KVM: x86: rename argument to kvm_set_tsc_khz
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128
129 static bool __read_mostly backwards_tsc_observed = false;
130
131 #define KVM_NR_SHARED_MSRS 16
132
133 struct kvm_shared_msrs_global {
134         int nr;
135         u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137
138 struct kvm_shared_msrs {
139         struct user_return_notifier urn;
140         bool registered;
141         struct kvm_shared_msr_values {
142                 u64 host;
143                 u64 curr;
144         } values[KVM_NR_SHARED_MSRS];
145 };
146
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151         { "pf_fixed", VCPU_STAT(pf_fixed) },
152         { "pf_guest", VCPU_STAT(pf_guest) },
153         { "tlb_flush", VCPU_STAT(tlb_flush) },
154         { "invlpg", VCPU_STAT(invlpg) },
155         { "exits", VCPU_STAT(exits) },
156         { "io_exits", VCPU_STAT(io_exits) },
157         { "mmio_exits", VCPU_STAT(mmio_exits) },
158         { "signal_exits", VCPU_STAT(signal_exits) },
159         { "irq_window", VCPU_STAT(irq_window_exits) },
160         { "nmi_window", VCPU_STAT(nmi_window_exits) },
161         { "halt_exits", VCPU_STAT(halt_exits) },
162         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
165         { "hypercalls", VCPU_STAT(hypercalls) },
166         { "request_irq", VCPU_STAT(request_irq_exits) },
167         { "irq_exits", VCPU_STAT(irq_exits) },
168         { "host_state_reload", VCPU_STAT(host_state_reload) },
169         { "efer_reload", VCPU_STAT(efer_reload) },
170         { "fpu_reload", VCPU_STAT(fpu_reload) },
171         { "insn_emulation", VCPU_STAT(insn_emulation) },
172         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
173         { "irq_injections", VCPU_STAT(irq_injections) },
174         { "nmi_injections", VCPU_STAT(nmi_injections) },
175         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
176         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
177         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
178         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
179         { "mmu_flooded", VM_STAT(mmu_flooded) },
180         { "mmu_recycled", VM_STAT(mmu_recycled) },
181         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
182         { "mmu_unsync", VM_STAT(mmu_unsync) },
183         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
184         { "largepages", VM_STAT(lpages) },
185         { NULL }
186 };
187
188 u64 __read_mostly host_xcr0;
189
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
191
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
193 {
194         int i;
195         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
196                 vcpu->arch.apf.gfns[i] = ~0;
197 }
198
199 static void kvm_on_user_return(struct user_return_notifier *urn)
200 {
201         unsigned slot;
202         struct kvm_shared_msrs *locals
203                 = container_of(urn, struct kvm_shared_msrs, urn);
204         struct kvm_shared_msr_values *values;
205
206         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
207                 values = &locals->values[slot];
208                 if (values->host != values->curr) {
209                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
210                         values->curr = values->host;
211                 }
212         }
213         locals->registered = false;
214         user_return_notifier_unregister(urn);
215 }
216
217 static void shared_msr_update(unsigned slot, u32 msr)
218 {
219         u64 value;
220         unsigned int cpu = smp_processor_id();
221         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
222
223         /* only read, and nobody should modify it at this time,
224          * so don't need lock */
225         if (slot >= shared_msrs_global.nr) {
226                 printk(KERN_ERR "kvm: invalid MSR slot!");
227                 return;
228         }
229         rdmsrl_safe(msr, &value);
230         smsr->values[slot].host = value;
231         smsr->values[slot].curr = value;
232 }
233
234 void kvm_define_shared_msr(unsigned slot, u32 msr)
235 {
236         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
237         shared_msrs_global.msrs[slot] = msr;
238         if (slot >= shared_msrs_global.nr)
239                 shared_msrs_global.nr = slot + 1;
240 }
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
242
243 static void kvm_shared_msr_cpu_online(void)
244 {
245         unsigned i;
246
247         for (i = 0; i < shared_msrs_global.nr; ++i)
248                 shared_msr_update(i, shared_msrs_global.msrs[i]);
249 }
250
251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
252 {
253         unsigned int cpu = smp_processor_id();
254         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255         int err;
256
257         if (((value ^ smsr->values[slot].curr) & mask) == 0)
258                 return 0;
259         smsr->values[slot].curr = value;
260         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
261         if (err)
262                 return 1;
263
264         if (!smsr->registered) {
265                 smsr->urn.on_user_return = kvm_on_user_return;
266                 user_return_notifier_register(&smsr->urn);
267                 smsr->registered = true;
268         }
269         return 0;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
272
273 static void drop_user_return_notifiers(void)
274 {
275         unsigned int cpu = smp_processor_id();
276         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277
278         if (smsr->registered)
279                 kvm_on_user_return(&smsr->urn);
280 }
281
282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.apic_base;
285 }
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
287
288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
289 {
290         u64 old_state = vcpu->arch.apic_base &
291                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
292         u64 new_state = msr_info->data &
293                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
295                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
296
297         if (!msr_info->host_initiated &&
298             ((msr_info->data & reserved_bits) != 0 ||
299              new_state == X2APIC_ENABLE ||
300              (new_state == MSR_IA32_APICBASE_ENABLE &&
301               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
302              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
303               old_state == 0)))
304                 return 1;
305
306         kvm_lapic_set_base(vcpu, msr_info->data);
307         return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
310
311 asmlinkage __visible void kvm_spurious_fault(void)
312 {
313         /* Fault while not rebooting.  We want the trace. */
314         BUG();
315 }
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
317
318 #define EXCPT_BENIGN            0
319 #define EXCPT_CONTRIBUTORY      1
320 #define EXCPT_PF                2
321
322 static int exception_class(int vector)
323 {
324         switch (vector) {
325         case PF_VECTOR:
326                 return EXCPT_PF;
327         case DE_VECTOR:
328         case TS_VECTOR:
329         case NP_VECTOR:
330         case SS_VECTOR:
331         case GP_VECTOR:
332                 return EXCPT_CONTRIBUTORY;
333         default:
334                 break;
335         }
336         return EXCPT_BENIGN;
337 }
338
339 #define EXCPT_FAULT             0
340 #define EXCPT_TRAP              1
341 #define EXCPT_ABORT             2
342 #define EXCPT_INTERRUPT         3
343
344 static int exception_type(int vector)
345 {
346         unsigned int mask;
347
348         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
349                 return EXCPT_INTERRUPT;
350
351         mask = 1 << vector;
352
353         /* #DB is trap, as instruction watchpoints are handled elsewhere */
354         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
355                 return EXCPT_TRAP;
356
357         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
358                 return EXCPT_ABORT;
359
360         /* Reserved exceptions will result in fault */
361         return EXCPT_FAULT;
362 }
363
364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
365                 unsigned nr, bool has_error, u32 error_code,
366                 bool reinject)
367 {
368         u32 prev_nr;
369         int class1, class2;
370
371         kvm_make_request(KVM_REQ_EVENT, vcpu);
372
373         if (!vcpu->arch.exception.pending) {
374         queue:
375                 if (has_error && !is_protmode(vcpu))
376                         has_error = false;
377                 vcpu->arch.exception.pending = true;
378                 vcpu->arch.exception.has_error_code = has_error;
379                 vcpu->arch.exception.nr = nr;
380                 vcpu->arch.exception.error_code = error_code;
381                 vcpu->arch.exception.reinject = reinject;
382                 return;
383         }
384
385         /* to check exception */
386         prev_nr = vcpu->arch.exception.nr;
387         if (prev_nr == DF_VECTOR) {
388                 /* triple fault -> shutdown */
389                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
390                 return;
391         }
392         class1 = exception_class(prev_nr);
393         class2 = exception_class(nr);
394         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
395                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
396                 /* generate double fault per SDM Table 5-5 */
397                 vcpu->arch.exception.pending = true;
398                 vcpu->arch.exception.has_error_code = true;
399                 vcpu->arch.exception.nr = DF_VECTOR;
400                 vcpu->arch.exception.error_code = 0;
401         } else
402                 /* replace previous exception with a new one in a hope
403                    that instruction re-execution will regenerate lost
404                    exception */
405                 goto queue;
406 }
407
408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
409 {
410         kvm_multiple_exception(vcpu, nr, false, 0, false);
411 }
412 EXPORT_SYMBOL_GPL(kvm_queue_exception);
413
414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
415 {
416         kvm_multiple_exception(vcpu, nr, false, 0, true);
417 }
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
419
420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
421 {
422         if (err)
423                 kvm_inject_gp(vcpu, 0);
424         else
425                 kvm_x86_ops->skip_emulated_instruction(vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
428
429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
430 {
431         ++vcpu->stat.pf_guest;
432         vcpu->arch.cr2 = fault->address;
433         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
434 }
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
436
437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
440                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
441         else
442                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
443
444         return fault->nested_page_fault;
445 }
446
447 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
448 {
449         atomic_inc(&vcpu->arch.nmi_queued);
450         kvm_make_request(KVM_REQ_NMI, vcpu);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
453
454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
455 {
456         kvm_multiple_exception(vcpu, nr, true, error_code, false);
457 }
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
459
460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
461 {
462         kvm_multiple_exception(vcpu, nr, true, error_code, true);
463 }
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
465
466 /*
467  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
468  * a #GP and return false.
469  */
470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
471 {
472         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
473                 return true;
474         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
475         return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_cpl);
478
479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
480 {
481         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
482                 return true;
483
484         kvm_queue_exception(vcpu, UD_VECTOR);
485         return false;
486 }
487 EXPORT_SYMBOL_GPL(kvm_require_dr);
488
489 /*
490  * This function will be used to read from the physical memory of the currently
491  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492  * can read from guest physical or from the guest's guest physical memory.
493  */
494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
495                             gfn_t ngfn, void *data, int offset, int len,
496                             u32 access)
497 {
498         struct x86_exception exception;
499         gfn_t real_gfn;
500         gpa_t ngpa;
501
502         ngpa     = gfn_to_gpa(ngfn);
503         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
504         if (real_gfn == UNMAPPED_GVA)
505                 return -EFAULT;
506
507         real_gfn = gpa_to_gfn(real_gfn);
508
509         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
510 }
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
512
513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
514                                void *data, int offset, int len, u32 access)
515 {
516         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
517                                        data, offset, len, access);
518 }
519
520 /*
521  * Load the pae pdptrs.  Return true is they are all valid.
522  */
523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
524 {
525         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
526         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
527         int i;
528         int ret;
529         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
530
531         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
532                                       offset * sizeof(u64), sizeof(pdpte),
533                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
534         if (ret < 0) {
535                 ret = 0;
536                 goto out;
537         }
538         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
539                 if (is_present_gpte(pdpte[i]) &&
540                     (pdpte[i] &
541                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
542                         ret = 0;
543                         goto out;
544                 }
545         }
546         ret = 1;
547
548         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
549         __set_bit(VCPU_EXREG_PDPTR,
550                   (unsigned long *)&vcpu->arch.regs_avail);
551         __set_bit(VCPU_EXREG_PDPTR,
552                   (unsigned long *)&vcpu->arch.regs_dirty);
553 out:
554
555         return ret;
556 }
557 EXPORT_SYMBOL_GPL(load_pdptrs);
558
559 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
560 {
561         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
562         bool changed = true;
563         int offset;
564         gfn_t gfn;
565         int r;
566
567         if (is_long_mode(vcpu) || !is_pae(vcpu))
568                 return false;
569
570         if (!test_bit(VCPU_EXREG_PDPTR,
571                       (unsigned long *)&vcpu->arch.regs_avail))
572                 return true;
573
574         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
575         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
576         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
577                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
578         if (r < 0)
579                 goto out;
580         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
581 out:
582
583         return changed;
584 }
585
586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
587 {
588         unsigned long old_cr0 = kvm_read_cr0(vcpu);
589         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
590
591         cr0 |= X86_CR0_ET;
592
593 #ifdef CONFIG_X86_64
594         if (cr0 & 0xffffffff00000000UL)
595                 return 1;
596 #endif
597
598         cr0 &= ~CR0_RESERVED_BITS;
599
600         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
601                 return 1;
602
603         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
604                 return 1;
605
606         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
607 #ifdef CONFIG_X86_64
608                 if ((vcpu->arch.efer & EFER_LME)) {
609                         int cs_db, cs_l;
610
611                         if (!is_pae(vcpu))
612                                 return 1;
613                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
614                         if (cs_l)
615                                 return 1;
616                 } else
617 #endif
618                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
619                                                  kvm_read_cr3(vcpu)))
620                         return 1;
621         }
622
623         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
624                 return 1;
625
626         kvm_x86_ops->set_cr0(vcpu, cr0);
627
628         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
629                 kvm_clear_async_pf_completion_queue(vcpu);
630                 kvm_async_pf_hash_reset(vcpu);
631         }
632
633         if ((cr0 ^ old_cr0) & update_bits)
634                 kvm_mmu_reset_context(vcpu);
635
636         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
637             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
638             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
639                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
640
641         return 0;
642 }
643 EXPORT_SYMBOL_GPL(kvm_set_cr0);
644
645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
646 {
647         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
648 }
649 EXPORT_SYMBOL_GPL(kvm_lmsw);
650
651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
652 {
653         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
654                         !vcpu->guest_xcr0_loaded) {
655                 /* kvm_set_xcr() also depends on this */
656                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
657                 vcpu->guest_xcr0_loaded = 1;
658         }
659 }
660
661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
662 {
663         if (vcpu->guest_xcr0_loaded) {
664                 if (vcpu->arch.xcr0 != host_xcr0)
665                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
666                 vcpu->guest_xcr0_loaded = 0;
667         }
668 }
669
670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
671 {
672         u64 xcr0 = xcr;
673         u64 old_xcr0 = vcpu->arch.xcr0;
674         u64 valid_bits;
675
676         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
677         if (index != XCR_XFEATURE_ENABLED_MASK)
678                 return 1;
679         if (!(xcr0 & XFEATURE_MASK_FP))
680                 return 1;
681         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
682                 return 1;
683
684         /*
685          * Do not allow the guest to set bits that we do not support
686          * saving.  However, xcr0 bit 0 is always set, even if the
687          * emulated CPU does not support XSAVE (see fx_init).
688          */
689         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
690         if (xcr0 & ~valid_bits)
691                 return 1;
692
693         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
694             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
695                 return 1;
696
697         if (xcr0 & XFEATURE_MASK_AVX512) {
698                 if (!(xcr0 & XFEATURE_MASK_YMM))
699                         return 1;
700                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
701                         return 1;
702         }
703         kvm_put_guest_xcr0(vcpu);
704         vcpu->arch.xcr0 = xcr0;
705
706         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707                 kvm_update_cpuid(vcpu);
708         return 0;
709 }
710
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714             __kvm_set_xcr(vcpu, index, xcr)) {
715                 kvm_inject_gp(vcpu, 0);
716                 return 1;
717         }
718         return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724         unsigned long old_cr4 = kvm_read_cr4(vcpu);
725         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726                                    X86_CR4_SMEP | X86_CR4_SMAP;
727
728         if (cr4 & CR4_RESERVED_BITS)
729                 return 1;
730
731         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732                 return 1;
733
734         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735                 return 1;
736
737         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738                 return 1;
739
740         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741                 return 1;
742
743         if (is_long_mode(vcpu)) {
744                 if (!(cr4 & X86_CR4_PAE))
745                         return 1;
746         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
747                    && ((cr4 ^ old_cr4) & pdptr_bits)
748                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
749                                    kvm_read_cr3(vcpu)))
750                 return 1;
751
752         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
753                 if (!guest_cpuid_has_pcid(vcpu))
754                         return 1;
755
756                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
757                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
758                         return 1;
759         }
760
761         if (kvm_x86_ops->set_cr4(vcpu, cr4))
762                 return 1;
763
764         if (((cr4 ^ old_cr4) & pdptr_bits) ||
765             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
766                 kvm_mmu_reset_context(vcpu);
767
768         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
769                 kvm_update_cpuid(vcpu);
770
771         return 0;
772 }
773 EXPORT_SYMBOL_GPL(kvm_set_cr4);
774
775 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
776 {
777 #ifdef CONFIG_X86_64
778         cr3 &= ~CR3_PCID_INVD;
779 #endif
780
781         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
782                 kvm_mmu_sync_roots(vcpu);
783                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
784                 return 0;
785         }
786
787         if (is_long_mode(vcpu)) {
788                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
789                         return 1;
790         } else if (is_pae(vcpu) && is_paging(vcpu) &&
791                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
792                 return 1;
793
794         vcpu->arch.cr3 = cr3;
795         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
796         kvm_mmu_new_cr3(vcpu);
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr3);
800
801 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
802 {
803         if (cr8 & CR8_RESERVED_BITS)
804                 return 1;
805         if (lapic_in_kernel(vcpu))
806                 kvm_lapic_set_tpr(vcpu, cr8);
807         else
808                 vcpu->arch.cr8 = cr8;
809         return 0;
810 }
811 EXPORT_SYMBOL_GPL(kvm_set_cr8);
812
813 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
814 {
815         if (lapic_in_kernel(vcpu))
816                 return kvm_lapic_get_cr8(vcpu);
817         else
818                 return vcpu->arch.cr8;
819 }
820 EXPORT_SYMBOL_GPL(kvm_get_cr8);
821
822 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
823 {
824         int i;
825
826         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
827                 for (i = 0; i < KVM_NR_DB_REGS; i++)
828                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
829                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
830         }
831 }
832
833 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
834 {
835         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
836                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
837 }
838
839 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
840 {
841         unsigned long dr7;
842
843         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
844                 dr7 = vcpu->arch.guest_debug_dr7;
845         else
846                 dr7 = vcpu->arch.dr7;
847         kvm_x86_ops->set_dr7(vcpu, dr7);
848         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
849         if (dr7 & DR7_BP_EN_MASK)
850                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
851 }
852
853 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
854 {
855         u64 fixed = DR6_FIXED_1;
856
857         if (!guest_cpuid_has_rtm(vcpu))
858                 fixed |= DR6_RTM;
859         return fixed;
860 }
861
862 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
863 {
864         switch (dr) {
865         case 0 ... 3:
866                 vcpu->arch.db[dr] = val;
867                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
868                         vcpu->arch.eff_db[dr] = val;
869                 break;
870         case 4:
871                 /* fall through */
872         case 6:
873                 if (val & 0xffffffff00000000ULL)
874                         return -1; /* #GP */
875                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
876                 kvm_update_dr6(vcpu);
877                 break;
878         case 5:
879                 /* fall through */
880         default: /* 7 */
881                 if (val & 0xffffffff00000000ULL)
882                         return -1; /* #GP */
883                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
884                 kvm_update_dr7(vcpu);
885                 break;
886         }
887
888         return 0;
889 }
890
891 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893         if (__kvm_set_dr(vcpu, dr, val)) {
894                 kvm_inject_gp(vcpu, 0);
895                 return 1;
896         }
897         return 0;
898 }
899 EXPORT_SYMBOL_GPL(kvm_set_dr);
900
901 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
902 {
903         switch (dr) {
904         case 0 ... 3:
905                 *val = vcpu->arch.db[dr];
906                 break;
907         case 4:
908                 /* fall through */
909         case 6:
910                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
911                         *val = vcpu->arch.dr6;
912                 else
913                         *val = kvm_x86_ops->get_dr6(vcpu);
914                 break;
915         case 5:
916                 /* fall through */
917         default: /* 7 */
918                 *val = vcpu->arch.dr7;
919                 break;
920         }
921         return 0;
922 }
923 EXPORT_SYMBOL_GPL(kvm_get_dr);
924
925 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
926 {
927         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
928         u64 data;
929         int err;
930
931         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
932         if (err)
933                 return err;
934         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
935         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
936         return err;
937 }
938 EXPORT_SYMBOL_GPL(kvm_rdpmc);
939
940 /*
941  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
942  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
943  *
944  * This list is modified at module load time to reflect the
945  * capabilities of the host cpu. This capabilities test skips MSRs that are
946  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
947  * may depend on host virtualization features rather than host cpu features.
948  */
949
950 static u32 msrs_to_save[] = {
951         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
952         MSR_STAR,
953 #ifdef CONFIG_X86_64
954         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
955 #endif
956         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
957         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
958 };
959
960 static unsigned num_msrs_to_save;
961
962 static u32 emulated_msrs[] = {
963         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
964         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
965         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
966         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
967         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
968         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
969         HV_X64_MSR_RESET,
970         HV_X64_MSR_VP_INDEX,
971         HV_X64_MSR_VP_RUNTIME,
972         HV_X64_MSR_SCONTROL,
973         HV_X64_MSR_STIMER0_CONFIG,
974         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
975         MSR_KVM_PV_EOI_EN,
976
977         MSR_IA32_TSC_ADJUST,
978         MSR_IA32_TSCDEADLINE,
979         MSR_IA32_MISC_ENABLE,
980         MSR_IA32_MCG_STATUS,
981         MSR_IA32_MCG_CTL,
982         MSR_IA32_SMBASE,
983 };
984
985 static unsigned num_emulated_msrs;
986
987 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
988 {
989         if (efer & efer_reserved_bits)
990                 return false;
991
992         if (efer & EFER_FFXSR) {
993                 struct kvm_cpuid_entry2 *feat;
994
995                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
996                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
997                         return false;
998         }
999
1000         if (efer & EFER_SVME) {
1001                 struct kvm_cpuid_entry2 *feat;
1002
1003                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1004                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1005                         return false;
1006         }
1007
1008         return true;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1011
1012 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1013 {
1014         u64 old_efer = vcpu->arch.efer;
1015
1016         if (!kvm_valid_efer(vcpu, efer))
1017                 return 1;
1018
1019         if (is_paging(vcpu)
1020             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1021                 return 1;
1022
1023         efer &= ~EFER_LMA;
1024         efer |= vcpu->arch.efer & EFER_LMA;
1025
1026         kvm_x86_ops->set_efer(vcpu, efer);
1027
1028         /* Update reserved bits */
1029         if ((efer ^ old_efer) & EFER_NX)
1030                 kvm_mmu_reset_context(vcpu);
1031
1032         return 0;
1033 }
1034
1035 void kvm_enable_efer_bits(u64 mask)
1036 {
1037        efer_reserved_bits &= ~mask;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1040
1041 /*
1042  * Writes msr value into into the appropriate "register".
1043  * Returns 0 on success, non-0 otherwise.
1044  * Assumes vcpu_load() was already called.
1045  */
1046 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1047 {
1048         switch (msr->index) {
1049         case MSR_FS_BASE:
1050         case MSR_GS_BASE:
1051         case MSR_KERNEL_GS_BASE:
1052         case MSR_CSTAR:
1053         case MSR_LSTAR:
1054                 if (is_noncanonical_address(msr->data))
1055                         return 1;
1056                 break;
1057         case MSR_IA32_SYSENTER_EIP:
1058         case MSR_IA32_SYSENTER_ESP:
1059                 /*
1060                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1061                  * non-canonical address is written on Intel but not on
1062                  * AMD (which ignores the top 32-bits, because it does
1063                  * not implement 64-bit SYSENTER).
1064                  *
1065                  * 64-bit code should hence be able to write a non-canonical
1066                  * value on AMD.  Making the address canonical ensures that
1067                  * vmentry does not fail on Intel after writing a non-canonical
1068                  * value, and that something deterministic happens if the guest
1069                  * invokes 64-bit SYSENTER.
1070                  */
1071                 msr->data = get_canonical(msr->data);
1072         }
1073         return kvm_x86_ops->set_msr(vcpu, msr);
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_msr);
1076
1077 /*
1078  * Adapt set_msr() to msr_io()'s calling convention
1079  */
1080 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1081 {
1082         struct msr_data msr;
1083         int r;
1084
1085         msr.index = index;
1086         msr.host_initiated = true;
1087         r = kvm_get_msr(vcpu, &msr);
1088         if (r)
1089                 return r;
1090
1091         *data = msr.data;
1092         return 0;
1093 }
1094
1095 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1096 {
1097         struct msr_data msr;
1098
1099         msr.data = *data;
1100         msr.index = index;
1101         msr.host_initiated = true;
1102         return kvm_set_msr(vcpu, &msr);
1103 }
1104
1105 #ifdef CONFIG_X86_64
1106 struct pvclock_gtod_data {
1107         seqcount_t      seq;
1108
1109         struct { /* extract of a clocksource struct */
1110                 int vclock_mode;
1111                 cycle_t cycle_last;
1112                 cycle_t mask;
1113                 u32     mult;
1114                 u32     shift;
1115         } clock;
1116
1117         u64             boot_ns;
1118         u64             nsec_base;
1119 };
1120
1121 static struct pvclock_gtod_data pvclock_gtod_data;
1122
1123 static void update_pvclock_gtod(struct timekeeper *tk)
1124 {
1125         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1126         u64 boot_ns;
1127
1128         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1129
1130         write_seqcount_begin(&vdata->seq);
1131
1132         /* copy pvclock gtod data */
1133         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1134         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1135         vdata->clock.mask               = tk->tkr_mono.mask;
1136         vdata->clock.mult               = tk->tkr_mono.mult;
1137         vdata->clock.shift              = tk->tkr_mono.shift;
1138
1139         vdata->boot_ns                  = boot_ns;
1140         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1141
1142         write_seqcount_end(&vdata->seq);
1143 }
1144 #endif
1145
1146 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1147 {
1148         /*
1149          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1150          * vcpu_enter_guest.  This function is only called from
1151          * the physical CPU that is running vcpu.
1152          */
1153         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1154 }
1155
1156 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1157 {
1158         int version;
1159         int r;
1160         struct pvclock_wall_clock wc;
1161         struct timespec boot;
1162
1163         if (!wall_clock)
1164                 return;
1165
1166         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1167         if (r)
1168                 return;
1169
1170         if (version & 1)
1171                 ++version;  /* first time write, random junk */
1172
1173         ++version;
1174
1175         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1176                 return;
1177
1178         /*
1179          * The guest calculates current wall clock time by adding
1180          * system time (updated by kvm_guest_time_update below) to the
1181          * wall clock specified here.  guest system time equals host
1182          * system time for us, thus we must fill in host boot time here.
1183          */
1184         getboottime(&boot);
1185
1186         if (kvm->arch.kvmclock_offset) {
1187                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1188                 boot = timespec_sub(boot, ts);
1189         }
1190         wc.sec = boot.tv_sec;
1191         wc.nsec = boot.tv_nsec;
1192         wc.version = version;
1193
1194         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1195
1196         version++;
1197         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1198 }
1199
1200 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1201 {
1202         do_shl32_div32(dividend, divisor);
1203         return dividend;
1204 }
1205
1206 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1207                                s8 *pshift, u32 *pmultiplier)
1208 {
1209         uint64_t scaled64;
1210         int32_t  shift = 0;
1211         uint64_t tps64;
1212         uint32_t tps32;
1213
1214         tps64 = base_khz * 1000LL;
1215         scaled64 = scaled_khz * 1000LL;
1216         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1217                 tps64 >>= 1;
1218                 shift--;
1219         }
1220
1221         tps32 = (uint32_t)tps64;
1222         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1223                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1224                         scaled64 >>= 1;
1225                 else
1226                         tps32 <<= 1;
1227                 shift++;
1228         }
1229
1230         *pshift = shift;
1231         *pmultiplier = div_frac(scaled64, tps32);
1232
1233         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1234                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1235 }
1236
1237 #ifdef CONFIG_X86_64
1238 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1239 #endif
1240
1241 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1242 static unsigned long max_tsc_khz;
1243
1244 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1245 {
1246         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1247                                    vcpu->arch.virtual_tsc_shift);
1248 }
1249
1250 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1251 {
1252         u64 v = (u64)khz * (1000000 + ppm);
1253         do_div(v, 1000000);
1254         return v;
1255 }
1256
1257 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1258 {
1259         u64 ratio;
1260
1261         /* Guest TSC same frequency as host TSC? */
1262         if (!scale) {
1263                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1264                 return 0;
1265         }
1266
1267         /* TSC scaling supported? */
1268         if (!kvm_has_tsc_control) {
1269                 if (user_tsc_khz > tsc_khz) {
1270                         vcpu->arch.tsc_catchup = 1;
1271                         vcpu->arch.tsc_always_catchup = 1;
1272                         return 0;
1273                 } else {
1274                         WARN(1, "user requested TSC rate below hardware speed\n");
1275                         return -1;
1276                 }
1277         }
1278
1279         /* TSC scaling required  - calculate ratio */
1280         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1281                                 user_tsc_khz, tsc_khz);
1282
1283         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1284                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1285                           user_tsc_khz);
1286                 return -1;
1287         }
1288
1289         vcpu->arch.tsc_scaling_ratio = ratio;
1290         return 0;
1291 }
1292
1293 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1294 {
1295         u32 thresh_lo, thresh_hi;
1296         int use_scaling = 0;
1297
1298         /* tsc_khz can be zero if TSC calibration fails */
1299         if (user_tsc_khz == 0) {
1300                 /* set tsc_scaling_ratio to a safe value */
1301                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1302                 return -1;
1303         }
1304
1305         /* Compute a scale to convert nanoseconds in TSC cycles */
1306         kvm_get_time_scale(user_tsc_khz, NSEC_PER_SEC / 1000,
1307                            &vcpu->arch.virtual_tsc_shift,
1308                            &vcpu->arch.virtual_tsc_mult);
1309         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1310
1311         /*
1312          * Compute the variation in TSC rate which is acceptable
1313          * within the range of tolerance and decide if the
1314          * rate being applied is within that bounds of the hardware
1315          * rate.  If so, no scaling or compensation need be done.
1316          */
1317         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1318         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1319         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1320                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1321                 use_scaling = 1;
1322         }
1323         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1324 }
1325
1326 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1327 {
1328         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1329                                       vcpu->arch.virtual_tsc_mult,
1330                                       vcpu->arch.virtual_tsc_shift);
1331         tsc += vcpu->arch.this_tsc_write;
1332         return tsc;
1333 }
1334
1335 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1336 {
1337 #ifdef CONFIG_X86_64
1338         bool vcpus_matched;
1339         struct kvm_arch *ka = &vcpu->kvm->arch;
1340         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1341
1342         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1343                          atomic_read(&vcpu->kvm->online_vcpus));
1344
1345         /*
1346          * Once the masterclock is enabled, always perform request in
1347          * order to update it.
1348          *
1349          * In order to enable masterclock, the host clocksource must be TSC
1350          * and the vcpus need to have matched TSCs.  When that happens,
1351          * perform request to enable masterclock.
1352          */
1353         if (ka->use_master_clock ||
1354             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1355                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1356
1357         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1358                             atomic_read(&vcpu->kvm->online_vcpus),
1359                             ka->use_master_clock, gtod->clock.vclock_mode);
1360 #endif
1361 }
1362
1363 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1364 {
1365         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1366         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1367 }
1368
1369 /*
1370  * Multiply tsc by a fixed point number represented by ratio.
1371  *
1372  * The most significant 64-N bits (mult) of ratio represent the
1373  * integral part of the fixed point number; the remaining N bits
1374  * (frac) represent the fractional part, ie. ratio represents a fixed
1375  * point number (mult + frac * 2^(-N)).
1376  *
1377  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1378  */
1379 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1380 {
1381         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1382 }
1383
1384 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1385 {
1386         u64 _tsc = tsc;
1387         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1388
1389         if (ratio != kvm_default_tsc_scaling_ratio)
1390                 _tsc = __scale_tsc(ratio, tsc);
1391
1392         return _tsc;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1395
1396 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1397 {
1398         u64 tsc;
1399
1400         tsc = kvm_scale_tsc(vcpu, rdtsc());
1401
1402         return target_tsc - tsc;
1403 }
1404
1405 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1406 {
1407         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1410
1411 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1412 {
1413         struct kvm *kvm = vcpu->kvm;
1414         u64 offset, ns, elapsed;
1415         unsigned long flags;
1416         s64 usdiff;
1417         bool matched;
1418         bool already_matched;
1419         u64 data = msr->data;
1420
1421         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1422         offset = kvm_compute_tsc_offset(vcpu, data);
1423         ns = get_kernel_ns();
1424         elapsed = ns - kvm->arch.last_tsc_nsec;
1425
1426         if (vcpu->arch.virtual_tsc_khz) {
1427                 int faulted = 0;
1428
1429                 /* n.b - signed multiplication and division required */
1430                 usdiff = data - kvm->arch.last_tsc_write;
1431 #ifdef CONFIG_X86_64
1432                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1433 #else
1434                 /* do_div() only does unsigned */
1435                 asm("1: idivl %[divisor]\n"
1436                     "2: xor %%edx, %%edx\n"
1437                     "   movl $0, %[faulted]\n"
1438                     "3:\n"
1439                     ".section .fixup,\"ax\"\n"
1440                     "4: movl $1, %[faulted]\n"
1441                     "   jmp  3b\n"
1442                     ".previous\n"
1443
1444                 _ASM_EXTABLE(1b, 4b)
1445
1446                 : "=A"(usdiff), [faulted] "=r" (faulted)
1447                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1448
1449 #endif
1450                 do_div(elapsed, 1000);
1451                 usdiff -= elapsed;
1452                 if (usdiff < 0)
1453                         usdiff = -usdiff;
1454
1455                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1456                 if (faulted)
1457                         usdiff = USEC_PER_SEC;
1458         } else
1459                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1460
1461         /*
1462          * Special case: TSC write with a small delta (1 second) of virtual
1463          * cycle time against real time is interpreted as an attempt to
1464          * synchronize the CPU.
1465          *
1466          * For a reliable TSC, we can match TSC offsets, and for an unstable
1467          * TSC, we add elapsed time in this computation.  We could let the
1468          * compensation code attempt to catch up if we fall behind, but
1469          * it's better to try to match offsets from the beginning.
1470          */
1471         if (usdiff < USEC_PER_SEC &&
1472             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1473                 if (!check_tsc_unstable()) {
1474                         offset = kvm->arch.cur_tsc_offset;
1475                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1476                 } else {
1477                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1478                         data += delta;
1479                         offset = kvm_compute_tsc_offset(vcpu, data);
1480                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1481                 }
1482                 matched = true;
1483                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1484         } else {
1485                 /*
1486                  * We split periods of matched TSC writes into generations.
1487                  * For each generation, we track the original measured
1488                  * nanosecond time, offset, and write, so if TSCs are in
1489                  * sync, we can match exact offset, and if not, we can match
1490                  * exact software computation in compute_guest_tsc()
1491                  *
1492                  * These values are tracked in kvm->arch.cur_xxx variables.
1493                  */
1494                 kvm->arch.cur_tsc_generation++;
1495                 kvm->arch.cur_tsc_nsec = ns;
1496                 kvm->arch.cur_tsc_write = data;
1497                 kvm->arch.cur_tsc_offset = offset;
1498                 matched = false;
1499                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1500                          kvm->arch.cur_tsc_generation, data);
1501         }
1502
1503         /*
1504          * We also track th most recent recorded KHZ, write and time to
1505          * allow the matching interval to be extended at each write.
1506          */
1507         kvm->arch.last_tsc_nsec = ns;
1508         kvm->arch.last_tsc_write = data;
1509         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1510
1511         vcpu->arch.last_guest_tsc = data;
1512
1513         /* Keep track of which generation this VCPU has synchronized to */
1514         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1515         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1516         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1517
1518         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1519                 update_ia32_tsc_adjust_msr(vcpu, offset);
1520         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1521         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1522
1523         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1524         if (!matched) {
1525                 kvm->arch.nr_vcpus_matched_tsc = 0;
1526         } else if (!already_matched) {
1527                 kvm->arch.nr_vcpus_matched_tsc++;
1528         }
1529
1530         kvm_track_tsc_matching(vcpu);
1531         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1532 }
1533
1534 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1535
1536 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1537                                            s64 adjustment)
1538 {
1539         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1540 }
1541
1542 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1543 {
1544         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1545                 WARN_ON(adjustment < 0);
1546         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1547         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1548 }
1549
1550 #ifdef CONFIG_X86_64
1551
1552 static cycle_t read_tsc(void)
1553 {
1554         cycle_t ret = (cycle_t)rdtsc_ordered();
1555         u64 last = pvclock_gtod_data.clock.cycle_last;
1556
1557         if (likely(ret >= last))
1558                 return ret;
1559
1560         /*
1561          * GCC likes to generate cmov here, but this branch is extremely
1562          * predictable (it's just a funciton of time and the likely is
1563          * very likely) and there's a data dependence, so force GCC
1564          * to generate a branch instead.  I don't barrier() because
1565          * we don't actually need a barrier, and if this function
1566          * ever gets inlined it will generate worse code.
1567          */
1568         asm volatile ("");
1569         return last;
1570 }
1571
1572 static inline u64 vgettsc(cycle_t *cycle_now)
1573 {
1574         long v;
1575         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1576
1577         *cycle_now = read_tsc();
1578
1579         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1580         return v * gtod->clock.mult;
1581 }
1582
1583 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1584 {
1585         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1586         unsigned long seq;
1587         int mode;
1588         u64 ns;
1589
1590         do {
1591                 seq = read_seqcount_begin(&gtod->seq);
1592                 mode = gtod->clock.vclock_mode;
1593                 ns = gtod->nsec_base;
1594                 ns += vgettsc(cycle_now);
1595                 ns >>= gtod->clock.shift;
1596                 ns += gtod->boot_ns;
1597         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1598         *t = ns;
1599
1600         return mode;
1601 }
1602
1603 /* returns true if host is using tsc clocksource */
1604 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1605 {
1606         /* checked again under seqlock below */
1607         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1608                 return false;
1609
1610         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1611 }
1612 #endif
1613
1614 /*
1615  *
1616  * Assuming a stable TSC across physical CPUS, and a stable TSC
1617  * across virtual CPUs, the following condition is possible.
1618  * Each numbered line represents an event visible to both
1619  * CPUs at the next numbered event.
1620  *
1621  * "timespecX" represents host monotonic time. "tscX" represents
1622  * RDTSC value.
1623  *
1624  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1625  *
1626  * 1.  read timespec0,tsc0
1627  * 2.                                   | timespec1 = timespec0 + N
1628  *                                      | tsc1 = tsc0 + M
1629  * 3. transition to guest               | transition to guest
1630  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1631  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1632  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1633  *
1634  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1635  *
1636  *      - ret0 < ret1
1637  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1638  *              ...
1639  *      - 0 < N - M => M < N
1640  *
1641  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1642  * always the case (the difference between two distinct xtime instances
1643  * might be smaller then the difference between corresponding TSC reads,
1644  * when updating guest vcpus pvclock areas).
1645  *
1646  * To avoid that problem, do not allow visibility of distinct
1647  * system_timestamp/tsc_timestamp values simultaneously: use a master
1648  * copy of host monotonic time values. Update that master copy
1649  * in lockstep.
1650  *
1651  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1652  *
1653  */
1654
1655 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1656 {
1657 #ifdef CONFIG_X86_64
1658         struct kvm_arch *ka = &kvm->arch;
1659         int vclock_mode;
1660         bool host_tsc_clocksource, vcpus_matched;
1661
1662         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1663                         atomic_read(&kvm->online_vcpus));
1664
1665         /*
1666          * If the host uses TSC clock, then passthrough TSC as stable
1667          * to the guest.
1668          */
1669         host_tsc_clocksource = kvm_get_time_and_clockread(
1670                                         &ka->master_kernel_ns,
1671                                         &ka->master_cycle_now);
1672
1673         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1674                                 && !backwards_tsc_observed
1675                                 && !ka->boot_vcpu_runs_old_kvmclock;
1676
1677         if (ka->use_master_clock)
1678                 atomic_set(&kvm_guest_has_master_clock, 1);
1679
1680         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1681         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1682                                         vcpus_matched);
1683 #endif
1684 }
1685
1686 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1687 {
1688         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1689 }
1690
1691 static void kvm_gen_update_masterclock(struct kvm *kvm)
1692 {
1693 #ifdef CONFIG_X86_64
1694         int i;
1695         struct kvm_vcpu *vcpu;
1696         struct kvm_arch *ka = &kvm->arch;
1697
1698         spin_lock(&ka->pvclock_gtod_sync_lock);
1699         kvm_make_mclock_inprogress_request(kvm);
1700         /* no guest entries from this point */
1701         pvclock_update_vm_gtod_copy(kvm);
1702
1703         kvm_for_each_vcpu(i, vcpu, kvm)
1704                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1705
1706         /* guest entries allowed */
1707         kvm_for_each_vcpu(i, vcpu, kvm)
1708                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1709
1710         spin_unlock(&ka->pvclock_gtod_sync_lock);
1711 #endif
1712 }
1713
1714 static int kvm_guest_time_update(struct kvm_vcpu *v)
1715 {
1716         unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1717         struct kvm_vcpu_arch *vcpu = &v->arch;
1718         struct kvm_arch *ka = &v->kvm->arch;
1719         s64 kernel_ns;
1720         u64 tsc_timestamp, host_tsc;
1721         struct pvclock_vcpu_time_info guest_hv_clock;
1722         u8 pvclock_flags;
1723         bool use_master_clock;
1724
1725         kernel_ns = 0;
1726         host_tsc = 0;
1727
1728         /*
1729          * If the host uses TSC clock, then passthrough TSC as stable
1730          * to the guest.
1731          */
1732         spin_lock(&ka->pvclock_gtod_sync_lock);
1733         use_master_clock = ka->use_master_clock;
1734         if (use_master_clock) {
1735                 host_tsc = ka->master_cycle_now;
1736                 kernel_ns = ka->master_kernel_ns;
1737         }
1738         spin_unlock(&ka->pvclock_gtod_sync_lock);
1739
1740         /* Keep irq disabled to prevent changes to the clock */
1741         local_irq_save(flags);
1742         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1743         if (unlikely(this_tsc_khz == 0)) {
1744                 local_irq_restore(flags);
1745                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1746                 return 1;
1747         }
1748         if (!use_master_clock) {
1749                 host_tsc = rdtsc();
1750                 kernel_ns = get_kernel_ns();
1751         }
1752
1753         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1754
1755         /*
1756          * We may have to catch up the TSC to match elapsed wall clock
1757          * time for two reasons, even if kvmclock is used.
1758          *   1) CPU could have been running below the maximum TSC rate
1759          *   2) Broken TSC compensation resets the base at each VCPU
1760          *      entry to avoid unknown leaps of TSC even when running
1761          *      again on the same CPU.  This may cause apparent elapsed
1762          *      time to disappear, and the guest to stand still or run
1763          *      very slowly.
1764          */
1765         if (vcpu->tsc_catchup) {
1766                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1767                 if (tsc > tsc_timestamp) {
1768                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1769                         tsc_timestamp = tsc;
1770                 }
1771         }
1772
1773         local_irq_restore(flags);
1774
1775         if (!vcpu->pv_time_enabled)
1776                 return 0;
1777
1778         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1779                 tgt_tsc_khz = kvm_has_tsc_control ?
1780                         vcpu->virtual_tsc_khz : this_tsc_khz;
1781                 kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1782                                    &vcpu->hv_clock.tsc_shift,
1783                                    &vcpu->hv_clock.tsc_to_system_mul);
1784                 vcpu->hw_tsc_khz = this_tsc_khz;
1785         }
1786
1787         /* With all the info we got, fill in the values */
1788         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1789         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1790         vcpu->last_guest_tsc = tsc_timestamp;
1791
1792         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1793                 &guest_hv_clock, sizeof(guest_hv_clock))))
1794                 return 0;
1795
1796         /* This VCPU is paused, but it's legal for a guest to read another
1797          * VCPU's kvmclock, so we really have to follow the specification where
1798          * it says that version is odd if data is being modified, and even after
1799          * it is consistent.
1800          *
1801          * Version field updates must be kept separate.  This is because
1802          * kvm_write_guest_cached might use a "rep movs" instruction, and
1803          * writes within a string instruction are weakly ordered.  So there
1804          * are three writes overall.
1805          *
1806          * As a small optimization, only write the version field in the first
1807          * and third write.  The vcpu->pv_time cache is still valid, because the
1808          * version field is the first in the struct.
1809          */
1810         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1811
1812         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1813         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1814                                 &vcpu->hv_clock,
1815                                 sizeof(vcpu->hv_clock.version));
1816
1817         smp_wmb();
1818
1819         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1820         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1821
1822         if (vcpu->pvclock_set_guest_stopped_request) {
1823                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1824                 vcpu->pvclock_set_guest_stopped_request = false;
1825         }
1826
1827         /* If the host uses TSC clocksource, then it is stable */
1828         if (use_master_clock)
1829                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1830
1831         vcpu->hv_clock.flags = pvclock_flags;
1832
1833         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1834
1835         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1836                                 &vcpu->hv_clock,
1837                                 sizeof(vcpu->hv_clock));
1838
1839         smp_wmb();
1840
1841         vcpu->hv_clock.version++;
1842         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1843                                 &vcpu->hv_clock,
1844                                 sizeof(vcpu->hv_clock.version));
1845         return 0;
1846 }
1847
1848 /*
1849  * kvmclock updates which are isolated to a given vcpu, such as
1850  * vcpu->cpu migration, should not allow system_timestamp from
1851  * the rest of the vcpus to remain static. Otherwise ntp frequency
1852  * correction applies to one vcpu's system_timestamp but not
1853  * the others.
1854  *
1855  * So in those cases, request a kvmclock update for all vcpus.
1856  * We need to rate-limit these requests though, as they can
1857  * considerably slow guests that have a large number of vcpus.
1858  * The time for a remote vcpu to update its kvmclock is bound
1859  * by the delay we use to rate-limit the updates.
1860  */
1861
1862 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1863
1864 static void kvmclock_update_fn(struct work_struct *work)
1865 {
1866         int i;
1867         struct delayed_work *dwork = to_delayed_work(work);
1868         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1869                                            kvmclock_update_work);
1870         struct kvm *kvm = container_of(ka, struct kvm, arch);
1871         struct kvm_vcpu *vcpu;
1872
1873         kvm_for_each_vcpu(i, vcpu, kvm) {
1874                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1875                 kvm_vcpu_kick(vcpu);
1876         }
1877 }
1878
1879 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1880 {
1881         struct kvm *kvm = v->kvm;
1882
1883         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1884         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1885                                         KVMCLOCK_UPDATE_DELAY);
1886 }
1887
1888 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1889
1890 static void kvmclock_sync_fn(struct work_struct *work)
1891 {
1892         struct delayed_work *dwork = to_delayed_work(work);
1893         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1894                                            kvmclock_sync_work);
1895         struct kvm *kvm = container_of(ka, struct kvm, arch);
1896
1897         if (!kvmclock_periodic_sync)
1898                 return;
1899
1900         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1901         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1902                                         KVMCLOCK_SYNC_PERIOD);
1903 }
1904
1905 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1906 {
1907         u64 mcg_cap = vcpu->arch.mcg_cap;
1908         unsigned bank_num = mcg_cap & 0xff;
1909
1910         switch (msr) {
1911         case MSR_IA32_MCG_STATUS:
1912                 vcpu->arch.mcg_status = data;
1913                 break;
1914         case MSR_IA32_MCG_CTL:
1915                 if (!(mcg_cap & MCG_CTL_P))
1916                         return 1;
1917                 if (data != 0 && data != ~(u64)0)
1918                         return -1;
1919                 vcpu->arch.mcg_ctl = data;
1920                 break;
1921         default:
1922                 if (msr >= MSR_IA32_MC0_CTL &&
1923                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1924                         u32 offset = msr - MSR_IA32_MC0_CTL;
1925                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1926                          * some Linux kernels though clear bit 10 in bank 4 to
1927                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1928                          * this to avoid an uncatched #GP in the guest
1929                          */
1930                         if ((offset & 0x3) == 0 &&
1931                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1932                                 return -1;
1933                         vcpu->arch.mce_banks[offset] = data;
1934                         break;
1935                 }
1936                 return 1;
1937         }
1938         return 0;
1939 }
1940
1941 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1942 {
1943         struct kvm *kvm = vcpu->kvm;
1944         int lm = is_long_mode(vcpu);
1945         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1946                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1947         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1948                 : kvm->arch.xen_hvm_config.blob_size_32;
1949         u32 page_num = data & ~PAGE_MASK;
1950         u64 page_addr = data & PAGE_MASK;
1951         u8 *page;
1952         int r;
1953
1954         r = -E2BIG;
1955         if (page_num >= blob_size)
1956                 goto out;
1957         r = -ENOMEM;
1958         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1959         if (IS_ERR(page)) {
1960                 r = PTR_ERR(page);
1961                 goto out;
1962         }
1963         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1964                 goto out_free;
1965         r = 0;
1966 out_free:
1967         kfree(page);
1968 out:
1969         return r;
1970 }
1971
1972 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1973 {
1974         gpa_t gpa = data & ~0x3f;
1975
1976         /* Bits 2:5 are reserved, Should be zero */
1977         if (data & 0x3c)
1978                 return 1;
1979
1980         vcpu->arch.apf.msr_val = data;
1981
1982         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1983                 kvm_clear_async_pf_completion_queue(vcpu);
1984                 kvm_async_pf_hash_reset(vcpu);
1985                 return 0;
1986         }
1987
1988         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1989                                         sizeof(u32)))
1990                 return 1;
1991
1992         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1993         kvm_async_pf_wakeup_all(vcpu);
1994         return 0;
1995 }
1996
1997 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1998 {
1999         vcpu->arch.pv_time_enabled = false;
2000 }
2001
2002 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2003 {
2004         u64 delta;
2005
2006         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2007                 return;
2008
2009         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2010         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2011         vcpu->arch.st.accum_steal = delta;
2012 }
2013
2014 static void record_steal_time(struct kvm_vcpu *vcpu)
2015 {
2016         accumulate_steal_time(vcpu);
2017
2018         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2019                 return;
2020
2021         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2022                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2023                 return;
2024
2025         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2026         vcpu->arch.st.steal.version += 2;
2027         vcpu->arch.st.accum_steal = 0;
2028
2029         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2030                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2031 }
2032
2033 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2034 {
2035         bool pr = false;
2036         u32 msr = msr_info->index;
2037         u64 data = msr_info->data;
2038
2039         switch (msr) {
2040         case MSR_AMD64_NB_CFG:
2041         case MSR_IA32_UCODE_REV:
2042         case MSR_IA32_UCODE_WRITE:
2043         case MSR_VM_HSAVE_PA:
2044         case MSR_AMD64_PATCH_LOADER:
2045         case MSR_AMD64_BU_CFG2:
2046                 break;
2047
2048         case MSR_EFER:
2049                 return set_efer(vcpu, data);
2050         case MSR_K7_HWCR:
2051                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2052                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2053                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2054                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2055                 if (data != 0) {
2056                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2057                                     data);
2058                         return 1;
2059                 }
2060                 break;
2061         case MSR_FAM10H_MMIO_CONF_BASE:
2062                 if (data != 0) {
2063                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2064                                     "0x%llx\n", data);
2065                         return 1;
2066                 }
2067                 break;
2068         case MSR_IA32_DEBUGCTLMSR:
2069                 if (!data) {
2070                         /* We support the non-activated case already */
2071                         break;
2072                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2073                         /* Values other than LBR and BTF are vendor-specific,
2074                            thus reserved and should throw a #GP */
2075                         return 1;
2076                 }
2077                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2078                             __func__, data);
2079                 break;
2080         case 0x200 ... 0x2ff:
2081                 return kvm_mtrr_set_msr(vcpu, msr, data);
2082         case MSR_IA32_APICBASE:
2083                 return kvm_set_apic_base(vcpu, msr_info);
2084         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2085                 return kvm_x2apic_msr_write(vcpu, msr, data);
2086         case MSR_IA32_TSCDEADLINE:
2087                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2088                 break;
2089         case MSR_IA32_TSC_ADJUST:
2090                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2091                         if (!msr_info->host_initiated) {
2092                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2093                                 adjust_tsc_offset_guest(vcpu, adj);
2094                         }
2095                         vcpu->arch.ia32_tsc_adjust_msr = data;
2096                 }
2097                 break;
2098         case MSR_IA32_MISC_ENABLE:
2099                 vcpu->arch.ia32_misc_enable_msr = data;
2100                 break;
2101         case MSR_IA32_SMBASE:
2102                 if (!msr_info->host_initiated)
2103                         return 1;
2104                 vcpu->arch.smbase = data;
2105                 break;
2106         case MSR_KVM_WALL_CLOCK_NEW:
2107         case MSR_KVM_WALL_CLOCK:
2108                 vcpu->kvm->arch.wall_clock = data;
2109                 kvm_write_wall_clock(vcpu->kvm, data);
2110                 break;
2111         case MSR_KVM_SYSTEM_TIME_NEW:
2112         case MSR_KVM_SYSTEM_TIME: {
2113                 u64 gpa_offset;
2114                 struct kvm_arch *ka = &vcpu->kvm->arch;
2115
2116                 kvmclock_reset(vcpu);
2117
2118                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2119                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2120
2121                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2122                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2123                                         &vcpu->requests);
2124
2125                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2126                 }
2127
2128                 vcpu->arch.time = data;
2129                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2130
2131                 /* we verify if the enable bit is set... */
2132                 if (!(data & 1))
2133                         break;
2134
2135                 gpa_offset = data & ~(PAGE_MASK | 1);
2136
2137                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2138                      &vcpu->arch.pv_time, data & ~1ULL,
2139                      sizeof(struct pvclock_vcpu_time_info)))
2140                         vcpu->arch.pv_time_enabled = false;
2141                 else
2142                         vcpu->arch.pv_time_enabled = true;
2143
2144                 break;
2145         }
2146         case MSR_KVM_ASYNC_PF_EN:
2147                 if (kvm_pv_enable_async_pf(vcpu, data))
2148                         return 1;
2149                 break;
2150         case MSR_KVM_STEAL_TIME:
2151
2152                 if (unlikely(!sched_info_on()))
2153                         return 1;
2154
2155                 if (data & KVM_STEAL_RESERVED_MASK)
2156                         return 1;
2157
2158                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2159                                                 data & KVM_STEAL_VALID_BITS,
2160                                                 sizeof(struct kvm_steal_time)))
2161                         return 1;
2162
2163                 vcpu->arch.st.msr_val = data;
2164
2165                 if (!(data & KVM_MSR_ENABLED))
2166                         break;
2167
2168                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2169
2170                 break;
2171         case MSR_KVM_PV_EOI_EN:
2172                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2173                         return 1;
2174                 break;
2175
2176         case MSR_IA32_MCG_CTL:
2177         case MSR_IA32_MCG_STATUS:
2178         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2179                 return set_msr_mce(vcpu, msr, data);
2180
2181         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2182         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2183                 pr = true; /* fall through */
2184         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2185         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2186                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2187                         return kvm_pmu_set_msr(vcpu, msr_info);
2188
2189                 if (pr || data != 0)
2190                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2191                                     "0x%x data 0x%llx\n", msr, data);
2192                 break;
2193         case MSR_K7_CLK_CTL:
2194                 /*
2195                  * Ignore all writes to this no longer documented MSR.
2196                  * Writes are only relevant for old K7 processors,
2197                  * all pre-dating SVM, but a recommended workaround from
2198                  * AMD for these chips. It is possible to specify the
2199                  * affected processor models on the command line, hence
2200                  * the need to ignore the workaround.
2201                  */
2202                 break;
2203         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2204         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2205         case HV_X64_MSR_CRASH_CTL:
2206         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2207                 return kvm_hv_set_msr_common(vcpu, msr, data,
2208                                              msr_info->host_initiated);
2209         case MSR_IA32_BBL_CR_CTL3:
2210                 /* Drop writes to this legacy MSR -- see rdmsr
2211                  * counterpart for further detail.
2212                  */
2213                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2214                 break;
2215         case MSR_AMD64_OSVW_ID_LENGTH:
2216                 if (!guest_cpuid_has_osvw(vcpu))
2217                         return 1;
2218                 vcpu->arch.osvw.length = data;
2219                 break;
2220         case MSR_AMD64_OSVW_STATUS:
2221                 if (!guest_cpuid_has_osvw(vcpu))
2222                         return 1;
2223                 vcpu->arch.osvw.status = data;
2224                 break;
2225         default:
2226                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2227                         return xen_hvm_config(vcpu, data);
2228                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2229                         return kvm_pmu_set_msr(vcpu, msr_info);
2230                 if (!ignore_msrs) {
2231                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2232                                     msr, data);
2233                         return 1;
2234                 } else {
2235                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2236                                     msr, data);
2237                         break;
2238                 }
2239         }
2240         return 0;
2241 }
2242 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2243
2244
2245 /*
2246  * Reads an msr value (of 'msr_index') into 'pdata'.
2247  * Returns 0 on success, non-0 otherwise.
2248  * Assumes vcpu_load() was already called.
2249  */
2250 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2251 {
2252         return kvm_x86_ops->get_msr(vcpu, msr);
2253 }
2254 EXPORT_SYMBOL_GPL(kvm_get_msr);
2255
2256 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2257 {
2258         u64 data;
2259         u64 mcg_cap = vcpu->arch.mcg_cap;
2260         unsigned bank_num = mcg_cap & 0xff;
2261
2262         switch (msr) {
2263         case MSR_IA32_P5_MC_ADDR:
2264         case MSR_IA32_P5_MC_TYPE:
2265                 data = 0;
2266                 break;
2267         case MSR_IA32_MCG_CAP:
2268                 data = vcpu->arch.mcg_cap;
2269                 break;
2270         case MSR_IA32_MCG_CTL:
2271                 if (!(mcg_cap & MCG_CTL_P))
2272                         return 1;
2273                 data = vcpu->arch.mcg_ctl;
2274                 break;
2275         case MSR_IA32_MCG_STATUS:
2276                 data = vcpu->arch.mcg_status;
2277                 break;
2278         default:
2279                 if (msr >= MSR_IA32_MC0_CTL &&
2280                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2281                         u32 offset = msr - MSR_IA32_MC0_CTL;
2282                         data = vcpu->arch.mce_banks[offset];
2283                         break;
2284                 }
2285                 return 1;
2286         }
2287         *pdata = data;
2288         return 0;
2289 }
2290
2291 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2292 {
2293         switch (msr_info->index) {
2294         case MSR_IA32_PLATFORM_ID:
2295         case MSR_IA32_EBL_CR_POWERON:
2296         case MSR_IA32_DEBUGCTLMSR:
2297         case MSR_IA32_LASTBRANCHFROMIP:
2298         case MSR_IA32_LASTBRANCHTOIP:
2299         case MSR_IA32_LASTINTFROMIP:
2300         case MSR_IA32_LASTINTTOIP:
2301         case MSR_K8_SYSCFG:
2302         case MSR_K8_TSEG_ADDR:
2303         case MSR_K8_TSEG_MASK:
2304         case MSR_K7_HWCR:
2305         case MSR_VM_HSAVE_PA:
2306         case MSR_K8_INT_PENDING_MSG:
2307         case MSR_AMD64_NB_CFG:
2308         case MSR_FAM10H_MMIO_CONF_BASE:
2309         case MSR_AMD64_BU_CFG2:
2310                 msr_info->data = 0;
2311                 break;
2312         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2313         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2314         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2315         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2316                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2317                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2318                 msr_info->data = 0;
2319                 break;
2320         case MSR_IA32_UCODE_REV:
2321                 msr_info->data = 0x100000000ULL;
2322                 break;
2323         case MSR_MTRRcap:
2324         case 0x200 ... 0x2ff:
2325                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2326         case 0xcd: /* fsb frequency */
2327                 msr_info->data = 3;
2328                 break;
2329                 /*
2330                  * MSR_EBC_FREQUENCY_ID
2331                  * Conservative value valid for even the basic CPU models.
2332                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2333                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2334                  * and 266MHz for model 3, or 4. Set Core Clock
2335                  * Frequency to System Bus Frequency Ratio to 1 (bits
2336                  * 31:24) even though these are only valid for CPU
2337                  * models > 2, however guests may end up dividing or
2338                  * multiplying by zero otherwise.
2339                  */
2340         case MSR_EBC_FREQUENCY_ID:
2341                 msr_info->data = 1 << 24;
2342                 break;
2343         case MSR_IA32_APICBASE:
2344                 msr_info->data = kvm_get_apic_base(vcpu);
2345                 break;
2346         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2347                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2348                 break;
2349         case MSR_IA32_TSCDEADLINE:
2350                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2351                 break;
2352         case MSR_IA32_TSC_ADJUST:
2353                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2354                 break;
2355         case MSR_IA32_MISC_ENABLE:
2356                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2357                 break;
2358         case MSR_IA32_SMBASE:
2359                 if (!msr_info->host_initiated)
2360                         return 1;
2361                 msr_info->data = vcpu->arch.smbase;
2362                 break;
2363         case MSR_IA32_PERF_STATUS:
2364                 /* TSC increment by tick */
2365                 msr_info->data = 1000ULL;
2366                 /* CPU multiplier */
2367                 msr_info->data |= (((uint64_t)4ULL) << 40);
2368                 break;
2369         case MSR_EFER:
2370                 msr_info->data = vcpu->arch.efer;
2371                 break;
2372         case MSR_KVM_WALL_CLOCK:
2373         case MSR_KVM_WALL_CLOCK_NEW:
2374                 msr_info->data = vcpu->kvm->arch.wall_clock;
2375                 break;
2376         case MSR_KVM_SYSTEM_TIME:
2377         case MSR_KVM_SYSTEM_TIME_NEW:
2378                 msr_info->data = vcpu->arch.time;
2379                 break;
2380         case MSR_KVM_ASYNC_PF_EN:
2381                 msr_info->data = vcpu->arch.apf.msr_val;
2382                 break;
2383         case MSR_KVM_STEAL_TIME:
2384                 msr_info->data = vcpu->arch.st.msr_val;
2385                 break;
2386         case MSR_KVM_PV_EOI_EN:
2387                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2388                 break;
2389         case MSR_IA32_P5_MC_ADDR:
2390         case MSR_IA32_P5_MC_TYPE:
2391         case MSR_IA32_MCG_CAP:
2392         case MSR_IA32_MCG_CTL:
2393         case MSR_IA32_MCG_STATUS:
2394         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2395                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2396         case MSR_K7_CLK_CTL:
2397                 /*
2398                  * Provide expected ramp-up count for K7. All other
2399                  * are set to zero, indicating minimum divisors for
2400                  * every field.
2401                  *
2402                  * This prevents guest kernels on AMD host with CPU
2403                  * type 6, model 8 and higher from exploding due to
2404                  * the rdmsr failing.
2405                  */
2406                 msr_info->data = 0x20000000;
2407                 break;
2408         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2409         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2410         case HV_X64_MSR_CRASH_CTL:
2411         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2412                 return kvm_hv_get_msr_common(vcpu,
2413                                              msr_info->index, &msr_info->data);
2414                 break;
2415         case MSR_IA32_BBL_CR_CTL3:
2416                 /* This legacy MSR exists but isn't fully documented in current
2417                  * silicon.  It is however accessed by winxp in very narrow
2418                  * scenarios where it sets bit #19, itself documented as
2419                  * a "reserved" bit.  Best effort attempt to source coherent
2420                  * read data here should the balance of the register be
2421                  * interpreted by the guest:
2422                  *
2423                  * L2 cache control register 3: 64GB range, 256KB size,
2424                  * enabled, latency 0x1, configured
2425                  */
2426                 msr_info->data = 0xbe702111;
2427                 break;
2428         case MSR_AMD64_OSVW_ID_LENGTH:
2429                 if (!guest_cpuid_has_osvw(vcpu))
2430                         return 1;
2431                 msr_info->data = vcpu->arch.osvw.length;
2432                 break;
2433         case MSR_AMD64_OSVW_STATUS:
2434                 if (!guest_cpuid_has_osvw(vcpu))
2435                         return 1;
2436                 msr_info->data = vcpu->arch.osvw.status;
2437                 break;
2438         default:
2439                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2440                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2441                 if (!ignore_msrs) {
2442                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2443                         return 1;
2444                 } else {
2445                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2446                         msr_info->data = 0;
2447                 }
2448                 break;
2449         }
2450         return 0;
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2453
2454 /*
2455  * Read or write a bunch of msrs. All parameters are kernel addresses.
2456  *
2457  * @return number of msrs set successfully.
2458  */
2459 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2460                     struct kvm_msr_entry *entries,
2461                     int (*do_msr)(struct kvm_vcpu *vcpu,
2462                                   unsigned index, u64 *data))
2463 {
2464         int i, idx;
2465
2466         idx = srcu_read_lock(&vcpu->kvm->srcu);
2467         for (i = 0; i < msrs->nmsrs; ++i)
2468                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2469                         break;
2470         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2471
2472         return i;
2473 }
2474
2475 /*
2476  * Read or write a bunch of msrs. Parameters are user addresses.
2477  *
2478  * @return number of msrs set successfully.
2479  */
2480 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2481                   int (*do_msr)(struct kvm_vcpu *vcpu,
2482                                 unsigned index, u64 *data),
2483                   int writeback)
2484 {
2485         struct kvm_msrs msrs;
2486         struct kvm_msr_entry *entries;
2487         int r, n;
2488         unsigned size;
2489
2490         r = -EFAULT;
2491         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2492                 goto out;
2493
2494         r = -E2BIG;
2495         if (msrs.nmsrs >= MAX_IO_MSRS)
2496                 goto out;
2497
2498         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2499         entries = memdup_user(user_msrs->entries, size);
2500         if (IS_ERR(entries)) {
2501                 r = PTR_ERR(entries);
2502                 goto out;
2503         }
2504
2505         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2506         if (r < 0)
2507                 goto out_free;
2508
2509         r = -EFAULT;
2510         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2511                 goto out_free;
2512
2513         r = n;
2514
2515 out_free:
2516         kfree(entries);
2517 out:
2518         return r;
2519 }
2520
2521 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2522 {
2523         int r;
2524
2525         switch (ext) {
2526         case KVM_CAP_IRQCHIP:
2527         case KVM_CAP_HLT:
2528         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2529         case KVM_CAP_SET_TSS_ADDR:
2530         case KVM_CAP_EXT_CPUID:
2531         case KVM_CAP_EXT_EMUL_CPUID:
2532         case KVM_CAP_CLOCKSOURCE:
2533         case KVM_CAP_PIT:
2534         case KVM_CAP_NOP_IO_DELAY:
2535         case KVM_CAP_MP_STATE:
2536         case KVM_CAP_SYNC_MMU:
2537         case KVM_CAP_USER_NMI:
2538         case KVM_CAP_REINJECT_CONTROL:
2539         case KVM_CAP_IRQ_INJECT_STATUS:
2540         case KVM_CAP_IOEVENTFD:
2541         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2542         case KVM_CAP_PIT2:
2543         case KVM_CAP_PIT_STATE2:
2544         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2545         case KVM_CAP_XEN_HVM:
2546         case KVM_CAP_ADJUST_CLOCK:
2547         case KVM_CAP_VCPU_EVENTS:
2548         case KVM_CAP_HYPERV:
2549         case KVM_CAP_HYPERV_VAPIC:
2550         case KVM_CAP_HYPERV_SPIN:
2551         case KVM_CAP_HYPERV_SYNIC:
2552         case KVM_CAP_PCI_SEGMENT:
2553         case KVM_CAP_DEBUGREGS:
2554         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2555         case KVM_CAP_XSAVE:
2556         case KVM_CAP_ASYNC_PF:
2557         case KVM_CAP_GET_TSC_KHZ:
2558         case KVM_CAP_KVMCLOCK_CTRL:
2559         case KVM_CAP_READONLY_MEM:
2560         case KVM_CAP_HYPERV_TIME:
2561         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2562         case KVM_CAP_TSC_DEADLINE_TIMER:
2563         case KVM_CAP_ENABLE_CAP_VM:
2564         case KVM_CAP_DISABLE_QUIRKS:
2565         case KVM_CAP_SET_BOOT_CPU_ID:
2566         case KVM_CAP_SPLIT_IRQCHIP:
2567 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2568         case KVM_CAP_ASSIGN_DEV_IRQ:
2569         case KVM_CAP_PCI_2_3:
2570 #endif
2571                 r = 1;
2572                 break;
2573         case KVM_CAP_X86_SMM:
2574                 /* SMBASE is usually relocated above 1M on modern chipsets,
2575                  * and SMM handlers might indeed rely on 4G segment limits,
2576                  * so do not report SMM to be available if real mode is
2577                  * emulated via vm86 mode.  Still, do not go to great lengths
2578                  * to avoid userspace's usage of the feature, because it is a
2579                  * fringe case that is not enabled except via specific settings
2580                  * of the module parameters.
2581                  */
2582                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2583                 break;
2584         case KVM_CAP_COALESCED_MMIO:
2585                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2586                 break;
2587         case KVM_CAP_VAPIC:
2588                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2589                 break;
2590         case KVM_CAP_NR_VCPUS:
2591                 r = KVM_SOFT_MAX_VCPUS;
2592                 break;
2593         case KVM_CAP_MAX_VCPUS:
2594                 r = KVM_MAX_VCPUS;
2595                 break;
2596         case KVM_CAP_NR_MEMSLOTS:
2597                 r = KVM_USER_MEM_SLOTS;
2598                 break;
2599         case KVM_CAP_PV_MMU:    /* obsolete */
2600                 r = 0;
2601                 break;
2602 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2603         case KVM_CAP_IOMMU:
2604                 r = iommu_present(&pci_bus_type);
2605                 break;
2606 #endif
2607         case KVM_CAP_MCE:
2608                 r = KVM_MAX_MCE_BANKS;
2609                 break;
2610         case KVM_CAP_XCRS:
2611                 r = cpu_has_xsave;
2612                 break;
2613         case KVM_CAP_TSC_CONTROL:
2614                 r = kvm_has_tsc_control;
2615                 break;
2616         default:
2617                 r = 0;
2618                 break;
2619         }
2620         return r;
2621
2622 }
2623
2624 long kvm_arch_dev_ioctl(struct file *filp,
2625                         unsigned int ioctl, unsigned long arg)
2626 {
2627         void __user *argp = (void __user *)arg;
2628         long r;
2629
2630         switch (ioctl) {
2631         case KVM_GET_MSR_INDEX_LIST: {
2632                 struct kvm_msr_list __user *user_msr_list = argp;
2633                 struct kvm_msr_list msr_list;
2634                 unsigned n;
2635
2636                 r = -EFAULT;
2637                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2638                         goto out;
2639                 n = msr_list.nmsrs;
2640                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2641                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2642                         goto out;
2643                 r = -E2BIG;
2644                 if (n < msr_list.nmsrs)
2645                         goto out;
2646                 r = -EFAULT;
2647                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2648                                  num_msrs_to_save * sizeof(u32)))
2649                         goto out;
2650                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2651                                  &emulated_msrs,
2652                                  num_emulated_msrs * sizeof(u32)))
2653                         goto out;
2654                 r = 0;
2655                 break;
2656         }
2657         case KVM_GET_SUPPORTED_CPUID:
2658         case KVM_GET_EMULATED_CPUID: {
2659                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2660                 struct kvm_cpuid2 cpuid;
2661
2662                 r = -EFAULT;
2663                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2664                         goto out;
2665
2666                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2667                                             ioctl);
2668                 if (r)
2669                         goto out;
2670
2671                 r = -EFAULT;
2672                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2673                         goto out;
2674                 r = 0;
2675                 break;
2676         }
2677         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2678                 u64 mce_cap;
2679
2680                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2681                 r = -EFAULT;
2682                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2683                         goto out;
2684                 r = 0;
2685                 break;
2686         }
2687         default:
2688                 r = -EINVAL;
2689         }
2690 out:
2691         return r;
2692 }
2693
2694 static void wbinvd_ipi(void *garbage)
2695 {
2696         wbinvd();
2697 }
2698
2699 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2700 {
2701         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2702 }
2703
2704 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2705 {
2706         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2707 }
2708
2709 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2710 {
2711         /* Address WBINVD may be executed by guest */
2712         if (need_emulate_wbinvd(vcpu)) {
2713                 if (kvm_x86_ops->has_wbinvd_exit())
2714                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2715                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2716                         smp_call_function_single(vcpu->cpu,
2717                                         wbinvd_ipi, NULL, 1);
2718         }
2719
2720         kvm_x86_ops->vcpu_load(vcpu, cpu);
2721
2722         /* Apply any externally detected TSC adjustments (due to suspend) */
2723         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2724                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2725                 vcpu->arch.tsc_offset_adjustment = 0;
2726                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2727         }
2728
2729         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2730                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2731                                 rdtsc() - vcpu->arch.last_host_tsc;
2732                 if (tsc_delta < 0)
2733                         mark_tsc_unstable("KVM discovered backwards TSC");
2734                 if (check_tsc_unstable()) {
2735                         u64 offset = kvm_compute_tsc_offset(vcpu,
2736                                                 vcpu->arch.last_guest_tsc);
2737                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2738                         vcpu->arch.tsc_catchup = 1;
2739                 }
2740                 /*
2741                  * On a host with synchronized TSC, there is no need to update
2742                  * kvmclock on vcpu->cpu migration
2743                  */
2744                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2745                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2746                 if (vcpu->cpu != cpu)
2747                         kvm_migrate_timers(vcpu);
2748                 vcpu->cpu = cpu;
2749         }
2750
2751         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2752 }
2753
2754 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2755 {
2756         kvm_x86_ops->vcpu_put(vcpu);
2757         kvm_put_guest_fpu(vcpu);
2758         vcpu->arch.last_host_tsc = rdtsc();
2759 }
2760
2761 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2762                                     struct kvm_lapic_state *s)
2763 {
2764         if (vcpu->arch.apicv_active)
2765                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2766
2767         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2768
2769         return 0;
2770 }
2771
2772 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2773                                     struct kvm_lapic_state *s)
2774 {
2775         kvm_apic_post_state_restore(vcpu, s);
2776         update_cr8_intercept(vcpu);
2777
2778         return 0;
2779 }
2780
2781 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2782 {
2783         return (!lapic_in_kernel(vcpu) ||
2784                 kvm_apic_accept_pic_intr(vcpu));
2785 }
2786
2787 /*
2788  * if userspace requested an interrupt window, check that the
2789  * interrupt window is open.
2790  *
2791  * No need to exit to userspace if we already have an interrupt queued.
2792  */
2793 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2794 {
2795         return kvm_arch_interrupt_allowed(vcpu) &&
2796                 !kvm_cpu_has_interrupt(vcpu) &&
2797                 !kvm_event_needs_reinjection(vcpu) &&
2798                 kvm_cpu_accept_dm_intr(vcpu);
2799 }
2800
2801 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2802                                     struct kvm_interrupt *irq)
2803 {
2804         if (irq->irq >= KVM_NR_INTERRUPTS)
2805                 return -EINVAL;
2806
2807         if (!irqchip_in_kernel(vcpu->kvm)) {
2808                 kvm_queue_interrupt(vcpu, irq->irq, false);
2809                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2810                 return 0;
2811         }
2812
2813         /*
2814          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2815          * fail for in-kernel 8259.
2816          */
2817         if (pic_in_kernel(vcpu->kvm))
2818                 return -ENXIO;
2819
2820         if (vcpu->arch.pending_external_vector != -1)
2821                 return -EEXIST;
2822
2823         vcpu->arch.pending_external_vector = irq->irq;
2824         kvm_make_request(KVM_REQ_EVENT, vcpu);
2825         return 0;
2826 }
2827
2828 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2829 {
2830         kvm_inject_nmi(vcpu);
2831
2832         return 0;
2833 }
2834
2835 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2836 {
2837         kvm_make_request(KVM_REQ_SMI, vcpu);
2838
2839         return 0;
2840 }
2841
2842 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2843                                            struct kvm_tpr_access_ctl *tac)
2844 {
2845         if (tac->flags)
2846                 return -EINVAL;
2847         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2848         return 0;
2849 }
2850
2851 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2852                                         u64 mcg_cap)
2853 {
2854         int r;
2855         unsigned bank_num = mcg_cap & 0xff, bank;
2856
2857         r = -EINVAL;
2858         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2859                 goto out;
2860         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2861                 goto out;
2862         r = 0;
2863         vcpu->arch.mcg_cap = mcg_cap;
2864         /* Init IA32_MCG_CTL to all 1s */
2865         if (mcg_cap & MCG_CTL_P)
2866                 vcpu->arch.mcg_ctl = ~(u64)0;
2867         /* Init IA32_MCi_CTL to all 1s */
2868         for (bank = 0; bank < bank_num; bank++)
2869                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2870 out:
2871         return r;
2872 }
2873
2874 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2875                                       struct kvm_x86_mce *mce)
2876 {
2877         u64 mcg_cap = vcpu->arch.mcg_cap;
2878         unsigned bank_num = mcg_cap & 0xff;
2879         u64 *banks = vcpu->arch.mce_banks;
2880
2881         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2882                 return -EINVAL;
2883         /*
2884          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2885          * reporting is disabled
2886          */
2887         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2888             vcpu->arch.mcg_ctl != ~(u64)0)
2889                 return 0;
2890         banks += 4 * mce->bank;
2891         /*
2892          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2893          * reporting is disabled for the bank
2894          */
2895         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2896                 return 0;
2897         if (mce->status & MCI_STATUS_UC) {
2898                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2899                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2900                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2901                         return 0;
2902                 }
2903                 if (banks[1] & MCI_STATUS_VAL)
2904                         mce->status |= MCI_STATUS_OVER;
2905                 banks[2] = mce->addr;
2906                 banks[3] = mce->misc;
2907                 vcpu->arch.mcg_status = mce->mcg_status;
2908                 banks[1] = mce->status;
2909                 kvm_queue_exception(vcpu, MC_VECTOR);
2910         } else if (!(banks[1] & MCI_STATUS_VAL)
2911                    || !(banks[1] & MCI_STATUS_UC)) {
2912                 if (banks[1] & MCI_STATUS_VAL)
2913                         mce->status |= MCI_STATUS_OVER;
2914                 banks[2] = mce->addr;
2915                 banks[3] = mce->misc;
2916                 banks[1] = mce->status;
2917         } else
2918                 banks[1] |= MCI_STATUS_OVER;
2919         return 0;
2920 }
2921
2922 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2923                                                struct kvm_vcpu_events *events)
2924 {
2925         process_nmi(vcpu);
2926         events->exception.injected =
2927                 vcpu->arch.exception.pending &&
2928                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2929         events->exception.nr = vcpu->arch.exception.nr;
2930         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2931         events->exception.pad = 0;
2932         events->exception.error_code = vcpu->arch.exception.error_code;
2933
2934         events->interrupt.injected =
2935                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2936         events->interrupt.nr = vcpu->arch.interrupt.nr;
2937         events->interrupt.soft = 0;
2938         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2939
2940         events->nmi.injected = vcpu->arch.nmi_injected;
2941         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2942         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2943         events->nmi.pad = 0;
2944
2945         events->sipi_vector = 0; /* never valid when reporting to user space */
2946
2947         events->smi.smm = is_smm(vcpu);
2948         events->smi.pending = vcpu->arch.smi_pending;
2949         events->smi.smm_inside_nmi =
2950                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2951         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2952
2953         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2954                          | KVM_VCPUEVENT_VALID_SHADOW
2955                          | KVM_VCPUEVENT_VALID_SMM);
2956         memset(&events->reserved, 0, sizeof(events->reserved));
2957 }
2958
2959 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2960                                               struct kvm_vcpu_events *events)
2961 {
2962         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2963                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2964                               | KVM_VCPUEVENT_VALID_SHADOW
2965                               | KVM_VCPUEVENT_VALID_SMM))
2966                 return -EINVAL;
2967
2968         process_nmi(vcpu);
2969         vcpu->arch.exception.pending = events->exception.injected;
2970         vcpu->arch.exception.nr = events->exception.nr;
2971         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2972         vcpu->arch.exception.error_code = events->exception.error_code;
2973
2974         vcpu->arch.interrupt.pending = events->interrupt.injected;
2975         vcpu->arch.interrupt.nr = events->interrupt.nr;
2976         vcpu->arch.interrupt.soft = events->interrupt.soft;
2977         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2978                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2979                                                   events->interrupt.shadow);
2980
2981         vcpu->arch.nmi_injected = events->nmi.injected;
2982         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2983                 vcpu->arch.nmi_pending = events->nmi.pending;
2984         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2985
2986         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2987             lapic_in_kernel(vcpu))
2988                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2989
2990         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2991                 if (events->smi.smm)
2992                         vcpu->arch.hflags |= HF_SMM_MASK;
2993                 else
2994                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2995                 vcpu->arch.smi_pending = events->smi.pending;
2996                 if (events->smi.smm_inside_nmi)
2997                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2998                 else
2999                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3000                 if (lapic_in_kernel(vcpu)) {
3001                         if (events->smi.latched_init)
3002                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3003                         else
3004                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3005                 }
3006         }
3007
3008         kvm_make_request(KVM_REQ_EVENT, vcpu);
3009
3010         return 0;
3011 }
3012
3013 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3014                                              struct kvm_debugregs *dbgregs)
3015 {
3016         unsigned long val;
3017
3018         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3019         kvm_get_dr(vcpu, 6, &val);
3020         dbgregs->dr6 = val;
3021         dbgregs->dr7 = vcpu->arch.dr7;
3022         dbgregs->flags = 0;
3023         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3024 }
3025
3026 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3027                                             struct kvm_debugregs *dbgregs)
3028 {
3029         if (dbgregs->flags)
3030                 return -EINVAL;
3031
3032         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3033         kvm_update_dr0123(vcpu);
3034         vcpu->arch.dr6 = dbgregs->dr6;
3035         kvm_update_dr6(vcpu);
3036         vcpu->arch.dr7 = dbgregs->dr7;
3037         kvm_update_dr7(vcpu);
3038
3039         return 0;
3040 }
3041
3042 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3043
3044 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3045 {
3046         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3047         u64 xstate_bv = xsave->header.xfeatures;
3048         u64 valid;
3049
3050         /*
3051          * Copy legacy XSAVE area, to avoid complications with CPUID
3052          * leaves 0 and 1 in the loop below.
3053          */
3054         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3055
3056         /* Set XSTATE_BV */
3057         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3058
3059         /*
3060          * Copy each region from the possibly compacted offset to the
3061          * non-compacted offset.
3062          */
3063         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3064         while (valid) {
3065                 u64 feature = valid & -valid;
3066                 int index = fls64(feature) - 1;
3067                 void *src = get_xsave_addr(xsave, feature);
3068
3069                 if (src) {
3070                         u32 size, offset, ecx, edx;
3071                         cpuid_count(XSTATE_CPUID, index,
3072                                     &size, &offset, &ecx, &edx);
3073                         memcpy(dest + offset, src, size);
3074                 }
3075
3076                 valid -= feature;
3077         }
3078 }
3079
3080 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3081 {
3082         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3083         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3084         u64 valid;
3085
3086         /*
3087          * Copy legacy XSAVE area, to avoid complications with CPUID
3088          * leaves 0 and 1 in the loop below.
3089          */
3090         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3091
3092         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3093         xsave->header.xfeatures = xstate_bv;
3094         if (cpu_has_xsaves)
3095                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3096
3097         /*
3098          * Copy each region from the non-compacted offset to the
3099          * possibly compacted offset.
3100          */
3101         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3102         while (valid) {
3103                 u64 feature = valid & -valid;
3104                 int index = fls64(feature) - 1;
3105                 void *dest = get_xsave_addr(xsave, feature);
3106
3107                 if (dest) {
3108                         u32 size, offset, ecx, edx;
3109                         cpuid_count(XSTATE_CPUID, index,
3110                                     &size, &offset, &ecx, &edx);
3111                         memcpy(dest, src + offset, size);
3112                 }
3113
3114                 valid -= feature;
3115         }
3116 }
3117
3118 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3119                                          struct kvm_xsave *guest_xsave)
3120 {
3121         if (cpu_has_xsave) {
3122                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3123                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3124         } else {
3125                 memcpy(guest_xsave->region,
3126                         &vcpu->arch.guest_fpu.state.fxsave,
3127                         sizeof(struct fxregs_state));
3128                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3129                         XFEATURE_MASK_FPSSE;
3130         }
3131 }
3132
3133 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3134                                         struct kvm_xsave *guest_xsave)
3135 {
3136         u64 xstate_bv =
3137                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3138
3139         if (cpu_has_xsave) {
3140                 /*
3141                  * Here we allow setting states that are not present in
3142                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3143                  * with old userspace.
3144                  */
3145                 if (xstate_bv & ~kvm_supported_xcr0())
3146                         return -EINVAL;
3147                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3148         } else {
3149                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3150                         return -EINVAL;
3151                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3152                         guest_xsave->region, sizeof(struct fxregs_state));
3153         }
3154         return 0;
3155 }
3156
3157 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3158                                         struct kvm_xcrs *guest_xcrs)
3159 {
3160         if (!cpu_has_xsave) {
3161                 guest_xcrs->nr_xcrs = 0;
3162                 return;
3163         }
3164
3165         guest_xcrs->nr_xcrs = 1;
3166         guest_xcrs->flags = 0;
3167         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3168         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3169 }
3170
3171 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3172                                        struct kvm_xcrs *guest_xcrs)
3173 {
3174         int i, r = 0;
3175
3176         if (!cpu_has_xsave)
3177                 return -EINVAL;
3178
3179         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3180                 return -EINVAL;
3181
3182         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3183                 /* Only support XCR0 currently */
3184                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3185                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3186                                 guest_xcrs->xcrs[i].value);
3187                         break;
3188                 }
3189         if (r)
3190                 r = -EINVAL;
3191         return r;
3192 }
3193
3194 /*
3195  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3196  * stopped by the hypervisor.  This function will be called from the host only.
3197  * EINVAL is returned when the host attempts to set the flag for a guest that
3198  * does not support pv clocks.
3199  */
3200 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3201 {
3202         if (!vcpu->arch.pv_time_enabled)
3203                 return -EINVAL;
3204         vcpu->arch.pvclock_set_guest_stopped_request = true;
3205         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3206         return 0;
3207 }
3208
3209 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3210                                      struct kvm_enable_cap *cap)
3211 {
3212         if (cap->flags)
3213                 return -EINVAL;
3214
3215         switch (cap->cap) {
3216         case KVM_CAP_HYPERV_SYNIC:
3217                 return kvm_hv_activate_synic(vcpu);
3218         default:
3219                 return -EINVAL;
3220         }
3221 }
3222
3223 long kvm_arch_vcpu_ioctl(struct file *filp,
3224                          unsigned int ioctl, unsigned long arg)
3225 {
3226         struct kvm_vcpu *vcpu = filp->private_data;
3227         void __user *argp = (void __user *)arg;
3228         int r;
3229         union {
3230                 struct kvm_lapic_state *lapic;
3231                 struct kvm_xsave *xsave;
3232                 struct kvm_xcrs *xcrs;
3233                 void *buffer;
3234         } u;
3235
3236         u.buffer = NULL;
3237         switch (ioctl) {
3238         case KVM_GET_LAPIC: {
3239                 r = -EINVAL;
3240                 if (!lapic_in_kernel(vcpu))
3241                         goto out;
3242                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3243
3244                 r = -ENOMEM;
3245                 if (!u.lapic)
3246                         goto out;
3247                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3248                 if (r)
3249                         goto out;
3250                 r = -EFAULT;
3251                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3252                         goto out;
3253                 r = 0;
3254                 break;
3255         }
3256         case KVM_SET_LAPIC: {
3257                 r = -EINVAL;
3258                 if (!lapic_in_kernel(vcpu))
3259                         goto out;
3260                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3261                 if (IS_ERR(u.lapic))
3262                         return PTR_ERR(u.lapic);
3263
3264                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3265                 break;
3266         }
3267         case KVM_INTERRUPT: {
3268                 struct kvm_interrupt irq;
3269
3270                 r = -EFAULT;
3271                 if (copy_from_user(&irq, argp, sizeof irq))
3272                         goto out;
3273                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3274                 break;
3275         }
3276         case KVM_NMI: {
3277                 r = kvm_vcpu_ioctl_nmi(vcpu);
3278                 break;
3279         }
3280         case KVM_SMI: {
3281                 r = kvm_vcpu_ioctl_smi(vcpu);
3282                 break;
3283         }
3284         case KVM_SET_CPUID: {
3285                 struct kvm_cpuid __user *cpuid_arg = argp;
3286                 struct kvm_cpuid cpuid;
3287
3288                 r = -EFAULT;
3289                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3290                         goto out;
3291                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3292                 break;
3293         }
3294         case KVM_SET_CPUID2: {
3295                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3296                 struct kvm_cpuid2 cpuid;
3297
3298                 r = -EFAULT;
3299                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3300                         goto out;
3301                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3302                                               cpuid_arg->entries);
3303                 break;
3304         }
3305         case KVM_GET_CPUID2: {
3306                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3307                 struct kvm_cpuid2 cpuid;
3308
3309                 r = -EFAULT;
3310                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3311                         goto out;
3312                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3313                                               cpuid_arg->entries);
3314                 if (r)
3315                         goto out;
3316                 r = -EFAULT;
3317                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3318                         goto out;
3319                 r = 0;
3320                 break;
3321         }
3322         case KVM_GET_MSRS:
3323                 r = msr_io(vcpu, argp, do_get_msr, 1);
3324                 break;
3325         case KVM_SET_MSRS:
3326                 r = msr_io(vcpu, argp, do_set_msr, 0);
3327                 break;
3328         case KVM_TPR_ACCESS_REPORTING: {
3329                 struct kvm_tpr_access_ctl tac;
3330
3331                 r = -EFAULT;
3332                 if (copy_from_user(&tac, argp, sizeof tac))
3333                         goto out;
3334                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3335                 if (r)
3336                         goto out;
3337                 r = -EFAULT;
3338                 if (copy_to_user(argp, &tac, sizeof tac))
3339                         goto out;
3340                 r = 0;
3341                 break;
3342         };
3343         case KVM_SET_VAPIC_ADDR: {
3344                 struct kvm_vapic_addr va;
3345
3346                 r = -EINVAL;
3347                 if (!lapic_in_kernel(vcpu))
3348                         goto out;
3349                 r = -EFAULT;
3350                 if (copy_from_user(&va, argp, sizeof va))
3351                         goto out;
3352                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3353                 break;
3354         }
3355         case KVM_X86_SETUP_MCE: {
3356                 u64 mcg_cap;
3357
3358                 r = -EFAULT;
3359                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3360                         goto out;
3361                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3362                 break;
3363         }
3364         case KVM_X86_SET_MCE: {
3365                 struct kvm_x86_mce mce;
3366
3367                 r = -EFAULT;
3368                 if (copy_from_user(&mce, argp, sizeof mce))
3369                         goto out;
3370                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3371                 break;
3372         }
3373         case KVM_GET_VCPU_EVENTS: {
3374                 struct kvm_vcpu_events events;
3375
3376                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3377
3378                 r = -EFAULT;
3379                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3380                         break;
3381                 r = 0;
3382                 break;
3383         }
3384         case KVM_SET_VCPU_EVENTS: {
3385                 struct kvm_vcpu_events events;
3386
3387                 r = -EFAULT;
3388                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3389                         break;
3390
3391                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3392                 break;
3393         }
3394         case KVM_GET_DEBUGREGS: {
3395                 struct kvm_debugregs dbgregs;
3396
3397                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3398
3399                 r = -EFAULT;
3400                 if (copy_to_user(argp, &dbgregs,
3401                                  sizeof(struct kvm_debugregs)))
3402                         break;
3403                 r = 0;
3404                 break;
3405         }
3406         case KVM_SET_DEBUGREGS: {
3407                 struct kvm_debugregs dbgregs;
3408
3409                 r = -EFAULT;
3410                 if (copy_from_user(&dbgregs, argp,
3411                                    sizeof(struct kvm_debugregs)))
3412                         break;
3413
3414                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3415                 break;
3416         }
3417         case KVM_GET_XSAVE: {
3418                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3419                 r = -ENOMEM;
3420                 if (!u.xsave)
3421                         break;
3422
3423                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3424
3425                 r = -EFAULT;
3426                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3427                         break;
3428                 r = 0;
3429                 break;
3430         }
3431         case KVM_SET_XSAVE: {
3432                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3433                 if (IS_ERR(u.xsave))
3434                         return PTR_ERR(u.xsave);
3435
3436                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3437                 break;
3438         }
3439         case KVM_GET_XCRS: {
3440                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3441                 r = -ENOMEM;
3442                 if (!u.xcrs)
3443                         break;
3444
3445                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3446
3447                 r = -EFAULT;
3448                 if (copy_to_user(argp, u.xcrs,
3449                                  sizeof(struct kvm_xcrs)))
3450                         break;
3451                 r = 0;
3452                 break;
3453         }
3454         case KVM_SET_XCRS: {
3455                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3456                 if (IS_ERR(u.xcrs))
3457                         return PTR_ERR(u.xcrs);
3458
3459                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3460                 break;
3461         }
3462         case KVM_SET_TSC_KHZ: {
3463                 u32 user_tsc_khz;
3464
3465                 r = -EINVAL;
3466                 user_tsc_khz = (u32)arg;
3467
3468                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3469                         goto out;
3470
3471                 if (user_tsc_khz == 0)
3472                         user_tsc_khz = tsc_khz;
3473
3474                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3475                         r = 0;
3476
3477                 goto out;
3478         }
3479         case KVM_GET_TSC_KHZ: {
3480                 r = vcpu->arch.virtual_tsc_khz;
3481                 goto out;
3482         }
3483         case KVM_KVMCLOCK_CTRL: {
3484                 r = kvm_set_guest_paused(vcpu);
3485                 goto out;
3486         }
3487         case KVM_ENABLE_CAP: {
3488                 struct kvm_enable_cap cap;
3489
3490                 r = -EFAULT;
3491                 if (copy_from_user(&cap, argp, sizeof(cap)))
3492                         goto out;
3493                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3494                 break;
3495         }
3496         default:
3497                 r = -EINVAL;
3498         }
3499 out:
3500         kfree(u.buffer);
3501         return r;
3502 }
3503
3504 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3505 {
3506         return VM_FAULT_SIGBUS;
3507 }
3508
3509 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3510 {
3511         int ret;
3512
3513         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3514                 return -EINVAL;
3515         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3516         return ret;
3517 }
3518
3519 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3520                                               u64 ident_addr)
3521 {
3522         kvm->arch.ept_identity_map_addr = ident_addr;
3523         return 0;
3524 }
3525
3526 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3527                                           u32 kvm_nr_mmu_pages)
3528 {
3529         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3530                 return -EINVAL;
3531
3532         mutex_lock(&kvm->slots_lock);
3533
3534         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3535         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3536
3537         mutex_unlock(&kvm->slots_lock);
3538         return 0;
3539 }
3540
3541 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3542 {
3543         return kvm->arch.n_max_mmu_pages;
3544 }
3545
3546 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3547 {
3548         int r;
3549
3550         r = 0;
3551         switch (chip->chip_id) {
3552         case KVM_IRQCHIP_PIC_MASTER:
3553                 memcpy(&chip->chip.pic,
3554                         &pic_irqchip(kvm)->pics[0],
3555                         sizeof(struct kvm_pic_state));
3556                 break;
3557         case KVM_IRQCHIP_PIC_SLAVE:
3558                 memcpy(&chip->chip.pic,
3559                         &pic_irqchip(kvm)->pics[1],
3560                         sizeof(struct kvm_pic_state));
3561                 break;
3562         case KVM_IRQCHIP_IOAPIC:
3563                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3564                 break;
3565         default:
3566                 r = -EINVAL;
3567                 break;
3568         }
3569         return r;
3570 }
3571
3572 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3573 {
3574         int r;
3575
3576         r = 0;
3577         switch (chip->chip_id) {
3578         case KVM_IRQCHIP_PIC_MASTER:
3579                 spin_lock(&pic_irqchip(kvm)->lock);
3580                 memcpy(&pic_irqchip(kvm)->pics[0],
3581                         &chip->chip.pic,
3582                         sizeof(struct kvm_pic_state));
3583                 spin_unlock(&pic_irqchip(kvm)->lock);
3584                 break;
3585         case KVM_IRQCHIP_PIC_SLAVE:
3586                 spin_lock(&pic_irqchip(kvm)->lock);
3587                 memcpy(&pic_irqchip(kvm)->pics[1],
3588                         &chip->chip.pic,
3589                         sizeof(struct kvm_pic_state));
3590                 spin_unlock(&pic_irqchip(kvm)->lock);
3591                 break;
3592         case KVM_IRQCHIP_IOAPIC:
3593                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3594                 break;
3595         default:
3596                 r = -EINVAL;
3597                 break;
3598         }
3599         kvm_pic_update_irq(pic_irqchip(kvm));
3600         return r;
3601 }
3602
3603 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3604 {
3605         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3606         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3607         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3608         return 0;
3609 }
3610
3611 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3612 {
3613         int i;
3614         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3615         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3616         for (i = 0; i < 3; i++)
3617                 kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3618         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3619         return 0;
3620 }
3621
3622 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3623 {
3624         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3625         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3626                 sizeof(ps->channels));
3627         ps->flags = kvm->arch.vpit->pit_state.flags;
3628         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3629         memset(&ps->reserved, 0, sizeof(ps->reserved));
3630         return 0;
3631 }
3632
3633 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3634 {
3635         int start = 0;
3636         int i;
3637         u32 prev_legacy, cur_legacy;
3638         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3639         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3640         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3641         if (!prev_legacy && cur_legacy)
3642                 start = 1;
3643         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3644                sizeof(kvm->arch.vpit->pit_state.channels));
3645         kvm->arch.vpit->pit_state.flags = ps->flags;
3646         for (i = 0; i < 3; i++)
3647                 kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count,
3648                                    start && i == 0);
3649         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3650         return 0;
3651 }
3652
3653 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3654                                  struct kvm_reinject_control *control)
3655 {
3656         if (!kvm->arch.vpit)
3657                 return -ENXIO;
3658         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3659         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3660         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3661         return 0;
3662 }
3663
3664 /**
3665  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3666  * @kvm: kvm instance
3667  * @log: slot id and address to which we copy the log
3668  *
3669  * Steps 1-4 below provide general overview of dirty page logging. See
3670  * kvm_get_dirty_log_protect() function description for additional details.
3671  *
3672  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3673  * always flush the TLB (step 4) even if previous step failed  and the dirty
3674  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3675  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3676  * writes will be marked dirty for next log read.
3677  *
3678  *   1. Take a snapshot of the bit and clear it if needed.
3679  *   2. Write protect the corresponding page.
3680  *   3. Copy the snapshot to the userspace.
3681  *   4. Flush TLB's if needed.
3682  */
3683 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3684 {
3685         bool is_dirty = false;
3686         int r;
3687
3688         mutex_lock(&kvm->slots_lock);
3689
3690         /*
3691          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3692          */
3693         if (kvm_x86_ops->flush_log_dirty)
3694                 kvm_x86_ops->flush_log_dirty(kvm);
3695
3696         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3697
3698         /*
3699          * All the TLBs can be flushed out of mmu lock, see the comments in
3700          * kvm_mmu_slot_remove_write_access().
3701          */
3702         lockdep_assert_held(&kvm->slots_lock);
3703         if (is_dirty)
3704                 kvm_flush_remote_tlbs(kvm);
3705
3706         mutex_unlock(&kvm->slots_lock);
3707         return r;
3708 }
3709
3710 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3711                         bool line_status)
3712 {
3713         if (!irqchip_in_kernel(kvm))
3714                 return -ENXIO;
3715
3716         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3717                                         irq_event->irq, irq_event->level,
3718                                         line_status);
3719         return 0;
3720 }
3721
3722 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3723                                    struct kvm_enable_cap *cap)
3724 {
3725         int r;
3726
3727         if (cap->flags)
3728                 return -EINVAL;
3729
3730         switch (cap->cap) {
3731         case KVM_CAP_DISABLE_QUIRKS:
3732                 kvm->arch.disabled_quirks = cap->args[0];
3733                 r = 0;
3734                 break;
3735         case KVM_CAP_SPLIT_IRQCHIP: {
3736                 mutex_lock(&kvm->lock);
3737                 r = -EINVAL;
3738                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3739                         goto split_irqchip_unlock;
3740                 r = -EEXIST;
3741                 if (irqchip_in_kernel(kvm))
3742                         goto split_irqchip_unlock;
3743                 if (atomic_read(&kvm->online_vcpus))
3744                         goto split_irqchip_unlock;
3745                 r = kvm_setup_empty_irq_routing(kvm);
3746                 if (r)
3747                         goto split_irqchip_unlock;
3748                 /* Pairs with irqchip_in_kernel. */
3749                 smp_wmb();
3750                 kvm->arch.irqchip_split = true;
3751                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3752                 r = 0;
3753 split_irqchip_unlock:
3754                 mutex_unlock(&kvm->lock);
3755                 break;
3756         }
3757         default:
3758                 r = -EINVAL;
3759                 break;
3760         }
3761         return r;
3762 }
3763
3764 long kvm_arch_vm_ioctl(struct file *filp,
3765                        unsigned int ioctl, unsigned long arg)
3766 {
3767         struct kvm *kvm = filp->private_data;
3768         void __user *argp = (void __user *)arg;
3769         int r = -ENOTTY;
3770         /*
3771          * This union makes it completely explicit to gcc-3.x
3772          * that these two variables' stack usage should be
3773          * combined, not added together.
3774          */
3775         union {
3776                 struct kvm_pit_state ps;
3777                 struct kvm_pit_state2 ps2;
3778                 struct kvm_pit_config pit_config;
3779         } u;
3780
3781         switch (ioctl) {
3782         case KVM_SET_TSS_ADDR:
3783                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3784                 break;
3785         case KVM_SET_IDENTITY_MAP_ADDR: {
3786                 u64 ident_addr;
3787
3788                 r = -EFAULT;
3789                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3790                         goto out;
3791                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3792                 break;
3793         }
3794         case KVM_SET_NR_MMU_PAGES:
3795                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3796                 break;
3797         case KVM_GET_NR_MMU_PAGES:
3798                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3799                 break;
3800         case KVM_CREATE_IRQCHIP: {
3801                 struct kvm_pic *vpic;
3802
3803                 mutex_lock(&kvm->lock);
3804                 r = -EEXIST;
3805                 if (kvm->arch.vpic)
3806                         goto create_irqchip_unlock;
3807                 r = -EINVAL;
3808                 if (atomic_read(&kvm->online_vcpus))
3809                         goto create_irqchip_unlock;
3810                 r = -ENOMEM;
3811                 vpic = kvm_create_pic(kvm);
3812                 if (vpic) {
3813                         r = kvm_ioapic_init(kvm);
3814                         if (r) {
3815                                 mutex_lock(&kvm->slots_lock);
3816                                 kvm_destroy_pic(vpic);
3817                                 mutex_unlock(&kvm->slots_lock);
3818                                 goto create_irqchip_unlock;
3819                         }
3820                 } else
3821                         goto create_irqchip_unlock;
3822                 r = kvm_setup_default_irq_routing(kvm);
3823                 if (r) {
3824                         mutex_lock(&kvm->slots_lock);
3825                         mutex_lock(&kvm->irq_lock);
3826                         kvm_ioapic_destroy(kvm);
3827                         kvm_destroy_pic(vpic);
3828                         mutex_unlock(&kvm->irq_lock);
3829                         mutex_unlock(&kvm->slots_lock);
3830                         goto create_irqchip_unlock;
3831                 }
3832                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3833                 smp_wmb();
3834                 kvm->arch.vpic = vpic;
3835         create_irqchip_unlock:
3836                 mutex_unlock(&kvm->lock);
3837                 break;
3838         }
3839         case KVM_CREATE_PIT:
3840                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3841                 goto create_pit;
3842         case KVM_CREATE_PIT2:
3843                 r = -EFAULT;
3844                 if (copy_from_user(&u.pit_config, argp,
3845                                    sizeof(struct kvm_pit_config)))
3846                         goto out;
3847         create_pit:
3848                 mutex_lock(&kvm->slots_lock);
3849                 r = -EEXIST;
3850                 if (kvm->arch.vpit)
3851                         goto create_pit_unlock;
3852                 r = -ENOMEM;
3853                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3854                 if (kvm->arch.vpit)
3855                         r = 0;
3856         create_pit_unlock:
3857                 mutex_unlock(&kvm->slots_lock);
3858                 break;
3859         case KVM_GET_IRQCHIP: {
3860                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3861                 struct kvm_irqchip *chip;
3862
3863                 chip = memdup_user(argp, sizeof(*chip));
3864                 if (IS_ERR(chip)) {
3865                         r = PTR_ERR(chip);
3866                         goto out;
3867                 }
3868
3869                 r = -ENXIO;
3870                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3871                         goto get_irqchip_out;
3872                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3873                 if (r)
3874                         goto get_irqchip_out;
3875                 r = -EFAULT;
3876                 if (copy_to_user(argp, chip, sizeof *chip))
3877                         goto get_irqchip_out;
3878                 r = 0;
3879         get_irqchip_out:
3880                 kfree(chip);
3881                 break;
3882         }
3883         case KVM_SET_IRQCHIP: {
3884                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3885                 struct kvm_irqchip *chip;
3886
3887                 chip = memdup_user(argp, sizeof(*chip));
3888                 if (IS_ERR(chip)) {
3889                         r = PTR_ERR(chip);
3890                         goto out;
3891                 }
3892
3893                 r = -ENXIO;
3894                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3895                         goto set_irqchip_out;
3896                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3897                 if (r)
3898                         goto set_irqchip_out;
3899                 r = 0;
3900         set_irqchip_out:
3901                 kfree(chip);
3902                 break;
3903         }
3904         case KVM_GET_PIT: {
3905                 r = -EFAULT;
3906                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3907                         goto out;
3908                 r = -ENXIO;
3909                 if (!kvm->arch.vpit)
3910                         goto out;
3911                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3912                 if (r)
3913                         goto out;
3914                 r = -EFAULT;
3915                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3916                         goto out;
3917                 r = 0;
3918                 break;
3919         }
3920         case KVM_SET_PIT: {
3921                 r = -EFAULT;
3922                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3923                         goto out;
3924                 r = -ENXIO;
3925                 if (!kvm->arch.vpit)
3926                         goto out;
3927                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3928                 break;
3929         }
3930         case KVM_GET_PIT2: {
3931                 r = -ENXIO;
3932                 if (!kvm->arch.vpit)
3933                         goto out;
3934                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3935                 if (r)
3936                         goto out;
3937                 r = -EFAULT;
3938                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3939                         goto out;
3940                 r = 0;
3941                 break;
3942         }
3943         case KVM_SET_PIT2: {
3944                 r = -EFAULT;
3945                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3946                         goto out;
3947                 r = -ENXIO;
3948                 if (!kvm->arch.vpit)
3949                         goto out;
3950                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3951                 break;
3952         }
3953         case KVM_REINJECT_CONTROL: {
3954                 struct kvm_reinject_control control;
3955                 r =  -EFAULT;
3956                 if (copy_from_user(&control, argp, sizeof(control)))
3957                         goto out;
3958                 r = kvm_vm_ioctl_reinject(kvm, &control);
3959                 break;
3960         }
3961         case KVM_SET_BOOT_CPU_ID:
3962                 r = 0;
3963                 mutex_lock(&kvm->lock);
3964                 if (atomic_read(&kvm->online_vcpus) != 0)
3965                         r = -EBUSY;
3966                 else
3967                         kvm->arch.bsp_vcpu_id = arg;
3968                 mutex_unlock(&kvm->lock);
3969                 break;
3970         case KVM_XEN_HVM_CONFIG: {
3971                 r = -EFAULT;
3972                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3973                                    sizeof(struct kvm_xen_hvm_config)))
3974                         goto out;
3975                 r = -EINVAL;
3976                 if (kvm->arch.xen_hvm_config.flags)
3977                         goto out;
3978                 r = 0;
3979                 break;
3980         }
3981         case KVM_SET_CLOCK: {
3982                 struct kvm_clock_data user_ns;
3983                 u64 now_ns;
3984                 s64 delta;
3985
3986                 r = -EFAULT;
3987                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3988                         goto out;
3989
3990                 r = -EINVAL;
3991                 if (user_ns.flags)
3992                         goto out;
3993
3994                 r = 0;
3995                 local_irq_disable();
3996                 now_ns = get_kernel_ns();
3997                 delta = user_ns.clock - now_ns;
3998                 local_irq_enable();
3999                 kvm->arch.kvmclock_offset = delta;
4000                 kvm_gen_update_masterclock(kvm);
4001                 break;
4002         }
4003         case KVM_GET_CLOCK: {
4004                 struct kvm_clock_data user_ns;
4005                 u64 now_ns;
4006
4007                 local_irq_disable();
4008                 now_ns = get_kernel_ns();
4009                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4010                 local_irq_enable();
4011                 user_ns.flags = 0;
4012                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4013
4014                 r = -EFAULT;
4015                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4016                         goto out;
4017                 r = 0;
4018                 break;
4019         }
4020         case KVM_ENABLE_CAP: {
4021                 struct kvm_enable_cap cap;
4022
4023                 r = -EFAULT;
4024                 if (copy_from_user(&cap, argp, sizeof(cap)))
4025                         goto out;
4026                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4027                 break;
4028         }
4029         default:
4030                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4031         }
4032 out:
4033         return r;
4034 }
4035
4036 static void kvm_init_msr_list(void)
4037 {
4038         u32 dummy[2];
4039         unsigned i, j;
4040
4041         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4042                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4043                         continue;
4044
4045                 /*
4046                  * Even MSRs that are valid in the host may not be exposed
4047                  * to the guests in some cases.
4048                  */
4049                 switch (msrs_to_save[i]) {
4050                 case MSR_IA32_BNDCFGS:
4051                         if (!kvm_x86_ops->mpx_supported())
4052                                 continue;
4053                         break;
4054                 case MSR_TSC_AUX:
4055                         if (!kvm_x86_ops->rdtscp_supported())
4056                                 continue;
4057                         break;
4058                 default:
4059                         break;
4060                 }
4061
4062                 if (j < i)
4063                         msrs_to_save[j] = msrs_to_save[i];
4064                 j++;
4065         }
4066         num_msrs_to_save = j;
4067
4068         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4069                 switch (emulated_msrs[i]) {
4070                 case MSR_IA32_SMBASE:
4071                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4072                                 continue;
4073                         break;
4074                 default:
4075                         break;
4076                 }
4077
4078                 if (j < i)
4079                         emulated_msrs[j] = emulated_msrs[i];
4080                 j++;
4081         }
4082         num_emulated_msrs = j;
4083 }
4084
4085 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4086                            const void *v)
4087 {
4088         int handled = 0;
4089         int n;
4090
4091         do {
4092                 n = min(len, 8);
4093                 if (!(lapic_in_kernel(vcpu) &&
4094                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4095                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4096                         break;
4097                 handled += n;
4098                 addr += n;
4099                 len -= n;
4100                 v += n;
4101         } while (len);
4102
4103         return handled;
4104 }
4105
4106 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4107 {
4108         int handled = 0;
4109         int n;
4110
4111         do {
4112                 n = min(len, 8);
4113                 if (!(lapic_in_kernel(vcpu) &&
4114                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4115                                          addr, n, v))
4116                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4117                         break;
4118                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4119                 handled += n;
4120                 addr += n;
4121                 len -= n;
4122                 v += n;
4123         } while (len);
4124
4125         return handled;
4126 }
4127
4128 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4129                         struct kvm_segment *var, int seg)
4130 {
4131         kvm_x86_ops->set_segment(vcpu, var, seg);
4132 }
4133
4134 void kvm_get_segment(struct kvm_vcpu *vcpu,
4135                      struct kvm_segment *var, int seg)
4136 {
4137         kvm_x86_ops->get_segment(vcpu, var, seg);
4138 }
4139
4140 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4141                            struct x86_exception *exception)
4142 {
4143         gpa_t t_gpa;
4144
4145         BUG_ON(!mmu_is_nested(vcpu));
4146
4147         /* NPT walks are always user-walks */
4148         access |= PFERR_USER_MASK;
4149         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4150
4151         return t_gpa;
4152 }
4153
4154 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4155                               struct x86_exception *exception)
4156 {
4157         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4158         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4159 }
4160
4161  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4162                                 struct x86_exception *exception)
4163 {
4164         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4165         access |= PFERR_FETCH_MASK;
4166         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4167 }
4168
4169 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4170                                struct x86_exception *exception)
4171 {
4172         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4173         access |= PFERR_WRITE_MASK;
4174         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4175 }
4176
4177 /* uses this to access any guest's mapped memory without checking CPL */
4178 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4179                                 struct x86_exception *exception)
4180 {
4181         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4182 }
4183
4184 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4185                                       struct kvm_vcpu *vcpu, u32 access,
4186                                       struct x86_exception *exception)
4187 {
4188         void *data = val;
4189         int r = X86EMUL_CONTINUE;
4190
4191         while (bytes) {
4192                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4193                                                             exception);
4194                 unsigned offset = addr & (PAGE_SIZE-1);
4195                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4196                 int ret;
4197
4198                 if (gpa == UNMAPPED_GVA)
4199                         return X86EMUL_PROPAGATE_FAULT;
4200                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4201                                                offset, toread);
4202                 if (ret < 0) {
4203                         r = X86EMUL_IO_NEEDED;
4204                         goto out;
4205                 }
4206
4207                 bytes -= toread;
4208                 data += toread;
4209                 addr += toread;
4210         }
4211 out:
4212         return r;
4213 }
4214
4215 /* used for instruction fetching */
4216 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4217                                 gva_t addr, void *val, unsigned int bytes,
4218                                 struct x86_exception *exception)
4219 {
4220         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4221         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4222         unsigned offset;
4223         int ret;
4224
4225         /* Inline kvm_read_guest_virt_helper for speed.  */
4226         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4227                                                     exception);
4228         if (unlikely(gpa == UNMAPPED_GVA))
4229                 return X86EMUL_PROPAGATE_FAULT;
4230
4231         offset = addr & (PAGE_SIZE-1);
4232         if (WARN_ON(offset + bytes > PAGE_SIZE))
4233                 bytes = (unsigned)PAGE_SIZE - offset;
4234         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4235                                        offset, bytes);
4236         if (unlikely(ret < 0))
4237                 return X86EMUL_IO_NEEDED;
4238
4239         return X86EMUL_CONTINUE;
4240 }
4241
4242 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4243                                gva_t addr, void *val, unsigned int bytes,
4244                                struct x86_exception *exception)
4245 {
4246         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4247         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4248
4249         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4250                                           exception);
4251 }
4252 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4253
4254 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4255                                       gva_t addr, void *val, unsigned int bytes,
4256                                       struct x86_exception *exception)
4257 {
4258         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4259         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4260 }
4261
4262 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4263                 unsigned long addr, void *val, unsigned int bytes)
4264 {
4265         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4266         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4267
4268         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4269 }
4270
4271 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4272                                        gva_t addr, void *val,
4273                                        unsigned int bytes,
4274                                        struct x86_exception *exception)
4275 {
4276         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4277         void *data = val;
4278         int r = X86EMUL_CONTINUE;
4279
4280         while (bytes) {
4281                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4282                                                              PFERR_WRITE_MASK,
4283                                                              exception);
4284                 unsigned offset = addr & (PAGE_SIZE-1);
4285                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4286                 int ret;
4287
4288                 if (gpa == UNMAPPED_GVA)
4289                         return X86EMUL_PROPAGATE_FAULT;
4290                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4291                 if (ret < 0) {
4292                         r = X86EMUL_IO_NEEDED;
4293                         goto out;
4294                 }
4295
4296                 bytes -= towrite;
4297                 data += towrite;
4298                 addr += towrite;
4299         }
4300 out:
4301         return r;
4302 }
4303 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4304
4305 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4306                                 gpa_t *gpa, struct x86_exception *exception,
4307                                 bool write)
4308 {
4309         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4310                 | (write ? PFERR_WRITE_MASK : 0);
4311
4312         if (vcpu_match_mmio_gva(vcpu, gva)
4313             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4314                                  vcpu->arch.access, access)) {
4315                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4316                                         (gva & (PAGE_SIZE - 1));
4317                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4318                 return 1;
4319         }
4320
4321         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4322
4323         if (*gpa == UNMAPPED_GVA)
4324                 return -1;
4325
4326         /* For APIC access vmexit */
4327         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4328                 return 1;
4329
4330         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4331                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4332                 return 1;
4333         }
4334
4335         return 0;
4336 }
4337
4338 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4339                         const void *val, int bytes)
4340 {
4341         int ret;
4342
4343         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4344         if (ret < 0)
4345                 return 0;
4346         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4347         return 1;
4348 }
4349
4350 struct read_write_emulator_ops {
4351         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4352                                   int bytes);
4353         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4354                                   void *val, int bytes);
4355         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4356                                int bytes, void *val);
4357         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4358                                     void *val, int bytes);
4359         bool write;
4360 };
4361
4362 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4363 {
4364         if (vcpu->mmio_read_completed) {
4365                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4366                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4367                 vcpu->mmio_read_completed = 0;
4368                 return 1;
4369         }
4370
4371         return 0;
4372 }
4373
4374 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4375                         void *val, int bytes)
4376 {
4377         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4378 }
4379
4380 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4381                          void *val, int bytes)
4382 {
4383         return emulator_write_phys(vcpu, gpa, val, bytes);
4384 }
4385
4386 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4387 {
4388         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4389         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4390 }
4391
4392 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4393                           void *val, int bytes)
4394 {
4395         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4396         return X86EMUL_IO_NEEDED;
4397 }
4398
4399 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4400                            void *val, int bytes)
4401 {
4402         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4403
4404         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4405         return X86EMUL_CONTINUE;
4406 }
4407
4408 static const struct read_write_emulator_ops read_emultor = {
4409         .read_write_prepare = read_prepare,
4410         .read_write_emulate = read_emulate,
4411         .read_write_mmio = vcpu_mmio_read,
4412         .read_write_exit_mmio = read_exit_mmio,
4413 };
4414
4415 static const struct read_write_emulator_ops write_emultor = {
4416         .read_write_emulate = write_emulate,
4417         .read_write_mmio = write_mmio,
4418         .read_write_exit_mmio = write_exit_mmio,
4419         .write = true,
4420 };
4421
4422 static int emulator_read_write_onepage(unsigned long addr, void *val,
4423                                        unsigned int bytes,
4424                                        struct x86_exception *exception,
4425                                        struct kvm_vcpu *vcpu,
4426                                        const struct read_write_emulator_ops *ops)
4427 {
4428         gpa_t gpa;
4429         int handled, ret;
4430         bool write = ops->write;
4431         struct kvm_mmio_fragment *frag;
4432
4433         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4434
4435         if (ret < 0)
4436                 return X86EMUL_PROPAGATE_FAULT;
4437
4438         /* For APIC access vmexit */
4439         if (ret)
4440                 goto mmio;
4441
4442         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4443                 return X86EMUL_CONTINUE;
4444
4445 mmio:
4446         /*
4447          * Is this MMIO handled locally?
4448          */
4449         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4450         if (handled == bytes)
4451                 return X86EMUL_CONTINUE;
4452
4453         gpa += handled;
4454         bytes -= handled;
4455         val += handled;
4456
4457         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4458         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4459         frag->gpa = gpa;
4460         frag->data = val;
4461         frag->len = bytes;
4462         return X86EMUL_CONTINUE;
4463 }
4464
4465 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4466                         unsigned long addr,
4467                         void *val, unsigned int bytes,
4468                         struct x86_exception *exception,
4469                         const struct read_write_emulator_ops *ops)
4470 {
4471         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4472         gpa_t gpa;
4473         int rc;
4474
4475         if (ops->read_write_prepare &&
4476                   ops->read_write_prepare(vcpu, val, bytes))
4477                 return X86EMUL_CONTINUE;
4478
4479         vcpu->mmio_nr_fragments = 0;
4480
4481         /* Crossing a page boundary? */
4482         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4483                 int now;
4484
4485                 now = -addr & ~PAGE_MASK;
4486                 rc = emulator_read_write_onepage(addr, val, now, exception,
4487                                                  vcpu, ops);
4488
4489                 if (rc != X86EMUL_CONTINUE)
4490                         return rc;
4491                 addr += now;
4492                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4493                         addr = (u32)addr;
4494                 val += now;
4495                 bytes -= now;
4496         }
4497
4498         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4499                                          vcpu, ops);
4500         if (rc != X86EMUL_CONTINUE)
4501                 return rc;
4502
4503         if (!vcpu->mmio_nr_fragments)
4504                 return rc;
4505
4506         gpa = vcpu->mmio_fragments[0].gpa;
4507
4508         vcpu->mmio_needed = 1;
4509         vcpu->mmio_cur_fragment = 0;
4510
4511         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4512         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4513         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4514         vcpu->run->mmio.phys_addr = gpa;
4515
4516         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4517 }
4518
4519 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4520                                   unsigned long addr,
4521                                   void *val,
4522                                   unsigned int bytes,
4523                                   struct x86_exception *exception)
4524 {
4525         return emulator_read_write(ctxt, addr, val, bytes,
4526                                    exception, &read_emultor);
4527 }
4528
4529 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4530                             unsigned long addr,
4531                             const void *val,
4532                             unsigned int bytes,
4533                             struct x86_exception *exception)
4534 {
4535         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4536                                    exception, &write_emultor);
4537 }
4538
4539 #define CMPXCHG_TYPE(t, ptr, old, new) \
4540         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4541
4542 #ifdef CONFIG_X86_64
4543 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4544 #else
4545 #  define CMPXCHG64(ptr, old, new) \
4546         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4547 #endif
4548
4549 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4550                                      unsigned long addr,
4551                                      const void *old,
4552                                      const void *new,
4553                                      unsigned int bytes,
4554                                      struct x86_exception *exception)
4555 {
4556         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4557         gpa_t gpa;
4558         struct page *page;
4559         char *kaddr;
4560         bool exchanged;
4561
4562         /* guests cmpxchg8b have to be emulated atomically */
4563         if (bytes > 8 || (bytes & (bytes - 1)))
4564                 goto emul_write;
4565
4566         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4567
4568         if (gpa == UNMAPPED_GVA ||
4569             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4570                 goto emul_write;
4571
4572         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4573                 goto emul_write;
4574
4575         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4576         if (is_error_page(page))
4577                 goto emul_write;
4578
4579         kaddr = kmap_atomic(page);
4580         kaddr += offset_in_page(gpa);
4581         switch (bytes) {
4582         case 1:
4583                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4584                 break;
4585         case 2:
4586                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4587                 break;
4588         case 4:
4589                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4590                 break;
4591         case 8:
4592                 exchanged = CMPXCHG64(kaddr, old, new);
4593                 break;
4594         default:
4595                 BUG();
4596         }
4597         kunmap_atomic(kaddr);
4598         kvm_release_page_dirty(page);
4599
4600         if (!exchanged)
4601                 return X86EMUL_CMPXCHG_FAILED;
4602
4603         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4604         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4605
4606         return X86EMUL_CONTINUE;
4607
4608 emul_write:
4609         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4610
4611         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4612 }
4613
4614 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4615 {
4616         /* TODO: String I/O for in kernel device */
4617         int r;
4618
4619         if (vcpu->arch.pio.in)
4620                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4621                                     vcpu->arch.pio.size, pd);
4622         else
4623                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4624                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4625                                      pd);
4626         return r;
4627 }
4628
4629 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4630                                unsigned short port, void *val,
4631                                unsigned int count, bool in)
4632 {
4633         vcpu->arch.pio.port = port;
4634         vcpu->arch.pio.in = in;
4635         vcpu->arch.pio.count  = count;
4636         vcpu->arch.pio.size = size;
4637
4638         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4639                 vcpu->arch.pio.count = 0;
4640                 return 1;
4641         }
4642
4643         vcpu->run->exit_reason = KVM_EXIT_IO;
4644         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4645         vcpu->run->io.size = size;
4646         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4647         vcpu->run->io.count = count;
4648         vcpu->run->io.port = port;
4649
4650         return 0;
4651 }
4652
4653 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4654                                     int size, unsigned short port, void *val,
4655                                     unsigned int count)
4656 {
4657         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4658         int ret;
4659
4660         if (vcpu->arch.pio.count)
4661                 goto data_avail;
4662
4663         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4664         if (ret) {
4665 data_avail:
4666                 memcpy(val, vcpu->arch.pio_data, size * count);
4667                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4668                 vcpu->arch.pio.count = 0;
4669                 return 1;
4670         }
4671
4672         return 0;
4673 }
4674
4675 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4676                                      int size, unsigned short port,
4677                                      const void *val, unsigned int count)
4678 {
4679         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4680
4681         memcpy(vcpu->arch.pio_data, val, size * count);
4682         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4683         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4684 }
4685
4686 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4687 {
4688         return kvm_x86_ops->get_segment_base(vcpu, seg);
4689 }
4690
4691 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4692 {
4693         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4694 }
4695
4696 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4697 {
4698         if (!need_emulate_wbinvd(vcpu))
4699                 return X86EMUL_CONTINUE;
4700
4701         if (kvm_x86_ops->has_wbinvd_exit()) {
4702                 int cpu = get_cpu();
4703
4704                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4705                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4706                                 wbinvd_ipi, NULL, 1);
4707                 put_cpu();
4708                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4709         } else
4710                 wbinvd();
4711         return X86EMUL_CONTINUE;
4712 }
4713
4714 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4715 {
4716         kvm_x86_ops->skip_emulated_instruction(vcpu);
4717         return kvm_emulate_wbinvd_noskip(vcpu);
4718 }
4719 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4720
4721
4722
4723 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4724 {
4725         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4726 }
4727
4728 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4729                            unsigned long *dest)
4730 {
4731         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4732 }
4733
4734 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4735                            unsigned long value)
4736 {
4737
4738         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4739 }
4740
4741 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4742 {
4743         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4744 }
4745
4746 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4747 {
4748         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4749         unsigned long value;
4750
4751         switch (cr) {
4752         case 0:
4753                 value = kvm_read_cr0(vcpu);
4754                 break;
4755         case 2:
4756                 value = vcpu->arch.cr2;
4757                 break;
4758         case 3:
4759                 value = kvm_read_cr3(vcpu);
4760                 break;
4761         case 4:
4762                 value = kvm_read_cr4(vcpu);
4763                 break;
4764         case 8:
4765                 value = kvm_get_cr8(vcpu);
4766                 break;
4767         default:
4768                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4769                 return 0;
4770         }
4771
4772         return value;
4773 }
4774
4775 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4776 {
4777         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4778         int res = 0;
4779
4780         switch (cr) {
4781         case 0:
4782                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4783                 break;
4784         case 2:
4785                 vcpu->arch.cr2 = val;
4786                 break;
4787         case 3:
4788                 res = kvm_set_cr3(vcpu, val);
4789                 break;
4790         case 4:
4791                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4792                 break;
4793         case 8:
4794                 res = kvm_set_cr8(vcpu, val);
4795                 break;
4796         default:
4797                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4798                 res = -1;
4799         }
4800
4801         return res;
4802 }
4803
4804 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4805 {
4806         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4807 }
4808
4809 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4810 {
4811         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4812 }
4813
4814 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4815 {
4816         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4817 }
4818
4819 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4820 {
4821         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4822 }
4823
4824 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4825 {
4826         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4827 }
4828
4829 static unsigned long emulator_get_cached_segment_base(
4830         struct x86_emulate_ctxt *ctxt, int seg)
4831 {
4832         return get_segment_base(emul_to_vcpu(ctxt), seg);
4833 }
4834
4835 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4836                                  struct desc_struct *desc, u32 *base3,
4837                                  int seg)
4838 {
4839         struct kvm_segment var;
4840
4841         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4842         *selector = var.selector;
4843
4844         if (var.unusable) {
4845                 memset(desc, 0, sizeof(*desc));
4846                 return false;
4847         }
4848
4849         if (var.g)
4850                 var.limit >>= 12;
4851         set_desc_limit(desc, var.limit);
4852         set_desc_base(desc, (unsigned long)var.base);
4853 #ifdef CONFIG_X86_64
4854         if (base3)
4855                 *base3 = var.base >> 32;
4856 #endif
4857         desc->type = var.type;
4858         desc->s = var.s;
4859         desc->dpl = var.dpl;
4860         desc->p = var.present;
4861         desc->avl = var.avl;
4862         desc->l = var.l;
4863         desc->d = var.db;
4864         desc->g = var.g;
4865
4866         return true;
4867 }
4868
4869 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4870                                  struct desc_struct *desc, u32 base3,
4871                                  int seg)
4872 {
4873         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4874         struct kvm_segment var;
4875
4876         var.selector = selector;
4877         var.base = get_desc_base(desc);
4878 #ifdef CONFIG_X86_64
4879         var.base |= ((u64)base3) << 32;
4880 #endif
4881         var.limit = get_desc_limit(desc);
4882         if (desc->g)
4883                 var.limit = (var.limit << 12) | 0xfff;
4884         var.type = desc->type;
4885         var.dpl = desc->dpl;
4886         var.db = desc->d;
4887         var.s = desc->s;
4888         var.l = desc->l;
4889         var.g = desc->g;
4890         var.avl = desc->avl;
4891         var.present = desc->p;
4892         var.unusable = !var.present;
4893         var.padding = 0;
4894
4895         kvm_set_segment(vcpu, &var, seg);
4896         return;
4897 }
4898
4899 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4900                             u32 msr_index, u64 *pdata)
4901 {
4902         struct msr_data msr;
4903         int r;
4904
4905         msr.index = msr_index;
4906         msr.host_initiated = false;
4907         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4908         if (r)
4909                 return r;
4910
4911         *pdata = msr.data;
4912         return 0;
4913 }
4914
4915 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4916                             u32 msr_index, u64 data)
4917 {
4918         struct msr_data msr;
4919
4920         msr.data = data;
4921         msr.index = msr_index;
4922         msr.host_initiated = false;
4923         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4924 }
4925
4926 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4927 {
4928         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4929
4930         return vcpu->arch.smbase;
4931 }
4932
4933 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4934 {
4935         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4936
4937         vcpu->arch.smbase = smbase;
4938 }
4939
4940 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4941                               u32 pmc)
4942 {
4943         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4944 }
4945
4946 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4947                              u32 pmc, u64 *pdata)
4948 {
4949         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4950 }
4951
4952 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4953 {
4954         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4955 }
4956
4957 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4958 {
4959         preempt_disable();
4960         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4961         /*
4962          * CR0.TS may reference the host fpu state, not the guest fpu state,
4963          * so it may be clear at this point.
4964          */
4965         clts();
4966 }
4967
4968 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4969 {
4970         preempt_enable();
4971 }
4972
4973 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4974                               struct x86_instruction_info *info,
4975                               enum x86_intercept_stage stage)
4976 {
4977         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4978 }
4979
4980 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4981                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4982 {
4983         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4984 }
4985
4986 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4987 {
4988         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4989 }
4990
4991 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4992 {
4993         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4994 }
4995
4996 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4997 {
4998         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4999 }
5000
5001 static const struct x86_emulate_ops emulate_ops = {
5002         .read_gpr            = emulator_read_gpr,
5003         .write_gpr           = emulator_write_gpr,
5004         .read_std            = kvm_read_guest_virt_system,
5005         .write_std           = kvm_write_guest_virt_system,
5006         .read_phys           = kvm_read_guest_phys_system,
5007         .fetch               = kvm_fetch_guest_virt,
5008         .read_emulated       = emulator_read_emulated,
5009         .write_emulated      = emulator_write_emulated,
5010         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5011         .invlpg              = emulator_invlpg,
5012         .pio_in_emulated     = emulator_pio_in_emulated,
5013         .pio_out_emulated    = emulator_pio_out_emulated,
5014         .get_segment         = emulator_get_segment,
5015         .set_segment         = emulator_set_segment,
5016         .get_cached_segment_base = emulator_get_cached_segment_base,
5017         .get_gdt             = emulator_get_gdt,
5018         .get_idt             = emulator_get_idt,
5019         .set_gdt             = emulator_set_gdt,
5020         .set_idt             = emulator_set_idt,
5021         .get_cr              = emulator_get_cr,
5022         .set_cr              = emulator_set_cr,
5023         .cpl                 = emulator_get_cpl,
5024         .get_dr              = emulator_get_dr,
5025         .set_dr              = emulator_set_dr,
5026         .get_smbase          = emulator_get_smbase,
5027         .set_smbase          = emulator_set_smbase,
5028         .set_msr             = emulator_set_msr,
5029         .get_msr             = emulator_get_msr,
5030         .check_pmc           = emulator_check_pmc,
5031         .read_pmc            = emulator_read_pmc,
5032         .halt                = emulator_halt,
5033         .wbinvd              = emulator_wbinvd,
5034         .fix_hypercall       = emulator_fix_hypercall,
5035         .get_fpu             = emulator_get_fpu,
5036         .put_fpu             = emulator_put_fpu,
5037         .intercept           = emulator_intercept,
5038         .get_cpuid           = emulator_get_cpuid,
5039         .set_nmi_mask        = emulator_set_nmi_mask,
5040 };
5041
5042 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5043 {
5044         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5045         /*
5046          * an sti; sti; sequence only disable interrupts for the first
5047          * instruction. So, if the last instruction, be it emulated or
5048          * not, left the system with the INT_STI flag enabled, it
5049          * means that the last instruction is an sti. We should not
5050          * leave the flag on in this case. The same goes for mov ss
5051          */
5052         if (int_shadow & mask)
5053                 mask = 0;
5054         if (unlikely(int_shadow || mask)) {
5055                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5056                 if (!mask)
5057                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5058         }
5059 }
5060
5061 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5062 {
5063         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5064         if (ctxt->exception.vector == PF_VECTOR)
5065                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5066
5067         if (ctxt->exception.error_code_valid)
5068                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5069                                       ctxt->exception.error_code);
5070         else
5071                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5072         return false;
5073 }
5074
5075 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5076 {
5077         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5078         int cs_db, cs_l;
5079
5080         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5081
5082         ctxt->eflags = kvm_get_rflags(vcpu);
5083         ctxt->eip = kvm_rip_read(vcpu);
5084         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5085                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5086                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5087                      cs_db                              ? X86EMUL_MODE_PROT32 :
5088                                                           X86EMUL_MODE_PROT16;
5089         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5090         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5091         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5092         ctxt->emul_flags = vcpu->arch.hflags;
5093
5094         init_decode_cache(ctxt);
5095         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5096 }
5097
5098 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5099 {
5100         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5101         int ret;
5102
5103         init_emulate_ctxt(vcpu);
5104
5105         ctxt->op_bytes = 2;
5106         ctxt->ad_bytes = 2;
5107         ctxt->_eip = ctxt->eip + inc_eip;
5108         ret = emulate_int_real(ctxt, irq);
5109
5110         if (ret != X86EMUL_CONTINUE)
5111                 return EMULATE_FAIL;
5112
5113         ctxt->eip = ctxt->_eip;
5114         kvm_rip_write(vcpu, ctxt->eip);
5115         kvm_set_rflags(vcpu, ctxt->eflags);
5116
5117         if (irq == NMI_VECTOR)
5118                 vcpu->arch.nmi_pending = 0;
5119         else
5120                 vcpu->arch.interrupt.pending = false;
5121
5122         return EMULATE_DONE;
5123 }
5124 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5125
5126 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5127 {
5128         int r = EMULATE_DONE;
5129
5130         ++vcpu->stat.insn_emulation_fail;
5131         trace_kvm_emulate_insn_failed(vcpu);
5132         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5133                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5134                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5135                 vcpu->run->internal.ndata = 0;
5136                 r = EMULATE_FAIL;
5137         }
5138         kvm_queue_exception(vcpu, UD_VECTOR);
5139
5140         return r;
5141 }
5142
5143 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5144                                   bool write_fault_to_shadow_pgtable,
5145                                   int emulation_type)
5146 {
5147         gpa_t gpa = cr2;
5148         kvm_pfn_t pfn;
5149
5150         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5151                 return false;
5152
5153         if (!vcpu->arch.mmu.direct_map) {
5154                 /*
5155                  * Write permission should be allowed since only
5156                  * write access need to be emulated.
5157                  */
5158                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5159
5160                 /*
5161                  * If the mapping is invalid in guest, let cpu retry
5162                  * it to generate fault.
5163                  */
5164                 if (gpa == UNMAPPED_GVA)
5165                         return true;
5166         }
5167
5168         /*
5169          * Do not retry the unhandleable instruction if it faults on the
5170          * readonly host memory, otherwise it will goto a infinite loop:
5171          * retry instruction -> write #PF -> emulation fail -> retry
5172          * instruction -> ...
5173          */
5174         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5175
5176         /*
5177          * If the instruction failed on the error pfn, it can not be fixed,
5178          * report the error to userspace.
5179          */
5180         if (is_error_noslot_pfn(pfn))
5181                 return false;
5182
5183         kvm_release_pfn_clean(pfn);
5184
5185         /* The instructions are well-emulated on direct mmu. */
5186         if (vcpu->arch.mmu.direct_map) {
5187                 unsigned int indirect_shadow_pages;
5188
5189                 spin_lock(&vcpu->kvm->mmu_lock);
5190                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5191                 spin_unlock(&vcpu->kvm->mmu_lock);
5192
5193                 if (indirect_shadow_pages)
5194                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5195
5196                 return true;
5197         }
5198
5199         /*
5200          * if emulation was due to access to shadowed page table
5201          * and it failed try to unshadow page and re-enter the
5202          * guest to let CPU execute the instruction.
5203          */
5204         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5205
5206         /*
5207          * If the access faults on its page table, it can not
5208          * be fixed by unprotecting shadow page and it should
5209          * be reported to userspace.
5210          */
5211         return !write_fault_to_shadow_pgtable;
5212 }
5213
5214 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5215                               unsigned long cr2,  int emulation_type)
5216 {
5217         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5218         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5219
5220         last_retry_eip = vcpu->arch.last_retry_eip;
5221         last_retry_addr = vcpu->arch.last_retry_addr;
5222
5223         /*
5224          * If the emulation is caused by #PF and it is non-page_table
5225          * writing instruction, it means the VM-EXIT is caused by shadow
5226          * page protected, we can zap the shadow page and retry this
5227          * instruction directly.
5228          *
5229          * Note: if the guest uses a non-page-table modifying instruction
5230          * on the PDE that points to the instruction, then we will unmap
5231          * the instruction and go to an infinite loop. So, we cache the
5232          * last retried eip and the last fault address, if we meet the eip
5233          * and the address again, we can break out of the potential infinite
5234          * loop.
5235          */
5236         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5237
5238         if (!(emulation_type & EMULTYPE_RETRY))
5239                 return false;
5240
5241         if (x86_page_table_writing_insn(ctxt))
5242                 return false;
5243
5244         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5245                 return false;
5246
5247         vcpu->arch.last_retry_eip = ctxt->eip;
5248         vcpu->arch.last_retry_addr = cr2;
5249
5250         if (!vcpu->arch.mmu.direct_map)
5251                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5252
5253         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5254
5255         return true;
5256 }
5257
5258 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5259 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5260
5261 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5262 {
5263         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5264                 /* This is a good place to trace that we are exiting SMM.  */
5265                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5266
5267                 if (unlikely(vcpu->arch.smi_pending)) {
5268                         kvm_make_request(KVM_REQ_SMI, vcpu);
5269                         vcpu->arch.smi_pending = 0;
5270                 } else {
5271                         /* Process a latched INIT, if any.  */
5272                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5273                 }
5274         }
5275
5276         kvm_mmu_reset_context(vcpu);
5277 }
5278
5279 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5280 {
5281         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5282
5283         vcpu->arch.hflags = emul_flags;
5284
5285         if (changed & HF_SMM_MASK)
5286                 kvm_smm_changed(vcpu);
5287 }
5288
5289 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5290                                 unsigned long *db)
5291 {
5292         u32 dr6 = 0;
5293         int i;
5294         u32 enable, rwlen;
5295
5296         enable = dr7;
5297         rwlen = dr7 >> 16;
5298         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5299                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5300                         dr6 |= (1 << i);
5301         return dr6;
5302 }
5303
5304 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5305 {
5306         struct kvm_run *kvm_run = vcpu->run;
5307
5308         /*
5309          * rflags is the old, "raw" value of the flags.  The new value has
5310          * not been saved yet.
5311          *
5312          * This is correct even for TF set by the guest, because "the
5313          * processor will not generate this exception after the instruction
5314          * that sets the TF flag".
5315          */
5316         if (unlikely(rflags & X86_EFLAGS_TF)) {
5317                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5318                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5319                                                   DR6_RTM;
5320                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5321                         kvm_run->debug.arch.exception = DB_VECTOR;
5322                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5323                         *r = EMULATE_USER_EXIT;
5324                 } else {
5325                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5326                         /*
5327                          * "Certain debug exceptions may clear bit 0-3.  The
5328                          * remaining contents of the DR6 register are never
5329                          * cleared by the processor".
5330                          */
5331                         vcpu->arch.dr6 &= ~15;
5332                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5333                         kvm_queue_exception(vcpu, DB_VECTOR);
5334                 }
5335         }
5336 }
5337
5338 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5339 {
5340         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5341             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5342                 struct kvm_run *kvm_run = vcpu->run;
5343                 unsigned long eip = kvm_get_linear_rip(vcpu);
5344                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5345                                            vcpu->arch.guest_debug_dr7,
5346                                            vcpu->arch.eff_db);
5347
5348                 if (dr6 != 0) {
5349                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5350                         kvm_run->debug.arch.pc = eip;
5351                         kvm_run->debug.arch.exception = DB_VECTOR;
5352                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5353                         *r = EMULATE_USER_EXIT;
5354                         return true;
5355                 }
5356         }
5357
5358         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5359             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5360                 unsigned long eip = kvm_get_linear_rip(vcpu);
5361                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5362                                            vcpu->arch.dr7,
5363                                            vcpu->arch.db);
5364
5365                 if (dr6 != 0) {
5366                         vcpu->arch.dr6 &= ~15;
5367                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5368                         kvm_queue_exception(vcpu, DB_VECTOR);
5369                         *r = EMULATE_DONE;
5370                         return true;
5371                 }
5372         }
5373
5374         return false;
5375 }
5376
5377 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5378                             unsigned long cr2,
5379                             int emulation_type,
5380                             void *insn,
5381                             int insn_len)
5382 {
5383         int r;
5384         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5385         bool writeback = true;
5386         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5387
5388         /*
5389          * Clear write_fault_to_shadow_pgtable here to ensure it is
5390          * never reused.
5391          */
5392         vcpu->arch.write_fault_to_shadow_pgtable = false;
5393         kvm_clear_exception_queue(vcpu);
5394
5395         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5396                 init_emulate_ctxt(vcpu);
5397
5398                 /*
5399                  * We will reenter on the same instruction since
5400                  * we do not set complete_userspace_io.  This does not
5401                  * handle watchpoints yet, those would be handled in
5402                  * the emulate_ops.
5403                  */
5404                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5405                         return r;
5406
5407                 ctxt->interruptibility = 0;
5408                 ctxt->have_exception = false;
5409                 ctxt->exception.vector = -1;
5410                 ctxt->perm_ok = false;
5411
5412                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5413
5414                 r = x86_decode_insn(ctxt, insn, insn_len);
5415
5416                 trace_kvm_emulate_insn_start(vcpu);
5417                 ++vcpu->stat.insn_emulation;
5418                 if (r != EMULATION_OK)  {
5419                         if (emulation_type & EMULTYPE_TRAP_UD)
5420                                 return EMULATE_FAIL;
5421                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5422                                                 emulation_type))
5423                                 return EMULATE_DONE;
5424                         if (emulation_type & EMULTYPE_SKIP)
5425                                 return EMULATE_FAIL;
5426                         return handle_emulation_failure(vcpu);
5427                 }
5428         }
5429
5430         if (emulation_type & EMULTYPE_SKIP) {
5431                 kvm_rip_write(vcpu, ctxt->_eip);
5432                 if (ctxt->eflags & X86_EFLAGS_RF)
5433                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5434                 return EMULATE_DONE;
5435         }
5436
5437         if (retry_instruction(ctxt, cr2, emulation_type))
5438                 return EMULATE_DONE;
5439
5440         /* this is needed for vmware backdoor interface to work since it
5441            changes registers values  during IO operation */
5442         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5443                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5444                 emulator_invalidate_register_cache(ctxt);
5445         }
5446
5447 restart:
5448         r = x86_emulate_insn(ctxt);
5449
5450         if (r == EMULATION_INTERCEPTED)
5451                 return EMULATE_DONE;
5452
5453         if (r == EMULATION_FAILED) {
5454                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5455                                         emulation_type))
5456                         return EMULATE_DONE;
5457
5458                 return handle_emulation_failure(vcpu);
5459         }
5460
5461         if (ctxt->have_exception) {
5462                 r = EMULATE_DONE;
5463                 if (inject_emulated_exception(vcpu))
5464                         return r;
5465         } else if (vcpu->arch.pio.count) {
5466                 if (!vcpu->arch.pio.in) {
5467                         /* FIXME: return into emulator if single-stepping.  */
5468                         vcpu->arch.pio.count = 0;
5469                 } else {
5470                         writeback = false;
5471                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5472                 }
5473                 r = EMULATE_USER_EXIT;
5474         } else if (vcpu->mmio_needed) {
5475                 if (!vcpu->mmio_is_write)
5476                         writeback = false;
5477                 r = EMULATE_USER_EXIT;
5478                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5479         } else if (r == EMULATION_RESTART)
5480                 goto restart;
5481         else
5482                 r = EMULATE_DONE;
5483
5484         if (writeback) {
5485                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5486                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5487                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5488                 if (vcpu->arch.hflags != ctxt->emul_flags)
5489                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5490                 kvm_rip_write(vcpu, ctxt->eip);
5491                 if (r == EMULATE_DONE)
5492                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5493                 if (!ctxt->have_exception ||
5494                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5495                         __kvm_set_rflags(vcpu, ctxt->eflags);
5496
5497                 /*
5498                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5499                  * do nothing, and it will be requested again as soon as
5500                  * the shadow expires.  But we still need to check here,
5501                  * because POPF has no interrupt shadow.
5502                  */
5503                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5504                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5505         } else
5506                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5507
5508         return r;
5509 }
5510 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5511
5512 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5513 {
5514         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5515         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5516                                             size, port, &val, 1);
5517         /* do not return to emulator after return from userspace */
5518         vcpu->arch.pio.count = 0;
5519         return ret;
5520 }
5521 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5522
5523 static void tsc_bad(void *info)
5524 {
5525         __this_cpu_write(cpu_tsc_khz, 0);
5526 }
5527
5528 static void tsc_khz_changed(void *data)
5529 {
5530         struct cpufreq_freqs *freq = data;
5531         unsigned long khz = 0;
5532
5533         if (data)
5534                 khz = freq->new;
5535         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5536                 khz = cpufreq_quick_get(raw_smp_processor_id());
5537         if (!khz)
5538                 khz = tsc_khz;
5539         __this_cpu_write(cpu_tsc_khz, khz);
5540 }
5541
5542 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5543                                      void *data)
5544 {
5545         struct cpufreq_freqs *freq = data;
5546         struct kvm *kvm;
5547         struct kvm_vcpu *vcpu;
5548         int i, send_ipi = 0;
5549
5550         /*
5551          * We allow guests to temporarily run on slowing clocks,
5552          * provided we notify them after, or to run on accelerating
5553          * clocks, provided we notify them before.  Thus time never
5554          * goes backwards.
5555          *
5556          * However, we have a problem.  We can't atomically update
5557          * the frequency of a given CPU from this function; it is
5558          * merely a notifier, which can be called from any CPU.
5559          * Changing the TSC frequency at arbitrary points in time
5560          * requires a recomputation of local variables related to
5561          * the TSC for each VCPU.  We must flag these local variables
5562          * to be updated and be sure the update takes place with the
5563          * new frequency before any guests proceed.
5564          *
5565          * Unfortunately, the combination of hotplug CPU and frequency
5566          * change creates an intractable locking scenario; the order
5567          * of when these callouts happen is undefined with respect to
5568          * CPU hotplug, and they can race with each other.  As such,
5569          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5570          * undefined; you can actually have a CPU frequency change take
5571          * place in between the computation of X and the setting of the
5572          * variable.  To protect against this problem, all updates of
5573          * the per_cpu tsc_khz variable are done in an interrupt
5574          * protected IPI, and all callers wishing to update the value
5575          * must wait for a synchronous IPI to complete (which is trivial
5576          * if the caller is on the CPU already).  This establishes the
5577          * necessary total order on variable updates.
5578          *
5579          * Note that because a guest time update may take place
5580          * anytime after the setting of the VCPU's request bit, the
5581          * correct TSC value must be set before the request.  However,
5582          * to ensure the update actually makes it to any guest which
5583          * starts running in hardware virtualization between the set
5584          * and the acquisition of the spinlock, we must also ping the
5585          * CPU after setting the request bit.
5586          *
5587          */
5588
5589         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5590                 return 0;
5591         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5592                 return 0;
5593
5594         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5595
5596         spin_lock(&kvm_lock);
5597         list_for_each_entry(kvm, &vm_list, vm_list) {
5598                 kvm_for_each_vcpu(i, vcpu, kvm) {
5599                         if (vcpu->cpu != freq->cpu)
5600                                 continue;
5601                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5602                         if (vcpu->cpu != smp_processor_id())
5603                                 send_ipi = 1;
5604                 }
5605         }
5606         spin_unlock(&kvm_lock);
5607
5608         if (freq->old < freq->new && send_ipi) {
5609                 /*
5610                  * We upscale the frequency.  Must make the guest
5611                  * doesn't see old kvmclock values while running with
5612                  * the new frequency, otherwise we risk the guest sees
5613                  * time go backwards.
5614                  *
5615                  * In case we update the frequency for another cpu
5616                  * (which might be in guest context) send an interrupt
5617                  * to kick the cpu out of guest context.  Next time
5618                  * guest context is entered kvmclock will be updated,
5619                  * so the guest will not see stale values.
5620                  */
5621                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5622         }
5623         return 0;
5624 }
5625
5626 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5627         .notifier_call  = kvmclock_cpufreq_notifier
5628 };
5629
5630 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5631                                         unsigned long action, void *hcpu)
5632 {
5633         unsigned int cpu = (unsigned long)hcpu;
5634
5635         switch (action) {
5636                 case CPU_ONLINE:
5637                 case CPU_DOWN_FAILED:
5638                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5639                         break;
5640                 case CPU_DOWN_PREPARE:
5641                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5642                         break;
5643         }
5644         return NOTIFY_OK;
5645 }
5646
5647 static struct notifier_block kvmclock_cpu_notifier_block = {
5648         .notifier_call  = kvmclock_cpu_notifier,
5649         .priority = -INT_MAX
5650 };
5651
5652 static void kvm_timer_init(void)
5653 {
5654         int cpu;
5655
5656         max_tsc_khz = tsc_khz;
5657
5658         cpu_notifier_register_begin();
5659         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5660 #ifdef CONFIG_CPU_FREQ
5661                 struct cpufreq_policy policy;
5662                 memset(&policy, 0, sizeof(policy));
5663                 cpu = get_cpu();
5664                 cpufreq_get_policy(&policy, cpu);
5665                 if (policy.cpuinfo.max_freq)
5666                         max_tsc_khz = policy.cpuinfo.max_freq;
5667                 put_cpu();
5668 #endif
5669                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5670                                           CPUFREQ_TRANSITION_NOTIFIER);
5671         }
5672         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5673         for_each_online_cpu(cpu)
5674                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5675
5676         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5677         cpu_notifier_register_done();
5678
5679 }
5680
5681 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5682
5683 int kvm_is_in_guest(void)
5684 {
5685         return __this_cpu_read(current_vcpu) != NULL;
5686 }
5687
5688 static int kvm_is_user_mode(void)
5689 {
5690         int user_mode = 3;
5691
5692         if (__this_cpu_read(current_vcpu))
5693                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5694
5695         return user_mode != 0;
5696 }
5697
5698 static unsigned long kvm_get_guest_ip(void)
5699 {
5700         unsigned long ip = 0;
5701
5702         if (__this_cpu_read(current_vcpu))
5703                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5704
5705         return ip;
5706 }
5707
5708 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5709         .is_in_guest            = kvm_is_in_guest,
5710         .is_user_mode           = kvm_is_user_mode,
5711         .get_guest_ip           = kvm_get_guest_ip,
5712 };
5713
5714 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5715 {
5716         __this_cpu_write(current_vcpu, vcpu);
5717 }
5718 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5719
5720 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5721 {
5722         __this_cpu_write(current_vcpu, NULL);
5723 }
5724 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5725
5726 static void kvm_set_mmio_spte_mask(void)
5727 {
5728         u64 mask;
5729         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5730
5731         /*
5732          * Set the reserved bits and the present bit of an paging-structure
5733          * entry to generate page fault with PFER.RSV = 1.
5734          */
5735          /* Mask the reserved physical address bits. */
5736         mask = rsvd_bits(maxphyaddr, 51);
5737
5738         /* Bit 62 is always reserved for 32bit host. */
5739         mask |= 0x3ull << 62;
5740
5741         /* Set the present bit. */
5742         mask |= 1ull;
5743
5744 #ifdef CONFIG_X86_64
5745         /*
5746          * If reserved bit is not supported, clear the present bit to disable
5747          * mmio page fault.
5748          */
5749         if (maxphyaddr == 52)
5750                 mask &= ~1ull;
5751 #endif
5752
5753         kvm_mmu_set_mmio_spte_mask(mask);
5754 }
5755
5756 #ifdef CONFIG_X86_64
5757 static void pvclock_gtod_update_fn(struct work_struct *work)
5758 {
5759         struct kvm *kvm;
5760
5761         struct kvm_vcpu *vcpu;
5762         int i;
5763
5764         spin_lock(&kvm_lock);
5765         list_for_each_entry(kvm, &vm_list, vm_list)
5766                 kvm_for_each_vcpu(i, vcpu, kvm)
5767                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5768         atomic_set(&kvm_guest_has_master_clock, 0);
5769         spin_unlock(&kvm_lock);
5770 }
5771
5772 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5773
5774 /*
5775  * Notification about pvclock gtod data update.
5776  */
5777 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5778                                void *priv)
5779 {
5780         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5781         struct timekeeper *tk = priv;
5782
5783         update_pvclock_gtod(tk);
5784
5785         /* disable master clock if host does not trust, or does not
5786          * use, TSC clocksource
5787          */
5788         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5789             atomic_read(&kvm_guest_has_master_clock) != 0)
5790                 queue_work(system_long_wq, &pvclock_gtod_work);
5791
5792         return 0;
5793 }
5794
5795 static struct notifier_block pvclock_gtod_notifier = {
5796         .notifier_call = pvclock_gtod_notify,
5797 };
5798 #endif
5799
5800 int kvm_arch_init(void *opaque)
5801 {
5802         int r;
5803         struct kvm_x86_ops *ops = opaque;
5804
5805         if (kvm_x86_ops) {
5806                 printk(KERN_ERR "kvm: already loaded the other module\n");
5807                 r = -EEXIST;
5808                 goto out;
5809         }
5810
5811         if (!ops->cpu_has_kvm_support()) {
5812                 printk(KERN_ERR "kvm: no hardware support\n");
5813                 r = -EOPNOTSUPP;
5814                 goto out;
5815         }
5816         if (ops->disabled_by_bios()) {
5817                 printk(KERN_ERR "kvm: disabled by bios\n");
5818                 r = -EOPNOTSUPP;
5819                 goto out;
5820         }
5821
5822         r = -ENOMEM;
5823         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5824         if (!shared_msrs) {
5825                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5826                 goto out;
5827         }
5828
5829         r = kvm_mmu_module_init();
5830         if (r)
5831                 goto out_free_percpu;
5832
5833         kvm_set_mmio_spte_mask();
5834
5835         kvm_x86_ops = ops;
5836
5837         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5838                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5839
5840         kvm_timer_init();
5841
5842         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5843
5844         if (cpu_has_xsave)
5845                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5846
5847         kvm_lapic_init();
5848 #ifdef CONFIG_X86_64
5849         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5850 #endif
5851
5852         return 0;
5853
5854 out_free_percpu:
5855         free_percpu(shared_msrs);
5856 out:
5857         return r;
5858 }
5859
5860 void kvm_arch_exit(void)
5861 {
5862         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5863
5864         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5865                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5866                                             CPUFREQ_TRANSITION_NOTIFIER);
5867         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5868 #ifdef CONFIG_X86_64
5869         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5870 #endif
5871         kvm_x86_ops = NULL;
5872         kvm_mmu_module_exit();
5873         free_percpu(shared_msrs);
5874 }
5875
5876 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5877 {
5878         ++vcpu->stat.halt_exits;
5879         if (lapic_in_kernel(vcpu)) {
5880                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5881                 return 1;
5882         } else {
5883                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5884                 return 0;
5885         }
5886 }
5887 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5888
5889 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5890 {
5891         kvm_x86_ops->skip_emulated_instruction(vcpu);
5892         return kvm_vcpu_halt(vcpu);
5893 }
5894 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5895
5896 /*
5897  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5898  *
5899  * @apicid - apicid of vcpu to be kicked.
5900  */
5901 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5902 {
5903         struct kvm_lapic_irq lapic_irq;
5904
5905         lapic_irq.shorthand = 0;
5906         lapic_irq.dest_mode = 0;
5907         lapic_irq.dest_id = apicid;
5908         lapic_irq.msi_redir_hint = false;
5909
5910         lapic_irq.delivery_mode = APIC_DM_REMRD;
5911         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5912 }
5913
5914 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5915 {
5916         vcpu->arch.apicv_active = false;
5917         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5918 }
5919
5920 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5921 {
5922         unsigned long nr, a0, a1, a2, a3, ret;
5923         int op_64_bit, r = 1;
5924
5925         kvm_x86_ops->skip_emulated_instruction(vcpu);
5926
5927         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5928                 return kvm_hv_hypercall(vcpu);
5929
5930         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5931         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5932         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5933         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5934         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5935
5936         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5937
5938         op_64_bit = is_64_bit_mode(vcpu);
5939         if (!op_64_bit) {
5940                 nr &= 0xFFFFFFFF;
5941                 a0 &= 0xFFFFFFFF;
5942                 a1 &= 0xFFFFFFFF;
5943                 a2 &= 0xFFFFFFFF;
5944                 a3 &= 0xFFFFFFFF;
5945         }
5946
5947         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5948                 ret = -KVM_EPERM;
5949                 goto out;
5950         }
5951
5952         switch (nr) {
5953         case KVM_HC_VAPIC_POLL_IRQ:
5954                 ret = 0;
5955                 break;
5956         case KVM_HC_KICK_CPU:
5957                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5958                 ret = 0;
5959                 break;
5960         default:
5961                 ret = -KVM_ENOSYS;
5962                 break;
5963         }
5964 out:
5965         if (!op_64_bit)
5966                 ret = (u32)ret;
5967         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5968         ++vcpu->stat.hypercalls;
5969         return r;
5970 }
5971 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5972
5973 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5974 {
5975         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5976         char instruction[3];
5977         unsigned long rip = kvm_rip_read(vcpu);
5978
5979         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5980
5981         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5982 }
5983
5984 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5985 {
5986         return vcpu->run->request_interrupt_window &&
5987                 likely(!pic_in_kernel(vcpu->kvm));
5988 }
5989
5990 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5991 {
5992         struct kvm_run *kvm_run = vcpu->run;
5993
5994         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5995         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5996         kvm_run->cr8 = kvm_get_cr8(vcpu);
5997         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5998         kvm_run->ready_for_interrupt_injection =
5999                 pic_in_kernel(vcpu->kvm) ||
6000                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6001 }
6002
6003 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6004 {
6005         int max_irr, tpr;
6006
6007         if (!kvm_x86_ops->update_cr8_intercept)
6008                 return;
6009
6010         if (!lapic_in_kernel(vcpu))
6011                 return;
6012
6013         if (vcpu->arch.apicv_active)
6014                 return;
6015
6016         if (!vcpu->arch.apic->vapic_addr)
6017                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6018         else
6019                 max_irr = -1;
6020
6021         if (max_irr != -1)
6022                 max_irr >>= 4;
6023
6024         tpr = kvm_lapic_get_cr8(vcpu);
6025
6026         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6027 }
6028
6029 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6030 {
6031         int r;
6032
6033         /* try to reinject previous events if any */
6034         if (vcpu->arch.exception.pending) {
6035                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6036                                         vcpu->arch.exception.has_error_code,
6037                                         vcpu->arch.exception.error_code);
6038
6039                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6040                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6041                                              X86_EFLAGS_RF);
6042
6043                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6044                     (vcpu->arch.dr7 & DR7_GD)) {
6045                         vcpu->arch.dr7 &= ~DR7_GD;
6046                         kvm_update_dr7(vcpu);
6047                 }
6048
6049                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6050                                           vcpu->arch.exception.has_error_code,
6051                                           vcpu->arch.exception.error_code,
6052                                           vcpu->arch.exception.reinject);
6053                 return 0;
6054         }
6055
6056         if (vcpu->arch.nmi_injected) {
6057                 kvm_x86_ops->set_nmi(vcpu);
6058                 return 0;
6059         }
6060
6061         if (vcpu->arch.interrupt.pending) {
6062                 kvm_x86_ops->set_irq(vcpu);
6063                 return 0;
6064         }
6065
6066         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6067                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6068                 if (r != 0)
6069                         return r;
6070         }
6071
6072         /* try to inject new event if pending */
6073         if (vcpu->arch.nmi_pending) {
6074                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6075                         --vcpu->arch.nmi_pending;
6076                         vcpu->arch.nmi_injected = true;
6077                         kvm_x86_ops->set_nmi(vcpu);
6078                 }
6079         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6080                 /*
6081                  * Because interrupts can be injected asynchronously, we are
6082                  * calling check_nested_events again here to avoid a race condition.
6083                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6084                  * proposal and current concerns.  Perhaps we should be setting
6085                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6086                  */
6087                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6088                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6089                         if (r != 0)
6090                                 return r;
6091                 }
6092                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6093                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6094                                             false);
6095                         kvm_x86_ops->set_irq(vcpu);
6096                 }
6097         }
6098         return 0;
6099 }
6100
6101 static void process_nmi(struct kvm_vcpu *vcpu)
6102 {
6103         unsigned limit = 2;
6104
6105         /*
6106          * x86 is limited to one NMI running, and one NMI pending after it.
6107          * If an NMI is already in progress, limit further NMIs to just one.
6108          * Otherwise, allow two (and we'll inject the first one immediately).
6109          */
6110         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6111                 limit = 1;
6112
6113         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6114         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6115         kvm_make_request(KVM_REQ_EVENT, vcpu);
6116 }
6117
6118 #define put_smstate(type, buf, offset, val)                       \
6119         *(type *)((buf) + (offset) - 0x7e00) = val
6120
6121 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6122 {
6123         u32 flags = 0;
6124         flags |= seg->g       << 23;
6125         flags |= seg->db      << 22;
6126         flags |= seg->l       << 21;
6127         flags |= seg->avl     << 20;
6128         flags |= seg->present << 15;
6129         flags |= seg->dpl     << 13;
6130         flags |= seg->s       << 12;
6131         flags |= seg->type    << 8;
6132         return flags;
6133 }
6134
6135 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6136 {
6137         struct kvm_segment seg;
6138         int offset;
6139
6140         kvm_get_segment(vcpu, &seg, n);
6141         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6142
6143         if (n < 3)
6144                 offset = 0x7f84 + n * 12;
6145         else
6146                 offset = 0x7f2c + (n - 3) * 12;
6147
6148         put_smstate(u32, buf, offset + 8, seg.base);
6149         put_smstate(u32, buf, offset + 4, seg.limit);
6150         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6151 }
6152
6153 #ifdef CONFIG_X86_64
6154 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6155 {
6156         struct kvm_segment seg;
6157         int offset;
6158         u16 flags;
6159
6160         kvm_get_segment(vcpu, &seg, n);
6161         offset = 0x7e00 + n * 16;
6162
6163         flags = process_smi_get_segment_flags(&seg) >> 8;
6164         put_smstate(u16, buf, offset, seg.selector);
6165         put_smstate(u16, buf, offset + 2, flags);
6166         put_smstate(u32, buf, offset + 4, seg.limit);
6167         put_smstate(u64, buf, offset + 8, seg.base);
6168 }
6169 #endif
6170
6171 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6172 {
6173         struct desc_ptr dt;
6174         struct kvm_segment seg;
6175         unsigned long val;
6176         int i;
6177
6178         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6179         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6180         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6181         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6182
6183         for (i = 0; i < 8; i++)
6184                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6185
6186         kvm_get_dr(vcpu, 6, &val);
6187         put_smstate(u32, buf, 0x7fcc, (u32)val);
6188         kvm_get_dr(vcpu, 7, &val);
6189         put_smstate(u32, buf, 0x7fc8, (u32)val);
6190
6191         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6192         put_smstate(u32, buf, 0x7fc4, seg.selector);
6193         put_smstate(u32, buf, 0x7f64, seg.base);
6194         put_smstate(u32, buf, 0x7f60, seg.limit);
6195         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6196
6197         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6198         put_smstate(u32, buf, 0x7fc0, seg.selector);
6199         put_smstate(u32, buf, 0x7f80, seg.base);
6200         put_smstate(u32, buf, 0x7f7c, seg.limit);
6201         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6202
6203         kvm_x86_ops->get_gdt(vcpu, &dt);
6204         put_smstate(u32, buf, 0x7f74, dt.address);
6205         put_smstate(u32, buf, 0x7f70, dt.size);
6206
6207         kvm_x86_ops->get_idt(vcpu, &dt);
6208         put_smstate(u32, buf, 0x7f58, dt.address);
6209         put_smstate(u32, buf, 0x7f54, dt.size);
6210
6211         for (i = 0; i < 6; i++)
6212                 process_smi_save_seg_32(vcpu, buf, i);
6213
6214         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6215
6216         /* revision id */
6217         put_smstate(u32, buf, 0x7efc, 0x00020000);
6218         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6219 }
6220
6221 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6222 {
6223 #ifdef CONFIG_X86_64
6224         struct desc_ptr dt;
6225         struct kvm_segment seg;
6226         unsigned long val;
6227         int i;
6228
6229         for (i = 0; i < 16; i++)
6230                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6231
6232         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6233         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6234
6235         kvm_get_dr(vcpu, 6, &val);
6236         put_smstate(u64, buf, 0x7f68, val);
6237         kvm_get_dr(vcpu, 7, &val);
6238         put_smstate(u64, buf, 0x7f60, val);
6239
6240         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6241         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6242         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6243
6244         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6245
6246         /* revision id */
6247         put_smstate(u32, buf, 0x7efc, 0x00020064);
6248
6249         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6250
6251         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6252         put_smstate(u16, buf, 0x7e90, seg.selector);
6253         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6254         put_smstate(u32, buf, 0x7e94, seg.limit);
6255         put_smstate(u64, buf, 0x7e98, seg.base);
6256
6257         kvm_x86_ops->get_idt(vcpu, &dt);
6258         put_smstate(u32, buf, 0x7e84, dt.size);
6259         put_smstate(u64, buf, 0x7e88, dt.address);
6260
6261         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6262         put_smstate(u16, buf, 0x7e70, seg.selector);
6263         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6264         put_smstate(u32, buf, 0x7e74, seg.limit);
6265         put_smstate(u64, buf, 0x7e78, seg.base);
6266
6267         kvm_x86_ops->get_gdt(vcpu, &dt);
6268         put_smstate(u32, buf, 0x7e64, dt.size);
6269         put_smstate(u64, buf, 0x7e68, dt.address);
6270
6271         for (i = 0; i < 6; i++)
6272                 process_smi_save_seg_64(vcpu, buf, i);
6273 #else
6274         WARN_ON_ONCE(1);
6275 #endif
6276 }
6277
6278 static void process_smi(struct kvm_vcpu *vcpu)
6279 {
6280         struct kvm_segment cs, ds;
6281         struct desc_ptr dt;
6282         char buf[512];
6283         u32 cr0;
6284
6285         if (is_smm(vcpu)) {
6286                 vcpu->arch.smi_pending = true;
6287                 return;
6288         }
6289
6290         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6291         vcpu->arch.hflags |= HF_SMM_MASK;
6292         memset(buf, 0, 512);
6293         if (guest_cpuid_has_longmode(vcpu))
6294                 process_smi_save_state_64(vcpu, buf);
6295         else
6296                 process_smi_save_state_32(vcpu, buf);
6297
6298         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6299
6300         if (kvm_x86_ops->get_nmi_mask(vcpu))
6301                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6302         else
6303                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6304
6305         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6306         kvm_rip_write(vcpu, 0x8000);
6307
6308         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6309         kvm_x86_ops->set_cr0(vcpu, cr0);
6310         vcpu->arch.cr0 = cr0;
6311
6312         kvm_x86_ops->set_cr4(vcpu, 0);
6313
6314         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6315         dt.address = dt.size = 0;
6316         kvm_x86_ops->set_idt(vcpu, &dt);
6317
6318         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6319
6320         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6321         cs.base = vcpu->arch.smbase;
6322
6323         ds.selector = 0;
6324         ds.base = 0;
6325
6326         cs.limit    = ds.limit = 0xffffffff;
6327         cs.type     = ds.type = 0x3;
6328         cs.dpl      = ds.dpl = 0;
6329         cs.db       = ds.db = 0;
6330         cs.s        = ds.s = 1;
6331         cs.l        = ds.l = 0;
6332         cs.g        = ds.g = 1;
6333         cs.avl      = ds.avl = 0;
6334         cs.present  = ds.present = 1;
6335         cs.unusable = ds.unusable = 0;
6336         cs.padding  = ds.padding = 0;
6337
6338         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6339         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6340         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6341         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6342         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6343         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6344
6345         if (guest_cpuid_has_longmode(vcpu))
6346                 kvm_x86_ops->set_efer(vcpu, 0);
6347
6348         kvm_update_cpuid(vcpu);
6349         kvm_mmu_reset_context(vcpu);
6350 }
6351
6352 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6353 {
6354         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6355 }
6356
6357 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6358 {
6359         u64 eoi_exit_bitmap[4];
6360
6361         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6362                 return;
6363
6364         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6365
6366         if (irqchip_split(vcpu->kvm))
6367                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6368         else {
6369                 if (vcpu->arch.apicv_active)
6370                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6371                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6372         }
6373         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6374                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6375         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6376 }
6377
6378 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6379 {
6380         ++vcpu->stat.tlb_flush;
6381         kvm_x86_ops->tlb_flush(vcpu);
6382 }
6383
6384 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6385 {
6386         struct page *page = NULL;
6387
6388         if (!lapic_in_kernel(vcpu))
6389                 return;
6390
6391         if (!kvm_x86_ops->set_apic_access_page_addr)
6392                 return;
6393
6394         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6395         if (is_error_page(page))
6396                 return;
6397         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6398
6399         /*
6400          * Do not pin apic access page in memory, the MMU notifier
6401          * will call us again if it is migrated or swapped out.
6402          */
6403         put_page(page);
6404 }
6405 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6406
6407 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6408                                            unsigned long address)
6409 {
6410         /*
6411          * The physical address of apic access page is stored in the VMCS.
6412          * Update it when it becomes invalid.
6413          */
6414         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6415                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6416 }
6417
6418 /*
6419  * Returns 1 to let vcpu_run() continue the guest execution loop without
6420  * exiting to the userspace.  Otherwise, the value will be returned to the
6421  * userspace.
6422  */
6423 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6424 {
6425         int r;
6426         bool req_int_win =
6427                 dm_request_for_irq_injection(vcpu) &&
6428                 kvm_cpu_accept_dm_intr(vcpu);
6429
6430         bool req_immediate_exit = false;
6431
6432         if (vcpu->requests) {
6433                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6434                         kvm_mmu_unload(vcpu);
6435                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6436                         __kvm_migrate_timers(vcpu);
6437                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6438                         kvm_gen_update_masterclock(vcpu->kvm);
6439                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6440                         kvm_gen_kvmclock_update(vcpu);
6441                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6442                         r = kvm_guest_time_update(vcpu);
6443                         if (unlikely(r))
6444                                 goto out;
6445                 }
6446                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6447                         kvm_mmu_sync_roots(vcpu);
6448                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6449                         kvm_vcpu_flush_tlb(vcpu);
6450                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6451                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6452                         r = 0;
6453                         goto out;
6454                 }
6455                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6456                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6457                         r = 0;
6458                         goto out;
6459                 }
6460                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6461                         vcpu->fpu_active = 0;
6462                         kvm_x86_ops->fpu_deactivate(vcpu);
6463                 }
6464                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6465                         /* Page is swapped out. Do synthetic halt */
6466                         vcpu->arch.apf.halted = true;
6467                         r = 1;
6468                         goto out;
6469                 }
6470                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6471                         record_steal_time(vcpu);
6472                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6473                         process_smi(vcpu);
6474                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6475                         process_nmi(vcpu);
6476                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6477                         kvm_pmu_handle_event(vcpu);
6478                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6479                         kvm_pmu_deliver_pmi(vcpu);
6480                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6481                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6482                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6483                                      vcpu->arch.ioapic_handled_vectors)) {
6484                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6485                                 vcpu->run->eoi.vector =
6486                                                 vcpu->arch.pending_ioapic_eoi;
6487                                 r = 0;
6488                                 goto out;
6489                         }
6490                 }
6491                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6492                         vcpu_scan_ioapic(vcpu);
6493                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6494                         kvm_vcpu_reload_apic_access_page(vcpu);
6495                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6496                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6497                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6498                         r = 0;
6499                         goto out;
6500                 }
6501                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6502                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6503                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6504                         r = 0;
6505                         goto out;
6506                 }
6507                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6508                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6509                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6510                         r = 0;
6511                         goto out;
6512                 }
6513
6514                 /*
6515                  * KVM_REQ_HV_STIMER has to be processed after
6516                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6517                  * depend on the guest clock being up-to-date
6518                  */
6519                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6520                         kvm_hv_process_stimers(vcpu);
6521         }
6522
6523         /*
6524          * KVM_REQ_EVENT is not set when posted interrupts are set by
6525          * VT-d hardware, so we have to update RVI unconditionally.
6526          */
6527         if (kvm_lapic_enabled(vcpu)) {
6528                 /*
6529                  * Update architecture specific hints for APIC
6530                  * virtual interrupt delivery.
6531                  */
6532                 if (vcpu->arch.apicv_active)
6533                         kvm_x86_ops->hwapic_irr_update(vcpu,
6534                                 kvm_lapic_find_highest_irr(vcpu));
6535         }
6536
6537         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6538                 kvm_apic_accept_events(vcpu);
6539                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6540                         r = 1;
6541                         goto out;
6542                 }
6543
6544                 if (inject_pending_event(vcpu, req_int_win) != 0)
6545                         req_immediate_exit = true;
6546                 /* enable NMI/IRQ window open exits if needed */
6547                 else if (vcpu->arch.nmi_pending)
6548                         kvm_x86_ops->enable_nmi_window(vcpu);
6549                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6550                         kvm_x86_ops->enable_irq_window(vcpu);
6551
6552                 if (kvm_lapic_enabled(vcpu)) {
6553                         update_cr8_intercept(vcpu);
6554                         kvm_lapic_sync_to_vapic(vcpu);
6555                 }
6556         }
6557
6558         r = kvm_mmu_reload(vcpu);
6559         if (unlikely(r)) {
6560                 goto cancel_injection;
6561         }
6562
6563         preempt_disable();
6564
6565         kvm_x86_ops->prepare_guest_switch(vcpu);
6566         if (vcpu->fpu_active)
6567                 kvm_load_guest_fpu(vcpu);
6568         kvm_load_guest_xcr0(vcpu);
6569
6570         vcpu->mode = IN_GUEST_MODE;
6571
6572         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6573
6574         /* We should set ->mode before check ->requests,
6575          * see the comment in make_all_cpus_request.
6576          */
6577         smp_mb__after_srcu_read_unlock();
6578
6579         local_irq_disable();
6580
6581         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6582             || need_resched() || signal_pending(current)) {
6583                 vcpu->mode = OUTSIDE_GUEST_MODE;
6584                 smp_wmb();
6585                 local_irq_enable();
6586                 preempt_enable();
6587                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6588                 r = 1;
6589                 goto cancel_injection;
6590         }
6591
6592         if (req_immediate_exit)
6593                 smp_send_reschedule(vcpu->cpu);
6594
6595         trace_kvm_entry(vcpu->vcpu_id);
6596         wait_lapic_expire(vcpu);
6597         __kvm_guest_enter();
6598
6599         if (unlikely(vcpu->arch.switch_db_regs)) {
6600                 set_debugreg(0, 7);
6601                 set_debugreg(vcpu->arch.eff_db[0], 0);
6602                 set_debugreg(vcpu->arch.eff_db[1], 1);
6603                 set_debugreg(vcpu->arch.eff_db[2], 2);
6604                 set_debugreg(vcpu->arch.eff_db[3], 3);
6605                 set_debugreg(vcpu->arch.dr6, 6);
6606                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6607         }
6608
6609         kvm_x86_ops->run(vcpu);
6610
6611         /*
6612          * Do this here before restoring debug registers on the host.  And
6613          * since we do this before handling the vmexit, a DR access vmexit
6614          * can (a) read the correct value of the debug registers, (b) set
6615          * KVM_DEBUGREG_WONT_EXIT again.
6616          */
6617         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6618                 int i;
6619
6620                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6621                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6622                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6623                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6624         }
6625
6626         /*
6627          * If the guest has used debug registers, at least dr7
6628          * will be disabled while returning to the host.
6629          * If we don't have active breakpoints in the host, we don't
6630          * care about the messed up debug address registers. But if
6631          * we have some of them active, restore the old state.
6632          */
6633         if (hw_breakpoint_active())
6634                 hw_breakpoint_restore();
6635
6636         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6637
6638         vcpu->mode = OUTSIDE_GUEST_MODE;
6639         smp_wmb();
6640
6641         /* Interrupt is enabled by handle_external_intr() */
6642         kvm_x86_ops->handle_external_intr(vcpu);
6643
6644         ++vcpu->stat.exits;
6645
6646         /*
6647          * We must have an instruction between local_irq_enable() and
6648          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6649          * the interrupt shadow.  The stat.exits increment will do nicely.
6650          * But we need to prevent reordering, hence this barrier():
6651          */
6652         barrier();
6653
6654         kvm_guest_exit();
6655
6656         preempt_enable();
6657
6658         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6659
6660         /*
6661          * Profile KVM exit RIPs:
6662          */
6663         if (unlikely(prof_on == KVM_PROFILING)) {
6664                 unsigned long rip = kvm_rip_read(vcpu);
6665                 profile_hit(KVM_PROFILING, (void *)rip);
6666         }
6667
6668         if (unlikely(vcpu->arch.tsc_always_catchup))
6669                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6670
6671         if (vcpu->arch.apic_attention)
6672                 kvm_lapic_sync_from_vapic(vcpu);
6673
6674         r = kvm_x86_ops->handle_exit(vcpu);
6675         return r;
6676
6677 cancel_injection:
6678         kvm_x86_ops->cancel_injection(vcpu);
6679         if (unlikely(vcpu->arch.apic_attention))
6680                 kvm_lapic_sync_from_vapic(vcpu);
6681 out:
6682         return r;
6683 }
6684
6685 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6686 {
6687         if (!kvm_arch_vcpu_runnable(vcpu) &&
6688             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6689                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6690                 kvm_vcpu_block(vcpu);
6691                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6692
6693                 if (kvm_x86_ops->post_block)
6694                         kvm_x86_ops->post_block(vcpu);
6695
6696                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6697                         return 1;
6698         }
6699
6700         kvm_apic_accept_events(vcpu);
6701         switch(vcpu->arch.mp_state) {
6702         case KVM_MP_STATE_HALTED:
6703                 vcpu->arch.pv.pv_unhalted = false;
6704                 vcpu->arch.mp_state =
6705                         KVM_MP_STATE_RUNNABLE;
6706         case KVM_MP_STATE_RUNNABLE:
6707                 vcpu->arch.apf.halted = false;
6708                 break;
6709         case KVM_MP_STATE_INIT_RECEIVED:
6710                 break;
6711         default:
6712                 return -EINTR;
6713                 break;
6714         }
6715         return 1;
6716 }
6717
6718 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6719 {
6720         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6721                 !vcpu->arch.apf.halted);
6722 }
6723
6724 static int vcpu_run(struct kvm_vcpu *vcpu)
6725 {
6726         int r;
6727         struct kvm *kvm = vcpu->kvm;
6728
6729         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6730
6731         for (;;) {
6732                 if (kvm_vcpu_running(vcpu)) {
6733                         r = vcpu_enter_guest(vcpu);
6734                 } else {
6735                         r = vcpu_block(kvm, vcpu);
6736                 }
6737
6738                 if (r <= 0)
6739                         break;
6740
6741                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6742                 if (kvm_cpu_has_pending_timer(vcpu))
6743                         kvm_inject_pending_timer_irqs(vcpu);
6744
6745                 if (dm_request_for_irq_injection(vcpu) &&
6746                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6747                         r = 0;
6748                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6749                         ++vcpu->stat.request_irq_exits;
6750                         break;
6751                 }
6752
6753                 kvm_check_async_pf_completion(vcpu);
6754
6755                 if (signal_pending(current)) {
6756                         r = -EINTR;
6757                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6758                         ++vcpu->stat.signal_exits;
6759                         break;
6760                 }
6761                 if (need_resched()) {
6762                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6763                         cond_resched();
6764                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6765                 }
6766         }
6767
6768         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6769
6770         return r;
6771 }
6772
6773 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6774 {
6775         int r;
6776         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6777         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6778         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6779         if (r != EMULATE_DONE)
6780                 return 0;
6781         return 1;
6782 }
6783
6784 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6785 {
6786         BUG_ON(!vcpu->arch.pio.count);
6787
6788         return complete_emulated_io(vcpu);
6789 }
6790
6791 /*
6792  * Implements the following, as a state machine:
6793  *
6794  * read:
6795  *   for each fragment
6796  *     for each mmio piece in the fragment
6797  *       write gpa, len
6798  *       exit
6799  *       copy data
6800  *   execute insn
6801  *
6802  * write:
6803  *   for each fragment
6804  *     for each mmio piece in the fragment
6805  *       write gpa, len
6806  *       copy data
6807  *       exit
6808  */
6809 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6810 {
6811         struct kvm_run *run = vcpu->run;
6812         struct kvm_mmio_fragment *frag;
6813         unsigned len;
6814
6815         BUG_ON(!vcpu->mmio_needed);
6816
6817         /* Complete previous fragment */
6818         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6819         len = min(8u, frag->len);
6820         if (!vcpu->mmio_is_write)
6821                 memcpy(frag->data, run->mmio.data, len);
6822
6823         if (frag->len <= 8) {
6824                 /* Switch to the next fragment. */
6825                 frag++;
6826                 vcpu->mmio_cur_fragment++;
6827         } else {
6828                 /* Go forward to the next mmio piece. */
6829                 frag->data += len;
6830                 frag->gpa += len;
6831                 frag->len -= len;
6832         }
6833
6834         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6835                 vcpu->mmio_needed = 0;
6836
6837                 /* FIXME: return into emulator if single-stepping.  */
6838                 if (vcpu->mmio_is_write)
6839                         return 1;
6840                 vcpu->mmio_read_completed = 1;
6841                 return complete_emulated_io(vcpu);
6842         }
6843
6844         run->exit_reason = KVM_EXIT_MMIO;
6845         run->mmio.phys_addr = frag->gpa;
6846         if (vcpu->mmio_is_write)
6847                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6848         run->mmio.len = min(8u, frag->len);
6849         run->mmio.is_write = vcpu->mmio_is_write;
6850         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6851         return 0;
6852 }
6853
6854
6855 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6856 {
6857         struct fpu *fpu = &current->thread.fpu;
6858         int r;
6859         sigset_t sigsaved;
6860
6861         fpu__activate_curr(fpu);
6862
6863         if (vcpu->sigset_active)
6864                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6865
6866         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6867                 kvm_vcpu_block(vcpu);
6868                 kvm_apic_accept_events(vcpu);
6869                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6870                 r = -EAGAIN;
6871                 goto out;
6872         }
6873
6874         /* re-sync apic's tpr */
6875         if (!lapic_in_kernel(vcpu)) {
6876                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6877                         r = -EINVAL;
6878                         goto out;
6879                 }
6880         }
6881
6882         if (unlikely(vcpu->arch.complete_userspace_io)) {
6883                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6884                 vcpu->arch.complete_userspace_io = NULL;
6885                 r = cui(vcpu);
6886                 if (r <= 0)
6887                         goto out;
6888         } else
6889                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6890
6891         r = vcpu_run(vcpu);
6892
6893 out:
6894         post_kvm_run_save(vcpu);
6895         if (vcpu->sigset_active)
6896                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6897
6898         return r;
6899 }
6900
6901 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6902 {
6903         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6904                 /*
6905                  * We are here if userspace calls get_regs() in the middle of
6906                  * instruction emulation. Registers state needs to be copied
6907                  * back from emulation context to vcpu. Userspace shouldn't do
6908                  * that usually, but some bad designed PV devices (vmware
6909                  * backdoor interface) need this to work
6910                  */
6911                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6912                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6913         }
6914         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6915         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6916         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6917         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6918         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6919         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6920         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6921         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6922 #ifdef CONFIG_X86_64
6923         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6924         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6925         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6926         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6927         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6928         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6929         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6930         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6931 #endif
6932
6933         regs->rip = kvm_rip_read(vcpu);
6934         regs->rflags = kvm_get_rflags(vcpu);
6935
6936         return 0;
6937 }
6938
6939 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6940 {
6941         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6942         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6943
6944         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6945         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6946         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6947         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6948         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6949         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6950         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6951         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6952 #ifdef CONFIG_X86_64
6953         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6954         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6955         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6956         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6957         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6958         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6959         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6960         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6961 #endif
6962
6963         kvm_rip_write(vcpu, regs->rip);
6964         kvm_set_rflags(vcpu, regs->rflags);
6965
6966         vcpu->arch.exception.pending = false;
6967
6968         kvm_make_request(KVM_REQ_EVENT, vcpu);
6969
6970         return 0;
6971 }
6972
6973 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6974 {
6975         struct kvm_segment cs;
6976
6977         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6978         *db = cs.db;
6979         *l = cs.l;
6980 }
6981 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6982
6983 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6984                                   struct kvm_sregs *sregs)
6985 {
6986         struct desc_ptr dt;
6987
6988         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6989         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6990         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6991         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6992         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6993         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6994
6995         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6996         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6997
6998         kvm_x86_ops->get_idt(vcpu, &dt);
6999         sregs->idt.limit = dt.size;
7000         sregs->idt.base = dt.address;
7001         kvm_x86_ops->get_gdt(vcpu, &dt);
7002         sregs->gdt.limit = dt.size;
7003         sregs->gdt.base = dt.address;
7004
7005         sregs->cr0 = kvm_read_cr0(vcpu);
7006         sregs->cr2 = vcpu->arch.cr2;
7007         sregs->cr3 = kvm_read_cr3(vcpu);
7008         sregs->cr4 = kvm_read_cr4(vcpu);
7009         sregs->cr8 = kvm_get_cr8(vcpu);
7010         sregs->efer = vcpu->arch.efer;
7011         sregs->apic_base = kvm_get_apic_base(vcpu);
7012
7013         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7014
7015         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7016                 set_bit(vcpu->arch.interrupt.nr,
7017                         (unsigned long *)sregs->interrupt_bitmap);
7018
7019         return 0;
7020 }
7021
7022 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7023                                     struct kvm_mp_state *mp_state)
7024 {
7025         kvm_apic_accept_events(vcpu);
7026         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7027                                         vcpu->arch.pv.pv_unhalted)
7028                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7029         else
7030                 mp_state->mp_state = vcpu->arch.mp_state;
7031
7032         return 0;
7033 }
7034
7035 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7036                                     struct kvm_mp_state *mp_state)
7037 {
7038         if (!lapic_in_kernel(vcpu) &&
7039             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7040                 return -EINVAL;
7041
7042         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7043                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7044                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7045         } else
7046                 vcpu->arch.mp_state = mp_state->mp_state;
7047         kvm_make_request(KVM_REQ_EVENT, vcpu);
7048         return 0;
7049 }
7050
7051 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7052                     int reason, bool has_error_code, u32 error_code)
7053 {
7054         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7055         int ret;
7056
7057         init_emulate_ctxt(vcpu);
7058
7059         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7060                                    has_error_code, error_code);
7061
7062         if (ret)
7063                 return EMULATE_FAIL;
7064
7065         kvm_rip_write(vcpu, ctxt->eip);
7066         kvm_set_rflags(vcpu, ctxt->eflags);
7067         kvm_make_request(KVM_REQ_EVENT, vcpu);
7068         return EMULATE_DONE;
7069 }
7070 EXPORT_SYMBOL_GPL(kvm_task_switch);
7071
7072 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7073                                   struct kvm_sregs *sregs)
7074 {
7075         struct msr_data apic_base_msr;
7076         int mmu_reset_needed = 0;
7077         int pending_vec, max_bits, idx;
7078         struct desc_ptr dt;
7079
7080         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7081                 return -EINVAL;
7082
7083         dt.size = sregs->idt.limit;
7084         dt.address = sregs->idt.base;
7085         kvm_x86_ops->set_idt(vcpu, &dt);
7086         dt.size = sregs->gdt.limit;
7087         dt.address = sregs->gdt.base;
7088         kvm_x86_ops->set_gdt(vcpu, &dt);
7089
7090         vcpu->arch.cr2 = sregs->cr2;
7091         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7092         vcpu->arch.cr3 = sregs->cr3;
7093         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7094
7095         kvm_set_cr8(vcpu, sregs->cr8);
7096
7097         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7098         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7099         apic_base_msr.data = sregs->apic_base;
7100         apic_base_msr.host_initiated = true;
7101         kvm_set_apic_base(vcpu, &apic_base_msr);
7102
7103         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7104         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7105         vcpu->arch.cr0 = sregs->cr0;
7106
7107         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7108         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7109         if (sregs->cr4 & X86_CR4_OSXSAVE)
7110                 kvm_update_cpuid(vcpu);
7111
7112         idx = srcu_read_lock(&vcpu->kvm->srcu);
7113         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7114                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7115                 mmu_reset_needed = 1;
7116         }
7117         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7118
7119         if (mmu_reset_needed)
7120                 kvm_mmu_reset_context(vcpu);
7121
7122         max_bits = KVM_NR_INTERRUPTS;
7123         pending_vec = find_first_bit(
7124                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7125         if (pending_vec < max_bits) {
7126                 kvm_queue_interrupt(vcpu, pending_vec, false);
7127                 pr_debug("Set back pending irq %d\n", pending_vec);
7128         }
7129
7130         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7131         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7132         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7133         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7134         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7135         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7136
7137         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7138         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7139
7140         update_cr8_intercept(vcpu);
7141
7142         /* Older userspace won't unhalt the vcpu on reset. */
7143         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7144             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7145             !is_protmode(vcpu))
7146                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7147
7148         kvm_make_request(KVM_REQ_EVENT, vcpu);
7149
7150         return 0;
7151 }
7152
7153 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7154                                         struct kvm_guest_debug *dbg)
7155 {
7156         unsigned long rflags;
7157         int i, r;
7158
7159         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7160                 r = -EBUSY;
7161                 if (vcpu->arch.exception.pending)
7162                         goto out;
7163                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7164                         kvm_queue_exception(vcpu, DB_VECTOR);
7165                 else
7166                         kvm_queue_exception(vcpu, BP_VECTOR);
7167         }
7168
7169         /*
7170          * Read rflags as long as potentially injected trace flags are still
7171          * filtered out.
7172          */
7173         rflags = kvm_get_rflags(vcpu);
7174
7175         vcpu->guest_debug = dbg->control;
7176         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7177                 vcpu->guest_debug = 0;
7178
7179         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7180                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7181                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7182                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7183         } else {
7184                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7185                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7186         }
7187         kvm_update_dr7(vcpu);
7188
7189         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7190                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7191                         get_segment_base(vcpu, VCPU_SREG_CS);
7192
7193         /*
7194          * Trigger an rflags update that will inject or remove the trace
7195          * flags.
7196          */
7197         kvm_set_rflags(vcpu, rflags);
7198
7199         kvm_x86_ops->update_bp_intercept(vcpu);
7200
7201         r = 0;
7202
7203 out:
7204
7205         return r;
7206 }
7207
7208 /*
7209  * Translate a guest virtual address to a guest physical address.
7210  */
7211 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7212                                     struct kvm_translation *tr)
7213 {
7214         unsigned long vaddr = tr->linear_address;
7215         gpa_t gpa;
7216         int idx;
7217
7218         idx = srcu_read_lock(&vcpu->kvm->srcu);
7219         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7220         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7221         tr->physical_address = gpa;
7222         tr->valid = gpa != UNMAPPED_GVA;
7223         tr->writeable = 1;
7224         tr->usermode = 0;
7225
7226         return 0;
7227 }
7228
7229 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7230 {
7231         struct fxregs_state *fxsave =
7232                         &vcpu->arch.guest_fpu.state.fxsave;
7233
7234         memcpy(fpu->fpr, fxsave->st_space, 128);
7235         fpu->fcw = fxsave->cwd;
7236         fpu->fsw = fxsave->swd;
7237         fpu->ftwx = fxsave->twd;
7238         fpu->last_opcode = fxsave->fop;
7239         fpu->last_ip = fxsave->rip;
7240         fpu->last_dp = fxsave->rdp;
7241         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7242
7243         return 0;
7244 }
7245
7246 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7247 {
7248         struct fxregs_state *fxsave =
7249                         &vcpu->arch.guest_fpu.state.fxsave;
7250
7251         memcpy(fxsave->st_space, fpu->fpr, 128);
7252         fxsave->cwd = fpu->fcw;
7253         fxsave->swd = fpu->fsw;
7254         fxsave->twd = fpu->ftwx;
7255         fxsave->fop = fpu->last_opcode;
7256         fxsave->rip = fpu->last_ip;
7257         fxsave->rdp = fpu->last_dp;
7258         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7259
7260         return 0;
7261 }
7262
7263 static void fx_init(struct kvm_vcpu *vcpu)
7264 {
7265         fpstate_init(&vcpu->arch.guest_fpu.state);
7266         if (cpu_has_xsaves)
7267                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7268                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7269
7270         /*
7271          * Ensure guest xcr0 is valid for loading
7272          */
7273         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7274
7275         vcpu->arch.cr0 |= X86_CR0_ET;
7276 }
7277
7278 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7279 {
7280         if (vcpu->guest_fpu_loaded)
7281                 return;
7282
7283         /*
7284          * Restore all possible states in the guest,
7285          * and assume host would use all available bits.
7286          * Guest xcr0 would be loaded later.
7287          */
7288         kvm_put_guest_xcr0(vcpu);
7289         vcpu->guest_fpu_loaded = 1;
7290         __kernel_fpu_begin();
7291         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7292         trace_kvm_fpu(1);
7293 }
7294
7295 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7296 {
7297         kvm_put_guest_xcr0(vcpu);
7298
7299         if (!vcpu->guest_fpu_loaded) {
7300                 vcpu->fpu_counter = 0;
7301                 return;
7302         }
7303
7304         vcpu->guest_fpu_loaded = 0;
7305         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7306         __kernel_fpu_end();
7307         ++vcpu->stat.fpu_reload;
7308         /*
7309          * If using eager FPU mode, or if the guest is a frequent user
7310          * of the FPU, just leave the FPU active for next time.
7311          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7312          * the FPU in bursts will revert to loading it on demand.
7313          */
7314         if (!vcpu->arch.eager_fpu) {
7315                 if (++vcpu->fpu_counter < 5)
7316                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7317         }
7318         trace_kvm_fpu(0);
7319 }
7320
7321 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7322 {
7323         kvmclock_reset(vcpu);
7324
7325         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7326         kvm_x86_ops->vcpu_free(vcpu);
7327 }
7328
7329 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7330                                                 unsigned int id)
7331 {
7332         struct kvm_vcpu *vcpu;
7333
7334         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7335                 printk_once(KERN_WARNING
7336                 "kvm: SMP vm created on host with unstable TSC; "
7337                 "guest TSC will not be reliable\n");
7338
7339         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7340
7341         return vcpu;
7342 }
7343
7344 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7345 {
7346         int r;
7347
7348         kvm_vcpu_mtrr_init(vcpu);
7349         r = vcpu_load(vcpu);
7350         if (r)
7351                 return r;
7352         kvm_vcpu_reset(vcpu, false);
7353         kvm_mmu_setup(vcpu);
7354         vcpu_put(vcpu);
7355         return r;
7356 }
7357
7358 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7359 {
7360         struct msr_data msr;
7361         struct kvm *kvm = vcpu->kvm;
7362
7363         if (vcpu_load(vcpu))
7364                 return;
7365         msr.data = 0x0;
7366         msr.index = MSR_IA32_TSC;
7367         msr.host_initiated = true;
7368         kvm_write_tsc(vcpu, &msr);
7369         vcpu_put(vcpu);
7370
7371         if (!kvmclock_periodic_sync)
7372                 return;
7373
7374         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7375                                         KVMCLOCK_SYNC_PERIOD);
7376 }
7377
7378 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7379 {
7380         int r;
7381         vcpu->arch.apf.msr_val = 0;
7382
7383         r = vcpu_load(vcpu);
7384         BUG_ON(r);
7385         kvm_mmu_unload(vcpu);
7386         vcpu_put(vcpu);
7387
7388         kvm_x86_ops->vcpu_free(vcpu);
7389 }
7390
7391 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7392 {
7393         vcpu->arch.hflags = 0;
7394
7395         atomic_set(&vcpu->arch.nmi_queued, 0);
7396         vcpu->arch.nmi_pending = 0;
7397         vcpu->arch.nmi_injected = false;
7398         kvm_clear_interrupt_queue(vcpu);
7399         kvm_clear_exception_queue(vcpu);
7400
7401         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7402         kvm_update_dr0123(vcpu);
7403         vcpu->arch.dr6 = DR6_INIT;
7404         kvm_update_dr6(vcpu);
7405         vcpu->arch.dr7 = DR7_FIXED_1;
7406         kvm_update_dr7(vcpu);
7407
7408         vcpu->arch.cr2 = 0;
7409
7410         kvm_make_request(KVM_REQ_EVENT, vcpu);
7411         vcpu->arch.apf.msr_val = 0;
7412         vcpu->arch.st.msr_val = 0;
7413
7414         kvmclock_reset(vcpu);
7415
7416         kvm_clear_async_pf_completion_queue(vcpu);
7417         kvm_async_pf_hash_reset(vcpu);
7418         vcpu->arch.apf.halted = false;
7419
7420         if (!init_event) {
7421                 kvm_pmu_reset(vcpu);
7422                 vcpu->arch.smbase = 0x30000;
7423         }
7424
7425         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7426         vcpu->arch.regs_avail = ~0;
7427         vcpu->arch.regs_dirty = ~0;
7428
7429         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7430 }
7431
7432 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7433 {
7434         struct kvm_segment cs;
7435
7436         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7437         cs.selector = vector << 8;
7438         cs.base = vector << 12;
7439         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7440         kvm_rip_write(vcpu, 0);
7441 }
7442
7443 int kvm_arch_hardware_enable(void)
7444 {
7445         struct kvm *kvm;
7446         struct kvm_vcpu *vcpu;
7447         int i;
7448         int ret;
7449         u64 local_tsc;
7450         u64 max_tsc = 0;
7451         bool stable, backwards_tsc = false;
7452
7453         kvm_shared_msr_cpu_online();
7454         ret = kvm_x86_ops->hardware_enable();
7455         if (ret != 0)
7456                 return ret;
7457
7458         local_tsc = rdtsc();
7459         stable = !check_tsc_unstable();
7460         list_for_each_entry(kvm, &vm_list, vm_list) {
7461                 kvm_for_each_vcpu(i, vcpu, kvm) {
7462                         if (!stable && vcpu->cpu == smp_processor_id())
7463                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7464                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7465                                 backwards_tsc = true;
7466                                 if (vcpu->arch.last_host_tsc > max_tsc)
7467                                         max_tsc = vcpu->arch.last_host_tsc;
7468                         }
7469                 }
7470         }
7471
7472         /*
7473          * Sometimes, even reliable TSCs go backwards.  This happens on
7474          * platforms that reset TSC during suspend or hibernate actions, but
7475          * maintain synchronization.  We must compensate.  Fortunately, we can
7476          * detect that condition here, which happens early in CPU bringup,
7477          * before any KVM threads can be running.  Unfortunately, we can't
7478          * bring the TSCs fully up to date with real time, as we aren't yet far
7479          * enough into CPU bringup that we know how much real time has actually
7480          * elapsed; our helper function, get_kernel_ns() will be using boot
7481          * variables that haven't been updated yet.
7482          *
7483          * So we simply find the maximum observed TSC above, then record the
7484          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7485          * the adjustment will be applied.  Note that we accumulate
7486          * adjustments, in case multiple suspend cycles happen before some VCPU
7487          * gets a chance to run again.  In the event that no KVM threads get a
7488          * chance to run, we will miss the entire elapsed period, as we'll have
7489          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7490          * loose cycle time.  This isn't too big a deal, since the loss will be
7491          * uniform across all VCPUs (not to mention the scenario is extremely
7492          * unlikely). It is possible that a second hibernate recovery happens
7493          * much faster than a first, causing the observed TSC here to be
7494          * smaller; this would require additional padding adjustment, which is
7495          * why we set last_host_tsc to the local tsc observed here.
7496          *
7497          * N.B. - this code below runs only on platforms with reliable TSC,
7498          * as that is the only way backwards_tsc is set above.  Also note
7499          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7500          * have the same delta_cyc adjustment applied if backwards_tsc
7501          * is detected.  Note further, this adjustment is only done once,
7502          * as we reset last_host_tsc on all VCPUs to stop this from being
7503          * called multiple times (one for each physical CPU bringup).
7504          *
7505          * Platforms with unreliable TSCs don't have to deal with this, they
7506          * will be compensated by the logic in vcpu_load, which sets the TSC to
7507          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7508          * guarantee that they stay in perfect synchronization.
7509          */
7510         if (backwards_tsc) {
7511                 u64 delta_cyc = max_tsc - local_tsc;
7512                 backwards_tsc_observed = true;
7513                 list_for_each_entry(kvm, &vm_list, vm_list) {
7514                         kvm_for_each_vcpu(i, vcpu, kvm) {
7515                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7516                                 vcpu->arch.last_host_tsc = local_tsc;
7517                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7518                         }
7519
7520                         /*
7521                          * We have to disable TSC offset matching.. if you were
7522                          * booting a VM while issuing an S4 host suspend....
7523                          * you may have some problem.  Solving this issue is
7524                          * left as an exercise to the reader.
7525                          */
7526                         kvm->arch.last_tsc_nsec = 0;
7527                         kvm->arch.last_tsc_write = 0;
7528                 }
7529
7530         }
7531         return 0;
7532 }
7533
7534 void kvm_arch_hardware_disable(void)
7535 {
7536         kvm_x86_ops->hardware_disable();
7537         drop_user_return_notifiers();
7538 }
7539
7540 int kvm_arch_hardware_setup(void)
7541 {
7542         int r;
7543
7544         r = kvm_x86_ops->hardware_setup();
7545         if (r != 0)
7546                 return r;
7547
7548         if (kvm_has_tsc_control) {
7549                 /*
7550                  * Make sure the user can only configure tsc_khz values that
7551                  * fit into a signed integer.
7552                  * A min value is not calculated needed because it will always
7553                  * be 1 on all machines.
7554                  */
7555                 u64 max = min(0x7fffffffULL,
7556                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7557                 kvm_max_guest_tsc_khz = max;
7558
7559                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7560         }
7561
7562         kvm_init_msr_list();
7563         return 0;
7564 }
7565
7566 void kvm_arch_hardware_unsetup(void)
7567 {
7568         kvm_x86_ops->hardware_unsetup();
7569 }
7570
7571 void kvm_arch_check_processor_compat(void *rtn)
7572 {
7573         kvm_x86_ops->check_processor_compatibility(rtn);
7574 }
7575
7576 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7577 {
7578         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7579 }
7580 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7581
7582 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7583 {
7584         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7585 }
7586
7587 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7588 {
7589         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7590 }
7591
7592 struct static_key kvm_no_apic_vcpu __read_mostly;
7593 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7594
7595 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7596 {
7597         struct page *page;
7598         struct kvm *kvm;
7599         int r;
7600
7601         BUG_ON(vcpu->kvm == NULL);
7602         kvm = vcpu->kvm;
7603
7604         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7605         vcpu->arch.pv.pv_unhalted = false;
7606         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7607         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7608                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7609         else
7610                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7611
7612         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7613         if (!page) {
7614                 r = -ENOMEM;
7615                 goto fail;
7616         }
7617         vcpu->arch.pio_data = page_address(page);
7618
7619         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7620
7621         r = kvm_mmu_create(vcpu);
7622         if (r < 0)
7623                 goto fail_free_pio_data;
7624
7625         if (irqchip_in_kernel(kvm)) {
7626                 r = kvm_create_lapic(vcpu);
7627                 if (r < 0)
7628                         goto fail_mmu_destroy;
7629         } else
7630                 static_key_slow_inc(&kvm_no_apic_vcpu);
7631
7632         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7633                                        GFP_KERNEL);
7634         if (!vcpu->arch.mce_banks) {
7635                 r = -ENOMEM;
7636                 goto fail_free_lapic;
7637         }
7638         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7639
7640         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7641                 r = -ENOMEM;
7642                 goto fail_free_mce_banks;
7643         }
7644
7645         fx_init(vcpu);
7646
7647         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7648         vcpu->arch.pv_time_enabled = false;
7649
7650         vcpu->arch.guest_supported_xcr0 = 0;
7651         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7652
7653         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7654
7655         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7656
7657         kvm_async_pf_hash_reset(vcpu);
7658         kvm_pmu_init(vcpu);
7659
7660         vcpu->arch.pending_external_vector = -1;
7661
7662         kvm_hv_vcpu_init(vcpu);
7663
7664         return 0;
7665
7666 fail_free_mce_banks:
7667         kfree(vcpu->arch.mce_banks);
7668 fail_free_lapic:
7669         kvm_free_lapic(vcpu);
7670 fail_mmu_destroy:
7671         kvm_mmu_destroy(vcpu);
7672 fail_free_pio_data:
7673         free_page((unsigned long)vcpu->arch.pio_data);
7674 fail:
7675         return r;
7676 }
7677
7678 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7679 {
7680         int idx;
7681
7682         kvm_hv_vcpu_uninit(vcpu);
7683         kvm_pmu_destroy(vcpu);
7684         kfree(vcpu->arch.mce_banks);
7685         kvm_free_lapic(vcpu);
7686         idx = srcu_read_lock(&vcpu->kvm->srcu);
7687         kvm_mmu_destroy(vcpu);
7688         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7689         free_page((unsigned long)vcpu->arch.pio_data);
7690         if (!lapic_in_kernel(vcpu))
7691                 static_key_slow_dec(&kvm_no_apic_vcpu);
7692 }
7693
7694 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7695 {
7696         kvm_x86_ops->sched_in(vcpu, cpu);
7697 }
7698
7699 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7700 {
7701         if (type)
7702                 return -EINVAL;
7703
7704         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7705         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7706         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7707         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7708         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7709
7710         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7711         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7712         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7713         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7714                 &kvm->arch.irq_sources_bitmap);
7715
7716         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7717         mutex_init(&kvm->arch.apic_map_lock);
7718         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7719
7720         pvclock_update_vm_gtod_copy(kvm);
7721
7722         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7723         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7724
7725         return 0;
7726 }
7727
7728 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7729 {
7730         int r;
7731         r = vcpu_load(vcpu);
7732         BUG_ON(r);
7733         kvm_mmu_unload(vcpu);
7734         vcpu_put(vcpu);
7735 }
7736
7737 static void kvm_free_vcpus(struct kvm *kvm)
7738 {
7739         unsigned int i;
7740         struct kvm_vcpu *vcpu;
7741
7742         /*
7743          * Unpin any mmu pages first.
7744          */
7745         kvm_for_each_vcpu(i, vcpu, kvm) {
7746                 kvm_clear_async_pf_completion_queue(vcpu);
7747                 kvm_unload_vcpu_mmu(vcpu);
7748         }
7749         kvm_for_each_vcpu(i, vcpu, kvm)
7750                 kvm_arch_vcpu_free(vcpu);
7751
7752         mutex_lock(&kvm->lock);
7753         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7754                 kvm->vcpus[i] = NULL;
7755
7756         atomic_set(&kvm->online_vcpus, 0);
7757         mutex_unlock(&kvm->lock);
7758 }
7759
7760 void kvm_arch_sync_events(struct kvm *kvm)
7761 {
7762         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7763         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7764         kvm_free_all_assigned_devices(kvm);
7765         kvm_free_pit(kvm);
7766 }
7767
7768 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7769 {
7770         int i, r;
7771         unsigned long hva;
7772         struct kvm_memslots *slots = kvm_memslots(kvm);
7773         struct kvm_memory_slot *slot, old;
7774
7775         /* Called with kvm->slots_lock held.  */
7776         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7777                 return -EINVAL;
7778
7779         slot = id_to_memslot(slots, id);
7780         if (size) {
7781                 if (WARN_ON(slot->npages))
7782                         return -EEXIST;
7783
7784                 /*
7785                  * MAP_SHARED to prevent internal slot pages from being moved
7786                  * by fork()/COW.
7787                  */
7788                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7789                               MAP_SHARED | MAP_ANONYMOUS, 0);
7790                 if (IS_ERR((void *)hva))
7791                         return PTR_ERR((void *)hva);
7792         } else {
7793                 if (!slot->npages)
7794                         return 0;
7795
7796                 hva = 0;
7797         }
7798
7799         old = *slot;
7800         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7801                 struct kvm_userspace_memory_region m;
7802
7803                 m.slot = id | (i << 16);
7804                 m.flags = 0;
7805                 m.guest_phys_addr = gpa;
7806                 m.userspace_addr = hva;
7807                 m.memory_size = size;
7808                 r = __kvm_set_memory_region(kvm, &m);
7809                 if (r < 0)
7810                         return r;
7811         }
7812
7813         if (!size) {
7814                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7815                 WARN_ON(r < 0);
7816         }
7817
7818         return 0;
7819 }
7820 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7821
7822 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7823 {
7824         int r;
7825
7826         mutex_lock(&kvm->slots_lock);
7827         r = __x86_set_memory_region(kvm, id, gpa, size);
7828         mutex_unlock(&kvm->slots_lock);
7829
7830         return r;
7831 }
7832 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7833
7834 void kvm_arch_destroy_vm(struct kvm *kvm)
7835 {
7836         if (current->mm == kvm->mm) {
7837                 /*
7838                  * Free memory regions allocated on behalf of userspace,
7839                  * unless the the memory map has changed due to process exit
7840                  * or fd copying.
7841                  */
7842                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7843                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7844                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7845         }
7846         kvm_iommu_unmap_guest(kvm);
7847         kfree(kvm->arch.vpic);
7848         kfree(kvm->arch.vioapic);
7849         kvm_free_vcpus(kvm);
7850         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7851 }
7852
7853 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7854                            struct kvm_memory_slot *dont)
7855 {
7856         int i;
7857
7858         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7859                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7860                         kvfree(free->arch.rmap[i]);
7861                         free->arch.rmap[i] = NULL;
7862                 }
7863                 if (i == 0)
7864                         continue;
7865
7866                 if (!dont || free->arch.lpage_info[i - 1] !=
7867                              dont->arch.lpage_info[i - 1]) {
7868                         kvfree(free->arch.lpage_info[i - 1]);
7869                         free->arch.lpage_info[i - 1] = NULL;
7870                 }
7871         }
7872 }
7873
7874 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7875                             unsigned long npages)
7876 {
7877         int i;
7878
7879         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7880                 unsigned long ugfn;
7881                 int lpages;
7882                 int level = i + 1;
7883
7884                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7885                                       slot->base_gfn, level) + 1;
7886
7887                 slot->arch.rmap[i] =
7888                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7889                 if (!slot->arch.rmap[i])
7890                         goto out_free;
7891                 if (i == 0)
7892                         continue;
7893
7894                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7895                                         sizeof(*slot->arch.lpage_info[i - 1]));
7896                 if (!slot->arch.lpage_info[i - 1])
7897                         goto out_free;
7898
7899                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7900                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7901                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7902                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7903                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7904                 /*
7905                  * If the gfn and userspace address are not aligned wrt each
7906                  * other, or if explicitly asked to, disable large page
7907                  * support for this slot
7908                  */
7909                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7910                     !kvm_largepages_enabled()) {
7911                         unsigned long j;
7912
7913                         for (j = 0; j < lpages; ++j)
7914                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7915                 }
7916         }
7917
7918         return 0;
7919
7920 out_free:
7921         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7922                 kvfree(slot->arch.rmap[i]);
7923                 slot->arch.rmap[i] = NULL;
7924                 if (i == 0)
7925                         continue;
7926
7927                 kvfree(slot->arch.lpage_info[i - 1]);
7928                 slot->arch.lpage_info[i - 1] = NULL;
7929         }
7930         return -ENOMEM;
7931 }
7932
7933 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7934 {
7935         /*
7936          * memslots->generation has been incremented.
7937          * mmio generation may have reached its maximum value.
7938          */
7939         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7940 }
7941
7942 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7943                                 struct kvm_memory_slot *memslot,
7944                                 const struct kvm_userspace_memory_region *mem,
7945                                 enum kvm_mr_change change)
7946 {
7947         return 0;
7948 }
7949
7950 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7951                                      struct kvm_memory_slot *new)
7952 {
7953         /* Still write protect RO slot */
7954         if (new->flags & KVM_MEM_READONLY) {
7955                 kvm_mmu_slot_remove_write_access(kvm, new);
7956                 return;
7957         }
7958
7959         /*
7960          * Call kvm_x86_ops dirty logging hooks when they are valid.
7961          *
7962          * kvm_x86_ops->slot_disable_log_dirty is called when:
7963          *
7964          *  - KVM_MR_CREATE with dirty logging is disabled
7965          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7966          *
7967          * The reason is, in case of PML, we need to set D-bit for any slots
7968          * with dirty logging disabled in order to eliminate unnecessary GPA
7969          * logging in PML buffer (and potential PML buffer full VMEXT). This
7970          * guarantees leaving PML enabled during guest's lifetime won't have
7971          * any additonal overhead from PML when guest is running with dirty
7972          * logging disabled for memory slots.
7973          *
7974          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7975          * to dirty logging mode.
7976          *
7977          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7978          *
7979          * In case of write protect:
7980          *
7981          * Write protect all pages for dirty logging.
7982          *
7983          * All the sptes including the large sptes which point to this
7984          * slot are set to readonly. We can not create any new large
7985          * spte on this slot until the end of the logging.
7986          *
7987          * See the comments in fast_page_fault().
7988          */
7989         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7990                 if (kvm_x86_ops->slot_enable_log_dirty)
7991                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7992                 else
7993                         kvm_mmu_slot_remove_write_access(kvm, new);
7994         } else {
7995                 if (kvm_x86_ops->slot_disable_log_dirty)
7996                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7997         }
7998 }
7999
8000 void kvm_arch_commit_memory_region(struct kvm *kvm,
8001                                 const struct kvm_userspace_memory_region *mem,
8002                                 const struct kvm_memory_slot *old,
8003                                 const struct kvm_memory_slot *new,
8004                                 enum kvm_mr_change change)
8005 {
8006         int nr_mmu_pages = 0;
8007
8008         if (!kvm->arch.n_requested_mmu_pages)
8009                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8010
8011         if (nr_mmu_pages)
8012                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8013
8014         /*
8015          * Dirty logging tracks sptes in 4k granularity, meaning that large
8016          * sptes have to be split.  If live migration is successful, the guest
8017          * in the source machine will be destroyed and large sptes will be
8018          * created in the destination. However, if the guest continues to run
8019          * in the source machine (for example if live migration fails), small
8020          * sptes will remain around and cause bad performance.
8021          *
8022          * Scan sptes if dirty logging has been stopped, dropping those
8023          * which can be collapsed into a single large-page spte.  Later
8024          * page faults will create the large-page sptes.
8025          */
8026         if ((change != KVM_MR_DELETE) &&
8027                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8028                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8029                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8030
8031         /*
8032          * Set up write protection and/or dirty logging for the new slot.
8033          *
8034          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8035          * been zapped so no dirty logging staff is needed for old slot. For
8036          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8037          * new and it's also covered when dealing with the new slot.
8038          *
8039          * FIXME: const-ify all uses of struct kvm_memory_slot.
8040          */
8041         if (change != KVM_MR_DELETE)
8042                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8043 }
8044
8045 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8046 {
8047         kvm_mmu_invalidate_zap_all_pages(kvm);
8048 }
8049
8050 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8051                                    struct kvm_memory_slot *slot)
8052 {
8053         kvm_mmu_invalidate_zap_all_pages(kvm);
8054 }
8055
8056 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8057 {
8058         if (!list_empty_careful(&vcpu->async_pf.done))
8059                 return true;
8060
8061         if (kvm_apic_has_events(vcpu))
8062                 return true;
8063
8064         if (vcpu->arch.pv.pv_unhalted)
8065                 return true;
8066
8067         if (atomic_read(&vcpu->arch.nmi_queued))
8068                 return true;
8069
8070         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8071                 return true;
8072
8073         if (kvm_arch_interrupt_allowed(vcpu) &&
8074             kvm_cpu_has_interrupt(vcpu))
8075                 return true;
8076
8077         if (kvm_hv_has_stimer_pending(vcpu))
8078                 return true;
8079
8080         return false;
8081 }
8082
8083 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8084 {
8085         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8086                 kvm_x86_ops->check_nested_events(vcpu, false);
8087
8088         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8089 }
8090
8091 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8092 {
8093         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8094 }
8095
8096 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8097 {
8098         return kvm_x86_ops->interrupt_allowed(vcpu);
8099 }
8100
8101 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8102 {
8103         if (is_64_bit_mode(vcpu))
8104                 return kvm_rip_read(vcpu);
8105         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8106                      kvm_rip_read(vcpu));
8107 }
8108 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8109
8110 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8111 {
8112         return kvm_get_linear_rip(vcpu) == linear_rip;
8113 }
8114 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8115
8116 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8117 {
8118         unsigned long rflags;
8119
8120         rflags = kvm_x86_ops->get_rflags(vcpu);
8121         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8122                 rflags &= ~X86_EFLAGS_TF;
8123         return rflags;
8124 }
8125 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8126
8127 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8128 {
8129         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8130             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8131                 rflags |= X86_EFLAGS_TF;
8132         kvm_x86_ops->set_rflags(vcpu, rflags);
8133 }
8134
8135 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8136 {
8137         __kvm_set_rflags(vcpu, rflags);
8138         kvm_make_request(KVM_REQ_EVENT, vcpu);
8139 }
8140 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8141
8142 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8143 {
8144         int r;
8145
8146         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8147               work->wakeup_all)
8148                 return;
8149
8150         r = kvm_mmu_reload(vcpu);
8151         if (unlikely(r))
8152                 return;
8153
8154         if (!vcpu->arch.mmu.direct_map &&
8155               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8156                 return;
8157
8158         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8159 }
8160
8161 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8162 {
8163         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8164 }
8165
8166 static inline u32 kvm_async_pf_next_probe(u32 key)
8167 {
8168         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8169 }
8170
8171 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8172 {
8173         u32 key = kvm_async_pf_hash_fn(gfn);
8174
8175         while (vcpu->arch.apf.gfns[key] != ~0)
8176                 key = kvm_async_pf_next_probe(key);
8177
8178         vcpu->arch.apf.gfns[key] = gfn;
8179 }
8180
8181 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8182 {
8183         int i;
8184         u32 key = kvm_async_pf_hash_fn(gfn);
8185
8186         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8187                      (vcpu->arch.apf.gfns[key] != gfn &&
8188                       vcpu->arch.apf.gfns[key] != ~0); i++)
8189                 key = kvm_async_pf_next_probe(key);
8190
8191         return key;
8192 }
8193
8194 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8195 {
8196         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8197 }
8198
8199 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8200 {
8201         u32 i, j, k;
8202
8203         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8204         while (true) {
8205                 vcpu->arch.apf.gfns[i] = ~0;
8206                 do {
8207                         j = kvm_async_pf_next_probe(j);
8208                         if (vcpu->arch.apf.gfns[j] == ~0)
8209                                 return;
8210                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8211                         /*
8212                          * k lies cyclically in ]i,j]
8213                          * |    i.k.j |
8214                          * |....j i.k.| or  |.k..j i...|
8215                          */
8216                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8217                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8218                 i = j;
8219         }
8220 }
8221
8222 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8223 {
8224
8225         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8226                                       sizeof(val));
8227 }
8228
8229 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8230                                      struct kvm_async_pf *work)
8231 {
8232         struct x86_exception fault;
8233
8234         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8235         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8236
8237         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8238             (vcpu->arch.apf.send_user_only &&
8239              kvm_x86_ops->get_cpl(vcpu) == 0))
8240                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8241         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8242                 fault.vector = PF_VECTOR;
8243                 fault.error_code_valid = true;
8244                 fault.error_code = 0;
8245                 fault.nested_page_fault = false;
8246                 fault.address = work->arch.token;
8247                 kvm_inject_page_fault(vcpu, &fault);
8248         }
8249 }
8250
8251 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8252                                  struct kvm_async_pf *work)
8253 {
8254         struct x86_exception fault;
8255
8256         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8257         if (work->wakeup_all)
8258                 work->arch.token = ~0; /* broadcast wakeup */
8259         else
8260                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8261
8262         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8263             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8264                 fault.vector = PF_VECTOR;
8265                 fault.error_code_valid = true;
8266                 fault.error_code = 0;
8267                 fault.nested_page_fault = false;
8268                 fault.address = work->arch.token;
8269                 kvm_inject_page_fault(vcpu, &fault);
8270         }
8271         vcpu->arch.apf.halted = false;
8272         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8273 }
8274
8275 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8276 {
8277         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8278                 return true;
8279         else
8280                 return !kvm_event_needs_reinjection(vcpu) &&
8281                         kvm_x86_ops->interrupt_allowed(vcpu);
8282 }
8283
8284 void kvm_arch_start_assignment(struct kvm *kvm)
8285 {
8286         atomic_inc(&kvm->arch.assigned_device_count);
8287 }
8288 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8289
8290 void kvm_arch_end_assignment(struct kvm *kvm)
8291 {
8292         atomic_dec(&kvm->arch.assigned_device_count);
8293 }
8294 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8295
8296 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8297 {
8298         return atomic_read(&kvm->arch.assigned_device_count);
8299 }
8300 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8301
8302 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8303 {
8304         atomic_inc(&kvm->arch.noncoherent_dma_count);
8305 }
8306 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8307
8308 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8309 {
8310         atomic_dec(&kvm->arch.noncoherent_dma_count);
8311 }
8312 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8313
8314 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8315 {
8316         return atomic_read(&kvm->arch.noncoherent_dma_count);
8317 }
8318 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8319
8320 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8321                                       struct irq_bypass_producer *prod)
8322 {
8323         struct kvm_kernel_irqfd *irqfd =
8324                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8325
8326         if (kvm_x86_ops->update_pi_irte) {
8327                 irqfd->producer = prod;
8328                 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8329                                 prod->irq, irqfd->gsi, 1);
8330         }
8331
8332         return -EINVAL;
8333 }
8334
8335 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8336                                       struct irq_bypass_producer *prod)
8337 {
8338         int ret;
8339         struct kvm_kernel_irqfd *irqfd =
8340                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8341
8342         if (!kvm_x86_ops->update_pi_irte) {
8343                 WARN_ON(irqfd->producer != NULL);
8344                 return;
8345         }
8346
8347         WARN_ON(irqfd->producer != prod);
8348         irqfd->producer = NULL;
8349
8350         /*
8351          * When producer of consumer is unregistered, we change back to
8352          * remapped mode, so we can re-use the current implementation
8353          * when the irq is masked/disabed or the consumer side (KVM
8354          * int this case doesn't want to receive the interrupts.
8355         */
8356         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8357         if (ret)
8358                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8359                        " fails: %d\n", irqfd->consumer.token, ret);
8360 }
8361
8362 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8363                                    uint32_t guest_irq, bool set)
8364 {
8365         if (!kvm_x86_ops->update_pi_irte)
8366                 return -EINVAL;
8367
8368         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8369 }
8370
8371 bool kvm_vector_hashing_enabled(void)
8372 {
8373         return vector_hashing;
8374 }
8375 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8376
8377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8384 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8385 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8386 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8387 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8388 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8389 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8390 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8391 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8392 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);