2229         }
2230
2231         /*
2232          * Look in variable ranges
2233          * Look of multiple ranges matching this address and pick type
2234          * as per MTRR precedence
2235          */
2236         if (!(mtrr_state->enabled & 2))
2237                 return mtrr_state->def_type;
2238
2239         prev_match = 0xFF;
2240         for (i = 0; i < num_var_ranges; ++i) {
2241                 unsigned short start_state, end_state;
2242
2243                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2244                         continue;
2245
2246                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2247                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2248                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2249                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2250
2251                 start_state = ((start & mask) == (base & mask));
2252                 end_state = ((end & mask) == (base & mask));
2253                 if (start_state != end_state)
2254                         return 0xFE;
2255
2256                 if ((start & mask) != (base & mask))
2257                         continue;
2258
2259                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2260                 if (prev_match == 0xFF) {
2261                         prev_match = curr_match;
2262                         continue;
2263                 }
2264
2265                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2266                     curr_match == MTRR_TYPE_UNCACHABLE)
2267                         return MTRR_TYPE_UNCACHABLE;
2268
2269                 if ((prev_match == MTRR_TYPE_WRBACK &&
2270                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2271                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2272                      curr_match == MTRR_TYPE_WRBACK)) {
2273                         prev_match = MTRR_TYPE_WRTHROUGH;
2274                         curr_match = MTRR_TYPE_WRTHROUGH;
2275                 }
2276
2277                 if (prev_match != curr_match)
2278                         return MTRR_TYPE_UNCACHABLE;
2279         }
2280
2281         if (prev_match != 0xFF)
2282                 return prev_match;
2283
2284         return mtrr_state->def_type;
2285 }
2286
2287 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2288 {
2289         u8 mtrr;
2290
2291         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2292                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2293         if (mtrr == 0xfe || mtrr == 0xff)
2294                 mtrr = MTRR_TYPE_WRBACK;
2295         return mtrr;
2296 }
2297 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2298
2299 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2300 {
2301         trace_kvm_mmu_unsync_page(sp);
2302         ++vcpu->kvm->stat.mmu_unsync;
2303         sp->unsync = 1;
2304
2305         kvm_mmu_mark_parents_unsync(sp);
2306 }
2307
2308 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2309 {
2310         struct kvm_mmu_page *s;
2311         struct hlist_node *node;
2312
2313         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2314                 if (s->unsync)
2315                         continue;
2316                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2317                 __kvm_unsync_page(vcpu, s);
2318         }
2319 }
2320
2321 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2322                                   bool can_unsync)
2323 {
2324         struct kvm_mmu_page *s;
2325         struct hlist_node *node;
2326         bool need_unsync = false;
2327
2328         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2329                 if (!can_unsync)
2330                         return 1;
2331
2332                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2333                         return 1;
2334
2335                 if (!need_unsync && !s->unsync) {
2336                         need_unsync = true;
2337                 }
2338         }
2339         if (need_unsync)
2340                 kvm_unsync_pages(vcpu, gfn);
2341         return 0;
2342 }
2343
2344 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2345                     unsigned pte_access, int user_fault,
2346                     int write_fault, int level,
2347                     gfn_t gfn, pfn_t pfn, bool speculative,
2348                     bool can_unsync, bool host_writable)
2349 {
2350         u64 spte;
2351         int ret = 0;
2352
2353         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2354                 return 0;
2355
2356         spte = PT_PRESENT_MASK;
2357         if (!speculative)
2358                 spte |= shadow_accessed_mask;
2359
2360         if (pte_access & ACC_EXEC_MASK)
2361                 spte |= shadow_x_mask;
2362         else
2363                 spte |= shadow_nx_mask;
2364
2365         if (pte_access & ACC_USER_MASK)
2366                 spte |= shadow_user_mask;
2367
2368         if (level > PT_PAGE_TABLE_LEVEL)
2369                 spte |= PT_PAGE_SIZE_MASK;
2370         if (tdp_enabled)
2371                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2372                         kvm_is_mmio_pfn(pfn));
2373
2374         if (host_writable)
2375                 spte |= SPTE_HOST_WRITEABLE;
2376         else
2377                 pte_access &= ~ACC_WRITE_MASK;
2378
2379         spte |= (u64)pfn << PAGE_SHIFT;
2380
2381         if ((pte_access & ACC_WRITE_MASK)
2382             || (!vcpu->arch.mmu.direct_map && write_fault
2383                 && !is_write_protection(vcpu) && !user_fault)) {
2384
2385                 /*
2386                  * There are two cases:
2387                  * - the one is other vcpu creates new sp in the window
2388                  *   between mapping_level() and acquiring mmu-lock.
2389                  * - the another case is the new sp is created by itself
2390                  *   (page-fault path) when guest uses the target gfn as
2391                  *   its page table.
2392                  * Both of these cases can be fixed by allowing guest to
2393                  * retry the access, it will refault, then we can establish
2394                  * the mapping by using small page.
2395                  */
2396                 if (level > PT_PAGE_TABLE_LEVEL &&
2397                     has_wrprotected_page(vcpu->kvm, gfn, level))
2398                         goto done;
2399
2400                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2401
2402                 if (!vcpu->arch.mmu.direct_map
2403                     && !(pte_access & ACC_WRITE_MASK)) {
2404                         spte &= ~PT_USER_MASK;
2405                         /*
2406                          * If we converted a user page to a kernel page,
2407                          * so that the kernel can write to it when cr0.wp=0,
2408                          * then we should prevent the kernel from executing it
2409                          * if SMEP is enabled.
2410                          */
2411                         if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2412                                 spte |= PT64_NX_MASK;
2413                 }
2414
2415                 /*
2416                  * Optimization: for pte sync, if spte was writable the hash
2417                  * lookup is unnecessary (and expensive). Write protection
2418                  * is responsibility of mmu_get_page / kvm_sync_page.
2419                  * Same reasoning can be applied to dirty page accounting.
2420                  */
2421                 if (!can_unsync && is_writable_pte(*sptep))
2422                         goto set_pte;
2423
2424                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2425                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2426                                  __func__, gfn);
2427                         ret = 1;
2428                         pte_access &= ~ACC_WRITE_MASK;
2429                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2430                 }
2431         }
2432
2433         if (pte_access & ACC_WRITE_MASK)
2434                 mark_page_dirty(vcpu->kvm, gfn);
2435
2436 set_pte:
2437         if (mmu_spte_update(sptep, spte))
2438                 kvm_flush_remote_tlbs(vcpu->kvm);
2439 done:
2440         return ret;
2441 }
2442
2443 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2444                          unsigned pt_access, unsigned pte_access,
2445                          int user_fault, int write_fault,
2446                          int *emulate, int level, gfn_t gfn,
2447                          pfn_t pfn, bool speculative,
2448                          bool host_writable)
2449 {
2450         int was_rmapped = 0;
2451         int rmap_count;
2452
2453         pgprintk("%s: spte %llx access %x write_fault %d"
2454                  " user_fault %d gfn %llx\n",
2455                  __func__, *sptep, pt_access,
2456                  write_fault, user_fault, gfn);
2457
2458         if (is_rmap_spte(*sptep)) {
2459                 /*
2460                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2461                  * the parent of the now unreachable PTE.
2462                  */
2463                 if (level > PT_PAGE_TABLE_LEVEL &&
2464                     !is_large_pte(*sptep)) {
2465                         struct kvm_mmu_page *child;
2466                         u64 pte = *sptep;
2467
2468                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2469                         drop_parent_pte(child, sptep);
2470                         kvm_flush_remote_tlbs(vcpu->kvm);
2471                 } else if (pfn != spte_to_pfn(*sptep)) {
2472                         pgprintk("hfn old %llx new %llx\n",
2473                                  spte_to_pfn(*sptep), pfn);
2474                         drop_spte(vcpu->kvm, sptep);
2475                         kvm_flush_remote_tlbs(vcpu->kvm);
2476                 } else
2477                         was_rmapped = 1;
2478         }
2479
2480         if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2481                       level, gfn, pfn, speculative, true,
2482                       host_writable)) {
2483                 if (write_fault)
2484                         *emulate = 1;
2485                 kvm_mmu_flush_tlb(vcpu);
2486         }
2487
2488         if (unlikely(is_mmio_spte(*sptep) && emulate))
2489                 *emulate = 1;
2490
2491         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2492         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2493                  is_large_pte(*sptep)? "2MB" : "4kB",
2494                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2495                  *sptep, sptep);
2496         if (!was_rmapped && is_large_pte(*sptep))
2497                 ++vcpu->kvm->stat.lpages;
2498
2499         if (is_shadow_present_pte(*sptep)) {
2500                 page_header_update_slot(vcpu->kvm, sptep, gfn);
2501                 if (!was_rmapped) {
2502                         rmap_count = rmap_add(vcpu, sptep, gfn);
2503                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2504                                 rmap_recycle(vcpu, sptep, gfn);
2505                 }
2506         }
2507
2508         kvm_release_pfn_clean(pfn);
2509 }
2510
2511 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2512 {
2513         mmu_free_roots(vcpu);
2514 }
2515
2516 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2517 {
2518         int bit7;
2519
2520         bit7 = (gpte >> 7) & 1;
2521         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2522 }
2523
2524 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2525                                      bool no_dirty_log)
2526 {
2527         struct kvm_memory_slot *slot;
2528
2529         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2530         if (!slot)
2531                 return KVM_PFN_ERR_FAULT;
2532
2533         return gfn_to_pfn_memslot_atomic(slot, gfn);
2534 }
2535
2536 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2537                                   struct kvm_mmu_page *sp, u64 *spte,
2538                                   u64 gpte)
2539 {
2540         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2541                 goto no_present;
2542
2543         if (!is_present_gpte(gpte))
2544                 goto no_present;
2545
2546         if (!(gpte & PT_ACCESSED_MASK))
2547                 goto no_present;
2548
2549         return false;
2550
2551 no_present:
2552         drop_spte(vcpu->kvm, spte);
2553         return true;
2554 }
2555
2556 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2557                                     struct kvm_mmu_page *sp,
2558                                     u64 *start, u64 *end)
2559 {
2560         struct page *pages[PTE_PREFETCH_NUM];
2561         unsigned access = sp->role.access;
2562         int i, ret;
2563         gfn_t gfn;
2564
2565         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2566         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2567                 return -1;
2568
2569         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2570         if (ret <= 0)
2571                 return -1;
2572
2573         for (i = 0; i < ret; i++, gfn++, start++)
2574                 mmu_set_spte(vcpu, start, ACC_ALL,
2575                              access, 0, 0, NULL,
2576                              sp->role.level, gfn,
2577                              page_to_pfn(pages[i]), true, true);
2578
2579         return 0;
2580 }
2581
2582 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2583                                   struct kvm_mmu_page *sp, u64 *sptep)
2584 {
2585         u64 *spte, *start = NULL;
2586         int i;
2587
2588         WARN_ON(!sp->role.direct);
2589
2590         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2591         spte = sp->spt + i;
2592
2593         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2594                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2595                         if (!start)
2596                                 continue;
2597                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2598                                 break;
2599                         start = NULL;
2600                 } else if (!start)
2601                         start = spte;
2602         }
2603 }
2604
2605 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2606 {
2607         struct kvm_mmu_page *sp;
2608
2609         /*
2610          * Since it's no accessed bit on EPT, it's no way to
2611          * distinguish between actually accessed translations
2612          * and prefetched, so disable pte prefetch if EPT is
2613          * enabled.
2614          */
2615         if (!shadow_accessed_mask)
2616                 return;
2617
2618         sp = page_header(__pa(sptep));
2619         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2620                 return;
2621
2622         __direct_pte_prefetch(vcpu, sp, sptep);
2623 }
2624
2625 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2626                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2627                         bool prefault)
2628 {
2629         struct kvm_shadow_walk_iterator iterator;
2630         struct kvm_mmu_page *sp;
2631         int emulate = 0;
2632         gfn_t pseudo_gfn;
2633
2634         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2635                 if (iterator.level == level) {
2636                         unsigned pte_access = ACC_ALL;
2637
2638                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2639                                      0, write, &emulate,
2640                                      level, gfn, pfn, prefault, map_writable);
2641                         direct_pte_prefetch(vcpu, iterator.sptep);
2642                         ++vcpu->stat.pf_fixed;
2643                         break;
2644                 }
2645
2646                 if (!is_shadow_present_pte(*iterator.sptep)) {
2647                         u64 base_addr = iterator.addr;
2648
2649                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2650                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2651                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2652                                               iterator.level - 1,
2653                                               1, ACC_ALL, iterator.sptep);
2654
2655                         mmu_spte_set(iterator.sptep,
2656                                      __pa(sp->spt)
2657                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2658                                      | shadow_user_mask | shadow_x_mask
2659                                      | shadow_accessed_mask);
2660                 }
2661         }
2662         return emulate;
2663 }
2664
2665 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2666 {
2667         siginfo_t info;
2668
2669         info.si_signo   = SIGBUS;
2670         info.si_errno   = 0;
2671         info.si_code    = BUS_MCEERR_AR;
2672         info.si_addr    = (void __user *)address;
2673         info.si_addr_lsb = PAGE_SHIFT;
2674
2675         send_sig_info(SIGBUS, &info, tsk);
2676 }
2677
2678 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2679 {
2680         /*
2681          * Do not cache the mmio info caused by writing the readonly gfn
2682          * into the spte otherwise read access on readonly gfn also can
2683          * caused mmio page fault and treat it as mmio access.
2684          * Return 1 to tell kvm to emulate it.
2685          */
2686         if (pfn == KVM_PFN_ERR_RO_FAULT)
2687                 return 1;
2688
2689         if (pfn == KVM_PFN_ERR_HWPOISON) {
2690                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2691                 return 0;
2692         }
2693
2694         return -EFAULT;
2695 }
2696
2697 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2698                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2699 {
2700         pfn_t pfn = *pfnp;
2701         gfn_t gfn = *gfnp;
2702         int level = *levelp;
2703
2704         /*
2705          * Check if it's a transparent hugepage. If this would be an
2706          * hugetlbfs page, level wouldn't be set to
2707          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2708          * here.
2709          */
2710         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2711             level == PT_PAGE_TABLE_LEVEL &&
2712             PageTransCompound(pfn_to_page(pfn)) &&
2713             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2714                 unsigned long mask;
2715                 /*
2716                  * mmu_notifier_retry was successful and we hold the
2717                  * mmu_lock here, so the pmd can't become splitting
2718                  * from under us, and in turn
2719                  * __split_huge_page_refcount() can't run from under
2720                  * us and we can safely transfer the refcount from
2721                  * PG_tail to PG_head as we switch the pfn to tail to
2722                  * head.
2723                  */
2724                 *levelp = level = PT_DIRECTORY_LEVEL;
2725                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2726                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2727                 if (pfn & mask) {
2728                         gfn &= ~mask;
2729                         *gfnp = gfn;
2730                         kvm_release_pfn_clean(pfn);
2731                         pfn &= ~mask;
2732                         kvm_get_pfn(pfn);
2733                         *pfnp = pfn;
2734                 }
2735         }
2736 }
2737
2738 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2739                                 pfn_t pfn, unsigned access, int *ret_val)
2740 {
2741         bool ret = true;
2742
2743         /* The pfn is invalid, report the error! */
2744         if (unlikely(is_error_pfn(pfn))) {
2745                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2746                 goto exit;
2747         }
2748
2749         if (unlikely(is_noslot_pfn(pfn)))
2750                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2751
2752         ret = false;
2753 exit:
2754         return ret;
2755 }
2756
2757 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2758 {
2759         /*
2760          * #PF can be fast only if the shadow page table is present and it
2761          * is caused by write-protect, that means we just need change the
2762          * W bit of the spte which can be done out of mmu-lock.
2763          */
2764         if (!(error_code & PFERR_PRESENT_MASK) ||
2765               !(error_code & PFERR_WRITE_MASK))
2766                 return false;
2767
2768         return true;
2769 }
2770
2771 static bool
2772 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2773 {
2774         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2775         gfn_t gfn;
2776
2777         WARN_ON(!sp->role.direct);
2778
2779         /*
2780          * The gfn of direct spte is stable since it is calculated
2781          * by sp->gfn.
2782          */
2783         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2784
2785         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2786                 mark_page_dirty(vcpu->kvm, gfn);
2787
2788         return true;
2789 }
2790
2791 /*
2792  * Return value:
2793  * - true: let the vcpu to access on the same address again.
2794  * - false: let the real page fault path to fix it.
2795  */
2796 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2797                             u32 error_code)
2798 {
2799         struct kvm_shadow_walk_iterator iterator;
2800         bool ret = false;
2801         u64 spte = 0ull;
2802
2803         if (!page_fault_can_be_fast(vcpu, error_code))
2804                 return false;
2805
2806         walk_shadow_page_lockless_begin(vcpu);
2807         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2808                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2809                         break;
2810
2811         /*
2812          * If the mapping has been changed, let the vcpu fault on the
2813          * same address again.
2814          */
2815         if (!is_rmap_spte(spte)) {
2816                 ret = true;
2817                 goto exit;
2818         }
2819
2820         if (!is_last_spte(spte, level))
2821                 goto exit;
2822
2823         /*
2824          * Check if it is a spurious fault caused by TLB lazily flushed.
2825          *
2826          * Need not check the access of upper level table entries since
2827          * they are always ACC_ALL.
2828          */
2829          if (is_writable_pte(spte)) {
2830                 ret = true;
2831                 goto exit;
2832         }
2833
2834         /*
2835          * Currently, to simplify the code, only the spte write-protected
2836          * by dirty-log can be fast fixed.
2837          */
2838         if (!spte_is_locklessly_modifiable(spte))
2839                 goto exit;
2840
2841         /*
2842          * Currently, fast page fault only works for direct mapping since
2843          * the gfn is not stable for indirect shadow page.
2844          * See Documentation/virtual/kvm/locking.txt to get more detail.
2845          */
2846         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2847 exit:
2848         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2849                               spte, ret);
2850         walk_shadow_page_lockless_end(vcpu);
2851
2852         return ret;
2853 }
2854
2855 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2856                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2857
2858 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2859                          gfn_t gfn, bool prefault)
2860 {
2861         int r;
2862         int level;
2863         int force_pt_level;
2864         pfn_t pfn;
2865         unsigned long mmu_seq;
2866         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2867
2868         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2869         if (likely(!force_pt_level)) {
2870                 level = mapping_level(vcpu, gfn);
2871                 /*
2872                  * This path builds a PAE pagetable - so we can map
2873                  * 2mb pages at maximum. Therefore check if the level
2874                  * is larger than that.
2875                  */
2876                 if (level > PT_DIRECTORY_LEVEL)
2877                         level = PT_DIRECTORY_LEVEL;
2878
2879                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2880         } else
2881                 level = PT_PAGE_TABLE_LEVEL;
2882
2883         if (fast_page_fault(vcpu, v, level, error_code))
2884                 return 0;
2885
2886         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2887         smp_rmb();
2888
2889         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2890                 return 0;
2891
2892         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2893                 return r;
2894
2895         spin_lock(&vcpu->kvm->mmu_lock);
2896         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2897                 goto out_unlock;
2898         kvm_mmu_free_some_pages(vcpu);
2899         if (likely(!force_pt_level))
2900                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2901         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2902                          prefault);
2903         spin_unlock(&vcpu->kvm->mmu_lock);
2904
2905
2906         return r;
2907
2908 out_unlock:
2909         spin_unlock(&vcpu->kvm->mmu_lock);
2910         kvm_release_pfn_clean(pfn);
2911         return 0;
2912 }
2913
2914
2915 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2916 {
2917         int i;
2918         struct kvm_mmu_page *sp;
2919         LIST_HEAD(invalid_list);
2920
2921         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2922                 return;
2923         spin_lock(&vcpu->kvm->mmu_lock);
2924         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2925             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2926              vcpu->arch.mmu.direct_map)) {
2927                 hpa_t root = vcpu->arch.mmu.root_hpa;
2928
2929                 sp = page_header(root);
2930                 --sp->root_count;
2931                 if (!sp->root_count && sp->role.invalid) {
2932                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2933                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2934                 }
2935                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2936                 spin_unlock(&vcpu->kvm->mmu_lock);
2937                 return;
2938         }
2939         for (i = 0; i < 4; ++i) {
2940                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2941
2942                 if (root) {
2943                         root &= PT64_BASE_ADDR_MASK;
2944                         sp = page_header(root);
2945                         --sp->root_count;
2946                         if (!sp->root_count && sp->role.invalid)
2947                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2948                                                          &invalid_list);
2949                 }
2950                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2951         }
2952         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2953         spin_unlock(&vcpu->kvm->mmu_lock);
2954         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2955 }
2956
2957 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2958 {
2959         int ret = 0;
2960
2961         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2962                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2963                 ret = 1;
2964         }
2965
2966         return ret;
2967 }
2968
2969 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2970 {
2971         struct kvm_mmu_page *sp;
2972         unsigned i;
2973
2974         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2975                 spin_lock(&vcpu->kvm->mmu_lock);
2976                 kvm_mmu_free_some_pages(vcpu);
2977                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2978                                       1, ACC_ALL, NULL);
2979                 ++sp->root_count;
2980                 spin_unlock(&vcpu->kvm->mmu_lock);
2981                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2982         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2983                 for (i = 0; i < 4; ++i) {
2984                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2985
2986                         ASSERT(!VALID_PAGE(root));
2987                         spin_lock(&vcpu->kvm->mmu_lock);
2988                         kvm_mmu_free_some_pages(vcpu);
2989                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2990                                               i << 30,
2991                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2992                                               NULL);
2993                         root = __pa(sp->spt);
2994                         ++sp->root_count;
2995                         spin_unlock(&vcpu->kvm->mmu_lock);
2996                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2997                 }
2998                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2999         } else
3000                 BUG();
3001
3002         return 0;
3003 }
3004
3005 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3006 {
3007         struct kvm_mmu_page *sp;
3008         u64 pdptr, pm_mask;
3009         gfn_t root_gfn;
3010         int i;
3011
3012         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
3013
3014         if (mmu_check_root(vcpu, root_gfn))
3015                 return 1;
3016
3017         /*
3018          * Do we shadow a long mode page table? If so we need to
3019          * write-protect the guests page table root.
3020          */
3021         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3022                 hpa_t root = vcpu->arch.mmu.root_hpa;
3023
3024                 ASSERT(!VALID_PAGE(root));
3025
3026                 spin_lock(&vcpu->kvm->mmu_lock);
3027                 kvm_mmu_free_some_pages(vcpu);
3028                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3029                                       0, ACC_ALL, NULL);
3030                 root = __pa(sp->spt);
3031                 ++sp->root_count;
3032                 spin_unlock(&vcpu->kvm->mmu_lock);
3033                 vcpu->arch.mmu.root_hpa = root;
3034                 return 0;
3035         }
3036
3037         /*
3038          * We shadow a 32 bit page table. This may be a legacy 2-level
3039          * or a PAE 3-level page table. In either case we need to be aware that
3040          * the shadow page table may be a PAE or a long mode page table.
3041          */
3042         pm_mask = PT_PRESENT_MASK;
3043         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3044                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3045
3046         for (i = 0; i < 4; ++i) {
3047                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3048
3049                 ASSERT(!VALID_PAGE(root));
3050                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
3051                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
3052                         if (!is_present_gpte(pdptr)) {
3053                                 vcpu->arch.mmu.pae_root[i] = 0;
3054                                 continue;
3055                         }
3056                         root_gfn = pdptr >> PAGE_SHIFT;
3057                         if (mmu_check_root(vcpu, root_gfn))
3058                                 return 1;
3059                 }
3060                 spin_lock(&vcpu->kvm->mmu_lock);
3061                 kvm_mmu_free_some_pages(vcpu);
3062                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3063                                       PT32_ROOT_LEVEL, 0,
3064                                       ACC_ALL, NULL);
3065                 root = __pa(sp->spt);
3066                 ++sp->root_count;
3067                 spin_unlock(&vcpu->kvm->mmu_lock);
3068
3069                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3070         }
3071         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3072
3073         /*
3074          * If we shadow a 32 bit page table with a long mode page
3075          * table we enter this path.
3076          */
3077         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3078                 if (vcpu->arch.mmu.lm_root == NULL) {
3079                         /*
3080                          * The additional page necessary for this is only
3081                          * allocated on demand.
3082                          */
3083
3084                         u64 *lm_root;
3085
3086                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3087                         if (lm_root == NULL)
3088                                 return 1;
3089
3090                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3091
3092                         vcpu->arch.mmu.lm_root = lm_root;
3093                 }
3094
3095                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3096         }
3097
3098         return 0;
3099 }
3100
3101 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3102 {
3103         if (vcpu->arch.mmu.direct_map)
3104                 return mmu_alloc_direct_roots(vcpu);
3105         else
3106                 return mmu_alloc_shadow_roots(vcpu);
3107 }
3108
3109 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3110 {
3111         int i;
3112         struct kvm_mmu_page *sp;
3113
3114         if (vcpu->arch.mmu.direct_map)
3115                 return;
3116
3117         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3118                 return;
3119
3120         vcpu_clear_mmio_info(vcpu, ~0ul);
3121         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3122         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3123                 hpa_t root = vcpu->arch.mmu.root_hpa;
3124                 sp = page_header(root);
3125                 mmu_sync_children(vcpu, sp);
3126                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3127                 return;
3128         }
3129         for (i = 0; i < 4; ++i) {
3130                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3131
3132                 if (root && VALID_PAGE(root)) {
3133                         root &= PT64_BASE_ADDR_MASK;
3134                         sp = page_header(root);
3135                         mmu_sync_children(vcpu, sp);
3136                 }
3137         }
3138         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3139 }
3140
3141 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3142 {
3143         spin_lock(&vcpu->kvm->mmu_lock);
3144         mmu_sync_roots(vcpu);
3145         spin_unlock(&vcpu->kvm->mmu_lock);
3146 }
3147
3148 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3149                                   u32 access, struct x86_exception *exception)
3150 {
3151         if (exception)
3152                 exception->error_code = 0;
3153         return vaddr;
3154 }
3155
3156 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3157                                          u32 access,
3158                                          struct x86_exception *exception)
3159 {
3160         if (exception)
3161                 exception->error_code = 0;
3162         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3163 }
3164
3165 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3166 {
3167         if (direct)
3168                 return vcpu_match_mmio_gpa(vcpu, addr);
3169
3170         return vcpu_match_mmio_gva(vcpu, addr);
3171 }
3172
3173
3174 /*
3175  * On direct hosts, the last spte is only allows two states
3176  * for mmio page fault:
3177  *   - It is the mmio spte
3178  *   - It is zapped or it is being zapped.
3179  *
3180  * This function completely checks the spte when the last spte
3181  * is not the mmio spte.
3182  */
3183 static bool check_direct_spte_mmio_pf(u64 spte)
3184 {
3185         return __check_direct_spte_mmio_pf(spte);
3186 }
3187
3188 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3189 {
3190         struct kvm_shadow_walk_iterator iterator;
3191         u64 spte = 0ull;
3192
3193         walk_shadow_page_lockless_begin(vcpu);
3194         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3195                 if (!is_shadow_present_pte(spte))
3196                         break;
3197         walk_shadow_page_lockless_end(vcpu);
3198
3199         return spte;
3200 }
3201
3202 /*
3203  * If it is a real mmio page fault, return 1 and emulat the instruction
3204  * directly, return 0 to let CPU fault again on the address, -1 is
3205  * returned if bug is detected.
3206  */
3207 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3208 {
3209         u64 spte;
3210
3211         if (quickly_check_mmio_pf(vcpu, addr, direct))
3212                 return 1;
3213
3214         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3215
3216         if (is_mmio_spte(spte)) {
3217                 gfn_t gfn = get_mmio_spte_gfn(spte);
3218                 unsigned access = get_mmio_spte_access(spte);
3219
3220                 if (direct)
3221                         addr = 0;
3222
3223                 trace_handle_mmio_page_fault(addr, gfn, access);
3224                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3225                 return 1;
3226         }
3227
3228         /*
3229          * It's ok if the gva is remapped by other cpus on shadow guest,
3230          * it's a BUG if the gfn is not a mmio page.
3231          */
3232         if (direct && !check_direct_spte_mmio_pf(spte))
3233                 return -1;
3234
3235         /*
3236          * If the page table is zapped by other cpus, let CPU fault again on
3237          * the address.
3238          */
3239         return 0;
3240 }
3241 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3242
3243 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3244                                   u32 error_code, bool direct)
3245 {
3246         int ret;
3247
3248         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3249         WARN_ON(ret < 0);
3250         return ret;
3251 }
3252
3253 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3254                                 u32 error_code, bool prefault)
3255 {
3256         gfn_t gfn;
3257         int r;
3258
3259         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3260
3261         if (unlikely(error_code & PFERR_RSVD_MASK))
3262                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3263
3264         r = mmu_topup_memory_caches(vcpu);
3265         if (r)
3266                 return r;
3267
3268         ASSERT(vcpu);
3269         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3270
3271         gfn = gva >> PAGE_SHIFT;
3272
3273         return nonpaging_map(vcpu, gva & PAGE_MASK,
3274                              error_code, gfn, prefault);
3275 }
3276
3277 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3278 {
3279         struct kvm_arch_async_pf arch;
3280
3281         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3282         arch.gfn = gfn;
3283         arch.direct_map = vcpu->arch.mmu.direct_map;
3284         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3285
3286         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3287 }
3288
3289 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3290 {
3291         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3292                      kvm_event_needs_reinjection(vcpu)))
3293                 return false;
3294
3295         return kvm_x86_ops->interrupt_allowed(vcpu);
3296 }
3297
3298 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3299                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3300 {
3301         bool async;
3302
3303         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3304
3305         if (!async)
3306                 return false; /* *pfn has correct page already */
3307
3308         if (!prefault && can_do_async_pf(vcpu)) {
3309                 trace_kvm_try_async_get_page(gva, gfn);
3310                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3311                         trace_kvm_async_pf_doublefault(gva, gfn);
3312                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3313                         return true;
3314                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3315                         return true;
3316         }
3317
3318         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3319
3320         return false;
3321 }
3322
3323 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3324                           bool prefault)
3325 {
3326         pfn_t pfn;
3327         int r;
3328         int level;
3329         int force_pt_level;
3330         gfn_t gfn = gpa >> PAGE_SHIFT;
3331         unsigned long mmu_seq;
3332         int write = error_code & PFERR_WRITE_MASK;
3333         bool map_writable;
3334
3335         ASSERT(vcpu);
3336         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3337
3338         if (unlikely(error_code & PFERR_RSVD_MASK))
3339                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3340
3341         r = mmu_topup_memory_caches(vcpu);
3342         if (r)
3343                 return r;
3344
3345         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3346         if (likely(!force_pt_level)) {
3347                 level = mapping_level(vcpu, gfn);
3348                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3349         } else
3350                 level = PT_PAGE_TABLE_LEVEL;
3351
3352         if (fast_page_fault(vcpu, gpa, level, error_code))
3353                 return 0;
3354
3355         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3356         smp_rmb();
3357
3358         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3359                 return 0;
3360
3361         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3362                 return r;
3363
3364         spin_lock(&vcpu->kvm->mmu_lock);
3365         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3366                 goto out_unlock;
3367         kvm_mmu_free_some_pages(vcpu);
3368         if (likely(!force_pt_level))
3369                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3370         r = __direct_map(vcpu, gpa, write, map_writable,
3371                          level, gfn, pfn, prefault);
3372         spin_unlock(&vcpu->kvm->mmu_lock);
3373
3374         return r;
3375
3376 out_unlock:
3377         spin_unlock(&vcpu->kvm->mmu_lock);
3378         kvm_release_pfn_clean(pfn);
3379         return 0;
3380 }
3381
3382 static void nonpaging_free(struct kvm_vcpu *vcpu)
3383 {
3384         mmu_free_roots(vcpu);
3385 }
3386
3387 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3388                                   struct kvm_mmu *context)
3389 {
3390         context->new_cr3 = nonpaging_new_cr3;
3391         context->page_fault = nonpaging_page_fault;
3392         context->gva_to_gpa = nonpaging_gva_to_gpa;
3393         context->free = nonpaging_free;
3394         context->sync_page = nonpaging_sync_page;
3395         context->invlpg = nonpaging_invlpg;
3396         context->update_pte = nonpaging_update_pte;
3397         context->root_level = 0;
3398         context->shadow_root_level = PT32E_ROOT_LEVEL;
3399         context->root_hpa = INVALID_PAGE;
3400         context->direct_map = true;
3401         context->nx = false;
3402         return 0;
3403 }
3404
3405 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3406 {
3407         ++vcpu->stat.tlb_flush;
3408         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3409 }
3410
3411 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3412 {
3413         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3414         mmu_free_roots(vcpu);
3415 }
3416
3417 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3418 {
3419         return kvm_read_cr3(vcpu);
3420 }
3421
3422 static void inject_page_fault(struct kvm_vcpu *vcpu,
3423                               struct x86_exception *fault)
3424 {
3425         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3426 }
3427
3428 static void paging_free(struct kvm_vcpu *vcpu)
3429 {
3430         nonpaging_free(vcpu);
3431 }
3432
3433 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3434 {
3435         unsigned mask;
3436
3437         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3438
3439         mask = (unsigned)~ACC_WRITE_MASK;
3440         /* Allow write access to dirty gptes */
3441         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3442         *access &= mask;
3443 }
3444
3445 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3446                            int *nr_present)
3447 {
3448         if (unlikely(is_mmio_spte(*sptep))) {
3449                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3450                         mmu_spte_clear_no_track(sptep);
3451                         return true;
3452                 }
3453
3454                 (*nr_present)++;
3455                 mark_mmio_spte(sptep, gfn, access);
3456                 return true;
3457         }
3458
3459         return false;
3460 }
3461
3462 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3463 {
3464         unsigned access;
3465
3466         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3467         access &= ~(gpte >> PT64_NX_SHIFT);
3468
3469         return access;
3470 }
3471
3472 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3473 {
3474         unsigned index;
3475
3476         index = level - 1;
3477         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3478         return mmu->last_pte_bitmap & (1 << index);
3479 }
3480
3481 #define PTTYPE 64
3482 #include "paging_tmpl.h"
3483 #undef PTTYPE
3484
3485 #define PTTYPE 32
3486 #include "paging_tmpl.h"
3487 #undef PTTYPE
3488
3489 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3490                                   struct kvm_mmu *context)
3491 {
3492         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3493         u64 exb_bit_rsvd = 0;
3494
3495         if (!context->nx)
3496                 exb_bit_rsvd = rsvd_bits(63, 63);
3497         switch (context->root_level) {
3498         case PT32_ROOT_LEVEL:
3499                 /* no rsvd bits for 2 level 4K page table entries */
3500                 context->rsvd_bits_mask[0][1] = 0;
3501                 context->rsvd_bits_mask[0][0] = 0;
3502                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3503
3504                 if (!is_pse(vcpu)) {
3505                         context->rsvd_bits_mask[1][1] = 0;
3506                         break;
3507                 }
3508
3509                 if (is_cpuid_PSE36())
3510                         /* 36bits PSE 4MB page */
3511                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3512                 else
3513                         /* 32 bits PSE 4MB page */
3514                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3515                 break;
3516         case PT32E_ROOT_LEVEL:
3517                 context->rsvd_bits_mask[0][2] =
3518                         rsvd_bits(maxphyaddr, 63) |
3519                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3520                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3521                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3522                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3523                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3524                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3525                         rsvd_bits(maxphyaddr, 62) |
3526                         rsvd_bits(13, 20);              /* large page */
3527                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3528                 break;
3529         case PT64_ROOT_LEVEL:
3530                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3531                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3532                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3533                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3534                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3535                         rsvd_bits(maxphyaddr, 51);
3536                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3537                         rsvd_bits(maxphyaddr, 51);
3538                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3539                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3540                         rsvd_bits(maxphyaddr, 51) |
3541                         rsvd_bits(13, 29);
3542                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3543                         rsvd_bits(maxphyaddr, 51) |
3544                         rsvd_bits(13, 20);              /* large page */
3545                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3546                 break;
3547         }
3548 }
3549
3550 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3551 {
3552         unsigned bit, byte, pfec;
3553         u8 map;
3554         bool fault, x, w, u, wf, uf, ff, smep;
3555
3556         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3557         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3558                 pfec = byte << 1;
3559                 map = 0;
3560                 wf = pfec & PFERR_WRITE_MASK;
3561                 uf = pfec & PFERR_USER_MASK;
3562                 ff = pfec & PFERR_FETCH_MASK;
3563                 for (bit = 0; bit < 8; ++bit) {
3564                         x = bit & ACC_EXEC_MASK;
3565                         w = bit & ACC_WRITE_MASK;
3566                         u = bit & ACC_USER_MASK;
3567
3568                         /* Not really needed: !nx will cause pte.nx to fault */
3569                         x |= !mmu->nx;
3570                         /* Allow supervisor writes if !cr0.wp */
3571                         w |= !is_write_protection(vcpu) && !uf;
3572                         /* Disallow supervisor fetches of user code if cr4.smep */
3573                         x &= !(smep && u && !uf);
3574
3575                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3576                         map |= fault << bit;
3577                 }
3578                 mmu->permissions[byte] = map;
3579         }
3580 }
3581
3582 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3583 {
3584         u8 map;
3585         unsigned level, root_level = mmu->root_level;
3586         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3587
3588         if (root_level == PT32E_ROOT_LEVEL)
3589                 --root_level;
3590         /* PT_PAGE_TABLE_LEVEL always terminates */
3591         map = 1 | (1 << ps_set_index);
3592         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3593                 if (level <= PT_PDPE_LEVEL
3594                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3595                         map |= 1 << (ps_set_index | (level - 1));
3596         }
3597         mmu->last_pte_bitmap = map;
3598 }
3599
3600 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3601                                         struct kvm_mmu *context,
3602                                         int level)
3603 {
3604         context->nx = is_nx(vcpu);
3605         context->root_level = level;
3606
3607         reset_rsvds_bits_mask(vcpu, context);
3608         update_permission_bitmask(vcpu, context);
3609         update_last_pte_bitmap(vcpu, context);
3610
3611         ASSERT(is_pae(vcpu));
3612         context->new_cr3 = paging_new_cr3;
3613         context->page_fault = paging64_page_fault;
3614         context->gva_to_gpa = paging64_gva_to_gpa;
3615         context->sync_page = paging64_sync_page;
3616         context->invlpg = paging64_invlpg;
3617         context->update_pte = paging64_update_pte;
3618         context->free = paging_free;
3619         context->shadow_root_level = level;
3620         context->root_hpa = INVALID_PAGE;
3621         context->direct_map = false;
3622         return 0;
3623 }
3624
3625 static int paging64_init_context(struct kvm_vcpu *vcpu,
3626                                  struct kvm_mmu *context)
3627 {
3628         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3629 }
3630
3631 static int paging32_init_context(struct kvm_vcpu *vcpu,
3632                                  struct kvm_mmu *context)
3633 {
3634         context->nx = false;
3635         context->root_level = PT32_ROOT_LEVEL;
3636
3637         reset_rsvds_bits_mask(vcpu, context);
3638         update_permission_bitmask(vcpu, context);
3639         update_last_pte_bitmap(vcpu, context);
3640
3641         context->new_cr3 = paging_new_cr3;
3642         context->page_fault = paging32_page_fault;
3643         context->gva_to_gpa = paging32_gva_to_gpa;
3644         context->free = paging_free;
3645         context->sync_page = paging32_sync_page;
3646         context->invlpg = paging32_invlpg;
3647         context->update_pte = paging32_update_pte;
3648         context->shadow_root_level = PT32E_ROOT_LEVEL;
3649         context->root_hpa = INVALID_PAGE;
3650         context->direct_map = false;
3651         return 0;
3652 }
3653
3654 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3655                                   struct kvm_mmu *context)
3656 {
3657         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3658 }
3659
3660 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3661 {
3662         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3663
3664         context->base_role.word = 0;
3665         context->new_cr3 = nonpaging_new_cr3;
3666         context->page_fault = tdp_page_fault;
3667         context->free = nonpaging_free;
3668         context->sync_page = nonpaging_sync_page;
3669         context->invlpg = nonpaging_invlpg;
3670         context->update_pte = nonpaging_update_pte;
3671         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3672         context->root_hpa = INVALID_PAGE;
3673         context->direct_map = true;
3674         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3675         context->get_cr3 = get_cr3;
3676         context->get_pdptr = kvm_pdptr_read;
3677         context->inject_page_fault = kvm_inject_page_fault;
3678
3679         if (!is_paging(vcpu)) {
3680                 context->nx = false;
3681                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3682                 context->root_level = 0;
3683         } else if (is_long_mode(vcpu)) {
3684                 context->nx = is_nx(vcpu);
3685                 context->root_level = PT64_ROOT_LEVEL;
3686                 reset_rsvds_bits_mask(vcpu, context);
3687                 context->gva_to_gpa = paging64_gva_to_gpa;
3688         } else if (is_pae(vcpu)) {
3689                 context->nx = is_nx(vcpu);
3690                 context->root_level = PT32E_ROOT_LEVEL;
3691                 reset_rsvds_bits_mask(vcpu, context);
3692                 context->gva_to_gpa = paging64_gva_to_gpa;
3693         } else {
3694                 context->nx = false;
3695                 context->root_level = PT32_ROOT_LEVEL;
3696                 reset_rsvds_bits_mask(vcpu, context);
3697                 context->gva_to_gpa = paging32_gva_to_gpa;
3698         }
3699
3700         update_permission_bitmask(vcpu, context);
3701         update_last_pte_bitmap(vcpu, context);
3702
3703         return 0;
3704 }
3705
3706 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3707 {
3708         int r;
3709         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3710         ASSERT(vcpu);
3711         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3712
3713         if (!is_paging(vcpu))
3714                 r = nonpaging_init_context(vcpu, context);
3715         else if (is_long_mode(vcpu))
3716                 r = paging64_init_context(vcpu, context);
3717         else if (is_pae(vcpu))
3718                 r = paging32E_init_context(vcpu, context);
3719         else
3720                 r = paging32_init_context(vcpu, context);
3721
3722         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3723         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3724         vcpu->arch.mmu.base_role.smep_andnot_wp
3725                 = smep && !is_write_protection(vcpu);
3726
3727         return r;
3728 }
3729 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3730
3731 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3732 {
3733         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3734
3735         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3736         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3737         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3738         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3739
3740         return r;
3741 }
3742
3743 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3744 {
3745         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3746
3747         g_context->get_cr3           = get_cr3;
3748         g_context->get_pdptr         = kvm_pdptr_read;
3749         g_context->inject_page_fault = kvm_inject_page_fault;
3750
3751         /*
3752          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3753          * translation of l2_gpa to l1_gpa addresses is done using the
3754          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3755          * functions between mmu and nested_mmu are swapped.
3756          */
3757         if (!is_paging(vcpu)) {
3758                 g_context->nx = false;
3759                 g_context->root_level = 0;
3760                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3761         } else if (is_long_mode(vcpu)) {
3762                 g_context->nx = is_nx(vcpu);
3763                 g_context->root_level = PT64_ROOT_LEVEL;
3764                 reset_rsvds_bits_mask(vcpu, g_context);
3765                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3766         } else if (is_pae(vcpu)) {
3767                 g_context->nx = is_nx(vcpu);
3768                 g_context->root_level = PT32E_ROOT_LEVEL;
3769                 reset_rsvds_bits_mask(vcpu, g_context);
3770                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3771         } else {
3772                 g_context->nx = false;
3773                 g_context->root_level = PT32_ROOT_LEVEL;
3774                 reset_rsvds_bits_mask(vcpu, g_context);
3775                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3776         }
3777
3778         update_permission_bitmask(vcpu, g_context);
3779         update_last_pte_bitmap(vcpu, g_context);
3780
3781         return 0;
3782 }
3783
3784 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3785 {
3786         if (mmu_is_nested(vcpu))
3787                 return init_kvm_nested_mmu(vcpu);
3788         else if (tdp_enabled)
3789                 return init_kvm_tdp_mmu(vcpu);
3790         else
3791                 return init_kvm_softmmu(vcpu);
3792 }
3793
3794 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3795 {
3796         ASSERT(vcpu);
3797         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3798                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3799                 vcpu->arch.mmu.free(vcpu);
3800 }
3801
3802 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3803 {
3804         destroy_kvm_mmu(vcpu);
3805         return init_kvm_mmu(vcpu);
3806 }
3807 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3808
3809 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3810 {
3811         int r;
3812
3813         r = mmu_topup_memory_caches(vcpu);
3814         if (r)
3815                 goto out;
3816         r = mmu_alloc_roots(vcpu);
3817         spin_lock(&vcpu->kvm->mmu_lock);
3818         mmu_sync_roots(vcpu);
3819         spin_unlock(&vcpu->kvm->mmu_lock);
3820         if (r)
3821                 goto out;
3822         /* set_cr3() should ensure TLB has been flushed */
3823         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3824 out:
3825         return r;
3826 }
3827 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3828
3829 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3830 {
3831         mmu_free_roots(vcpu);
3832 }
3833 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3834
3835 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3836                                   struct kvm_mmu_page *sp, u64 *spte,
3837                                   const void *new)
3838 {
3839         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3840                 ++vcpu->kvm->stat.mmu_pde_zapped;
3841                 return;
3842         }
3843
3844         ++vcpu->kvm->stat.mmu_pte_updated;
3845         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3846 }
3847
3848 static bool need_remote_flush(u64 old, u64 new)
3849 {
3850         if (!is_shadow_present_pte(old))
3851                 return false;
3852         if (!is_shadow_present_pte(new))
3853                 return true;
3854         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3855                 return true;
3856         old ^= PT64_NX_MASK;
3857         new ^= PT64_NX_MASK;
3858         return (old & ~new & PT64_PERM_MASK) != 0;
3859 }
3860
3861 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3862                                     bool remote_flush, bool local_flush)
3863 {
3864         if (zap_page)
3865                 return;
3866
3867         if (remote_flush)
3868                 kvm_flush_remote_tlbs(vcpu->kvm);
3869         else if (local_flush)
3870                 kvm_mmu_flush_tlb(vcpu);
3871 }
3872
3873 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3874                                     const u8 *new, int *bytes)
3875 {
3876         u64 gentry;
3877         int r;
3878
3879         /*
3880          * Assume that the pte write on a page table of the same type
3881          * as the current vcpu paging mode since we update the sptes only
3882          * when they have the same mode.
3883          */
3884         if (is_pae(vcpu) && *bytes == 4) {
3885                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3886                 *gpa &= ~(gpa_t)7;
3887                 *bytes = 8;
3888                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
3889                 if (r)
3890                         gentry = 0;
3891                 new = (const u8 *)&gentry;
3892         }
3893
3894         switch (*bytes) {
3895         case 4:
3896                 gentry = *(const u32 *)new;
3897                 break;
3898         case 8:
3899                 gentry = *(const u64 *)new;
3900                 break;
3901         default:
3902                 gentry = 0;
3903                 break;
3904         }
3905
3906         return gentry;
3907 }
3908
3909 /*
3910  * If we're seeing too many writes to a page, it may no longer be a page table,
3911  * or we may be forking, in which case it is better to unmap the page.
3912  */
3913 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3914 {
3915         /*
3916          * Skip write-flooding detected for the sp whose level is 1, because
3917          * it can become unsync, then the guest page is not write-protected.
3918          */
3919         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3920                 return false;
3921
3922         return ++sp->write_flooding_count >= 3;
3923 }
3924
3925 /*
3926  * Misaligned accesses are too much trouble to fix up; also, they usually
3927  * indicate a page is not used as a page table.
3928  */
3929 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3930                                     int bytes)
3931 {
3932         unsigned offset, pte_size, misaligned;
3933
3934         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3935                  gpa, bytes, sp->role.word);
3936
3937         offset = offset_in_page(gpa);
3938         pte_size = sp->role.cr4_pae ? 8 : 4;
3939
3940         /*
3941          * Sometimes, the OS only writes the last one bytes to update status
3942          * bits, for example, in linux, andb instruction is used in clear_bit().
3943          */
3944         if (!(offset & (pte_size - 1)) && bytes == 1)
3945                 return false;
3946
3947         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3948         misaligned |= bytes < 4;
3949
3950         return misaligned;
3951 }
3952
3953 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3954 {
3955         unsigned page_offset, quadrant;
3956         u64 *spte;
3957         int level;
3958
3959         page_offset = offset_in_page(gpa);
3960         level = sp->role.level;
3961         *nspte = 1;
3962         if (!sp->role.cr4_pae) {
3963                 page_offset <<= 1;      /* 32->64 */
3964                 /*
3965                  * A 32-bit pde maps 4MB while the shadow pdes map
3966                  * only 2MB.  So we need to double the offset again
3967                  * and zap two pdes instead of one.
3968                  */
3969                 if (level == PT32_ROOT_LEVEL) {
3970                         page_offset &= ~7; /* kill rounding error */
3971                         page_offset <<= 1;
3972                         *nspte = 2;
3973                 }
3974                 quadrant = page_offset >> PAGE_SHIFT;
3975                 page_offset &= ~PAGE_MASK;
3976                 if (quadrant != sp->role.quadrant)
3977                         return NULL;
3978         }
3979
3980         spte = &sp->spt[page_offset / sizeof(*spte)];
3981         return spte;
3982 }
3983
3984 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3985                        const u8 *new, int bytes)
3986 {
3987         gfn_t gfn = gpa >> PAGE_SHIFT;
3988         union kvm_mmu_page_role mask = { .word = 0 };
3989         struct kvm_mmu_page *sp;
3990         struct hlist_node *node;
3991         LIST_HEAD(invalid_list);
3992         u64 entry, gentry, *spte;
3993         int npte;
3994         bool remote_flush, local_flush, zap_page;
3995
3996         /*
3997          * If we don't have indirect shadow pages, it means no page is
3998          * write-protected, so we can exit simply.
3999          */
4000         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4001                 return;
4002
4003         zap_page = remote_flush = local_flush = false;
4004
4005         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4006
4007         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4008
4009         /*
4010          * No need to care whether allocation memory is successful
4011          * or not since pte prefetch is skiped if it does not have
4012          * enough objects in the cache.
4013          */
4014         mmu_topup_memory_caches(vcpu);
4015
4016         spin_lock(&vcpu->kvm->mmu_lock);
4017         ++vcpu->kvm->stat.mmu_pte_write;
4018         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4019
4020         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
4021         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
4022                 if (detect_write_misaligned(sp, gpa, bytes) ||
4023                       detect_write_flooding(sp)) {
4024                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
4025                                                      &invalid_list);
4026                         ++vcpu->kvm->stat.mmu_flooded;
4027                         continue;
4028                 }
4029
4030                 spte = get_written_sptes(sp, gpa, &npte);
4031                 if (!spte)
4032                         continue;
4033
4034                 local_flush = true;
4035                 while (npte--) {
4036                         entry = *spte;
4037                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
4038                         if (gentry &&
4039                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
4040                               & mask.word) && rmap_can_add(vcpu))
4041                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
4042                         if (!remote_flush && need_remote_flush(entry, *spte))
4043                                 remote_flush = true;
4044                         ++spte;
4045                 }
4046         }
4047         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
4048         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4049         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
4050         spin_unlock(&vcpu->kvm->mmu_lock);
4051 }
4052
4053 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4054 {
4055         gpa_t gpa;
4056         int r;
4057
4058         if (vcpu->arch.mmu.direct_map)
4059                 return 0;
4060
4061         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4062
4063         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4064
4065         return r;
4066 }
4067 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4068
4069 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4070 {
4071         LIST_HEAD(invalid_list);
4072
4073         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4074                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4075                 struct kvm_mmu_page *sp;
4076
4077                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4078                                   struct kvm_mmu_page, link);
4079                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4080                 ++vcpu->kvm->stat.mmu_recycled;
4081         }
4082         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4083 }
4084
4085 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4086 {
4087         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4088                 return vcpu_match_mmio_gpa(vcpu, addr);
4089
4090         return vcpu_match_mmio_gva(vcpu, addr);
4091 }
4092
4093 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4094                        void *insn, int insn_len)
4095 {
4096         int r, emulation_type = EMULTYPE_RETRY;
4097         enum emulation_result er;
4098
4099         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4100         if (r < 0)
4101                 goto out;
4102
4103         if (!r) {
4104                 r = 1;
4105                 goto out;
4106         }
4107
4108         if (is_mmio_page_fault(vcpu, cr2))
4109                 emulation_type = 0;
4110
4111         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4112
4113         switch (er) {
4114         case EMULATE_DONE:
4115                 return 1;
4116         case EMULATE_DO_MMIO:
4117                 ++vcpu->stat.mmio_exits;
4118                 /* fall through */
4119         case EMULATE_FAIL:
4120                 return 0;
4121         default:
4122                 BUG();
4123         }
4124 out:
4125         return r;
4126 }
4127 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4128
4129 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4130 {
4131         vcpu->arch.mmu.invlpg(vcpu, gva);
4132         kvm_mmu_flush_tlb(vcpu);
4133         ++vcpu->stat.invlpg;
4134 }
4135 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4136
4137 void kvm_enable_tdp(void)
4138 {
4139         tdp_enabled = true;
4140 }
4141 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4142
4143 void kvm_disable_tdp(void)
4144 {
4145         tdp_enabled = false;
4146 }
4147 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4148
4149 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4150 {
4151         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4152         if (vcpu->arch.mmu.lm_root != NULL)
4153                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4154 }
4155
4156 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4157 {
4158         struct page *page;
4159         int i;
4160
4161         ASSERT(vcpu);
4162
4163         /*
4164          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4165          * Therefore we need to allocate shadow page tables in the first
4166          * 4GB of memory, which happens to fit the DMA32 zone.
4167          */
4168         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4169         if (!page)
4170                 return -ENOMEM;
4171
4172         vcpu->arch.mmu.pae_root = page_address(page);
4173         for (i = 0; i < 4; ++i)
4174                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4175
4176         return 0;
4177 }
4178
4179 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4180 {
4181         ASSERT(vcpu);
4182
4183         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4184         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4185         vcpu->arch.mmu.translate_gpa = translate_gpa;
4186         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4187
4188         return alloc_mmu_pages(vcpu);
4189 }
4190
4191 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4192 {
4193         ASSERT(vcpu);
4194         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4195
4196         return init_kvm_mmu(vcpu);
4197 }
4198
4199 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4200 {
4201         struct kvm_mmu_page *sp;
4202         bool flush = false;
4203
4204         list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
4205                 int i;
4206                 u64 *pt;
4207
4208                 if (!test_bit(slot, sp->slot_bitmap))
4209                         continue;
4210
4211                 pt = sp->spt;
4212                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
4213                         if (!is_shadow_present_pte(pt[i]) ||
4214                               !is_last_spte(pt[i], sp->role.level))
4215                                 continue;
4216
4217                         spte_write_protect(kvm, &pt[i], &flush, false);
4218                 }
4219         }
4220         kvm_flush_remote_tlbs(kvm);
4221 }
4222
4223 void kvm_mmu_zap_all(struct kvm *kvm)
4224 {
4225         struct kvm_mmu_page *sp, *node;
4226         LIST_HEAD(invalid_list);
4227
4228         spin_lock(&kvm->mmu_lock);
4229 restart:
4230         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4231                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4232                         goto restart;
4233
4234         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4235         spin_unlock(&kvm->mmu_lock);
4236 }
4237
4238 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4239                                                 struct list_head *invalid_list)
4240 {
4241         struct kvm_mmu_page *page;
4242
4243         if (list_empty(&kvm->arch.active_mmu_pages))
4244                 return;
4245
4246         page = container_of(kvm->arch.active_mmu_pages.prev,
4247                             struct kvm_mmu_page, link);
4248         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4249 }
4250
4251 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4252 {
4253         struct kvm *kvm;
4254         int nr_to_scan = sc->nr_to_scan;
4255
4256         if (nr_to_scan == 0)
4257                 goto out;
4258
4259         raw_spin_lock(&kvm_lock);
4260
4261         list_for_each_entry(kvm, &vm_list, vm_list) {
4262                 int idx;
4263                 LIST_HEAD(invalid_list);
4264
4265                 /*
4266                  * Never scan more than sc->nr_to_scan VM instances.
4267                  * Will not hit this condition practically since we do not try
4268                  * to shrink more than one VM and it is very unlikely to see
4269                  * !n_used_mmu_pages so many times.
4270                  */
4271                 if (!nr_to_scan--)
4272                         break;
4273                 /*
4274                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4275                  * here. We may skip a VM instance errorneosly, but we do not
4276                  * want to shrink a VM that only started to populate its MMU
4277                  * anyway.
4278                  */
4279                 if (!kvm->arch.n_used_mmu_pages)
4280                         continue;
4281
4282                 idx = srcu_read_lock(&kvm->srcu);
4283                 spin_lock(&kvm->mmu_lock);
4284
4285                 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4286                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4287
4288                 spin_unlock(&kvm->mmu_lock);
4289                 srcu_read_unlock(&kvm->srcu, idx);
4290
4291                 list_move_tail(&kvm->vm_list, &vm_list);
4292                 break;
4293         }
4294
4295         raw_spin_unlock(&kvm_lock);
4296
4297 out:
4298         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4299 }
4300
4301 static struct shrinker mmu_shrinker = {
4302         .shrink = mmu_shrink,
4303         .seeks = DEFAULT_SEEKS * 10,
4304 };
4305
4306 static void mmu_destroy_caches(void)
4307 {
4308         if (pte_list_desc_cache)
4309                 kmem_cache_destroy(pte_list_desc_cache);
4310         if (mmu_page_header_cache)
4311                 kmem_cache_destroy(mmu_page_header_cache);
4312 }
4313
4314 int kvm_mmu_module_init(void)
4315 {
4316         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4317                                             sizeof(struct pte_list_desc),
4318                                             0, 0, NULL);
4319         if (!pte_list_desc_cache)
4320                 goto nomem;
4321
4322         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4323                                                   sizeof(struct kvm_mmu_page),
4324                                                   0, 0, NULL);
4325         if (!mmu_page_header_cache)
4326                 goto nomem;
4327
4328         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4329                 goto nomem;
4330
4331         register_shrinker(&mmu_shrinker);
4332
4333         return 0;
4334
4335 nomem:
4336         mmu_destroy_caches();
4337         return -ENOMEM;
4338 }
4339
4340 /*
4341  * Caculate mmu pages needed for kvm.
4342  */
4343 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4344 {
4345         unsigned int nr_mmu_pages;
4346         unsigned int  nr_pages = 0;
4347         struct kvm_memslots *slots;
4348         struct kvm_memory_slot *memslot;
4349
4350         slots = kvm_memslots(kvm);
4351
4352         kvm_for_each_memslot(memslot, slots)
4353                 nr_pages += memslot->npages;
4354
4355         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4356         nr_mmu_pages = max(nr_mmu_pages,
4357                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4358
4359         return nr_mmu_pages;
4360 }
4361
4362 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4363 {
4364         struct kvm_shadow_walk_iterator iterator;
4365         u64 spte;
4366         int nr_sptes = 0;
4367
4368         walk_shadow_page_lockless_begin(vcpu);
4369         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4370                 sptes[iterator.level-1] = spte;
4371                 nr_sptes++;
4372                 if (!is_shadow_present_pte(spte))
4373                         break;
4374         }
4375         walk_shadow_page_lockless_end(vcpu);
4376
4377         return nr_sptes;
4378 }
4379 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4380
4381 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4382 {
4383         ASSERT(vcpu);
4384
4385         destroy_kvm_mmu(vcpu);
4386         free_mmu_pages(vcpu);
4387         mmu_free_memory_caches(vcpu);
4388 }
4389
4390 void kvm_mmu_module_exit(void)
4391 {
4392         mmu_destroy_caches();
4393         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4394         unregister_shrinker(&mmu_shrinker);
4395         mmu_audit_disable();
4396 }