KVM: x86: introduce do_shl32_div32
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly backwards_tsc_observed = false;
127
128 #define KVM_NR_SHARED_MSRS 16
129
130 struct kvm_shared_msrs_global {
131         int nr;
132         u32 msrs[KVM_NR_SHARED_MSRS];
133 };
134
135 struct kvm_shared_msrs {
136         struct user_return_notifier urn;
137         bool registered;
138         struct kvm_shared_msr_values {
139                 u64 host;
140                 u64 curr;
141         } values[KVM_NR_SHARED_MSRS];
142 };
143
144 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
145 static struct kvm_shared_msrs __percpu *shared_msrs;
146
147 struct kvm_stats_debugfs_item debugfs_entries[] = {
148         { "pf_fixed", VCPU_STAT(pf_fixed) },
149         { "pf_guest", VCPU_STAT(pf_guest) },
150         { "tlb_flush", VCPU_STAT(tlb_flush) },
151         { "invlpg", VCPU_STAT(invlpg) },
152         { "exits", VCPU_STAT(exits) },
153         { "io_exits", VCPU_STAT(io_exits) },
154         { "mmio_exits", VCPU_STAT(mmio_exits) },
155         { "signal_exits", VCPU_STAT(signal_exits) },
156         { "irq_window", VCPU_STAT(irq_window_exits) },
157         { "nmi_window", VCPU_STAT(nmi_window_exits) },
158         { "halt_exits", VCPU_STAT(halt_exits) },
159         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
160         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
161         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
162         { "hypercalls", VCPU_STAT(hypercalls) },
163         { "request_irq", VCPU_STAT(request_irq_exits) },
164         { "irq_exits", VCPU_STAT(irq_exits) },
165         { "host_state_reload", VCPU_STAT(host_state_reload) },
166         { "efer_reload", VCPU_STAT(efer_reload) },
167         { "fpu_reload", VCPU_STAT(fpu_reload) },
168         { "insn_emulation", VCPU_STAT(insn_emulation) },
169         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
170         { "irq_injections", VCPU_STAT(irq_injections) },
171         { "nmi_injections", VCPU_STAT(nmi_injections) },
172         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
173         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
174         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
175         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
176         { "mmu_flooded", VM_STAT(mmu_flooded) },
177         { "mmu_recycled", VM_STAT(mmu_recycled) },
178         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
179         { "mmu_unsync", VM_STAT(mmu_unsync) },
180         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
181         { "largepages", VM_STAT(lpages) },
182         { NULL }
183 };
184
185 u64 __read_mostly host_xcr0;
186
187 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
188
189 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
190 {
191         int i;
192         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
193                 vcpu->arch.apf.gfns[i] = ~0;
194 }
195
196 static void kvm_on_user_return(struct user_return_notifier *urn)
197 {
198         unsigned slot;
199         struct kvm_shared_msrs *locals
200                 = container_of(urn, struct kvm_shared_msrs, urn);
201         struct kvm_shared_msr_values *values;
202
203         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
204                 values = &locals->values[slot];
205                 if (values->host != values->curr) {
206                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
207                         values->curr = values->host;
208                 }
209         }
210         locals->registered = false;
211         user_return_notifier_unregister(urn);
212 }
213
214 static void shared_msr_update(unsigned slot, u32 msr)
215 {
216         u64 value;
217         unsigned int cpu = smp_processor_id();
218         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
219
220         /* only read, and nobody should modify it at this time,
221          * so don't need lock */
222         if (slot >= shared_msrs_global.nr) {
223                 printk(KERN_ERR "kvm: invalid MSR slot!");
224                 return;
225         }
226         rdmsrl_safe(msr, &value);
227         smsr->values[slot].host = value;
228         smsr->values[slot].curr = value;
229 }
230
231 void kvm_define_shared_msr(unsigned slot, u32 msr)
232 {
233         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
234         shared_msrs_global.msrs[slot] = msr;
235         if (slot >= shared_msrs_global.nr)
236                 shared_msrs_global.nr = slot + 1;
237 }
238 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
239
240 static void kvm_shared_msr_cpu_online(void)
241 {
242         unsigned i;
243
244         for (i = 0; i < shared_msrs_global.nr; ++i)
245                 shared_msr_update(i, shared_msrs_global.msrs[i]);
246 }
247
248 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
249 {
250         unsigned int cpu = smp_processor_id();
251         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
252         int err;
253
254         if (((value ^ smsr->values[slot].curr) & mask) == 0)
255                 return 0;
256         smsr->values[slot].curr = value;
257         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
258         if (err)
259                 return 1;
260
261         if (!smsr->registered) {
262                 smsr->urn.on_user_return = kvm_on_user_return;
263                 user_return_notifier_register(&smsr->urn);
264                 smsr->registered = true;
265         }
266         return 0;
267 }
268 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
269
270 static void drop_user_return_notifiers(void)
271 {
272         unsigned int cpu = smp_processor_id();
273         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
274
275         if (smsr->registered)
276                 kvm_on_user_return(&smsr->urn);
277 }
278
279 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
280 {
281         return vcpu->arch.apic_base;
282 }
283 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
284
285 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
286 {
287         u64 old_state = vcpu->arch.apic_base &
288                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
289         u64 new_state = msr_info->data &
290                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
291         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
292                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
293
294         if (!msr_info->host_initiated &&
295             ((msr_info->data & reserved_bits) != 0 ||
296              new_state == X2APIC_ENABLE ||
297              (new_state == MSR_IA32_APICBASE_ENABLE &&
298               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
299              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
300               old_state == 0)))
301                 return 1;
302
303         kvm_lapic_set_base(vcpu, msr_info->data);
304         return 0;
305 }
306 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
307
308 asmlinkage __visible void kvm_spurious_fault(void)
309 {
310         /* Fault while not rebooting.  We want the trace. */
311         BUG();
312 }
313 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
314
315 #define EXCPT_BENIGN            0
316 #define EXCPT_CONTRIBUTORY      1
317 #define EXCPT_PF                2
318
319 static int exception_class(int vector)
320 {
321         switch (vector) {
322         case PF_VECTOR:
323                 return EXCPT_PF;
324         case DE_VECTOR:
325         case TS_VECTOR:
326         case NP_VECTOR:
327         case SS_VECTOR:
328         case GP_VECTOR:
329                 return EXCPT_CONTRIBUTORY;
330         default:
331                 break;
332         }
333         return EXCPT_BENIGN;
334 }
335
336 #define EXCPT_FAULT             0
337 #define EXCPT_TRAP              1
338 #define EXCPT_ABORT             2
339 #define EXCPT_INTERRUPT         3
340
341 static int exception_type(int vector)
342 {
343         unsigned int mask;
344
345         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
346                 return EXCPT_INTERRUPT;
347
348         mask = 1 << vector;
349
350         /* #DB is trap, as instruction watchpoints are handled elsewhere */
351         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
352                 return EXCPT_TRAP;
353
354         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
355                 return EXCPT_ABORT;
356
357         /* Reserved exceptions will result in fault */
358         return EXCPT_FAULT;
359 }
360
361 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
362                 unsigned nr, bool has_error, u32 error_code,
363                 bool reinject)
364 {
365         u32 prev_nr;
366         int class1, class2;
367
368         kvm_make_request(KVM_REQ_EVENT, vcpu);
369
370         if (!vcpu->arch.exception.pending) {
371         queue:
372                 if (has_error && !is_protmode(vcpu))
373                         has_error = false;
374                 vcpu->arch.exception.pending = true;
375                 vcpu->arch.exception.has_error_code = has_error;
376                 vcpu->arch.exception.nr = nr;
377                 vcpu->arch.exception.error_code = error_code;
378                 vcpu->arch.exception.reinject = reinject;
379                 return;
380         }
381
382         /* to check exception */
383         prev_nr = vcpu->arch.exception.nr;
384         if (prev_nr == DF_VECTOR) {
385                 /* triple fault -> shutdown */
386                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
387                 return;
388         }
389         class1 = exception_class(prev_nr);
390         class2 = exception_class(nr);
391         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
392                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
393                 /* generate double fault per SDM Table 5-5 */
394                 vcpu->arch.exception.pending = true;
395                 vcpu->arch.exception.has_error_code = true;
396                 vcpu->arch.exception.nr = DF_VECTOR;
397                 vcpu->arch.exception.error_code = 0;
398         } else
399                 /* replace previous exception with a new one in a hope
400                    that instruction re-execution will regenerate lost
401                    exception */
402                 goto queue;
403 }
404
405 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
406 {
407         kvm_multiple_exception(vcpu, nr, false, 0, false);
408 }
409 EXPORT_SYMBOL_GPL(kvm_queue_exception);
410
411 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
412 {
413         kvm_multiple_exception(vcpu, nr, false, 0, true);
414 }
415 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
416
417 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
418 {
419         if (err)
420                 kvm_inject_gp(vcpu, 0);
421         else
422                 kvm_x86_ops->skip_emulated_instruction(vcpu);
423 }
424 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
425
426 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
427 {
428         ++vcpu->stat.pf_guest;
429         vcpu->arch.cr2 = fault->address;
430         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
431 }
432 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
433
434 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
435 {
436         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
437                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
438         else
439                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
440
441         return fault->nested_page_fault;
442 }
443
444 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
445 {
446         atomic_inc(&vcpu->arch.nmi_queued);
447         kvm_make_request(KVM_REQ_NMI, vcpu);
448 }
449 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
450
451 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
452 {
453         kvm_multiple_exception(vcpu, nr, true, error_code, false);
454 }
455 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
456
457 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
458 {
459         kvm_multiple_exception(vcpu, nr, true, error_code, true);
460 }
461 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
462
463 /*
464  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
465  * a #GP and return false.
466  */
467 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
468 {
469         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
470                 return true;
471         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
472         return false;
473 }
474 EXPORT_SYMBOL_GPL(kvm_require_cpl);
475
476 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
477 {
478         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
479                 return true;
480
481         kvm_queue_exception(vcpu, UD_VECTOR);
482         return false;
483 }
484 EXPORT_SYMBOL_GPL(kvm_require_dr);
485
486 /*
487  * This function will be used to read from the physical memory of the currently
488  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
489  * can read from guest physical or from the guest's guest physical memory.
490  */
491 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
492                             gfn_t ngfn, void *data, int offset, int len,
493                             u32 access)
494 {
495         struct x86_exception exception;
496         gfn_t real_gfn;
497         gpa_t ngpa;
498
499         ngpa     = gfn_to_gpa(ngfn);
500         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
501         if (real_gfn == UNMAPPED_GVA)
502                 return -EFAULT;
503
504         real_gfn = gpa_to_gfn(real_gfn);
505
506         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
507 }
508 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
509
510 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
511                                void *data, int offset, int len, u32 access)
512 {
513         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
514                                        data, offset, len, access);
515 }
516
517 /*
518  * Load the pae pdptrs.  Return true is they are all valid.
519  */
520 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
521 {
522         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
523         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
524         int i;
525         int ret;
526         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
527
528         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
529                                       offset * sizeof(u64), sizeof(pdpte),
530                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
531         if (ret < 0) {
532                 ret = 0;
533                 goto out;
534         }
535         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
536                 if (is_present_gpte(pdpte[i]) &&
537                     (pdpte[i] &
538                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
539                         ret = 0;
540                         goto out;
541                 }
542         }
543         ret = 1;
544
545         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
546         __set_bit(VCPU_EXREG_PDPTR,
547                   (unsigned long *)&vcpu->arch.regs_avail);
548         __set_bit(VCPU_EXREG_PDPTR,
549                   (unsigned long *)&vcpu->arch.regs_dirty);
550 out:
551
552         return ret;
553 }
554 EXPORT_SYMBOL_GPL(load_pdptrs);
555
556 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
557 {
558         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
559         bool changed = true;
560         int offset;
561         gfn_t gfn;
562         int r;
563
564         if (is_long_mode(vcpu) || !is_pae(vcpu))
565                 return false;
566
567         if (!test_bit(VCPU_EXREG_PDPTR,
568                       (unsigned long *)&vcpu->arch.regs_avail))
569                 return true;
570
571         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
572         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
573         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
574                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
575         if (r < 0)
576                 goto out;
577         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
578 out:
579
580         return changed;
581 }
582
583 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
584 {
585         unsigned long old_cr0 = kvm_read_cr0(vcpu);
586         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
587
588         cr0 |= X86_CR0_ET;
589
590 #ifdef CONFIG_X86_64
591         if (cr0 & 0xffffffff00000000UL)
592                 return 1;
593 #endif
594
595         cr0 &= ~CR0_RESERVED_BITS;
596
597         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
598                 return 1;
599
600         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
601                 return 1;
602
603         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
604 #ifdef CONFIG_X86_64
605                 if ((vcpu->arch.efer & EFER_LME)) {
606                         int cs_db, cs_l;
607
608                         if (!is_pae(vcpu))
609                                 return 1;
610                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
611                         if (cs_l)
612                                 return 1;
613                 } else
614 #endif
615                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
616                                                  kvm_read_cr3(vcpu)))
617                         return 1;
618         }
619
620         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
621                 return 1;
622
623         kvm_x86_ops->set_cr0(vcpu, cr0);
624
625         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
626                 kvm_clear_async_pf_completion_queue(vcpu);
627                 kvm_async_pf_hash_reset(vcpu);
628         }
629
630         if ((cr0 ^ old_cr0) & update_bits)
631                 kvm_mmu_reset_context(vcpu);
632
633         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
634             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
635             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
636                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
637
638         return 0;
639 }
640 EXPORT_SYMBOL_GPL(kvm_set_cr0);
641
642 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
643 {
644         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
645 }
646 EXPORT_SYMBOL_GPL(kvm_lmsw);
647
648 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
649 {
650         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
651                         !vcpu->guest_xcr0_loaded) {
652                 /* kvm_set_xcr() also depends on this */
653                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
654                 vcpu->guest_xcr0_loaded = 1;
655         }
656 }
657
658 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
659 {
660         if (vcpu->guest_xcr0_loaded) {
661                 if (vcpu->arch.xcr0 != host_xcr0)
662                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
663                 vcpu->guest_xcr0_loaded = 0;
664         }
665 }
666
667 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
668 {
669         u64 xcr0 = xcr;
670         u64 old_xcr0 = vcpu->arch.xcr0;
671         u64 valid_bits;
672
673         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
674         if (index != XCR_XFEATURE_ENABLED_MASK)
675                 return 1;
676         if (!(xcr0 & XFEATURE_MASK_FP))
677                 return 1;
678         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
679                 return 1;
680
681         /*
682          * Do not allow the guest to set bits that we do not support
683          * saving.  However, xcr0 bit 0 is always set, even if the
684          * emulated CPU does not support XSAVE (see fx_init).
685          */
686         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
687         if (xcr0 & ~valid_bits)
688                 return 1;
689
690         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
691             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
692                 return 1;
693
694         if (xcr0 & XFEATURE_MASK_AVX512) {
695                 if (!(xcr0 & XFEATURE_MASK_YMM))
696                         return 1;
697                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
698                         return 1;
699         }
700         kvm_put_guest_xcr0(vcpu);
701         vcpu->arch.xcr0 = xcr0;
702
703         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
704                 kvm_update_cpuid(vcpu);
705         return 0;
706 }
707
708 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
709 {
710         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
711             __kvm_set_xcr(vcpu, index, xcr)) {
712                 kvm_inject_gp(vcpu, 0);
713                 return 1;
714         }
715         return 0;
716 }
717 EXPORT_SYMBOL_GPL(kvm_set_xcr);
718
719 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
720 {
721         unsigned long old_cr4 = kvm_read_cr4(vcpu);
722         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
723                                    X86_CR4_SMEP | X86_CR4_SMAP;
724
725         if (cr4 & CR4_RESERVED_BITS)
726                 return 1;
727
728         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
729                 return 1;
730
731         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
732                 return 1;
733
734         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
735                 return 1;
736
737         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
738                 return 1;
739
740         if (is_long_mode(vcpu)) {
741                 if (!(cr4 & X86_CR4_PAE))
742                         return 1;
743         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
744                    && ((cr4 ^ old_cr4) & pdptr_bits)
745                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
746                                    kvm_read_cr3(vcpu)))
747                 return 1;
748
749         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
750                 if (!guest_cpuid_has_pcid(vcpu))
751                         return 1;
752
753                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
754                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
755                         return 1;
756         }
757
758         if (kvm_x86_ops->set_cr4(vcpu, cr4))
759                 return 1;
760
761         if (((cr4 ^ old_cr4) & pdptr_bits) ||
762             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
763                 kvm_mmu_reset_context(vcpu);
764
765         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
766                 kvm_update_cpuid(vcpu);
767
768         return 0;
769 }
770 EXPORT_SYMBOL_GPL(kvm_set_cr4);
771
772 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
773 {
774 #ifdef CONFIG_X86_64
775         cr3 &= ~CR3_PCID_INVD;
776 #endif
777
778         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
779                 kvm_mmu_sync_roots(vcpu);
780                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
781                 return 0;
782         }
783
784         if (is_long_mode(vcpu)) {
785                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
786                         return 1;
787         } else if (is_pae(vcpu) && is_paging(vcpu) &&
788                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
789                 return 1;
790
791         vcpu->arch.cr3 = cr3;
792         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
793         kvm_mmu_new_cr3(vcpu);
794         return 0;
795 }
796 EXPORT_SYMBOL_GPL(kvm_set_cr3);
797
798 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
799 {
800         if (cr8 & CR8_RESERVED_BITS)
801                 return 1;
802         if (lapic_in_kernel(vcpu))
803                 kvm_lapic_set_tpr(vcpu, cr8);
804         else
805                 vcpu->arch.cr8 = cr8;
806         return 0;
807 }
808 EXPORT_SYMBOL_GPL(kvm_set_cr8);
809
810 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
811 {
812         if (lapic_in_kernel(vcpu))
813                 return kvm_lapic_get_cr8(vcpu);
814         else
815                 return vcpu->arch.cr8;
816 }
817 EXPORT_SYMBOL_GPL(kvm_get_cr8);
818
819 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
820 {
821         int i;
822
823         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
824                 for (i = 0; i < KVM_NR_DB_REGS; i++)
825                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
826                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
827         }
828 }
829
830 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
831 {
832         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
833                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
834 }
835
836 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
837 {
838         unsigned long dr7;
839
840         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
841                 dr7 = vcpu->arch.guest_debug_dr7;
842         else
843                 dr7 = vcpu->arch.dr7;
844         kvm_x86_ops->set_dr7(vcpu, dr7);
845         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
846         if (dr7 & DR7_BP_EN_MASK)
847                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
848 }
849
850 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
851 {
852         u64 fixed = DR6_FIXED_1;
853
854         if (!guest_cpuid_has_rtm(vcpu))
855                 fixed |= DR6_RTM;
856         return fixed;
857 }
858
859 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
860 {
861         switch (dr) {
862         case 0 ... 3:
863                 vcpu->arch.db[dr] = val;
864                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
865                         vcpu->arch.eff_db[dr] = val;
866                 break;
867         case 4:
868                 /* fall through */
869         case 6:
870                 if (val & 0xffffffff00000000ULL)
871                         return -1; /* #GP */
872                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
873                 kvm_update_dr6(vcpu);
874                 break;
875         case 5:
876                 /* fall through */
877         default: /* 7 */
878                 if (val & 0xffffffff00000000ULL)
879                         return -1; /* #GP */
880                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
881                 kvm_update_dr7(vcpu);
882                 break;
883         }
884
885         return 0;
886 }
887
888 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
889 {
890         if (__kvm_set_dr(vcpu, dr, val)) {
891                 kvm_inject_gp(vcpu, 0);
892                 return 1;
893         }
894         return 0;
895 }
896 EXPORT_SYMBOL_GPL(kvm_set_dr);
897
898 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
899 {
900         switch (dr) {
901         case 0 ... 3:
902                 *val = vcpu->arch.db[dr];
903                 break;
904         case 4:
905                 /* fall through */
906         case 6:
907                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
908                         *val = vcpu->arch.dr6;
909                 else
910                         *val = kvm_x86_ops->get_dr6(vcpu);
911                 break;
912         case 5:
913                 /* fall through */
914         default: /* 7 */
915                 *val = vcpu->arch.dr7;
916                 break;
917         }
918         return 0;
919 }
920 EXPORT_SYMBOL_GPL(kvm_get_dr);
921
922 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
923 {
924         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
925         u64 data;
926         int err;
927
928         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
929         if (err)
930                 return err;
931         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
932         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
933         return err;
934 }
935 EXPORT_SYMBOL_GPL(kvm_rdpmc);
936
937 /*
938  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
939  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
940  *
941  * This list is modified at module load time to reflect the
942  * capabilities of the host cpu. This capabilities test skips MSRs that are
943  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
944  * may depend on host virtualization features rather than host cpu features.
945  */
946
947 static u32 msrs_to_save[] = {
948         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
949         MSR_STAR,
950 #ifdef CONFIG_X86_64
951         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
952 #endif
953         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
954         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
955 };
956
957 static unsigned num_msrs_to_save;
958
959 static u32 emulated_msrs[] = {
960         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
961         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
962         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
963         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
964         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
965         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
966         HV_X64_MSR_RESET,
967         HV_X64_MSR_VP_INDEX,
968         HV_X64_MSR_VP_RUNTIME,
969         HV_X64_MSR_SCONTROL,
970         HV_X64_MSR_STIMER0_CONFIG,
971         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
972         MSR_KVM_PV_EOI_EN,
973
974         MSR_IA32_TSC_ADJUST,
975         MSR_IA32_TSCDEADLINE,
976         MSR_IA32_MISC_ENABLE,
977         MSR_IA32_MCG_STATUS,
978         MSR_IA32_MCG_CTL,
979         MSR_IA32_SMBASE,
980 };
981
982 static unsigned num_emulated_msrs;
983
984 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
985 {
986         if (efer & efer_reserved_bits)
987                 return false;
988
989         if (efer & EFER_FFXSR) {
990                 struct kvm_cpuid_entry2 *feat;
991
992                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
993                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
994                         return false;
995         }
996
997         if (efer & EFER_SVME) {
998                 struct kvm_cpuid_entry2 *feat;
999
1000                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1001                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1002                         return false;
1003         }
1004
1005         return true;
1006 }
1007 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1008
1009 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1010 {
1011         u64 old_efer = vcpu->arch.efer;
1012
1013         if (!kvm_valid_efer(vcpu, efer))
1014                 return 1;
1015
1016         if (is_paging(vcpu)
1017             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1018                 return 1;
1019
1020         efer &= ~EFER_LMA;
1021         efer |= vcpu->arch.efer & EFER_LMA;
1022
1023         kvm_x86_ops->set_efer(vcpu, efer);
1024
1025         /* Update reserved bits */
1026         if ((efer ^ old_efer) & EFER_NX)
1027                 kvm_mmu_reset_context(vcpu);
1028
1029         return 0;
1030 }
1031
1032 void kvm_enable_efer_bits(u64 mask)
1033 {
1034        efer_reserved_bits &= ~mask;
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1037
1038 /*
1039  * Writes msr value into into the appropriate "register".
1040  * Returns 0 on success, non-0 otherwise.
1041  * Assumes vcpu_load() was already called.
1042  */
1043 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1044 {
1045         switch (msr->index) {
1046         case MSR_FS_BASE:
1047         case MSR_GS_BASE:
1048         case MSR_KERNEL_GS_BASE:
1049         case MSR_CSTAR:
1050         case MSR_LSTAR:
1051                 if (is_noncanonical_address(msr->data))
1052                         return 1;
1053                 break;
1054         case MSR_IA32_SYSENTER_EIP:
1055         case MSR_IA32_SYSENTER_ESP:
1056                 /*
1057                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1058                  * non-canonical address is written on Intel but not on
1059                  * AMD (which ignores the top 32-bits, because it does
1060                  * not implement 64-bit SYSENTER).
1061                  *
1062                  * 64-bit code should hence be able to write a non-canonical
1063                  * value on AMD.  Making the address canonical ensures that
1064                  * vmentry does not fail on Intel after writing a non-canonical
1065                  * value, and that something deterministic happens if the guest
1066                  * invokes 64-bit SYSENTER.
1067                  */
1068                 msr->data = get_canonical(msr->data);
1069         }
1070         return kvm_x86_ops->set_msr(vcpu, msr);
1071 }
1072 EXPORT_SYMBOL_GPL(kvm_set_msr);
1073
1074 /*
1075  * Adapt set_msr() to msr_io()'s calling convention
1076  */
1077 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1078 {
1079         struct msr_data msr;
1080         int r;
1081
1082         msr.index = index;
1083         msr.host_initiated = true;
1084         r = kvm_get_msr(vcpu, &msr);
1085         if (r)
1086                 return r;
1087
1088         *data = msr.data;
1089         return 0;
1090 }
1091
1092 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1093 {
1094         struct msr_data msr;
1095
1096         msr.data = *data;
1097         msr.index = index;
1098         msr.host_initiated = true;
1099         return kvm_set_msr(vcpu, &msr);
1100 }
1101
1102 #ifdef CONFIG_X86_64
1103 struct pvclock_gtod_data {
1104         seqcount_t      seq;
1105
1106         struct { /* extract of a clocksource struct */
1107                 int vclock_mode;
1108                 cycle_t cycle_last;
1109                 cycle_t mask;
1110                 u32     mult;
1111                 u32     shift;
1112         } clock;
1113
1114         u64             boot_ns;
1115         u64             nsec_base;
1116 };
1117
1118 static struct pvclock_gtod_data pvclock_gtod_data;
1119
1120 static void update_pvclock_gtod(struct timekeeper *tk)
1121 {
1122         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1123         u64 boot_ns;
1124
1125         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1126
1127         write_seqcount_begin(&vdata->seq);
1128
1129         /* copy pvclock gtod data */
1130         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1131         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1132         vdata->clock.mask               = tk->tkr_mono.mask;
1133         vdata->clock.mult               = tk->tkr_mono.mult;
1134         vdata->clock.shift              = tk->tkr_mono.shift;
1135
1136         vdata->boot_ns                  = boot_ns;
1137         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1138
1139         write_seqcount_end(&vdata->seq);
1140 }
1141 #endif
1142
1143 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1144 {
1145         /*
1146          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1147          * vcpu_enter_guest.  This function is only called from
1148          * the physical CPU that is running vcpu.
1149          */
1150         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1151 }
1152
1153 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1154 {
1155         int version;
1156         int r;
1157         struct pvclock_wall_clock wc;
1158         struct timespec boot;
1159
1160         if (!wall_clock)
1161                 return;
1162
1163         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1164         if (r)
1165                 return;
1166
1167         if (version & 1)
1168                 ++version;  /* first time write, random junk */
1169
1170         ++version;
1171
1172         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1173                 return;
1174
1175         /*
1176          * The guest calculates current wall clock time by adding
1177          * system time (updated by kvm_guest_time_update below) to the
1178          * wall clock specified here.  guest system time equals host
1179          * system time for us, thus we must fill in host boot time here.
1180          */
1181         getboottime(&boot);
1182
1183         if (kvm->arch.kvmclock_offset) {
1184                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1185                 boot = timespec_sub(boot, ts);
1186         }
1187         wc.sec = boot.tv_sec;
1188         wc.nsec = boot.tv_nsec;
1189         wc.version = version;
1190
1191         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1192
1193         version++;
1194         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1195 }
1196
1197 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1198 {
1199         do_shl32_div32(dividend, divisor);
1200         return dividend;
1201 }
1202
1203 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1204                                s8 *pshift, u32 *pmultiplier)
1205 {
1206         uint64_t scaled64;
1207         int32_t  shift = 0;
1208         uint64_t tps64;
1209         uint32_t tps32;
1210
1211         tps64 = base_khz * 1000LL;
1212         scaled64 = scaled_khz * 1000LL;
1213         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1214                 tps64 >>= 1;
1215                 shift--;
1216         }
1217
1218         tps32 = (uint32_t)tps64;
1219         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1220                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1221                         scaled64 >>= 1;
1222                 else
1223                         tps32 <<= 1;
1224                 shift++;
1225         }
1226
1227         *pshift = shift;
1228         *pmultiplier = div_frac(scaled64, tps32);
1229
1230         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1231                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
1232 }
1233
1234 #ifdef CONFIG_X86_64
1235 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1236 #endif
1237
1238 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1239 static unsigned long max_tsc_khz;
1240
1241 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1242 {
1243         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1244                                    vcpu->arch.virtual_tsc_shift);
1245 }
1246
1247 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1248 {
1249         u64 v = (u64)khz * (1000000 + ppm);
1250         do_div(v, 1000000);
1251         return v;
1252 }
1253
1254 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1255 {
1256         u64 ratio;
1257
1258         /* Guest TSC same frequency as host TSC? */
1259         if (!scale) {
1260                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1261                 return 0;
1262         }
1263
1264         /* TSC scaling supported? */
1265         if (!kvm_has_tsc_control) {
1266                 if (user_tsc_khz > tsc_khz) {
1267                         vcpu->arch.tsc_catchup = 1;
1268                         vcpu->arch.tsc_always_catchup = 1;
1269                         return 0;
1270                 } else {
1271                         WARN(1, "user requested TSC rate below hardware speed\n");
1272                         return -1;
1273                 }
1274         }
1275
1276         /* TSC scaling required  - calculate ratio */
1277         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1278                                 user_tsc_khz, tsc_khz);
1279
1280         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1281                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1282                           user_tsc_khz);
1283                 return -1;
1284         }
1285
1286         vcpu->arch.tsc_scaling_ratio = ratio;
1287         return 0;
1288 }
1289
1290 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1291 {
1292         u32 thresh_lo, thresh_hi;
1293         int use_scaling = 0;
1294
1295         /* tsc_khz can be zero if TSC calibration fails */
1296         if (this_tsc_khz == 0) {
1297                 /* set tsc_scaling_ratio to a safe value */
1298                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1299                 return -1;
1300         }
1301
1302         /* Compute a scale to convert nanoseconds in TSC cycles */
1303         kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1304                            &vcpu->arch.virtual_tsc_shift,
1305                            &vcpu->arch.virtual_tsc_mult);
1306         vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1307
1308         /*
1309          * Compute the variation in TSC rate which is acceptable
1310          * within the range of tolerance and decide if the
1311          * rate being applied is within that bounds of the hardware
1312          * rate.  If so, no scaling or compensation need be done.
1313          */
1314         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1315         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1316         if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1317                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1318                 use_scaling = 1;
1319         }
1320         return set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1321 }
1322
1323 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1324 {
1325         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1326                                       vcpu->arch.virtual_tsc_mult,
1327                                       vcpu->arch.virtual_tsc_shift);
1328         tsc += vcpu->arch.this_tsc_write;
1329         return tsc;
1330 }
1331
1332 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1333 {
1334 #ifdef CONFIG_X86_64
1335         bool vcpus_matched;
1336         struct kvm_arch *ka = &vcpu->kvm->arch;
1337         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1338
1339         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1340                          atomic_read(&vcpu->kvm->online_vcpus));
1341
1342         /*
1343          * Once the masterclock is enabled, always perform request in
1344          * order to update it.
1345          *
1346          * In order to enable masterclock, the host clocksource must be TSC
1347          * and the vcpus need to have matched TSCs.  When that happens,
1348          * perform request to enable masterclock.
1349          */
1350         if (ka->use_master_clock ||
1351             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1352                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1353
1354         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1355                             atomic_read(&vcpu->kvm->online_vcpus),
1356                             ka->use_master_clock, gtod->clock.vclock_mode);
1357 #endif
1358 }
1359
1360 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1361 {
1362         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1363         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1364 }
1365
1366 /*
1367  * Multiply tsc by a fixed point number represented by ratio.
1368  *
1369  * The most significant 64-N bits (mult) of ratio represent the
1370  * integral part of the fixed point number; the remaining N bits
1371  * (frac) represent the fractional part, ie. ratio represents a fixed
1372  * point number (mult + frac * 2^(-N)).
1373  *
1374  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1375  */
1376 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1377 {
1378         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1379 }
1380
1381 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1382 {
1383         u64 _tsc = tsc;
1384         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1385
1386         if (ratio != kvm_default_tsc_scaling_ratio)
1387                 _tsc = __scale_tsc(ratio, tsc);
1388
1389         return _tsc;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1392
1393 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1394 {
1395         u64 tsc;
1396
1397         tsc = kvm_scale_tsc(vcpu, rdtsc());
1398
1399         return target_tsc - tsc;
1400 }
1401
1402 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1403 {
1404         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1405 }
1406 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1407
1408 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1409 {
1410         struct kvm *kvm = vcpu->kvm;
1411         u64 offset, ns, elapsed;
1412         unsigned long flags;
1413         s64 usdiff;
1414         bool matched;
1415         bool already_matched;
1416         u64 data = msr->data;
1417
1418         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1419         offset = kvm_compute_tsc_offset(vcpu, data);
1420         ns = get_kernel_ns();
1421         elapsed = ns - kvm->arch.last_tsc_nsec;
1422
1423         if (vcpu->arch.virtual_tsc_khz) {
1424                 int faulted = 0;
1425
1426                 /* n.b - signed multiplication and division required */
1427                 usdiff = data - kvm->arch.last_tsc_write;
1428 #ifdef CONFIG_X86_64
1429                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1430 #else
1431                 /* do_div() only does unsigned */
1432                 asm("1: idivl %[divisor]\n"
1433                     "2: xor %%edx, %%edx\n"
1434                     "   movl $0, %[faulted]\n"
1435                     "3:\n"
1436                     ".section .fixup,\"ax\"\n"
1437                     "4: movl $1, %[faulted]\n"
1438                     "   jmp  3b\n"
1439                     ".previous\n"
1440
1441                 _ASM_EXTABLE(1b, 4b)
1442
1443                 : "=A"(usdiff), [faulted] "=r" (faulted)
1444                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1445
1446 #endif
1447                 do_div(elapsed, 1000);
1448                 usdiff -= elapsed;
1449                 if (usdiff < 0)
1450                         usdiff = -usdiff;
1451
1452                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1453                 if (faulted)
1454                         usdiff = USEC_PER_SEC;
1455         } else
1456                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1457
1458         /*
1459          * Special case: TSC write with a small delta (1 second) of virtual
1460          * cycle time against real time is interpreted as an attempt to
1461          * synchronize the CPU.
1462          *
1463          * For a reliable TSC, we can match TSC offsets, and for an unstable
1464          * TSC, we add elapsed time in this computation.  We could let the
1465          * compensation code attempt to catch up if we fall behind, but
1466          * it's better to try to match offsets from the beginning.
1467          */
1468         if (usdiff < USEC_PER_SEC &&
1469             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1470                 if (!check_tsc_unstable()) {
1471                         offset = kvm->arch.cur_tsc_offset;
1472                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1473                 } else {
1474                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1475                         data += delta;
1476                         offset = kvm_compute_tsc_offset(vcpu, data);
1477                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1478                 }
1479                 matched = true;
1480                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1481         } else {
1482                 /*
1483                  * We split periods of matched TSC writes into generations.
1484                  * For each generation, we track the original measured
1485                  * nanosecond time, offset, and write, so if TSCs are in
1486                  * sync, we can match exact offset, and if not, we can match
1487                  * exact software computation in compute_guest_tsc()
1488                  *
1489                  * These values are tracked in kvm->arch.cur_xxx variables.
1490                  */
1491                 kvm->arch.cur_tsc_generation++;
1492                 kvm->arch.cur_tsc_nsec = ns;
1493                 kvm->arch.cur_tsc_write = data;
1494                 kvm->arch.cur_tsc_offset = offset;
1495                 matched = false;
1496                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1497                          kvm->arch.cur_tsc_generation, data);
1498         }
1499
1500         /*
1501          * We also track th most recent recorded KHZ, write and time to
1502          * allow the matching interval to be extended at each write.
1503          */
1504         kvm->arch.last_tsc_nsec = ns;
1505         kvm->arch.last_tsc_write = data;
1506         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1507
1508         vcpu->arch.last_guest_tsc = data;
1509
1510         /* Keep track of which generation this VCPU has synchronized to */
1511         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1512         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1513         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1514
1515         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1516                 update_ia32_tsc_adjust_msr(vcpu, offset);
1517         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1518         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1519
1520         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1521         if (!matched) {
1522                 kvm->arch.nr_vcpus_matched_tsc = 0;
1523         } else if (!already_matched) {
1524                 kvm->arch.nr_vcpus_matched_tsc++;
1525         }
1526
1527         kvm_track_tsc_matching(vcpu);
1528         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1529 }
1530
1531 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1532
1533 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1534                                            s64 adjustment)
1535 {
1536         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1537 }
1538
1539 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1540 {
1541         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1542                 WARN_ON(adjustment < 0);
1543         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1544         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1545 }
1546
1547 #ifdef CONFIG_X86_64
1548
1549 static cycle_t read_tsc(void)
1550 {
1551         cycle_t ret = (cycle_t)rdtsc_ordered();
1552         u64 last = pvclock_gtod_data.clock.cycle_last;
1553
1554         if (likely(ret >= last))
1555                 return ret;
1556
1557         /*
1558          * GCC likes to generate cmov here, but this branch is extremely
1559          * predictable (it's just a funciton of time and the likely is
1560          * very likely) and there's a data dependence, so force GCC
1561          * to generate a branch instead.  I don't barrier() because
1562          * we don't actually need a barrier, and if this function
1563          * ever gets inlined it will generate worse code.
1564          */
1565         asm volatile ("");
1566         return last;
1567 }
1568
1569 static inline u64 vgettsc(cycle_t *cycle_now)
1570 {
1571         long v;
1572         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1573
1574         *cycle_now = read_tsc();
1575
1576         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1577         return v * gtod->clock.mult;
1578 }
1579
1580 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1581 {
1582         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1583         unsigned long seq;
1584         int mode;
1585         u64 ns;
1586
1587         do {
1588                 seq = read_seqcount_begin(&gtod->seq);
1589                 mode = gtod->clock.vclock_mode;
1590                 ns = gtod->nsec_base;
1591                 ns += vgettsc(cycle_now);
1592                 ns >>= gtod->clock.shift;
1593                 ns += gtod->boot_ns;
1594         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1595         *t = ns;
1596
1597         return mode;
1598 }
1599
1600 /* returns true if host is using tsc clocksource */
1601 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1602 {
1603         /* checked again under seqlock below */
1604         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1605                 return false;
1606
1607         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1608 }
1609 #endif
1610
1611 /*
1612  *
1613  * Assuming a stable TSC across physical CPUS, and a stable TSC
1614  * across virtual CPUs, the following condition is possible.
1615  * Each numbered line represents an event visible to both
1616  * CPUs at the next numbered event.
1617  *
1618  * "timespecX" represents host monotonic time. "tscX" represents
1619  * RDTSC value.
1620  *
1621  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1622  *
1623  * 1.  read timespec0,tsc0
1624  * 2.                                   | timespec1 = timespec0 + N
1625  *                                      | tsc1 = tsc0 + M
1626  * 3. transition to guest               | transition to guest
1627  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1628  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1629  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1630  *
1631  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1632  *
1633  *      - ret0 < ret1
1634  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1635  *              ...
1636  *      - 0 < N - M => M < N
1637  *
1638  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1639  * always the case (the difference between two distinct xtime instances
1640  * might be smaller then the difference between corresponding TSC reads,
1641  * when updating guest vcpus pvclock areas).
1642  *
1643  * To avoid that problem, do not allow visibility of distinct
1644  * system_timestamp/tsc_timestamp values simultaneously: use a master
1645  * copy of host monotonic time values. Update that master copy
1646  * in lockstep.
1647  *
1648  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1649  *
1650  */
1651
1652 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1653 {
1654 #ifdef CONFIG_X86_64
1655         struct kvm_arch *ka = &kvm->arch;
1656         int vclock_mode;
1657         bool host_tsc_clocksource, vcpus_matched;
1658
1659         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1660                         atomic_read(&kvm->online_vcpus));
1661
1662         /*
1663          * If the host uses TSC clock, then passthrough TSC as stable
1664          * to the guest.
1665          */
1666         host_tsc_clocksource = kvm_get_time_and_clockread(
1667                                         &ka->master_kernel_ns,
1668                                         &ka->master_cycle_now);
1669
1670         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1671                                 && !backwards_tsc_observed
1672                                 && !ka->boot_vcpu_runs_old_kvmclock;
1673
1674         if (ka->use_master_clock)
1675                 atomic_set(&kvm_guest_has_master_clock, 1);
1676
1677         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1678         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1679                                         vcpus_matched);
1680 #endif
1681 }
1682
1683 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1684 {
1685         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1686 }
1687
1688 static void kvm_gen_update_masterclock(struct kvm *kvm)
1689 {
1690 #ifdef CONFIG_X86_64
1691         int i;
1692         struct kvm_vcpu *vcpu;
1693         struct kvm_arch *ka = &kvm->arch;
1694
1695         spin_lock(&ka->pvclock_gtod_sync_lock);
1696         kvm_make_mclock_inprogress_request(kvm);
1697         /* no guest entries from this point */
1698         pvclock_update_vm_gtod_copy(kvm);
1699
1700         kvm_for_each_vcpu(i, vcpu, kvm)
1701                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1702
1703         /* guest entries allowed */
1704         kvm_for_each_vcpu(i, vcpu, kvm)
1705                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1706
1707         spin_unlock(&ka->pvclock_gtod_sync_lock);
1708 #endif
1709 }
1710
1711 static int kvm_guest_time_update(struct kvm_vcpu *v)
1712 {
1713         unsigned long flags, this_tsc_khz, tgt_tsc_khz;
1714         struct kvm_vcpu_arch *vcpu = &v->arch;
1715         struct kvm_arch *ka = &v->kvm->arch;
1716         s64 kernel_ns;
1717         u64 tsc_timestamp, host_tsc;
1718         struct pvclock_vcpu_time_info guest_hv_clock;
1719         u8 pvclock_flags;
1720         bool use_master_clock;
1721
1722         kernel_ns = 0;
1723         host_tsc = 0;
1724
1725         /*
1726          * If the host uses TSC clock, then passthrough TSC as stable
1727          * to the guest.
1728          */
1729         spin_lock(&ka->pvclock_gtod_sync_lock);
1730         use_master_clock = ka->use_master_clock;
1731         if (use_master_clock) {
1732                 host_tsc = ka->master_cycle_now;
1733                 kernel_ns = ka->master_kernel_ns;
1734         }
1735         spin_unlock(&ka->pvclock_gtod_sync_lock);
1736
1737         /* Keep irq disabled to prevent changes to the clock */
1738         local_irq_save(flags);
1739         this_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1740         if (unlikely(this_tsc_khz == 0)) {
1741                 local_irq_restore(flags);
1742                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1743                 return 1;
1744         }
1745         if (!use_master_clock) {
1746                 host_tsc = rdtsc();
1747                 kernel_ns = get_kernel_ns();
1748         }
1749
1750         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1751
1752         /*
1753          * We may have to catch up the TSC to match elapsed wall clock
1754          * time for two reasons, even if kvmclock is used.
1755          *   1) CPU could have been running below the maximum TSC rate
1756          *   2) Broken TSC compensation resets the base at each VCPU
1757          *      entry to avoid unknown leaps of TSC even when running
1758          *      again on the same CPU.  This may cause apparent elapsed
1759          *      time to disappear, and the guest to stand still or run
1760          *      very slowly.
1761          */
1762         if (vcpu->tsc_catchup) {
1763                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1764                 if (tsc > tsc_timestamp) {
1765                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1766                         tsc_timestamp = tsc;
1767                 }
1768         }
1769
1770         local_irq_restore(flags);
1771
1772         if (!vcpu->pv_time_enabled)
1773                 return 0;
1774
1775         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1776                 tgt_tsc_khz = kvm_has_tsc_control ?
1777                         vcpu->virtual_tsc_khz : this_tsc_khz;
1778                 kvm_get_time_scale(NSEC_PER_SEC / 1000, tgt_tsc_khz,
1779                                    &vcpu->hv_clock.tsc_shift,
1780                                    &vcpu->hv_clock.tsc_to_system_mul);
1781                 vcpu->hw_tsc_khz = this_tsc_khz;
1782         }
1783
1784         /* With all the info we got, fill in the values */
1785         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1786         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1787         vcpu->last_guest_tsc = tsc_timestamp;
1788
1789         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1790                 &guest_hv_clock, sizeof(guest_hv_clock))))
1791                 return 0;
1792
1793         /* This VCPU is paused, but it's legal for a guest to read another
1794          * VCPU's kvmclock, so we really have to follow the specification where
1795          * it says that version is odd if data is being modified, and even after
1796          * it is consistent.
1797          *
1798          * Version field updates must be kept separate.  This is because
1799          * kvm_write_guest_cached might use a "rep movs" instruction, and
1800          * writes within a string instruction are weakly ordered.  So there
1801          * are three writes overall.
1802          *
1803          * As a small optimization, only write the version field in the first
1804          * and third write.  The vcpu->pv_time cache is still valid, because the
1805          * version field is the first in the struct.
1806          */
1807         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1808
1809         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1810         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1811                                 &vcpu->hv_clock,
1812                                 sizeof(vcpu->hv_clock.version));
1813
1814         smp_wmb();
1815
1816         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1817         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1818
1819         if (vcpu->pvclock_set_guest_stopped_request) {
1820                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1821                 vcpu->pvclock_set_guest_stopped_request = false;
1822         }
1823
1824         /* If the host uses TSC clocksource, then it is stable */
1825         if (use_master_clock)
1826                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1827
1828         vcpu->hv_clock.flags = pvclock_flags;
1829
1830         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1831
1832         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1833                                 &vcpu->hv_clock,
1834                                 sizeof(vcpu->hv_clock));
1835
1836         smp_wmb();
1837
1838         vcpu->hv_clock.version++;
1839         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1840                                 &vcpu->hv_clock,
1841                                 sizeof(vcpu->hv_clock.version));
1842         return 0;
1843 }
1844
1845 /*
1846  * kvmclock updates which are isolated to a given vcpu, such as
1847  * vcpu->cpu migration, should not allow system_timestamp from
1848  * the rest of the vcpus to remain static. Otherwise ntp frequency
1849  * correction applies to one vcpu's system_timestamp but not
1850  * the others.
1851  *
1852  * So in those cases, request a kvmclock update for all vcpus.
1853  * We need to rate-limit these requests though, as they can
1854  * considerably slow guests that have a large number of vcpus.
1855  * The time for a remote vcpu to update its kvmclock is bound
1856  * by the delay we use to rate-limit the updates.
1857  */
1858
1859 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1860
1861 static void kvmclock_update_fn(struct work_struct *work)
1862 {
1863         int i;
1864         struct delayed_work *dwork = to_delayed_work(work);
1865         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1866                                            kvmclock_update_work);
1867         struct kvm *kvm = container_of(ka, struct kvm, arch);
1868         struct kvm_vcpu *vcpu;
1869
1870         kvm_for_each_vcpu(i, vcpu, kvm) {
1871                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1872                 kvm_vcpu_kick(vcpu);
1873         }
1874 }
1875
1876 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1877 {
1878         struct kvm *kvm = v->kvm;
1879
1880         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1881         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1882                                         KVMCLOCK_UPDATE_DELAY);
1883 }
1884
1885 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1886
1887 static void kvmclock_sync_fn(struct work_struct *work)
1888 {
1889         struct delayed_work *dwork = to_delayed_work(work);
1890         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1891                                            kvmclock_sync_work);
1892         struct kvm *kvm = container_of(ka, struct kvm, arch);
1893
1894         if (!kvmclock_periodic_sync)
1895                 return;
1896
1897         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1898         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1899                                         KVMCLOCK_SYNC_PERIOD);
1900 }
1901
1902 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1903 {
1904         u64 mcg_cap = vcpu->arch.mcg_cap;
1905         unsigned bank_num = mcg_cap & 0xff;
1906
1907         switch (msr) {
1908         case MSR_IA32_MCG_STATUS:
1909                 vcpu->arch.mcg_status = data;
1910                 break;
1911         case MSR_IA32_MCG_CTL:
1912                 if (!(mcg_cap & MCG_CTL_P))
1913                         return 1;
1914                 if (data != 0 && data != ~(u64)0)
1915                         return -1;
1916                 vcpu->arch.mcg_ctl = data;
1917                 break;
1918         default:
1919                 if (msr >= MSR_IA32_MC0_CTL &&
1920                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1921                         u32 offset = msr - MSR_IA32_MC0_CTL;
1922                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1923                          * some Linux kernels though clear bit 10 in bank 4 to
1924                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1925                          * this to avoid an uncatched #GP in the guest
1926                          */
1927                         if ((offset & 0x3) == 0 &&
1928                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1929                                 return -1;
1930                         vcpu->arch.mce_banks[offset] = data;
1931                         break;
1932                 }
1933                 return 1;
1934         }
1935         return 0;
1936 }
1937
1938 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1939 {
1940         struct kvm *kvm = vcpu->kvm;
1941         int lm = is_long_mode(vcpu);
1942         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1943                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1944         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1945                 : kvm->arch.xen_hvm_config.blob_size_32;
1946         u32 page_num = data & ~PAGE_MASK;
1947         u64 page_addr = data & PAGE_MASK;
1948         u8 *page;
1949         int r;
1950
1951         r = -E2BIG;
1952         if (page_num >= blob_size)
1953                 goto out;
1954         r = -ENOMEM;
1955         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1956         if (IS_ERR(page)) {
1957                 r = PTR_ERR(page);
1958                 goto out;
1959         }
1960         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1961                 goto out_free;
1962         r = 0;
1963 out_free:
1964         kfree(page);
1965 out:
1966         return r;
1967 }
1968
1969 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1970 {
1971         gpa_t gpa = data & ~0x3f;
1972
1973         /* Bits 2:5 are reserved, Should be zero */
1974         if (data & 0x3c)
1975                 return 1;
1976
1977         vcpu->arch.apf.msr_val = data;
1978
1979         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1980                 kvm_clear_async_pf_completion_queue(vcpu);
1981                 kvm_async_pf_hash_reset(vcpu);
1982                 return 0;
1983         }
1984
1985         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1986                                         sizeof(u32)))
1987                 return 1;
1988
1989         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1990         kvm_async_pf_wakeup_all(vcpu);
1991         return 0;
1992 }
1993
1994 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1995 {
1996         vcpu->arch.pv_time_enabled = false;
1997 }
1998
1999 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2000 {
2001         u64 delta;
2002
2003         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2004                 return;
2005
2006         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2007         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2008         vcpu->arch.st.accum_steal = delta;
2009 }
2010
2011 static void record_steal_time(struct kvm_vcpu *vcpu)
2012 {
2013         accumulate_steal_time(vcpu);
2014
2015         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2016                 return;
2017
2018         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2019                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2020                 return;
2021
2022         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2023         vcpu->arch.st.steal.version += 2;
2024         vcpu->arch.st.accum_steal = 0;
2025
2026         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2027                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2028 }
2029
2030 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2031 {
2032         bool pr = false;
2033         u32 msr = msr_info->index;
2034         u64 data = msr_info->data;
2035
2036         switch (msr) {
2037         case MSR_AMD64_NB_CFG:
2038         case MSR_IA32_UCODE_REV:
2039         case MSR_IA32_UCODE_WRITE:
2040         case MSR_VM_HSAVE_PA:
2041         case MSR_AMD64_PATCH_LOADER:
2042         case MSR_AMD64_BU_CFG2:
2043                 break;
2044
2045         case MSR_EFER:
2046                 return set_efer(vcpu, data);
2047         case MSR_K7_HWCR:
2048                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2049                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2050                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2051                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2052                 if (data != 0) {
2053                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2054                                     data);
2055                         return 1;
2056                 }
2057                 break;
2058         case MSR_FAM10H_MMIO_CONF_BASE:
2059                 if (data != 0) {
2060                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2061                                     "0x%llx\n", data);
2062                         return 1;
2063                 }
2064                 break;
2065         case MSR_IA32_DEBUGCTLMSR:
2066                 if (!data) {
2067                         /* We support the non-activated case already */
2068                         break;
2069                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2070                         /* Values other than LBR and BTF are vendor-specific,
2071                            thus reserved and should throw a #GP */
2072                         return 1;
2073                 }
2074                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2075                             __func__, data);
2076                 break;
2077         case 0x200 ... 0x2ff:
2078                 return kvm_mtrr_set_msr(vcpu, msr, data);
2079         case MSR_IA32_APICBASE:
2080                 return kvm_set_apic_base(vcpu, msr_info);
2081         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2082                 return kvm_x2apic_msr_write(vcpu, msr, data);
2083         case MSR_IA32_TSCDEADLINE:
2084                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2085                 break;
2086         case MSR_IA32_TSC_ADJUST:
2087                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2088                         if (!msr_info->host_initiated) {
2089                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2090                                 adjust_tsc_offset_guest(vcpu, adj);
2091                         }
2092                         vcpu->arch.ia32_tsc_adjust_msr = data;
2093                 }
2094                 break;
2095         case MSR_IA32_MISC_ENABLE:
2096                 vcpu->arch.ia32_misc_enable_msr = data;
2097                 break;
2098         case MSR_IA32_SMBASE:
2099                 if (!msr_info->host_initiated)
2100                         return 1;
2101                 vcpu->arch.smbase = data;
2102                 break;
2103         case MSR_KVM_WALL_CLOCK_NEW:
2104         case MSR_KVM_WALL_CLOCK:
2105                 vcpu->kvm->arch.wall_clock = data;
2106                 kvm_write_wall_clock(vcpu->kvm, data);
2107                 break;
2108         case MSR_KVM_SYSTEM_TIME_NEW:
2109         case MSR_KVM_SYSTEM_TIME: {
2110                 u64 gpa_offset;
2111                 struct kvm_arch *ka = &vcpu->kvm->arch;
2112
2113                 kvmclock_reset(vcpu);
2114
2115                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2116                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2117
2118                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2119                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2120                                         &vcpu->requests);
2121
2122                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2123                 }
2124
2125                 vcpu->arch.time = data;
2126                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2127
2128                 /* we verify if the enable bit is set... */
2129                 if (!(data & 1))
2130                         break;
2131
2132                 gpa_offset = data & ~(PAGE_MASK | 1);
2133
2134                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2135                      &vcpu->arch.pv_time, data & ~1ULL,
2136                      sizeof(struct pvclock_vcpu_time_info)))
2137                         vcpu->arch.pv_time_enabled = false;
2138                 else
2139                         vcpu->arch.pv_time_enabled = true;
2140
2141                 break;
2142         }
2143         case MSR_KVM_ASYNC_PF_EN:
2144                 if (kvm_pv_enable_async_pf(vcpu, data))
2145                         return 1;
2146                 break;
2147         case MSR_KVM_STEAL_TIME:
2148
2149                 if (unlikely(!sched_info_on()))
2150                         return 1;
2151
2152                 if (data & KVM_STEAL_RESERVED_MASK)
2153                         return 1;
2154
2155                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2156                                                 data & KVM_STEAL_VALID_BITS,
2157                                                 sizeof(struct kvm_steal_time)))
2158                         return 1;
2159
2160                 vcpu->arch.st.msr_val = data;
2161
2162                 if (!(data & KVM_MSR_ENABLED))
2163                         break;
2164
2165                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2166
2167                 break;
2168         case MSR_KVM_PV_EOI_EN:
2169                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2170                         return 1;
2171                 break;
2172
2173         case MSR_IA32_MCG_CTL:
2174         case MSR_IA32_MCG_STATUS:
2175         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2176                 return set_msr_mce(vcpu, msr, data);
2177
2178         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2179         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2180                 pr = true; /* fall through */
2181         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2182         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2183                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2184                         return kvm_pmu_set_msr(vcpu, msr_info);
2185
2186                 if (pr || data != 0)
2187                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2188                                     "0x%x data 0x%llx\n", msr, data);
2189                 break;
2190         case MSR_K7_CLK_CTL:
2191                 /*
2192                  * Ignore all writes to this no longer documented MSR.
2193                  * Writes are only relevant for old K7 processors,
2194                  * all pre-dating SVM, but a recommended workaround from
2195                  * AMD for these chips. It is possible to specify the
2196                  * affected processor models on the command line, hence
2197                  * the need to ignore the workaround.
2198                  */
2199                 break;
2200         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2201         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2202         case HV_X64_MSR_CRASH_CTL:
2203         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2204                 return kvm_hv_set_msr_common(vcpu, msr, data,
2205                                              msr_info->host_initiated);
2206         case MSR_IA32_BBL_CR_CTL3:
2207                 /* Drop writes to this legacy MSR -- see rdmsr
2208                  * counterpart for further detail.
2209                  */
2210                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2211                 break;
2212         case MSR_AMD64_OSVW_ID_LENGTH:
2213                 if (!guest_cpuid_has_osvw(vcpu))
2214                         return 1;
2215                 vcpu->arch.osvw.length = data;
2216                 break;
2217         case MSR_AMD64_OSVW_STATUS:
2218                 if (!guest_cpuid_has_osvw(vcpu))
2219                         return 1;
2220                 vcpu->arch.osvw.status = data;
2221                 break;
2222         default:
2223                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2224                         return xen_hvm_config(vcpu, data);
2225                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2226                         return kvm_pmu_set_msr(vcpu, msr_info);
2227                 if (!ignore_msrs) {
2228                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2229                                     msr, data);
2230                         return 1;
2231                 } else {
2232                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2233                                     msr, data);
2234                         break;
2235                 }
2236         }
2237         return 0;
2238 }
2239 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2240
2241
2242 /*
2243  * Reads an msr value (of 'msr_index') into 'pdata'.
2244  * Returns 0 on success, non-0 otherwise.
2245  * Assumes vcpu_load() was already called.
2246  */
2247 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2248 {
2249         return kvm_x86_ops->get_msr(vcpu, msr);
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_get_msr);
2252
2253 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2254 {
2255         u64 data;
2256         u64 mcg_cap = vcpu->arch.mcg_cap;
2257         unsigned bank_num = mcg_cap & 0xff;
2258
2259         switch (msr) {
2260         case MSR_IA32_P5_MC_ADDR:
2261         case MSR_IA32_P5_MC_TYPE:
2262                 data = 0;
2263                 break;
2264         case MSR_IA32_MCG_CAP:
2265                 data = vcpu->arch.mcg_cap;
2266                 break;
2267         case MSR_IA32_MCG_CTL:
2268                 if (!(mcg_cap & MCG_CTL_P))
2269                         return 1;
2270                 data = vcpu->arch.mcg_ctl;
2271                 break;
2272         case MSR_IA32_MCG_STATUS:
2273                 data = vcpu->arch.mcg_status;
2274                 break;
2275         default:
2276                 if (msr >= MSR_IA32_MC0_CTL &&
2277                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2278                         u32 offset = msr - MSR_IA32_MC0_CTL;
2279                         data = vcpu->arch.mce_banks[offset];
2280                         break;
2281                 }
2282                 return 1;
2283         }
2284         *pdata = data;
2285         return 0;
2286 }
2287
2288 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2289 {
2290         switch (msr_info->index) {
2291         case MSR_IA32_PLATFORM_ID:
2292         case MSR_IA32_EBL_CR_POWERON:
2293         case MSR_IA32_DEBUGCTLMSR:
2294         case MSR_IA32_LASTBRANCHFROMIP:
2295         case MSR_IA32_LASTBRANCHTOIP:
2296         case MSR_IA32_LASTINTFROMIP:
2297         case MSR_IA32_LASTINTTOIP:
2298         case MSR_K8_SYSCFG:
2299         case MSR_K8_TSEG_ADDR:
2300         case MSR_K8_TSEG_MASK:
2301         case MSR_K7_HWCR:
2302         case MSR_VM_HSAVE_PA:
2303         case MSR_K8_INT_PENDING_MSG:
2304         case MSR_AMD64_NB_CFG:
2305         case MSR_FAM10H_MMIO_CONF_BASE:
2306         case MSR_AMD64_BU_CFG2:
2307                 msr_info->data = 0;
2308                 break;
2309         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2310         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2311         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2312         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2313                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2314                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2315                 msr_info->data = 0;
2316                 break;
2317         case MSR_IA32_UCODE_REV:
2318                 msr_info->data = 0x100000000ULL;
2319                 break;
2320         case MSR_MTRRcap:
2321         case 0x200 ... 0x2ff:
2322                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2323         case 0xcd: /* fsb frequency */
2324                 msr_info->data = 3;
2325                 break;
2326                 /*
2327                  * MSR_EBC_FREQUENCY_ID
2328                  * Conservative value valid for even the basic CPU models.
2329                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2330                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2331                  * and 266MHz for model 3, or 4. Set Core Clock
2332                  * Frequency to System Bus Frequency Ratio to 1 (bits
2333                  * 31:24) even though these are only valid for CPU
2334                  * models > 2, however guests may end up dividing or
2335                  * multiplying by zero otherwise.
2336                  */
2337         case MSR_EBC_FREQUENCY_ID:
2338                 msr_info->data = 1 << 24;
2339                 break;
2340         case MSR_IA32_APICBASE:
2341                 msr_info->data = kvm_get_apic_base(vcpu);
2342                 break;
2343         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2344                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2345                 break;
2346         case MSR_IA32_TSCDEADLINE:
2347                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2348                 break;
2349         case MSR_IA32_TSC_ADJUST:
2350                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2351                 break;
2352         case MSR_IA32_MISC_ENABLE:
2353                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2354                 break;
2355         case MSR_IA32_SMBASE:
2356                 if (!msr_info->host_initiated)
2357                         return 1;
2358                 msr_info->data = vcpu->arch.smbase;
2359                 break;
2360         case MSR_IA32_PERF_STATUS:
2361                 /* TSC increment by tick */
2362                 msr_info->data = 1000ULL;
2363                 /* CPU multiplier */
2364                 msr_info->data |= (((uint64_t)4ULL) << 40);
2365                 break;
2366         case MSR_EFER:
2367                 msr_info->data = vcpu->arch.efer;
2368                 break;
2369         case MSR_KVM_WALL_CLOCK:
2370         case MSR_KVM_WALL_CLOCK_NEW:
2371                 msr_info->data = vcpu->kvm->arch.wall_clock;
2372                 break;
2373         case MSR_KVM_SYSTEM_TIME:
2374         case MSR_KVM_SYSTEM_TIME_NEW:
2375                 msr_info->data = vcpu->arch.time;
2376                 break;
2377         case MSR_KVM_ASYNC_PF_EN:
2378                 msr_info->data = vcpu->arch.apf.msr_val;
2379                 break;
2380         case MSR_KVM_STEAL_TIME:
2381                 msr_info->data = vcpu->arch.st.msr_val;
2382                 break;
2383         case MSR_KVM_PV_EOI_EN:
2384                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2385                 break;
2386         case MSR_IA32_P5_MC_ADDR:
2387         case MSR_IA32_P5_MC_TYPE:
2388         case MSR_IA32_MCG_CAP:
2389         case MSR_IA32_MCG_CTL:
2390         case MSR_IA32_MCG_STATUS:
2391         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2392                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2393         case MSR_K7_CLK_CTL:
2394                 /*
2395                  * Provide expected ramp-up count for K7. All other
2396                  * are set to zero, indicating minimum divisors for
2397                  * every field.
2398                  *
2399                  * This prevents guest kernels on AMD host with CPU
2400                  * type 6, model 8 and higher from exploding due to
2401                  * the rdmsr failing.
2402                  */
2403                 msr_info->data = 0x20000000;
2404                 break;
2405         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2406         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2407         case HV_X64_MSR_CRASH_CTL:
2408         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2409                 return kvm_hv_get_msr_common(vcpu,
2410                                              msr_info->index, &msr_info->data);
2411                 break;
2412         case MSR_IA32_BBL_CR_CTL3:
2413                 /* This legacy MSR exists but isn't fully documented in current
2414                  * silicon.  It is however accessed by winxp in very narrow
2415                  * scenarios where it sets bit #19, itself documented as
2416                  * a "reserved" bit.  Best effort attempt to source coherent
2417                  * read data here should the balance of the register be
2418                  * interpreted by the guest:
2419                  *
2420                  * L2 cache control register 3: 64GB range, 256KB size,
2421                  * enabled, latency 0x1, configured
2422                  */
2423                 msr_info->data = 0xbe702111;
2424                 break;
2425         case MSR_AMD64_OSVW_ID_LENGTH:
2426                 if (!guest_cpuid_has_osvw(vcpu))
2427                         return 1;
2428                 msr_info->data = vcpu->arch.osvw.length;
2429                 break;
2430         case MSR_AMD64_OSVW_STATUS:
2431                 if (!guest_cpuid_has_osvw(vcpu))
2432                         return 1;
2433                 msr_info->data = vcpu->arch.osvw.status;
2434                 break;
2435         default:
2436                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2437                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2438                 if (!ignore_msrs) {
2439                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2440                         return 1;
2441                 } else {
2442                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2443                         msr_info->data = 0;
2444                 }
2445                 break;
2446         }
2447         return 0;
2448 }
2449 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2450
2451 /*
2452  * Read or write a bunch of msrs. All parameters are kernel addresses.
2453  *
2454  * @return number of msrs set successfully.
2455  */
2456 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2457                     struct kvm_msr_entry *entries,
2458                     int (*do_msr)(struct kvm_vcpu *vcpu,
2459                                   unsigned index, u64 *data))
2460 {
2461         int i, idx;
2462
2463         idx = srcu_read_lock(&vcpu->kvm->srcu);
2464         for (i = 0; i < msrs->nmsrs; ++i)
2465                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2466                         break;
2467         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2468
2469         return i;
2470 }
2471
2472 /*
2473  * Read or write a bunch of msrs. Parameters are user addresses.
2474  *
2475  * @return number of msrs set successfully.
2476  */
2477 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2478                   int (*do_msr)(struct kvm_vcpu *vcpu,
2479                                 unsigned index, u64 *data),
2480                   int writeback)
2481 {
2482         struct kvm_msrs msrs;
2483         struct kvm_msr_entry *entries;
2484         int r, n;
2485         unsigned size;
2486
2487         r = -EFAULT;
2488         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2489                 goto out;
2490
2491         r = -E2BIG;
2492         if (msrs.nmsrs >= MAX_IO_MSRS)
2493                 goto out;
2494
2495         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2496         entries = memdup_user(user_msrs->entries, size);
2497         if (IS_ERR(entries)) {
2498                 r = PTR_ERR(entries);
2499                 goto out;
2500         }
2501
2502         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2503         if (r < 0)
2504                 goto out_free;
2505
2506         r = -EFAULT;
2507         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2508                 goto out_free;
2509
2510         r = n;
2511
2512 out_free:
2513         kfree(entries);
2514 out:
2515         return r;
2516 }
2517
2518 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2519 {
2520         int r;
2521
2522         switch (ext) {
2523         case KVM_CAP_IRQCHIP:
2524         case KVM_CAP_HLT:
2525         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2526         case KVM_CAP_SET_TSS_ADDR:
2527         case KVM_CAP_EXT_CPUID:
2528         case KVM_CAP_EXT_EMUL_CPUID:
2529         case KVM_CAP_CLOCKSOURCE:
2530         case KVM_CAP_PIT:
2531         case KVM_CAP_NOP_IO_DELAY:
2532         case KVM_CAP_MP_STATE:
2533         case KVM_CAP_SYNC_MMU:
2534         case KVM_CAP_USER_NMI:
2535         case KVM_CAP_REINJECT_CONTROL:
2536         case KVM_CAP_IRQ_INJECT_STATUS:
2537         case KVM_CAP_IOEVENTFD:
2538         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2539         case KVM_CAP_PIT2:
2540         case KVM_CAP_PIT_STATE2:
2541         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2542         case KVM_CAP_XEN_HVM:
2543         case KVM_CAP_ADJUST_CLOCK:
2544         case KVM_CAP_VCPU_EVENTS:
2545         case KVM_CAP_HYPERV:
2546         case KVM_CAP_HYPERV_VAPIC:
2547         case KVM_CAP_HYPERV_SPIN:
2548         case KVM_CAP_HYPERV_SYNIC:
2549         case KVM_CAP_PCI_SEGMENT:
2550         case KVM_CAP_DEBUGREGS:
2551         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2552         case KVM_CAP_XSAVE:
2553         case KVM_CAP_ASYNC_PF:
2554         case KVM_CAP_GET_TSC_KHZ:
2555         case KVM_CAP_KVMCLOCK_CTRL:
2556         case KVM_CAP_READONLY_MEM:
2557         case KVM_CAP_HYPERV_TIME:
2558         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2559         case KVM_CAP_TSC_DEADLINE_TIMER:
2560         case KVM_CAP_ENABLE_CAP_VM:
2561         case KVM_CAP_DISABLE_QUIRKS:
2562         case KVM_CAP_SET_BOOT_CPU_ID:
2563         case KVM_CAP_SPLIT_IRQCHIP:
2564 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2565         case KVM_CAP_ASSIGN_DEV_IRQ:
2566         case KVM_CAP_PCI_2_3:
2567 #endif
2568                 r = 1;
2569                 break;
2570         case KVM_CAP_X86_SMM:
2571                 /* SMBASE is usually relocated above 1M on modern chipsets,
2572                  * and SMM handlers might indeed rely on 4G segment limits,
2573                  * so do not report SMM to be available if real mode is
2574                  * emulated via vm86 mode.  Still, do not go to great lengths
2575                  * to avoid userspace's usage of the feature, because it is a
2576                  * fringe case that is not enabled except via specific settings
2577                  * of the module parameters.
2578                  */
2579                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2580                 break;
2581         case KVM_CAP_COALESCED_MMIO:
2582                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2583                 break;
2584         case KVM_CAP_VAPIC:
2585                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2586                 break;
2587         case KVM_CAP_NR_VCPUS:
2588                 r = KVM_SOFT_MAX_VCPUS;
2589                 break;
2590         case KVM_CAP_MAX_VCPUS:
2591                 r = KVM_MAX_VCPUS;
2592                 break;
2593         case KVM_CAP_NR_MEMSLOTS:
2594                 r = KVM_USER_MEM_SLOTS;
2595                 break;
2596         case KVM_CAP_PV_MMU:    /* obsolete */
2597                 r = 0;
2598                 break;
2599 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2600         case KVM_CAP_IOMMU:
2601                 r = iommu_present(&pci_bus_type);
2602                 break;
2603 #endif
2604         case KVM_CAP_MCE:
2605                 r = KVM_MAX_MCE_BANKS;
2606                 break;
2607         case KVM_CAP_XCRS:
2608                 r = cpu_has_xsave;
2609                 break;
2610         case KVM_CAP_TSC_CONTROL:
2611                 r = kvm_has_tsc_control;
2612                 break;
2613         default:
2614                 r = 0;
2615                 break;
2616         }
2617         return r;
2618
2619 }
2620
2621 long kvm_arch_dev_ioctl(struct file *filp,
2622                         unsigned int ioctl, unsigned long arg)
2623 {
2624         void __user *argp = (void __user *)arg;
2625         long r;
2626
2627         switch (ioctl) {
2628         case KVM_GET_MSR_INDEX_LIST: {
2629                 struct kvm_msr_list __user *user_msr_list = argp;
2630                 struct kvm_msr_list msr_list;
2631                 unsigned n;
2632
2633                 r = -EFAULT;
2634                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2635                         goto out;
2636                 n = msr_list.nmsrs;
2637                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2638                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2639                         goto out;
2640                 r = -E2BIG;
2641                 if (n < msr_list.nmsrs)
2642                         goto out;
2643                 r = -EFAULT;
2644                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2645                                  num_msrs_to_save * sizeof(u32)))
2646                         goto out;
2647                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2648                                  &emulated_msrs,
2649                                  num_emulated_msrs * sizeof(u32)))
2650                         goto out;
2651                 r = 0;
2652                 break;
2653         }
2654         case KVM_GET_SUPPORTED_CPUID:
2655         case KVM_GET_EMULATED_CPUID: {
2656                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2657                 struct kvm_cpuid2 cpuid;
2658
2659                 r = -EFAULT;
2660                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2661                         goto out;
2662
2663                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2664                                             ioctl);
2665                 if (r)
2666                         goto out;
2667
2668                 r = -EFAULT;
2669                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2670                         goto out;
2671                 r = 0;
2672                 break;
2673         }
2674         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2675                 u64 mce_cap;
2676
2677                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2678                 r = -EFAULT;
2679                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2680                         goto out;
2681                 r = 0;
2682                 break;
2683         }
2684         default:
2685                 r = -EINVAL;
2686         }
2687 out:
2688         return r;
2689 }
2690
2691 static void wbinvd_ipi(void *garbage)
2692 {
2693         wbinvd();
2694 }
2695
2696 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2697 {
2698         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2699 }
2700
2701 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2702 {
2703         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2704 }
2705
2706 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2707 {
2708         /* Address WBINVD may be executed by guest */
2709         if (need_emulate_wbinvd(vcpu)) {
2710                 if (kvm_x86_ops->has_wbinvd_exit())
2711                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2712                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2713                         smp_call_function_single(vcpu->cpu,
2714                                         wbinvd_ipi, NULL, 1);
2715         }
2716
2717         kvm_x86_ops->vcpu_load(vcpu, cpu);
2718
2719         /* Apply any externally detected TSC adjustments (due to suspend) */
2720         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2721                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2722                 vcpu->arch.tsc_offset_adjustment = 0;
2723                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2724         }
2725
2726         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2727                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2728                                 rdtsc() - vcpu->arch.last_host_tsc;
2729                 if (tsc_delta < 0)
2730                         mark_tsc_unstable("KVM discovered backwards TSC");
2731                 if (check_tsc_unstable()) {
2732                         u64 offset = kvm_compute_tsc_offset(vcpu,
2733                                                 vcpu->arch.last_guest_tsc);
2734                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2735                         vcpu->arch.tsc_catchup = 1;
2736                 }
2737                 /*
2738                  * On a host with synchronized TSC, there is no need to update
2739                  * kvmclock on vcpu->cpu migration
2740                  */
2741                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2742                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2743                 if (vcpu->cpu != cpu)
2744                         kvm_migrate_timers(vcpu);
2745                 vcpu->cpu = cpu;
2746         }
2747
2748         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2749 }
2750
2751 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2752 {
2753         kvm_x86_ops->vcpu_put(vcpu);
2754         kvm_put_guest_fpu(vcpu);
2755         vcpu->arch.last_host_tsc = rdtsc();
2756 }
2757
2758 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2759                                     struct kvm_lapic_state *s)
2760 {
2761         if (vcpu->arch.apicv_active)
2762                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2763
2764         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2765
2766         return 0;
2767 }
2768
2769 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2770                                     struct kvm_lapic_state *s)
2771 {
2772         kvm_apic_post_state_restore(vcpu, s);
2773         update_cr8_intercept(vcpu);
2774
2775         return 0;
2776 }
2777
2778 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2779 {
2780         return (!lapic_in_kernel(vcpu) ||
2781                 kvm_apic_accept_pic_intr(vcpu));
2782 }
2783
2784 /*
2785  * if userspace requested an interrupt window, check that the
2786  * interrupt window is open.
2787  *
2788  * No need to exit to userspace if we already have an interrupt queued.
2789  */
2790 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2791 {
2792         return kvm_arch_interrupt_allowed(vcpu) &&
2793                 !kvm_cpu_has_interrupt(vcpu) &&
2794                 !kvm_event_needs_reinjection(vcpu) &&
2795                 kvm_cpu_accept_dm_intr(vcpu);
2796 }
2797
2798 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2799                                     struct kvm_interrupt *irq)
2800 {
2801         if (irq->irq >= KVM_NR_INTERRUPTS)
2802                 return -EINVAL;
2803
2804         if (!irqchip_in_kernel(vcpu->kvm)) {
2805                 kvm_queue_interrupt(vcpu, irq->irq, false);
2806                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2807                 return 0;
2808         }
2809
2810         /*
2811          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2812          * fail for in-kernel 8259.
2813          */
2814         if (pic_in_kernel(vcpu->kvm))
2815                 return -ENXIO;
2816
2817         if (vcpu->arch.pending_external_vector != -1)
2818                 return -EEXIST;
2819
2820         vcpu->arch.pending_external_vector = irq->irq;
2821         kvm_make_request(KVM_REQ_EVENT, vcpu);
2822         return 0;
2823 }
2824
2825 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2826 {
2827         kvm_inject_nmi(vcpu);
2828
2829         return 0;
2830 }
2831
2832 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2833 {
2834         kvm_make_request(KVM_REQ_SMI, vcpu);
2835
2836         return 0;
2837 }
2838
2839 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2840                                            struct kvm_tpr_access_ctl *tac)
2841 {
2842         if (tac->flags)
2843                 return -EINVAL;
2844         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2845         return 0;
2846 }
2847
2848 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2849                                         u64 mcg_cap)
2850 {
2851         int r;
2852         unsigned bank_num = mcg_cap & 0xff, bank;
2853
2854         r = -EINVAL;
2855         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2856                 goto out;
2857         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2858                 goto out;
2859         r = 0;
2860         vcpu->arch.mcg_cap = mcg_cap;
2861         /* Init IA32_MCG_CTL to all 1s */
2862         if (mcg_cap & MCG_CTL_P)
2863                 vcpu->arch.mcg_ctl = ~(u64)0;
2864         /* Init IA32_MCi_CTL to all 1s */
2865         for (bank = 0; bank < bank_num; bank++)
2866                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2867 out:
2868         return r;
2869 }
2870
2871 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2872                                       struct kvm_x86_mce *mce)
2873 {
2874         u64 mcg_cap = vcpu->arch.mcg_cap;
2875         unsigned bank_num = mcg_cap & 0xff;
2876         u64 *banks = vcpu->arch.mce_banks;
2877
2878         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2879                 return -EINVAL;
2880         /*
2881          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2882          * reporting is disabled
2883          */
2884         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2885             vcpu->arch.mcg_ctl != ~(u64)0)
2886                 return 0;
2887         banks += 4 * mce->bank;
2888         /*
2889          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2890          * reporting is disabled for the bank
2891          */
2892         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2893                 return 0;
2894         if (mce->status & MCI_STATUS_UC) {
2895                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2896                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2897                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2898                         return 0;
2899                 }
2900                 if (banks[1] & MCI_STATUS_VAL)
2901                         mce->status |= MCI_STATUS_OVER;
2902                 banks[2] = mce->addr;
2903                 banks[3] = mce->misc;
2904                 vcpu->arch.mcg_status = mce->mcg_status;
2905                 banks[1] = mce->status;
2906                 kvm_queue_exception(vcpu, MC_VECTOR);
2907         } else if (!(banks[1] & MCI_STATUS_VAL)
2908                    || !(banks[1] & MCI_STATUS_UC)) {
2909                 if (banks[1] & MCI_STATUS_VAL)
2910                         mce->status |= MCI_STATUS_OVER;
2911                 banks[2] = mce->addr;
2912                 banks[3] = mce->misc;
2913                 banks[1] = mce->status;
2914         } else
2915                 banks[1] |= MCI_STATUS_OVER;
2916         return 0;
2917 }
2918
2919 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2920                                                struct kvm_vcpu_events *events)
2921 {
2922         process_nmi(vcpu);
2923         events->exception.injected =
2924                 vcpu->arch.exception.pending &&
2925                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2926         events->exception.nr = vcpu->arch.exception.nr;
2927         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2928         events->exception.pad = 0;
2929         events->exception.error_code = vcpu->arch.exception.error_code;
2930
2931         events->interrupt.injected =
2932                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2933         events->interrupt.nr = vcpu->arch.interrupt.nr;
2934         events->interrupt.soft = 0;
2935         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2936
2937         events->nmi.injected = vcpu->arch.nmi_injected;
2938         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2939         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2940         events->nmi.pad = 0;
2941
2942         events->sipi_vector = 0; /* never valid when reporting to user space */
2943
2944         events->smi.smm = is_smm(vcpu);
2945         events->smi.pending = vcpu->arch.smi_pending;
2946         events->smi.smm_inside_nmi =
2947                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2948         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2949
2950         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2951                          | KVM_VCPUEVENT_VALID_SHADOW
2952                          | KVM_VCPUEVENT_VALID_SMM);
2953         memset(&events->reserved, 0, sizeof(events->reserved));
2954 }
2955
2956 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2957                                               struct kvm_vcpu_events *events)
2958 {
2959         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2960                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2961                               | KVM_VCPUEVENT_VALID_SHADOW
2962                               | KVM_VCPUEVENT_VALID_SMM))
2963                 return -EINVAL;
2964
2965         process_nmi(vcpu);
2966         vcpu->arch.exception.pending = events->exception.injected;
2967         vcpu->arch.exception.nr = events->exception.nr;
2968         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2969         vcpu->arch.exception.error_code = events->exception.error_code;
2970
2971         vcpu->arch.interrupt.pending = events->interrupt.injected;
2972         vcpu->arch.interrupt.nr = events->interrupt.nr;
2973         vcpu->arch.interrupt.soft = events->interrupt.soft;
2974         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2975                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2976                                                   events->interrupt.shadow);
2977
2978         vcpu->arch.nmi_injected = events->nmi.injected;
2979         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2980                 vcpu->arch.nmi_pending = events->nmi.pending;
2981         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2982
2983         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2984             kvm_vcpu_has_lapic(vcpu))
2985                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2986
2987         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2988                 if (events->smi.smm)
2989                         vcpu->arch.hflags |= HF_SMM_MASK;
2990                 else
2991                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2992                 vcpu->arch.smi_pending = events->smi.pending;
2993                 if (events->smi.smm_inside_nmi)
2994                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
2995                 else
2996                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
2997                 if (kvm_vcpu_has_lapic(vcpu)) {
2998                         if (events->smi.latched_init)
2999                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3000                         else
3001                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3002                 }
3003         }
3004
3005         kvm_make_request(KVM_REQ_EVENT, vcpu);
3006
3007         return 0;
3008 }
3009
3010 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3011                                              struct kvm_debugregs *dbgregs)
3012 {
3013         unsigned long val;
3014
3015         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3016         kvm_get_dr(vcpu, 6, &val);
3017         dbgregs->dr6 = val;
3018         dbgregs->dr7 = vcpu->arch.dr7;
3019         dbgregs->flags = 0;
3020         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3021 }
3022
3023 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3024                                             struct kvm_debugregs *dbgregs)
3025 {
3026         if (dbgregs->flags)
3027                 return -EINVAL;
3028
3029         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3030         kvm_update_dr0123(vcpu);
3031         vcpu->arch.dr6 = dbgregs->dr6;
3032         kvm_update_dr6(vcpu);
3033         vcpu->arch.dr7 = dbgregs->dr7;
3034         kvm_update_dr7(vcpu);
3035
3036         return 0;
3037 }
3038
3039 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3040
3041 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3042 {
3043         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3044         u64 xstate_bv = xsave->header.xfeatures;
3045         u64 valid;
3046
3047         /*
3048          * Copy legacy XSAVE area, to avoid complications with CPUID
3049          * leaves 0 and 1 in the loop below.
3050          */
3051         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3052
3053         /* Set XSTATE_BV */
3054         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3055
3056         /*
3057          * Copy each region from the possibly compacted offset to the
3058          * non-compacted offset.
3059          */
3060         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3061         while (valid) {
3062                 u64 feature = valid & -valid;
3063                 int index = fls64(feature) - 1;
3064                 void *src = get_xsave_addr(xsave, feature);
3065
3066                 if (src) {
3067                         u32 size, offset, ecx, edx;
3068                         cpuid_count(XSTATE_CPUID, index,
3069                                     &size, &offset, &ecx, &edx);
3070                         memcpy(dest + offset, src, size);
3071                 }
3072
3073                 valid -= feature;
3074         }
3075 }
3076
3077 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3078 {
3079         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3080         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3081         u64 valid;
3082
3083         /*
3084          * Copy legacy XSAVE area, to avoid complications with CPUID
3085          * leaves 0 and 1 in the loop below.
3086          */
3087         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3088
3089         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3090         xsave->header.xfeatures = xstate_bv;
3091         if (cpu_has_xsaves)
3092                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3093
3094         /*
3095          * Copy each region from the non-compacted offset to the
3096          * possibly compacted offset.
3097          */
3098         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3099         while (valid) {
3100                 u64 feature = valid & -valid;
3101                 int index = fls64(feature) - 1;
3102                 void *dest = get_xsave_addr(xsave, feature);
3103
3104                 if (dest) {
3105                         u32 size, offset, ecx, edx;
3106                         cpuid_count(XSTATE_CPUID, index,
3107                                     &size, &offset, &ecx, &edx);
3108                         memcpy(dest, src + offset, size);
3109                 }
3110
3111                 valid -= feature;
3112         }
3113 }
3114
3115 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3116                                          struct kvm_xsave *guest_xsave)
3117 {
3118         if (cpu_has_xsave) {
3119                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3120                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3121         } else {
3122                 memcpy(guest_xsave->region,
3123                         &vcpu->arch.guest_fpu.state.fxsave,
3124                         sizeof(struct fxregs_state));
3125                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3126                         XFEATURE_MASK_FPSSE;
3127         }
3128 }
3129
3130 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3131                                         struct kvm_xsave *guest_xsave)
3132 {
3133         u64 xstate_bv =
3134                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3135
3136         if (cpu_has_xsave) {
3137                 /*
3138                  * Here we allow setting states that are not present in
3139                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3140                  * with old userspace.
3141                  */
3142                 if (xstate_bv & ~kvm_supported_xcr0())
3143                         return -EINVAL;
3144                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3145         } else {
3146                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3147                         return -EINVAL;
3148                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3149                         guest_xsave->region, sizeof(struct fxregs_state));
3150         }
3151         return 0;
3152 }
3153
3154 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3155                                         struct kvm_xcrs *guest_xcrs)
3156 {
3157         if (!cpu_has_xsave) {
3158                 guest_xcrs->nr_xcrs = 0;
3159                 return;
3160         }
3161
3162         guest_xcrs->nr_xcrs = 1;
3163         guest_xcrs->flags = 0;
3164         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3165         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3166 }
3167
3168 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3169                                        struct kvm_xcrs *guest_xcrs)
3170 {
3171         int i, r = 0;
3172
3173         if (!cpu_has_xsave)
3174                 return -EINVAL;
3175
3176         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3177                 return -EINVAL;
3178
3179         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3180                 /* Only support XCR0 currently */
3181                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3182                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3183                                 guest_xcrs->xcrs[i].value);
3184                         break;
3185                 }
3186         if (r)
3187                 r = -EINVAL;
3188         return r;
3189 }
3190
3191 /*
3192  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3193  * stopped by the hypervisor.  This function will be called from the host only.
3194  * EINVAL is returned when the host attempts to set the flag for a guest that
3195  * does not support pv clocks.
3196  */
3197 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3198 {
3199         if (!vcpu->arch.pv_time_enabled)
3200                 return -EINVAL;
3201         vcpu->arch.pvclock_set_guest_stopped_request = true;
3202         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3203         return 0;
3204 }
3205
3206 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3207                                      struct kvm_enable_cap *cap)
3208 {
3209         if (cap->flags)
3210                 return -EINVAL;
3211
3212         switch (cap->cap) {
3213         case KVM_CAP_HYPERV_SYNIC:
3214                 return kvm_hv_activate_synic(vcpu);
3215         default:
3216                 return -EINVAL;
3217         }
3218 }
3219
3220 long kvm_arch_vcpu_ioctl(struct file *filp,
3221                          unsigned int ioctl, unsigned long arg)
3222 {
3223         struct kvm_vcpu *vcpu = filp->private_data;
3224         void __user *argp = (void __user *)arg;
3225         int r;
3226         union {
3227                 struct kvm_lapic_state *lapic;
3228                 struct kvm_xsave *xsave;
3229                 struct kvm_xcrs *xcrs;
3230                 void *buffer;
3231         } u;
3232
3233         u.buffer = NULL;
3234         switch (ioctl) {
3235         case KVM_GET_LAPIC: {
3236                 r = -EINVAL;
3237                 if (!vcpu->arch.apic)
3238                         goto out;
3239                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3240
3241                 r = -ENOMEM;
3242                 if (!u.lapic)
3243                         goto out;
3244                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3245                 if (r)
3246                         goto out;
3247                 r = -EFAULT;
3248                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3249                         goto out;
3250                 r = 0;
3251                 break;
3252         }
3253         case KVM_SET_LAPIC: {
3254                 r = -EINVAL;
3255                 if (!vcpu->arch.apic)
3256                         goto out;
3257                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3258                 if (IS_ERR(u.lapic))
3259                         return PTR_ERR(u.lapic);
3260
3261                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3262                 break;
3263         }
3264         case KVM_INTERRUPT: {
3265                 struct kvm_interrupt irq;
3266
3267                 r = -EFAULT;
3268                 if (copy_from_user(&irq, argp, sizeof irq))
3269                         goto out;
3270                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3271                 break;
3272         }
3273         case KVM_NMI: {
3274                 r = kvm_vcpu_ioctl_nmi(vcpu);
3275                 break;
3276         }
3277         case KVM_SMI: {
3278                 r = kvm_vcpu_ioctl_smi(vcpu);
3279                 break;
3280         }
3281         case KVM_SET_CPUID: {
3282                 struct kvm_cpuid __user *cpuid_arg = argp;
3283                 struct kvm_cpuid cpuid;
3284
3285                 r = -EFAULT;
3286                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3287                         goto out;
3288                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3289                 break;
3290         }
3291         case KVM_SET_CPUID2: {
3292                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3293                 struct kvm_cpuid2 cpuid;
3294
3295                 r = -EFAULT;
3296                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3297                         goto out;
3298                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3299                                               cpuid_arg->entries);
3300                 break;
3301         }
3302         case KVM_GET_CPUID2: {
3303                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3304                 struct kvm_cpuid2 cpuid;
3305
3306                 r = -EFAULT;
3307                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3308                         goto out;
3309                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3310                                               cpuid_arg->entries);
3311                 if (r)
3312                         goto out;
3313                 r = -EFAULT;
3314                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3315                         goto out;
3316                 r = 0;
3317                 break;
3318         }
3319         case KVM_GET_MSRS:
3320                 r = msr_io(vcpu, argp, do_get_msr, 1);
3321                 break;
3322         case KVM_SET_MSRS:
3323                 r = msr_io(vcpu, argp, do_set_msr, 0);
3324                 break;
3325         case KVM_TPR_ACCESS_REPORTING: {
3326                 struct kvm_tpr_access_ctl tac;
3327
3328                 r = -EFAULT;
3329                 if (copy_from_user(&tac, argp, sizeof tac))
3330                         goto out;
3331                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3332                 if (r)
3333                         goto out;
3334                 r = -EFAULT;
3335                 if (copy_to_user(argp, &tac, sizeof tac))
3336                         goto out;
3337                 r = 0;
3338                 break;
3339         };
3340         case KVM_SET_VAPIC_ADDR: {
3341                 struct kvm_vapic_addr va;
3342
3343                 r = -EINVAL;
3344                 if (!lapic_in_kernel(vcpu))
3345                         goto out;
3346                 r = -EFAULT;
3347                 if (copy_from_user(&va, argp, sizeof va))
3348                         goto out;
3349                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3350                 break;
3351         }
3352         case KVM_X86_SETUP_MCE: {
3353                 u64 mcg_cap;
3354
3355                 r = -EFAULT;
3356                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3357                         goto out;
3358                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3359                 break;
3360         }
3361         case KVM_X86_SET_MCE: {
3362                 struct kvm_x86_mce mce;
3363
3364                 r = -EFAULT;
3365                 if (copy_from_user(&mce, argp, sizeof mce))
3366                         goto out;
3367                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3368                 break;
3369         }
3370         case KVM_GET_VCPU_EVENTS: {
3371                 struct kvm_vcpu_events events;
3372
3373                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3374
3375                 r = -EFAULT;
3376                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3377                         break;
3378                 r = 0;
3379                 break;
3380         }
3381         case KVM_SET_VCPU_EVENTS: {
3382                 struct kvm_vcpu_events events;
3383
3384                 r = -EFAULT;
3385                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3386                         break;
3387
3388                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3389                 break;
3390         }
3391         case KVM_GET_DEBUGREGS: {
3392                 struct kvm_debugregs dbgregs;
3393
3394                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3395
3396                 r = -EFAULT;
3397                 if (copy_to_user(argp, &dbgregs,
3398                                  sizeof(struct kvm_debugregs)))
3399                         break;
3400                 r = 0;
3401                 break;
3402         }
3403         case KVM_SET_DEBUGREGS: {
3404                 struct kvm_debugregs dbgregs;
3405
3406                 r = -EFAULT;
3407                 if (copy_from_user(&dbgregs, argp,
3408                                    sizeof(struct kvm_debugregs)))
3409                         break;
3410
3411                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3412                 break;
3413         }
3414         case KVM_GET_XSAVE: {
3415                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3416                 r = -ENOMEM;
3417                 if (!u.xsave)
3418                         break;
3419
3420                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3421
3422                 r = -EFAULT;
3423                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3424                         break;
3425                 r = 0;
3426                 break;
3427         }
3428         case KVM_SET_XSAVE: {
3429                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3430                 if (IS_ERR(u.xsave))
3431                         return PTR_ERR(u.xsave);
3432
3433                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3434                 break;
3435         }
3436         case KVM_GET_XCRS: {
3437                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3438                 r = -ENOMEM;
3439                 if (!u.xcrs)
3440                         break;
3441
3442                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3443
3444                 r = -EFAULT;
3445                 if (copy_to_user(argp, u.xcrs,
3446                                  sizeof(struct kvm_xcrs)))
3447                         break;
3448                 r = 0;
3449                 break;
3450         }
3451         case KVM_SET_XCRS: {
3452                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3453                 if (IS_ERR(u.xcrs))
3454                         return PTR_ERR(u.xcrs);
3455
3456                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3457                 break;
3458         }
3459         case KVM_SET_TSC_KHZ: {
3460                 u32 user_tsc_khz;
3461
3462                 r = -EINVAL;
3463                 user_tsc_khz = (u32)arg;
3464
3465                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3466                         goto out;
3467
3468                 if (user_tsc_khz == 0)
3469                         user_tsc_khz = tsc_khz;
3470
3471                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3472                         r = 0;
3473
3474                 goto out;
3475         }
3476         case KVM_GET_TSC_KHZ: {
3477                 r = vcpu->arch.virtual_tsc_khz;
3478                 goto out;
3479         }
3480         case KVM_KVMCLOCK_CTRL: {
3481                 r = kvm_set_guest_paused(vcpu);
3482                 goto out;
3483         }
3484         case KVM_ENABLE_CAP: {
3485                 struct kvm_enable_cap cap;
3486
3487                 r = -EFAULT;
3488                 if (copy_from_user(&cap, argp, sizeof(cap)))
3489                         goto out;
3490                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3491                 break;
3492         }
3493         default:
3494                 r = -EINVAL;
3495         }
3496 out:
3497         kfree(u.buffer);
3498         return r;
3499 }
3500
3501 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3502 {
3503         return VM_FAULT_SIGBUS;
3504 }
3505
3506 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3507 {
3508         int ret;
3509
3510         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3511                 return -EINVAL;
3512         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3513         return ret;
3514 }
3515
3516 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3517                                               u64 ident_addr)
3518 {
3519         kvm->arch.ept_identity_map_addr = ident_addr;
3520         return 0;
3521 }
3522
3523 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3524                                           u32 kvm_nr_mmu_pages)
3525 {
3526         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3527                 return -EINVAL;
3528
3529         mutex_lock(&kvm->slots_lock);
3530
3531         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3532         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3533
3534         mutex_unlock(&kvm->slots_lock);
3535         return 0;
3536 }
3537
3538 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3539 {
3540         return kvm->arch.n_max_mmu_pages;
3541 }
3542
3543 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3544 {
3545         int r;
3546
3547         r = 0;
3548         switch (chip->chip_id) {
3549         case KVM_IRQCHIP_PIC_MASTER:
3550                 memcpy(&chip->chip.pic,
3551                         &pic_irqchip(kvm)->pics[0],
3552                         sizeof(struct kvm_pic_state));
3553                 break;
3554         case KVM_IRQCHIP_PIC_SLAVE:
3555                 memcpy(&chip->chip.pic,
3556                         &pic_irqchip(kvm)->pics[1],
3557                         sizeof(struct kvm_pic_state));
3558                 break;
3559         case KVM_IRQCHIP_IOAPIC:
3560                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3561                 break;
3562         default:
3563                 r = -EINVAL;
3564                 break;
3565         }
3566         return r;
3567 }
3568
3569 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3570 {
3571         int r;
3572
3573         r = 0;
3574         switch (chip->chip_id) {
3575         case KVM_IRQCHIP_PIC_MASTER:
3576                 spin_lock(&pic_irqchip(kvm)->lock);
3577                 memcpy(&pic_irqchip(kvm)->pics[0],
3578                         &chip->chip.pic,
3579                         sizeof(struct kvm_pic_state));
3580                 spin_unlock(&pic_irqchip(kvm)->lock);
3581                 break;
3582         case KVM_IRQCHIP_PIC_SLAVE:
3583                 spin_lock(&pic_irqchip(kvm)->lock);
3584                 memcpy(&pic_irqchip(kvm)->pics[1],
3585                         &chip->chip.pic,
3586                         sizeof(struct kvm_pic_state));
3587                 spin_unlock(&pic_irqchip(kvm)->lock);
3588                 break;
3589         case KVM_IRQCHIP_IOAPIC:
3590                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3591                 break;
3592         default:
3593                 r = -EINVAL;
3594                 break;
3595         }
3596         kvm_pic_update_irq(pic_irqchip(kvm));
3597         return r;
3598 }
3599
3600 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3601 {
3602         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3603         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3604         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3605         return 0;
3606 }
3607
3608 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3609 {
3610         int i;
3611         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3612         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3613         for (i = 0; i < 3; i++)
3614                 kvm_pit_load_count(kvm, i, ps->channels[i].count, 0);
3615         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3616         return 0;
3617 }
3618
3619 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3620 {
3621         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3622         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3623                 sizeof(ps->channels));
3624         ps->flags = kvm->arch.vpit->pit_state.flags;
3625         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3626         memset(&ps->reserved, 0, sizeof(ps->reserved));
3627         return 0;
3628 }
3629
3630 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3631 {
3632         int start = 0;
3633         int i;
3634         u32 prev_legacy, cur_legacy;
3635         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3636         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3637         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3638         if (!prev_legacy && cur_legacy)
3639                 start = 1;
3640         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3641                sizeof(kvm->arch.vpit->pit_state.channels));
3642         kvm->arch.vpit->pit_state.flags = ps->flags;
3643         for (i = 0; i < 3; i++)
3644                 kvm_pit_load_count(kvm, i, kvm->arch.vpit->pit_state.channels[i].count,
3645                                    start && i == 0);
3646         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3647         return 0;
3648 }
3649
3650 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3651                                  struct kvm_reinject_control *control)
3652 {
3653         if (!kvm->arch.vpit)
3654                 return -ENXIO;
3655         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3656         kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3657         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3658         return 0;
3659 }
3660
3661 /**
3662  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3663  * @kvm: kvm instance
3664  * @log: slot id and address to which we copy the log
3665  *
3666  * Steps 1-4 below provide general overview of dirty page logging. See
3667  * kvm_get_dirty_log_protect() function description for additional details.
3668  *
3669  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3670  * always flush the TLB (step 4) even if previous step failed  and the dirty
3671  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3672  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3673  * writes will be marked dirty for next log read.
3674  *
3675  *   1. Take a snapshot of the bit and clear it if needed.
3676  *   2. Write protect the corresponding page.
3677  *   3. Copy the snapshot to the userspace.
3678  *   4. Flush TLB's if needed.
3679  */
3680 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3681 {
3682         bool is_dirty = false;
3683         int r;
3684
3685         mutex_lock(&kvm->slots_lock);
3686
3687         /*
3688          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3689          */
3690         if (kvm_x86_ops->flush_log_dirty)
3691                 kvm_x86_ops->flush_log_dirty(kvm);
3692
3693         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3694
3695         /*
3696          * All the TLBs can be flushed out of mmu lock, see the comments in
3697          * kvm_mmu_slot_remove_write_access().
3698          */
3699         lockdep_assert_held(&kvm->slots_lock);
3700         if (is_dirty)
3701                 kvm_flush_remote_tlbs(kvm);
3702
3703         mutex_unlock(&kvm->slots_lock);
3704         return r;
3705 }
3706
3707 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3708                         bool line_status)
3709 {
3710         if (!irqchip_in_kernel(kvm))
3711                 return -ENXIO;
3712
3713         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3714                                         irq_event->irq, irq_event->level,
3715                                         line_status);
3716         return 0;
3717 }
3718
3719 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3720                                    struct kvm_enable_cap *cap)
3721 {
3722         int r;
3723
3724         if (cap->flags)
3725                 return -EINVAL;
3726
3727         switch (cap->cap) {
3728         case KVM_CAP_DISABLE_QUIRKS:
3729                 kvm->arch.disabled_quirks = cap->args[0];
3730                 r = 0;
3731                 break;
3732         case KVM_CAP_SPLIT_IRQCHIP: {
3733                 mutex_lock(&kvm->lock);
3734                 r = -EINVAL;
3735                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3736                         goto split_irqchip_unlock;
3737                 r = -EEXIST;
3738                 if (irqchip_in_kernel(kvm))
3739                         goto split_irqchip_unlock;
3740                 if (atomic_read(&kvm->online_vcpus))
3741                         goto split_irqchip_unlock;
3742                 r = kvm_setup_empty_irq_routing(kvm);
3743                 if (r)
3744                         goto split_irqchip_unlock;
3745                 /* Pairs with irqchip_in_kernel. */
3746                 smp_wmb();
3747                 kvm->arch.irqchip_split = true;
3748                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3749                 r = 0;
3750 split_irqchip_unlock:
3751                 mutex_unlock(&kvm->lock);
3752                 break;
3753         }
3754         default:
3755                 r = -EINVAL;
3756                 break;
3757         }
3758         return r;
3759 }
3760
3761 long kvm_arch_vm_ioctl(struct file *filp,
3762                        unsigned int ioctl, unsigned long arg)
3763 {
3764         struct kvm *kvm = filp->private_data;
3765         void __user *argp = (void __user *)arg;
3766         int r = -ENOTTY;
3767         /*
3768          * This union makes it completely explicit to gcc-3.x
3769          * that these two variables' stack usage should be
3770          * combined, not added together.
3771          */
3772         union {
3773                 struct kvm_pit_state ps;
3774                 struct kvm_pit_state2 ps2;
3775                 struct kvm_pit_config pit_config;
3776         } u;
3777
3778         switch (ioctl) {
3779         case KVM_SET_TSS_ADDR:
3780                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3781                 break;
3782         case KVM_SET_IDENTITY_MAP_ADDR: {
3783                 u64 ident_addr;
3784
3785                 r = -EFAULT;
3786                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3787                         goto out;
3788                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3789                 break;
3790         }
3791         case KVM_SET_NR_MMU_PAGES:
3792                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3793                 break;
3794         case KVM_GET_NR_MMU_PAGES:
3795                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3796                 break;
3797         case KVM_CREATE_IRQCHIP: {
3798                 struct kvm_pic *vpic;
3799
3800                 mutex_lock(&kvm->lock);
3801                 r = -EEXIST;
3802                 if (kvm->arch.vpic)
3803                         goto create_irqchip_unlock;
3804                 r = -EINVAL;
3805                 if (atomic_read(&kvm->online_vcpus))
3806                         goto create_irqchip_unlock;
3807                 r = -ENOMEM;
3808                 vpic = kvm_create_pic(kvm);
3809                 if (vpic) {
3810                         r = kvm_ioapic_init(kvm);
3811                         if (r) {
3812                                 mutex_lock(&kvm->slots_lock);
3813                                 kvm_destroy_pic(vpic);
3814                                 mutex_unlock(&kvm->slots_lock);
3815                                 goto create_irqchip_unlock;
3816                         }
3817                 } else
3818                         goto create_irqchip_unlock;
3819                 r = kvm_setup_default_irq_routing(kvm);
3820                 if (r) {
3821                         mutex_lock(&kvm->slots_lock);
3822                         mutex_lock(&kvm->irq_lock);
3823                         kvm_ioapic_destroy(kvm);
3824                         kvm_destroy_pic(vpic);
3825                         mutex_unlock(&kvm->irq_lock);
3826                         mutex_unlock(&kvm->slots_lock);
3827                         goto create_irqchip_unlock;
3828                 }
3829                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3830                 smp_wmb();
3831                 kvm->arch.vpic = vpic;
3832         create_irqchip_unlock:
3833                 mutex_unlock(&kvm->lock);
3834                 break;
3835         }
3836         case KVM_CREATE_PIT:
3837                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3838                 goto create_pit;
3839         case KVM_CREATE_PIT2:
3840                 r = -EFAULT;
3841                 if (copy_from_user(&u.pit_config, argp,
3842                                    sizeof(struct kvm_pit_config)))
3843                         goto out;
3844         create_pit:
3845                 mutex_lock(&kvm->slots_lock);
3846                 r = -EEXIST;
3847                 if (kvm->arch.vpit)
3848                         goto create_pit_unlock;
3849                 r = -ENOMEM;
3850                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3851                 if (kvm->arch.vpit)
3852                         r = 0;
3853         create_pit_unlock:
3854                 mutex_unlock(&kvm->slots_lock);
3855                 break;
3856         case KVM_GET_IRQCHIP: {
3857                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3858                 struct kvm_irqchip *chip;
3859
3860                 chip = memdup_user(argp, sizeof(*chip));
3861                 if (IS_ERR(chip)) {
3862                         r = PTR_ERR(chip);
3863                         goto out;
3864                 }
3865
3866                 r = -ENXIO;
3867                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3868                         goto get_irqchip_out;
3869                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3870                 if (r)
3871                         goto get_irqchip_out;
3872                 r = -EFAULT;
3873                 if (copy_to_user(argp, chip, sizeof *chip))
3874                         goto get_irqchip_out;
3875                 r = 0;
3876         get_irqchip_out:
3877                 kfree(chip);
3878                 break;
3879         }
3880         case KVM_SET_IRQCHIP: {
3881                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3882                 struct kvm_irqchip *chip;
3883
3884                 chip = memdup_user(argp, sizeof(*chip));
3885                 if (IS_ERR(chip)) {
3886                         r = PTR_ERR(chip);
3887                         goto out;
3888                 }
3889
3890                 r = -ENXIO;
3891                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3892                         goto set_irqchip_out;
3893                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3894                 if (r)
3895                         goto set_irqchip_out;
3896                 r = 0;
3897         set_irqchip_out:
3898                 kfree(chip);
3899                 break;
3900         }
3901         case KVM_GET_PIT: {
3902                 r = -EFAULT;
3903                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3904                         goto out;
3905                 r = -ENXIO;
3906                 if (!kvm->arch.vpit)
3907                         goto out;
3908                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3909                 if (r)
3910                         goto out;
3911                 r = -EFAULT;
3912                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3913                         goto out;
3914                 r = 0;
3915                 break;
3916         }
3917         case KVM_SET_PIT: {
3918                 r = -EFAULT;
3919                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3920                         goto out;
3921                 r = -ENXIO;
3922                 if (!kvm->arch.vpit)
3923                         goto out;
3924                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3925                 break;
3926         }
3927         case KVM_GET_PIT2: {
3928                 r = -ENXIO;
3929                 if (!kvm->arch.vpit)
3930                         goto out;
3931                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3932                 if (r)
3933                         goto out;
3934                 r = -EFAULT;
3935                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3936                         goto out;
3937                 r = 0;
3938                 break;
3939         }
3940         case KVM_SET_PIT2: {
3941                 r = -EFAULT;
3942                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3943                         goto out;
3944                 r = -ENXIO;
3945                 if (!kvm->arch.vpit)
3946                         goto out;
3947                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3948                 break;
3949         }
3950         case KVM_REINJECT_CONTROL: {
3951                 struct kvm_reinject_control control;
3952                 r =  -EFAULT;
3953                 if (copy_from_user(&control, argp, sizeof(control)))
3954                         goto out;
3955                 r = kvm_vm_ioctl_reinject(kvm, &control);
3956                 break;
3957         }
3958         case KVM_SET_BOOT_CPU_ID:
3959                 r = 0;
3960                 mutex_lock(&kvm->lock);
3961                 if (atomic_read(&kvm->online_vcpus) != 0)
3962                         r = -EBUSY;
3963                 else
3964                         kvm->arch.bsp_vcpu_id = arg;
3965                 mutex_unlock(&kvm->lock);
3966                 break;
3967         case KVM_XEN_HVM_CONFIG: {
3968                 r = -EFAULT;
3969                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3970                                    sizeof(struct kvm_xen_hvm_config)))
3971                         goto out;
3972                 r = -EINVAL;
3973                 if (kvm->arch.xen_hvm_config.flags)
3974                         goto out;
3975                 r = 0;
3976                 break;
3977         }
3978         case KVM_SET_CLOCK: {
3979                 struct kvm_clock_data user_ns;
3980                 u64 now_ns;
3981                 s64 delta;
3982
3983                 r = -EFAULT;
3984                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3985                         goto out;
3986
3987                 r = -EINVAL;
3988                 if (user_ns.flags)
3989                         goto out;
3990
3991                 r = 0;
3992                 local_irq_disable();
3993                 now_ns = get_kernel_ns();
3994                 delta = user_ns.clock - now_ns;
3995                 local_irq_enable();
3996                 kvm->arch.kvmclock_offset = delta;
3997                 kvm_gen_update_masterclock(kvm);
3998                 break;
3999         }
4000         case KVM_GET_CLOCK: {
4001                 struct kvm_clock_data user_ns;
4002                 u64 now_ns;
4003
4004                 local_irq_disable();
4005                 now_ns = get_kernel_ns();
4006                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4007                 local_irq_enable();
4008                 user_ns.flags = 0;
4009                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4010
4011                 r = -EFAULT;
4012                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4013                         goto out;
4014                 r = 0;
4015                 break;
4016         }
4017         case KVM_ENABLE_CAP: {
4018                 struct kvm_enable_cap cap;
4019
4020                 r = -EFAULT;
4021                 if (copy_from_user(&cap, argp, sizeof(cap)))
4022                         goto out;
4023                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4024                 break;
4025         }
4026         default:
4027                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4028         }
4029 out:
4030         return r;
4031 }
4032
4033 static void kvm_init_msr_list(void)
4034 {
4035         u32 dummy[2];
4036         unsigned i, j;
4037
4038         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4039                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4040                         continue;
4041
4042                 /*
4043                  * Even MSRs that are valid in the host may not be exposed
4044                  * to the guests in some cases.
4045                  */
4046                 switch (msrs_to_save[i]) {
4047                 case MSR_IA32_BNDCFGS:
4048                         if (!kvm_x86_ops->mpx_supported())
4049                                 continue;
4050                         break;
4051                 case MSR_TSC_AUX:
4052                         if (!kvm_x86_ops->rdtscp_supported())
4053                                 continue;
4054                         break;
4055                 default:
4056                         break;
4057                 }
4058
4059                 if (j < i)
4060                         msrs_to_save[j] = msrs_to_save[i];
4061                 j++;
4062         }
4063         num_msrs_to_save = j;
4064
4065         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4066                 switch (emulated_msrs[i]) {
4067                 case MSR_IA32_SMBASE:
4068                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4069                                 continue;
4070                         break;
4071                 default:
4072                         break;
4073                 }
4074
4075                 if (j < i)
4076                         emulated_msrs[j] = emulated_msrs[i];
4077                 j++;
4078         }
4079         num_emulated_msrs = j;
4080 }
4081
4082 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4083                            const void *v)
4084 {
4085         int handled = 0;
4086         int n;
4087
4088         do {
4089                 n = min(len, 8);
4090                 if (!(vcpu->arch.apic &&
4091                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4092                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4093                         break;
4094                 handled += n;
4095                 addr += n;
4096                 len -= n;
4097                 v += n;
4098         } while (len);
4099
4100         return handled;
4101 }
4102
4103 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4104 {
4105         int handled = 0;
4106         int n;
4107
4108         do {
4109                 n = min(len, 8);
4110                 if (!(vcpu->arch.apic &&
4111                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4112                                          addr, n, v))
4113                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4114                         break;
4115                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4116                 handled += n;
4117                 addr += n;
4118                 len -= n;
4119                 v += n;
4120         } while (len);
4121
4122         return handled;
4123 }
4124
4125 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4126                         struct kvm_segment *var, int seg)
4127 {
4128         kvm_x86_ops->set_segment(vcpu, var, seg);
4129 }
4130
4131 void kvm_get_segment(struct kvm_vcpu *vcpu,
4132                      struct kvm_segment *var, int seg)
4133 {
4134         kvm_x86_ops->get_segment(vcpu, var, seg);
4135 }
4136
4137 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4138                            struct x86_exception *exception)
4139 {
4140         gpa_t t_gpa;
4141
4142         BUG_ON(!mmu_is_nested(vcpu));
4143
4144         /* NPT walks are always user-walks */
4145         access |= PFERR_USER_MASK;
4146         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4147
4148         return t_gpa;
4149 }
4150
4151 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4152                               struct x86_exception *exception)
4153 {
4154         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4155         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4156 }
4157
4158  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4159                                 struct x86_exception *exception)
4160 {
4161         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4162         access |= PFERR_FETCH_MASK;
4163         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4164 }
4165
4166 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4167                                struct x86_exception *exception)
4168 {
4169         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4170         access |= PFERR_WRITE_MASK;
4171         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4172 }
4173
4174 /* uses this to access any guest's mapped memory without checking CPL */
4175 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4176                                 struct x86_exception *exception)
4177 {
4178         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4179 }
4180
4181 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4182                                       struct kvm_vcpu *vcpu, u32 access,
4183                                       struct x86_exception *exception)
4184 {
4185         void *data = val;
4186         int r = X86EMUL_CONTINUE;
4187
4188         while (bytes) {
4189                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4190                                                             exception);
4191                 unsigned offset = addr & (PAGE_SIZE-1);
4192                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4193                 int ret;
4194
4195                 if (gpa == UNMAPPED_GVA)
4196                         return X86EMUL_PROPAGATE_FAULT;
4197                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4198                                                offset, toread);
4199                 if (ret < 0) {
4200                         r = X86EMUL_IO_NEEDED;
4201                         goto out;
4202                 }
4203
4204                 bytes -= toread;
4205                 data += toread;
4206                 addr += toread;
4207         }
4208 out:
4209         return r;
4210 }
4211
4212 /* used for instruction fetching */
4213 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4214                                 gva_t addr, void *val, unsigned int bytes,
4215                                 struct x86_exception *exception)
4216 {
4217         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4218         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4219         unsigned offset;
4220         int ret;
4221
4222         /* Inline kvm_read_guest_virt_helper for speed.  */
4223         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4224                                                     exception);
4225         if (unlikely(gpa == UNMAPPED_GVA))
4226                 return X86EMUL_PROPAGATE_FAULT;
4227
4228         offset = addr & (PAGE_SIZE-1);
4229         if (WARN_ON(offset + bytes > PAGE_SIZE))
4230                 bytes = (unsigned)PAGE_SIZE - offset;
4231         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4232                                        offset, bytes);
4233         if (unlikely(ret < 0))
4234                 return X86EMUL_IO_NEEDED;
4235
4236         return X86EMUL_CONTINUE;
4237 }
4238
4239 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4240                                gva_t addr, void *val, unsigned int bytes,
4241                                struct x86_exception *exception)
4242 {
4243         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4244         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4245
4246         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4247                                           exception);
4248 }
4249 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4250
4251 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4252                                       gva_t addr, void *val, unsigned int bytes,
4253                                       struct x86_exception *exception)
4254 {
4255         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4256         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4257 }
4258
4259 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4260                 unsigned long addr, void *val, unsigned int bytes)
4261 {
4262         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4263         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4264
4265         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4266 }
4267
4268 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4269                                        gva_t addr, void *val,
4270                                        unsigned int bytes,
4271                                        struct x86_exception *exception)
4272 {
4273         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4274         void *data = val;
4275         int r = X86EMUL_CONTINUE;
4276
4277         while (bytes) {
4278                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4279                                                              PFERR_WRITE_MASK,
4280                                                              exception);
4281                 unsigned offset = addr & (PAGE_SIZE-1);
4282                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4283                 int ret;
4284
4285                 if (gpa == UNMAPPED_GVA)
4286                         return X86EMUL_PROPAGATE_FAULT;
4287                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4288                 if (ret < 0) {
4289                         r = X86EMUL_IO_NEEDED;
4290                         goto out;
4291                 }
4292
4293                 bytes -= towrite;
4294                 data += towrite;
4295                 addr += towrite;
4296         }
4297 out:
4298         return r;
4299 }
4300 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4301
4302 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4303                                 gpa_t *gpa, struct x86_exception *exception,
4304                                 bool write)
4305 {
4306         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4307                 | (write ? PFERR_WRITE_MASK : 0);
4308
4309         if (vcpu_match_mmio_gva(vcpu, gva)
4310             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4311                                  vcpu->arch.access, access)) {
4312                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4313                                         (gva & (PAGE_SIZE - 1));
4314                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4315                 return 1;
4316         }
4317
4318         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4319
4320         if (*gpa == UNMAPPED_GVA)
4321                 return -1;
4322
4323         /* For APIC access vmexit */
4324         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4325                 return 1;
4326
4327         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4328                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4329                 return 1;
4330         }
4331
4332         return 0;
4333 }
4334
4335 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4336                         const void *val, int bytes)
4337 {
4338         int ret;
4339
4340         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4341         if (ret < 0)
4342                 return 0;
4343         kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4344         return 1;
4345 }
4346
4347 struct read_write_emulator_ops {
4348         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4349                                   int bytes);
4350         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4351                                   void *val, int bytes);
4352         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4353                                int bytes, void *val);
4354         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4355                                     void *val, int bytes);
4356         bool write;
4357 };
4358
4359 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4360 {
4361         if (vcpu->mmio_read_completed) {
4362                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4363                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4364                 vcpu->mmio_read_completed = 0;
4365                 return 1;
4366         }
4367
4368         return 0;
4369 }
4370
4371 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4372                         void *val, int bytes)
4373 {
4374         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4375 }
4376
4377 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4378                          void *val, int bytes)
4379 {
4380         return emulator_write_phys(vcpu, gpa, val, bytes);
4381 }
4382
4383 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4384 {
4385         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4386         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4387 }
4388
4389 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4390                           void *val, int bytes)
4391 {
4392         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4393         return X86EMUL_IO_NEEDED;
4394 }
4395
4396 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4397                            void *val, int bytes)
4398 {
4399         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4400
4401         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4402         return X86EMUL_CONTINUE;
4403 }
4404
4405 static const struct read_write_emulator_ops read_emultor = {
4406         .read_write_prepare = read_prepare,
4407         .read_write_emulate = read_emulate,
4408         .read_write_mmio = vcpu_mmio_read,
4409         .read_write_exit_mmio = read_exit_mmio,
4410 };
4411
4412 static const struct read_write_emulator_ops write_emultor = {
4413         .read_write_emulate = write_emulate,
4414         .read_write_mmio = write_mmio,
4415         .read_write_exit_mmio = write_exit_mmio,
4416         .write = true,
4417 };
4418
4419 static int emulator_read_write_onepage(unsigned long addr, void *val,
4420                                        unsigned int bytes,
4421                                        struct x86_exception *exception,
4422                                        struct kvm_vcpu *vcpu,
4423                                        const struct read_write_emulator_ops *ops)
4424 {
4425         gpa_t gpa;
4426         int handled, ret;
4427         bool write = ops->write;
4428         struct kvm_mmio_fragment *frag;
4429
4430         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4431
4432         if (ret < 0)
4433                 return X86EMUL_PROPAGATE_FAULT;
4434
4435         /* For APIC access vmexit */
4436         if (ret)
4437                 goto mmio;
4438
4439         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4440                 return X86EMUL_CONTINUE;
4441
4442 mmio:
4443         /*
4444          * Is this MMIO handled locally?
4445          */
4446         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4447         if (handled == bytes)
4448                 return X86EMUL_CONTINUE;
4449
4450         gpa += handled;
4451         bytes -= handled;
4452         val += handled;
4453
4454         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4455         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4456         frag->gpa = gpa;
4457         frag->data = val;
4458         frag->len = bytes;
4459         return X86EMUL_CONTINUE;
4460 }
4461
4462 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4463                         unsigned long addr,
4464                         void *val, unsigned int bytes,
4465                         struct x86_exception *exception,
4466                         const struct read_write_emulator_ops *ops)
4467 {
4468         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4469         gpa_t gpa;
4470         int rc;
4471
4472         if (ops->read_write_prepare &&
4473                   ops->read_write_prepare(vcpu, val, bytes))
4474                 return X86EMUL_CONTINUE;
4475
4476         vcpu->mmio_nr_fragments = 0;
4477
4478         /* Crossing a page boundary? */
4479         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4480                 int now;
4481
4482                 now = -addr & ~PAGE_MASK;
4483                 rc = emulator_read_write_onepage(addr, val, now, exception,
4484                                                  vcpu, ops);
4485
4486                 if (rc != X86EMUL_CONTINUE)
4487                         return rc;
4488                 addr += now;
4489                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4490                         addr = (u32)addr;
4491                 val += now;
4492                 bytes -= now;
4493         }
4494
4495         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4496                                          vcpu, ops);
4497         if (rc != X86EMUL_CONTINUE)
4498                 return rc;
4499
4500         if (!vcpu->mmio_nr_fragments)
4501                 return rc;
4502
4503         gpa = vcpu->mmio_fragments[0].gpa;
4504
4505         vcpu->mmio_needed = 1;
4506         vcpu->mmio_cur_fragment = 0;
4507
4508         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4509         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4510         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4511         vcpu->run->mmio.phys_addr = gpa;
4512
4513         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4514 }
4515
4516 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4517                                   unsigned long addr,
4518                                   void *val,
4519                                   unsigned int bytes,
4520                                   struct x86_exception *exception)
4521 {
4522         return emulator_read_write(ctxt, addr, val, bytes,
4523                                    exception, &read_emultor);
4524 }
4525
4526 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4527                             unsigned long addr,
4528                             const void *val,
4529                             unsigned int bytes,
4530                             struct x86_exception *exception)
4531 {
4532         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4533                                    exception, &write_emultor);
4534 }
4535
4536 #define CMPXCHG_TYPE(t, ptr, old, new) \
4537         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4538
4539 #ifdef CONFIG_X86_64
4540 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4541 #else
4542 #  define CMPXCHG64(ptr, old, new) \
4543         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4544 #endif
4545
4546 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4547                                      unsigned long addr,
4548                                      const void *old,
4549                                      const void *new,
4550                                      unsigned int bytes,
4551                                      struct x86_exception *exception)
4552 {
4553         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4554         gpa_t gpa;
4555         struct page *page;
4556         char *kaddr;
4557         bool exchanged;
4558
4559         /* guests cmpxchg8b have to be emulated atomically */
4560         if (bytes > 8 || (bytes & (bytes - 1)))
4561                 goto emul_write;
4562
4563         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4564
4565         if (gpa == UNMAPPED_GVA ||
4566             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4567                 goto emul_write;
4568
4569         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4570                 goto emul_write;
4571
4572         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4573         if (is_error_page(page))
4574                 goto emul_write;
4575
4576         kaddr = kmap_atomic(page);
4577         kaddr += offset_in_page(gpa);
4578         switch (bytes) {
4579         case 1:
4580                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4581                 break;
4582         case 2:
4583                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4584                 break;
4585         case 4:
4586                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4587                 break;
4588         case 8:
4589                 exchanged = CMPXCHG64(kaddr, old, new);
4590                 break;
4591         default:
4592                 BUG();
4593         }
4594         kunmap_atomic(kaddr);
4595         kvm_release_page_dirty(page);
4596
4597         if (!exchanged)
4598                 return X86EMUL_CMPXCHG_FAILED;
4599
4600         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4601         kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4602
4603         return X86EMUL_CONTINUE;
4604
4605 emul_write:
4606         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4607
4608         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4609 }
4610
4611 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4612 {
4613         /* TODO: String I/O for in kernel device */
4614         int r;
4615
4616         if (vcpu->arch.pio.in)
4617                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4618                                     vcpu->arch.pio.size, pd);
4619         else
4620                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4621                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4622                                      pd);
4623         return r;
4624 }
4625
4626 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4627                                unsigned short port, void *val,
4628                                unsigned int count, bool in)
4629 {
4630         vcpu->arch.pio.port = port;
4631         vcpu->arch.pio.in = in;
4632         vcpu->arch.pio.count  = count;
4633         vcpu->arch.pio.size = size;
4634
4635         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4636                 vcpu->arch.pio.count = 0;
4637                 return 1;
4638         }
4639
4640         vcpu->run->exit_reason = KVM_EXIT_IO;
4641         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4642         vcpu->run->io.size = size;
4643         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4644         vcpu->run->io.count = count;
4645         vcpu->run->io.port = port;
4646
4647         return 0;
4648 }
4649
4650 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4651                                     int size, unsigned short port, void *val,
4652                                     unsigned int count)
4653 {
4654         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4655         int ret;
4656
4657         if (vcpu->arch.pio.count)
4658                 goto data_avail;
4659
4660         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4661         if (ret) {
4662 data_avail:
4663                 memcpy(val, vcpu->arch.pio_data, size * count);
4664                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4665                 vcpu->arch.pio.count = 0;
4666                 return 1;
4667         }
4668
4669         return 0;
4670 }
4671
4672 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4673                                      int size, unsigned short port,
4674                                      const void *val, unsigned int count)
4675 {
4676         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4677
4678         memcpy(vcpu->arch.pio_data, val, size * count);
4679         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4680         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4681 }
4682
4683 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4684 {
4685         return kvm_x86_ops->get_segment_base(vcpu, seg);
4686 }
4687
4688 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4689 {
4690         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4691 }
4692
4693 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4694 {
4695         if (!need_emulate_wbinvd(vcpu))
4696                 return X86EMUL_CONTINUE;
4697
4698         if (kvm_x86_ops->has_wbinvd_exit()) {
4699                 int cpu = get_cpu();
4700
4701                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4702                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4703                                 wbinvd_ipi, NULL, 1);
4704                 put_cpu();
4705                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4706         } else
4707                 wbinvd();
4708         return X86EMUL_CONTINUE;
4709 }
4710
4711 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4712 {
4713         kvm_x86_ops->skip_emulated_instruction(vcpu);
4714         return kvm_emulate_wbinvd_noskip(vcpu);
4715 }
4716 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4717
4718
4719
4720 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4721 {
4722         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4723 }
4724
4725 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4726                            unsigned long *dest)
4727 {
4728         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4729 }
4730
4731 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4732                            unsigned long value)
4733 {
4734
4735         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4736 }
4737
4738 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4739 {
4740         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4741 }
4742
4743 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4744 {
4745         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4746         unsigned long value;
4747
4748         switch (cr) {
4749         case 0:
4750                 value = kvm_read_cr0(vcpu);
4751                 break;
4752         case 2:
4753                 value = vcpu->arch.cr2;
4754                 break;
4755         case 3:
4756                 value = kvm_read_cr3(vcpu);
4757                 break;
4758         case 4:
4759                 value = kvm_read_cr4(vcpu);
4760                 break;
4761         case 8:
4762                 value = kvm_get_cr8(vcpu);
4763                 break;
4764         default:
4765                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4766                 return 0;
4767         }
4768
4769         return value;
4770 }
4771
4772 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4773 {
4774         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4775         int res = 0;
4776
4777         switch (cr) {
4778         case 0:
4779                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4780                 break;
4781         case 2:
4782                 vcpu->arch.cr2 = val;
4783                 break;
4784         case 3:
4785                 res = kvm_set_cr3(vcpu, val);
4786                 break;
4787         case 4:
4788                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4789                 break;
4790         case 8:
4791                 res = kvm_set_cr8(vcpu, val);
4792                 break;
4793         default:
4794                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4795                 res = -1;
4796         }
4797
4798         return res;
4799 }
4800
4801 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4802 {
4803         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4804 }
4805
4806 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4807 {
4808         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4809 }
4810
4811 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4812 {
4813         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4814 }
4815
4816 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4817 {
4818         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4819 }
4820
4821 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4822 {
4823         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4824 }
4825
4826 static unsigned long emulator_get_cached_segment_base(
4827         struct x86_emulate_ctxt *ctxt, int seg)
4828 {
4829         return get_segment_base(emul_to_vcpu(ctxt), seg);
4830 }
4831
4832 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4833                                  struct desc_struct *desc, u32 *base3,
4834                                  int seg)
4835 {
4836         struct kvm_segment var;
4837
4838         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4839         *selector = var.selector;
4840
4841         if (var.unusable) {
4842                 memset(desc, 0, sizeof(*desc));
4843                 return false;
4844         }
4845
4846         if (var.g)
4847                 var.limit >>= 12;
4848         set_desc_limit(desc, var.limit);
4849         set_desc_base(desc, (unsigned long)var.base);
4850 #ifdef CONFIG_X86_64
4851         if (base3)
4852                 *base3 = var.base >> 32;
4853 #endif
4854         desc->type = var.type;
4855         desc->s = var.s;
4856         desc->dpl = var.dpl;
4857         desc->p = var.present;
4858         desc->avl = var.avl;
4859         desc->l = var.l;
4860         desc->d = var.db;
4861         desc->g = var.g;
4862
4863         return true;
4864 }
4865
4866 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4867                                  struct desc_struct *desc, u32 base3,
4868                                  int seg)
4869 {
4870         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4871         struct kvm_segment var;
4872
4873         var.selector = selector;
4874         var.base = get_desc_base(desc);
4875 #ifdef CONFIG_X86_64
4876         var.base |= ((u64)base3) << 32;
4877 #endif
4878         var.limit = get_desc_limit(desc);
4879         if (desc->g)
4880                 var.limit = (var.limit << 12) | 0xfff;
4881         var.type = desc->type;
4882         var.dpl = desc->dpl;
4883         var.db = desc->d;
4884         var.s = desc->s;
4885         var.l = desc->l;
4886         var.g = desc->g;
4887         var.avl = desc->avl;
4888         var.present = desc->p;
4889         var.unusable = !var.present;
4890         var.padding = 0;
4891
4892         kvm_set_segment(vcpu, &var, seg);
4893         return;
4894 }
4895
4896 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4897                             u32 msr_index, u64 *pdata)
4898 {
4899         struct msr_data msr;
4900         int r;
4901
4902         msr.index = msr_index;
4903         msr.host_initiated = false;
4904         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4905         if (r)
4906                 return r;
4907
4908         *pdata = msr.data;
4909         return 0;
4910 }
4911
4912 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4913                             u32 msr_index, u64 data)
4914 {
4915         struct msr_data msr;
4916
4917         msr.data = data;
4918         msr.index = msr_index;
4919         msr.host_initiated = false;
4920         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4921 }
4922
4923 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4924 {
4925         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4926
4927         return vcpu->arch.smbase;
4928 }
4929
4930 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4931 {
4932         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4933
4934         vcpu->arch.smbase = smbase;
4935 }
4936
4937 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4938                               u32 pmc)
4939 {
4940         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4941 }
4942
4943 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4944                              u32 pmc, u64 *pdata)
4945 {
4946         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4947 }
4948
4949 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4950 {
4951         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4952 }
4953
4954 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4955 {
4956         preempt_disable();
4957         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4958         /*
4959          * CR0.TS may reference the host fpu state, not the guest fpu state,
4960          * so it may be clear at this point.
4961          */
4962         clts();
4963 }
4964
4965 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4966 {
4967         preempt_enable();
4968 }
4969
4970 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4971                               struct x86_instruction_info *info,
4972                               enum x86_intercept_stage stage)
4973 {
4974         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4975 }
4976
4977 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4978                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4979 {
4980         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4981 }
4982
4983 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4984 {
4985         return kvm_register_read(emul_to_vcpu(ctxt), reg);
4986 }
4987
4988 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4989 {
4990         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4991 }
4992
4993 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
4994 {
4995         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
4996 }
4997
4998 static const struct x86_emulate_ops emulate_ops = {
4999         .read_gpr            = emulator_read_gpr,
5000         .write_gpr           = emulator_write_gpr,
5001         .read_std            = kvm_read_guest_virt_system,
5002         .write_std           = kvm_write_guest_virt_system,
5003         .read_phys           = kvm_read_guest_phys_system,
5004         .fetch               = kvm_fetch_guest_virt,
5005         .read_emulated       = emulator_read_emulated,
5006         .write_emulated      = emulator_write_emulated,
5007         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5008         .invlpg              = emulator_invlpg,
5009         .pio_in_emulated     = emulator_pio_in_emulated,
5010         .pio_out_emulated    = emulator_pio_out_emulated,
5011         .get_segment         = emulator_get_segment,
5012         .set_segment         = emulator_set_segment,
5013         .get_cached_segment_base = emulator_get_cached_segment_base,
5014         .get_gdt             = emulator_get_gdt,
5015         .get_idt             = emulator_get_idt,
5016         .set_gdt             = emulator_set_gdt,
5017         .set_idt             = emulator_set_idt,
5018         .get_cr              = emulator_get_cr,
5019         .set_cr              = emulator_set_cr,
5020         .cpl                 = emulator_get_cpl,
5021         .get_dr              = emulator_get_dr,
5022         .set_dr              = emulator_set_dr,
5023         .get_smbase          = emulator_get_smbase,
5024         .set_smbase          = emulator_set_smbase,
5025         .set_msr             = emulator_set_msr,
5026         .get_msr             = emulator_get_msr,
5027         .check_pmc           = emulator_check_pmc,
5028         .read_pmc            = emulator_read_pmc,
5029         .halt                = emulator_halt,
5030         .wbinvd              = emulator_wbinvd,
5031         .fix_hypercall       = emulator_fix_hypercall,
5032         .get_fpu             = emulator_get_fpu,
5033         .put_fpu             = emulator_put_fpu,
5034         .intercept           = emulator_intercept,
5035         .get_cpuid           = emulator_get_cpuid,
5036         .set_nmi_mask        = emulator_set_nmi_mask,
5037 };
5038
5039 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5040 {
5041         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5042         /*
5043          * an sti; sti; sequence only disable interrupts for the first
5044          * instruction. So, if the last instruction, be it emulated or
5045          * not, left the system with the INT_STI flag enabled, it
5046          * means that the last instruction is an sti. We should not
5047          * leave the flag on in this case. The same goes for mov ss
5048          */
5049         if (int_shadow & mask)
5050                 mask = 0;
5051         if (unlikely(int_shadow || mask)) {
5052                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5053                 if (!mask)
5054                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5055         }
5056 }
5057
5058 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5059 {
5060         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5061         if (ctxt->exception.vector == PF_VECTOR)
5062                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5063
5064         if (ctxt->exception.error_code_valid)
5065                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5066                                       ctxt->exception.error_code);
5067         else
5068                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5069         return false;
5070 }
5071
5072 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5073 {
5074         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5075         int cs_db, cs_l;
5076
5077         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5078
5079         ctxt->eflags = kvm_get_rflags(vcpu);
5080         ctxt->eip = kvm_rip_read(vcpu);
5081         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5082                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5083                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5084                      cs_db                              ? X86EMUL_MODE_PROT32 :
5085                                                           X86EMUL_MODE_PROT16;
5086         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5087         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5088         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5089         ctxt->emul_flags = vcpu->arch.hflags;
5090
5091         init_decode_cache(ctxt);
5092         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5093 }
5094
5095 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5096 {
5097         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5098         int ret;
5099
5100         init_emulate_ctxt(vcpu);
5101
5102         ctxt->op_bytes = 2;
5103         ctxt->ad_bytes = 2;
5104         ctxt->_eip = ctxt->eip + inc_eip;
5105         ret = emulate_int_real(ctxt, irq);
5106
5107         if (ret != X86EMUL_CONTINUE)
5108                 return EMULATE_FAIL;
5109
5110         ctxt->eip = ctxt->_eip;
5111         kvm_rip_write(vcpu, ctxt->eip);
5112         kvm_set_rflags(vcpu, ctxt->eflags);
5113
5114         if (irq == NMI_VECTOR)
5115                 vcpu->arch.nmi_pending = 0;
5116         else
5117                 vcpu->arch.interrupt.pending = false;
5118
5119         return EMULATE_DONE;
5120 }
5121 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5122
5123 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5124 {
5125         int r = EMULATE_DONE;
5126
5127         ++vcpu->stat.insn_emulation_fail;
5128         trace_kvm_emulate_insn_failed(vcpu);
5129         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5130                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5131                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5132                 vcpu->run->internal.ndata = 0;
5133                 r = EMULATE_FAIL;
5134         }
5135         kvm_queue_exception(vcpu, UD_VECTOR);
5136
5137         return r;
5138 }
5139
5140 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5141                                   bool write_fault_to_shadow_pgtable,
5142                                   int emulation_type)
5143 {
5144         gpa_t gpa = cr2;
5145         kvm_pfn_t pfn;
5146
5147         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5148                 return false;
5149
5150         if (!vcpu->arch.mmu.direct_map) {
5151                 /*
5152                  * Write permission should be allowed since only
5153                  * write access need to be emulated.
5154                  */
5155                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5156
5157                 /*
5158                  * If the mapping is invalid in guest, let cpu retry
5159                  * it to generate fault.
5160                  */
5161                 if (gpa == UNMAPPED_GVA)
5162                         return true;
5163         }
5164
5165         /*
5166          * Do not retry the unhandleable instruction if it faults on the
5167          * readonly host memory, otherwise it will goto a infinite loop:
5168          * retry instruction -> write #PF -> emulation fail -> retry
5169          * instruction -> ...
5170          */
5171         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5172
5173         /*
5174          * If the instruction failed on the error pfn, it can not be fixed,
5175          * report the error to userspace.
5176          */
5177         if (is_error_noslot_pfn(pfn))
5178                 return false;
5179
5180         kvm_release_pfn_clean(pfn);
5181
5182         /* The instructions are well-emulated on direct mmu. */
5183         if (vcpu->arch.mmu.direct_map) {
5184                 unsigned int indirect_shadow_pages;
5185
5186                 spin_lock(&vcpu->kvm->mmu_lock);
5187                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5188                 spin_unlock(&vcpu->kvm->mmu_lock);
5189
5190                 if (indirect_shadow_pages)
5191                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5192
5193                 return true;
5194         }
5195
5196         /*
5197          * if emulation was due to access to shadowed page table
5198          * and it failed try to unshadow page and re-enter the
5199          * guest to let CPU execute the instruction.
5200          */
5201         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5202
5203         /*
5204          * If the access faults on its page table, it can not
5205          * be fixed by unprotecting shadow page and it should
5206          * be reported to userspace.
5207          */
5208         return !write_fault_to_shadow_pgtable;
5209 }
5210
5211 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5212                               unsigned long cr2,  int emulation_type)
5213 {
5214         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5215         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5216
5217         last_retry_eip = vcpu->arch.last_retry_eip;
5218         last_retry_addr = vcpu->arch.last_retry_addr;
5219
5220         /*
5221          * If the emulation is caused by #PF and it is non-page_table
5222          * writing instruction, it means the VM-EXIT is caused by shadow
5223          * page protected, we can zap the shadow page and retry this
5224          * instruction directly.
5225          *
5226          * Note: if the guest uses a non-page-table modifying instruction
5227          * on the PDE that points to the instruction, then we will unmap
5228          * the instruction and go to an infinite loop. So, we cache the
5229          * last retried eip and the last fault address, if we meet the eip
5230          * and the address again, we can break out of the potential infinite
5231          * loop.
5232          */
5233         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5234
5235         if (!(emulation_type & EMULTYPE_RETRY))
5236                 return false;
5237
5238         if (x86_page_table_writing_insn(ctxt))
5239                 return false;
5240
5241         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5242                 return false;
5243
5244         vcpu->arch.last_retry_eip = ctxt->eip;
5245         vcpu->arch.last_retry_addr = cr2;
5246
5247         if (!vcpu->arch.mmu.direct_map)
5248                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5249
5250         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5251
5252         return true;
5253 }
5254
5255 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5256 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5257
5258 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5259 {
5260         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5261                 /* This is a good place to trace that we are exiting SMM.  */
5262                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5263
5264                 if (unlikely(vcpu->arch.smi_pending)) {
5265                         kvm_make_request(KVM_REQ_SMI, vcpu);
5266                         vcpu->arch.smi_pending = 0;
5267                 } else {
5268                         /* Process a latched INIT, if any.  */
5269                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5270                 }
5271         }
5272
5273         kvm_mmu_reset_context(vcpu);
5274 }
5275
5276 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5277 {
5278         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5279
5280         vcpu->arch.hflags = emul_flags;
5281
5282         if (changed & HF_SMM_MASK)
5283                 kvm_smm_changed(vcpu);
5284 }
5285
5286 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5287                                 unsigned long *db)
5288 {
5289         u32 dr6 = 0;
5290         int i;
5291         u32 enable, rwlen;
5292
5293         enable = dr7;
5294         rwlen = dr7 >> 16;
5295         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5296                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5297                         dr6 |= (1 << i);
5298         return dr6;
5299 }
5300
5301 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5302 {
5303         struct kvm_run *kvm_run = vcpu->run;
5304
5305         /*
5306          * rflags is the old, "raw" value of the flags.  The new value has
5307          * not been saved yet.
5308          *
5309          * This is correct even for TF set by the guest, because "the
5310          * processor will not generate this exception after the instruction
5311          * that sets the TF flag".
5312          */
5313         if (unlikely(rflags & X86_EFLAGS_TF)) {
5314                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5315                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5316                                                   DR6_RTM;
5317                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5318                         kvm_run->debug.arch.exception = DB_VECTOR;
5319                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5320                         *r = EMULATE_USER_EXIT;
5321                 } else {
5322                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5323                         /*
5324                          * "Certain debug exceptions may clear bit 0-3.  The
5325                          * remaining contents of the DR6 register are never
5326                          * cleared by the processor".
5327                          */
5328                         vcpu->arch.dr6 &= ~15;
5329                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5330                         kvm_queue_exception(vcpu, DB_VECTOR);
5331                 }
5332         }
5333 }
5334
5335 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5336 {
5337         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5338             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5339                 struct kvm_run *kvm_run = vcpu->run;
5340                 unsigned long eip = kvm_get_linear_rip(vcpu);
5341                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5342                                            vcpu->arch.guest_debug_dr7,
5343                                            vcpu->arch.eff_db);
5344
5345                 if (dr6 != 0) {
5346                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5347                         kvm_run->debug.arch.pc = eip;
5348                         kvm_run->debug.arch.exception = DB_VECTOR;
5349                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5350                         *r = EMULATE_USER_EXIT;
5351                         return true;
5352                 }
5353         }
5354
5355         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5356             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5357                 unsigned long eip = kvm_get_linear_rip(vcpu);
5358                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5359                                            vcpu->arch.dr7,
5360                                            vcpu->arch.db);
5361
5362                 if (dr6 != 0) {
5363                         vcpu->arch.dr6 &= ~15;
5364                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5365                         kvm_queue_exception(vcpu, DB_VECTOR);
5366                         *r = EMULATE_DONE;
5367                         return true;
5368                 }
5369         }
5370
5371         return false;
5372 }
5373
5374 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5375                             unsigned long cr2,
5376                             int emulation_type,
5377                             void *insn,
5378                             int insn_len)
5379 {
5380         int r;
5381         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5382         bool writeback = true;
5383         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5384
5385         /*
5386          * Clear write_fault_to_shadow_pgtable here to ensure it is
5387          * never reused.
5388          */
5389         vcpu->arch.write_fault_to_shadow_pgtable = false;
5390         kvm_clear_exception_queue(vcpu);
5391
5392         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5393                 init_emulate_ctxt(vcpu);
5394
5395                 /*
5396                  * We will reenter on the same instruction since
5397                  * we do not set complete_userspace_io.  This does not
5398                  * handle watchpoints yet, those would be handled in
5399                  * the emulate_ops.
5400                  */
5401                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5402                         return r;
5403
5404                 ctxt->interruptibility = 0;
5405                 ctxt->have_exception = false;
5406                 ctxt->exception.vector = -1;
5407                 ctxt->perm_ok = false;
5408
5409                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5410
5411                 r = x86_decode_insn(ctxt, insn, insn_len);
5412
5413                 trace_kvm_emulate_insn_start(vcpu);
5414                 ++vcpu->stat.insn_emulation;
5415                 if (r != EMULATION_OK)  {
5416                         if (emulation_type & EMULTYPE_TRAP_UD)
5417                                 return EMULATE_FAIL;
5418                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5419                                                 emulation_type))
5420                                 return EMULATE_DONE;
5421                         if (emulation_type & EMULTYPE_SKIP)
5422                                 return EMULATE_FAIL;
5423                         return handle_emulation_failure(vcpu);
5424                 }
5425         }
5426
5427         if (emulation_type & EMULTYPE_SKIP) {
5428                 kvm_rip_write(vcpu, ctxt->_eip);
5429                 if (ctxt->eflags & X86_EFLAGS_RF)
5430                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5431                 return EMULATE_DONE;
5432         }
5433
5434         if (retry_instruction(ctxt, cr2, emulation_type))
5435                 return EMULATE_DONE;
5436
5437         /* this is needed for vmware backdoor interface to work since it
5438            changes registers values  during IO operation */
5439         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5440                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5441                 emulator_invalidate_register_cache(ctxt);
5442         }
5443
5444 restart:
5445         r = x86_emulate_insn(ctxt);
5446
5447         if (r == EMULATION_INTERCEPTED)
5448                 return EMULATE_DONE;
5449
5450         if (r == EMULATION_FAILED) {
5451                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5452                                         emulation_type))
5453                         return EMULATE_DONE;
5454
5455                 return handle_emulation_failure(vcpu);
5456         }
5457
5458         if (ctxt->have_exception) {
5459                 r = EMULATE_DONE;
5460                 if (inject_emulated_exception(vcpu))
5461                         return r;
5462         } else if (vcpu->arch.pio.count) {
5463                 if (!vcpu->arch.pio.in) {
5464                         /* FIXME: return into emulator if single-stepping.  */
5465                         vcpu->arch.pio.count = 0;
5466                 } else {
5467                         writeback = false;
5468                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5469                 }
5470                 r = EMULATE_USER_EXIT;
5471         } else if (vcpu->mmio_needed) {
5472                 if (!vcpu->mmio_is_write)
5473                         writeback = false;
5474                 r = EMULATE_USER_EXIT;
5475                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5476         } else if (r == EMULATION_RESTART)
5477                 goto restart;
5478         else
5479                 r = EMULATE_DONE;
5480
5481         if (writeback) {
5482                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5483                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5484                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5485                 if (vcpu->arch.hflags != ctxt->emul_flags)
5486                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5487                 kvm_rip_write(vcpu, ctxt->eip);
5488                 if (r == EMULATE_DONE)
5489                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5490                 if (!ctxt->have_exception ||
5491                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5492                         __kvm_set_rflags(vcpu, ctxt->eflags);
5493
5494                 /*
5495                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5496                  * do nothing, and it will be requested again as soon as
5497                  * the shadow expires.  But we still need to check here,
5498                  * because POPF has no interrupt shadow.
5499                  */
5500                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5501                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5502         } else
5503                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5504
5505         return r;
5506 }
5507 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5508
5509 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5510 {
5511         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5512         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5513                                             size, port, &val, 1);
5514         /* do not return to emulator after return from userspace */
5515         vcpu->arch.pio.count = 0;
5516         return ret;
5517 }
5518 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5519
5520 static void tsc_bad(void *info)
5521 {
5522         __this_cpu_write(cpu_tsc_khz, 0);
5523 }
5524
5525 static void tsc_khz_changed(void *data)
5526 {
5527         struct cpufreq_freqs *freq = data;
5528         unsigned long khz = 0;
5529
5530         if (data)
5531                 khz = freq->new;
5532         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5533                 khz = cpufreq_quick_get(raw_smp_processor_id());
5534         if (!khz)
5535                 khz = tsc_khz;
5536         __this_cpu_write(cpu_tsc_khz, khz);
5537 }
5538
5539 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5540                                      void *data)
5541 {
5542         struct cpufreq_freqs *freq = data;
5543         struct kvm *kvm;
5544         struct kvm_vcpu *vcpu;
5545         int i, send_ipi = 0;
5546
5547         /*
5548          * We allow guests to temporarily run on slowing clocks,
5549          * provided we notify them after, or to run on accelerating
5550          * clocks, provided we notify them before.  Thus time never
5551          * goes backwards.
5552          *
5553          * However, we have a problem.  We can't atomically update
5554          * the frequency of a given CPU from this function; it is
5555          * merely a notifier, which can be called from any CPU.
5556          * Changing the TSC frequency at arbitrary points in time
5557          * requires a recomputation of local variables related to
5558          * the TSC for each VCPU.  We must flag these local variables
5559          * to be updated and be sure the update takes place with the
5560          * new frequency before any guests proceed.
5561          *
5562          * Unfortunately, the combination of hotplug CPU and frequency
5563          * change creates an intractable locking scenario; the order
5564          * of when these callouts happen is undefined with respect to
5565          * CPU hotplug, and they can race with each other.  As such,
5566          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5567          * undefined; you can actually have a CPU frequency change take
5568          * place in between the computation of X and the setting of the
5569          * variable.  To protect against this problem, all updates of
5570          * the per_cpu tsc_khz variable are done in an interrupt
5571          * protected IPI, and all callers wishing to update the value
5572          * must wait for a synchronous IPI to complete (which is trivial
5573          * if the caller is on the CPU already).  This establishes the
5574          * necessary total order on variable updates.
5575          *
5576          * Note that because a guest time update may take place
5577          * anytime after the setting of the VCPU's request bit, the
5578          * correct TSC value must be set before the request.  However,
5579          * to ensure the update actually makes it to any guest which
5580          * starts running in hardware virtualization between the set
5581          * and the acquisition of the spinlock, we must also ping the
5582          * CPU after setting the request bit.
5583          *
5584          */
5585
5586         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5587                 return 0;
5588         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5589                 return 0;
5590
5591         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5592
5593         spin_lock(&kvm_lock);
5594         list_for_each_entry(kvm, &vm_list, vm_list) {
5595                 kvm_for_each_vcpu(i, vcpu, kvm) {
5596                         if (vcpu->cpu != freq->cpu)
5597                                 continue;
5598                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5599                         if (vcpu->cpu != smp_processor_id())
5600                                 send_ipi = 1;
5601                 }
5602         }
5603         spin_unlock(&kvm_lock);
5604
5605         if (freq->old < freq->new && send_ipi) {
5606                 /*
5607                  * We upscale the frequency.  Must make the guest
5608                  * doesn't see old kvmclock values while running with
5609                  * the new frequency, otherwise we risk the guest sees
5610                  * time go backwards.
5611                  *
5612                  * In case we update the frequency for another cpu
5613                  * (which might be in guest context) send an interrupt
5614                  * to kick the cpu out of guest context.  Next time
5615                  * guest context is entered kvmclock will be updated,
5616                  * so the guest will not see stale values.
5617                  */
5618                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5619         }
5620         return 0;
5621 }
5622
5623 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5624         .notifier_call  = kvmclock_cpufreq_notifier
5625 };
5626
5627 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5628                                         unsigned long action, void *hcpu)
5629 {
5630         unsigned int cpu = (unsigned long)hcpu;
5631
5632         switch (action) {
5633                 case CPU_ONLINE:
5634                 case CPU_DOWN_FAILED:
5635                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5636                         break;
5637                 case CPU_DOWN_PREPARE:
5638                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5639                         break;
5640         }
5641         return NOTIFY_OK;
5642 }
5643
5644 static struct notifier_block kvmclock_cpu_notifier_block = {
5645         .notifier_call  = kvmclock_cpu_notifier,
5646         .priority = -INT_MAX
5647 };
5648
5649 static void kvm_timer_init(void)
5650 {
5651         int cpu;
5652
5653         max_tsc_khz = tsc_khz;
5654
5655         cpu_notifier_register_begin();
5656         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5657 #ifdef CONFIG_CPU_FREQ
5658                 struct cpufreq_policy policy;
5659                 memset(&policy, 0, sizeof(policy));
5660                 cpu = get_cpu();
5661                 cpufreq_get_policy(&policy, cpu);
5662                 if (policy.cpuinfo.max_freq)
5663                         max_tsc_khz = policy.cpuinfo.max_freq;
5664                 put_cpu();
5665 #endif
5666                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5667                                           CPUFREQ_TRANSITION_NOTIFIER);
5668         }
5669         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5670         for_each_online_cpu(cpu)
5671                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5672
5673         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5674         cpu_notifier_register_done();
5675
5676 }
5677
5678 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5679
5680 int kvm_is_in_guest(void)
5681 {
5682         return __this_cpu_read(current_vcpu) != NULL;
5683 }
5684
5685 static int kvm_is_user_mode(void)
5686 {
5687         int user_mode = 3;
5688
5689         if (__this_cpu_read(current_vcpu))
5690                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5691
5692         return user_mode != 0;
5693 }
5694
5695 static unsigned long kvm_get_guest_ip(void)
5696 {
5697         unsigned long ip = 0;
5698
5699         if (__this_cpu_read(current_vcpu))
5700                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5701
5702         return ip;
5703 }
5704
5705 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5706         .is_in_guest            = kvm_is_in_guest,
5707         .is_user_mode           = kvm_is_user_mode,
5708         .get_guest_ip           = kvm_get_guest_ip,
5709 };
5710
5711 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5712 {
5713         __this_cpu_write(current_vcpu, vcpu);
5714 }
5715 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5716
5717 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5718 {
5719         __this_cpu_write(current_vcpu, NULL);
5720 }
5721 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5722
5723 static void kvm_set_mmio_spte_mask(void)
5724 {
5725         u64 mask;
5726         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5727
5728         /*
5729          * Set the reserved bits and the present bit of an paging-structure
5730          * entry to generate page fault with PFER.RSV = 1.
5731          */
5732          /* Mask the reserved physical address bits. */
5733         mask = rsvd_bits(maxphyaddr, 51);
5734
5735         /* Bit 62 is always reserved for 32bit host. */
5736         mask |= 0x3ull << 62;
5737
5738         /* Set the present bit. */
5739         mask |= 1ull;
5740
5741 #ifdef CONFIG_X86_64
5742         /*
5743          * If reserved bit is not supported, clear the present bit to disable
5744          * mmio page fault.
5745          */
5746         if (maxphyaddr == 52)
5747                 mask &= ~1ull;
5748 #endif
5749
5750         kvm_mmu_set_mmio_spte_mask(mask);
5751 }
5752
5753 #ifdef CONFIG_X86_64
5754 static void pvclock_gtod_update_fn(struct work_struct *work)
5755 {
5756         struct kvm *kvm;
5757
5758         struct kvm_vcpu *vcpu;
5759         int i;
5760
5761         spin_lock(&kvm_lock);
5762         list_for_each_entry(kvm, &vm_list, vm_list)
5763                 kvm_for_each_vcpu(i, vcpu, kvm)
5764                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5765         atomic_set(&kvm_guest_has_master_clock, 0);
5766         spin_unlock(&kvm_lock);
5767 }
5768
5769 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5770
5771 /*
5772  * Notification about pvclock gtod data update.
5773  */
5774 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5775                                void *priv)
5776 {
5777         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5778         struct timekeeper *tk = priv;
5779
5780         update_pvclock_gtod(tk);
5781
5782         /* disable master clock if host does not trust, or does not
5783          * use, TSC clocksource
5784          */
5785         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5786             atomic_read(&kvm_guest_has_master_clock) != 0)
5787                 queue_work(system_long_wq, &pvclock_gtod_work);
5788
5789         return 0;
5790 }
5791
5792 static struct notifier_block pvclock_gtod_notifier = {
5793         .notifier_call = pvclock_gtod_notify,
5794 };
5795 #endif
5796
5797 int kvm_arch_init(void *opaque)
5798 {
5799         int r;
5800         struct kvm_x86_ops *ops = opaque;
5801
5802         if (kvm_x86_ops) {
5803                 printk(KERN_ERR "kvm: already loaded the other module\n");
5804                 r = -EEXIST;
5805                 goto out;
5806         }
5807
5808         if (!ops->cpu_has_kvm_support()) {
5809                 printk(KERN_ERR "kvm: no hardware support\n");
5810                 r = -EOPNOTSUPP;
5811                 goto out;
5812         }
5813         if (ops->disabled_by_bios()) {
5814                 printk(KERN_ERR "kvm: disabled by bios\n");
5815                 r = -EOPNOTSUPP;
5816                 goto out;
5817         }
5818
5819         r = -ENOMEM;
5820         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5821         if (!shared_msrs) {
5822                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5823                 goto out;
5824         }
5825
5826         r = kvm_mmu_module_init();
5827         if (r)
5828                 goto out_free_percpu;
5829
5830         kvm_set_mmio_spte_mask();
5831
5832         kvm_x86_ops = ops;
5833
5834         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5835                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5836
5837         kvm_timer_init();
5838
5839         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5840
5841         if (cpu_has_xsave)
5842                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5843
5844         kvm_lapic_init();
5845 #ifdef CONFIG_X86_64
5846         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5847 #endif
5848
5849         return 0;
5850
5851 out_free_percpu:
5852         free_percpu(shared_msrs);
5853 out:
5854         return r;
5855 }
5856
5857 void kvm_arch_exit(void)
5858 {
5859         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5860
5861         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5862                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5863                                             CPUFREQ_TRANSITION_NOTIFIER);
5864         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5865 #ifdef CONFIG_X86_64
5866         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5867 #endif
5868         kvm_x86_ops = NULL;
5869         kvm_mmu_module_exit();
5870         free_percpu(shared_msrs);
5871 }
5872
5873 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5874 {
5875         ++vcpu->stat.halt_exits;
5876         if (lapic_in_kernel(vcpu)) {
5877                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5878                 return 1;
5879         } else {
5880                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5881                 return 0;
5882         }
5883 }
5884 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5885
5886 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5887 {
5888         kvm_x86_ops->skip_emulated_instruction(vcpu);
5889         return kvm_vcpu_halt(vcpu);
5890 }
5891 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5892
5893 /*
5894  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5895  *
5896  * @apicid - apicid of vcpu to be kicked.
5897  */
5898 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5899 {
5900         struct kvm_lapic_irq lapic_irq;
5901
5902         lapic_irq.shorthand = 0;
5903         lapic_irq.dest_mode = 0;
5904         lapic_irq.dest_id = apicid;
5905         lapic_irq.msi_redir_hint = false;
5906
5907         lapic_irq.delivery_mode = APIC_DM_REMRD;
5908         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5909 }
5910
5911 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5912 {
5913         vcpu->arch.apicv_active = false;
5914         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5915 }
5916
5917 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5918 {
5919         unsigned long nr, a0, a1, a2, a3, ret;
5920         int op_64_bit, r = 1;
5921
5922         kvm_x86_ops->skip_emulated_instruction(vcpu);
5923
5924         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5925                 return kvm_hv_hypercall(vcpu);
5926
5927         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5928         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5929         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5930         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5931         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5932
5933         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5934
5935         op_64_bit = is_64_bit_mode(vcpu);
5936         if (!op_64_bit) {
5937                 nr &= 0xFFFFFFFF;
5938                 a0 &= 0xFFFFFFFF;
5939                 a1 &= 0xFFFFFFFF;
5940                 a2 &= 0xFFFFFFFF;
5941                 a3 &= 0xFFFFFFFF;
5942         }
5943
5944         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5945                 ret = -KVM_EPERM;
5946                 goto out;
5947         }
5948
5949         switch (nr) {
5950         case KVM_HC_VAPIC_POLL_IRQ:
5951                 ret = 0;
5952                 break;
5953         case KVM_HC_KICK_CPU:
5954                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5955                 ret = 0;
5956                 break;
5957         default:
5958                 ret = -KVM_ENOSYS;
5959                 break;
5960         }
5961 out:
5962         if (!op_64_bit)
5963                 ret = (u32)ret;
5964         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5965         ++vcpu->stat.hypercalls;
5966         return r;
5967 }
5968 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5969
5970 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5971 {
5972         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5973         char instruction[3];
5974         unsigned long rip = kvm_rip_read(vcpu);
5975
5976         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5977
5978         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5979 }
5980
5981 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5982 {
5983         return vcpu->run->request_interrupt_window &&
5984                 likely(!pic_in_kernel(vcpu->kvm));
5985 }
5986
5987 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5988 {
5989         struct kvm_run *kvm_run = vcpu->run;
5990
5991         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5992         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
5993         kvm_run->cr8 = kvm_get_cr8(vcpu);
5994         kvm_run->apic_base = kvm_get_apic_base(vcpu);
5995         kvm_run->ready_for_interrupt_injection =
5996                 pic_in_kernel(vcpu->kvm) ||
5997                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
5998 }
5999
6000 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6001 {
6002         int max_irr, tpr;
6003
6004         if (!kvm_x86_ops->update_cr8_intercept)
6005                 return;
6006
6007         if (!vcpu->arch.apic)
6008                 return;
6009
6010         if (vcpu->arch.apicv_active)
6011                 return;
6012
6013         if (!vcpu->arch.apic->vapic_addr)
6014                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6015         else
6016                 max_irr = -1;
6017
6018         if (max_irr != -1)
6019                 max_irr >>= 4;
6020
6021         tpr = kvm_lapic_get_cr8(vcpu);
6022
6023         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6024 }
6025
6026 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6027 {
6028         int r;
6029
6030         /* try to reinject previous events if any */
6031         if (vcpu->arch.exception.pending) {
6032                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6033                                         vcpu->arch.exception.has_error_code,
6034                                         vcpu->arch.exception.error_code);
6035
6036                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6037                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6038                                              X86_EFLAGS_RF);
6039
6040                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6041                     (vcpu->arch.dr7 & DR7_GD)) {
6042                         vcpu->arch.dr7 &= ~DR7_GD;
6043                         kvm_update_dr7(vcpu);
6044                 }
6045
6046                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6047                                           vcpu->arch.exception.has_error_code,
6048                                           vcpu->arch.exception.error_code,
6049                                           vcpu->arch.exception.reinject);
6050                 return 0;
6051         }
6052
6053         if (vcpu->arch.nmi_injected) {
6054                 kvm_x86_ops->set_nmi(vcpu);
6055                 return 0;
6056         }
6057
6058         if (vcpu->arch.interrupt.pending) {
6059                 kvm_x86_ops->set_irq(vcpu);
6060                 return 0;
6061         }
6062
6063         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6064                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6065                 if (r != 0)
6066                         return r;
6067         }
6068
6069         /* try to inject new event if pending */
6070         if (vcpu->arch.nmi_pending) {
6071                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6072                         --vcpu->arch.nmi_pending;
6073                         vcpu->arch.nmi_injected = true;
6074                         kvm_x86_ops->set_nmi(vcpu);
6075                 }
6076         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6077                 /*
6078                  * Because interrupts can be injected asynchronously, we are
6079                  * calling check_nested_events again here to avoid a race condition.
6080                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6081                  * proposal and current concerns.  Perhaps we should be setting
6082                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6083                  */
6084                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6085                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6086                         if (r != 0)
6087                                 return r;
6088                 }
6089                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6090                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6091                                             false);
6092                         kvm_x86_ops->set_irq(vcpu);
6093                 }
6094         }
6095         return 0;
6096 }
6097
6098 static void process_nmi(struct kvm_vcpu *vcpu)
6099 {
6100         unsigned limit = 2;
6101
6102         /*
6103          * x86 is limited to one NMI running, and one NMI pending after it.
6104          * If an NMI is already in progress, limit further NMIs to just one.
6105          * Otherwise, allow two (and we'll inject the first one immediately).
6106          */
6107         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6108                 limit = 1;
6109
6110         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6111         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6112         kvm_make_request(KVM_REQ_EVENT, vcpu);
6113 }
6114
6115 #define put_smstate(type, buf, offset, val)                       \
6116         *(type *)((buf) + (offset) - 0x7e00) = val
6117
6118 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6119 {
6120         u32 flags = 0;
6121         flags |= seg->g       << 23;
6122         flags |= seg->db      << 22;
6123         flags |= seg->l       << 21;
6124         flags |= seg->avl     << 20;
6125         flags |= seg->present << 15;
6126         flags |= seg->dpl     << 13;
6127         flags |= seg->s       << 12;
6128         flags |= seg->type    << 8;
6129         return flags;
6130 }
6131
6132 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6133 {
6134         struct kvm_segment seg;
6135         int offset;
6136
6137         kvm_get_segment(vcpu, &seg, n);
6138         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6139
6140         if (n < 3)
6141                 offset = 0x7f84 + n * 12;
6142         else
6143                 offset = 0x7f2c + (n - 3) * 12;
6144
6145         put_smstate(u32, buf, offset + 8, seg.base);
6146         put_smstate(u32, buf, offset + 4, seg.limit);
6147         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6148 }
6149
6150 #ifdef CONFIG_X86_64
6151 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6152 {
6153         struct kvm_segment seg;
6154         int offset;
6155         u16 flags;
6156
6157         kvm_get_segment(vcpu, &seg, n);
6158         offset = 0x7e00 + n * 16;
6159
6160         flags = process_smi_get_segment_flags(&seg) >> 8;
6161         put_smstate(u16, buf, offset, seg.selector);
6162         put_smstate(u16, buf, offset + 2, flags);
6163         put_smstate(u32, buf, offset + 4, seg.limit);
6164         put_smstate(u64, buf, offset + 8, seg.base);
6165 }
6166 #endif
6167
6168 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6169 {
6170         struct desc_ptr dt;
6171         struct kvm_segment seg;
6172         unsigned long val;
6173         int i;
6174
6175         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6176         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6177         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6178         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6179
6180         for (i = 0; i < 8; i++)
6181                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6182
6183         kvm_get_dr(vcpu, 6, &val);
6184         put_smstate(u32, buf, 0x7fcc, (u32)val);
6185         kvm_get_dr(vcpu, 7, &val);
6186         put_smstate(u32, buf, 0x7fc8, (u32)val);
6187
6188         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6189         put_smstate(u32, buf, 0x7fc4, seg.selector);
6190         put_smstate(u32, buf, 0x7f64, seg.base);
6191         put_smstate(u32, buf, 0x7f60, seg.limit);
6192         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6193
6194         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6195         put_smstate(u32, buf, 0x7fc0, seg.selector);
6196         put_smstate(u32, buf, 0x7f80, seg.base);
6197         put_smstate(u32, buf, 0x7f7c, seg.limit);
6198         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6199
6200         kvm_x86_ops->get_gdt(vcpu, &dt);
6201         put_smstate(u32, buf, 0x7f74, dt.address);
6202         put_smstate(u32, buf, 0x7f70, dt.size);
6203
6204         kvm_x86_ops->get_idt(vcpu, &dt);
6205         put_smstate(u32, buf, 0x7f58, dt.address);
6206         put_smstate(u32, buf, 0x7f54, dt.size);
6207
6208         for (i = 0; i < 6; i++)
6209                 process_smi_save_seg_32(vcpu, buf, i);
6210
6211         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6212
6213         /* revision id */
6214         put_smstate(u32, buf, 0x7efc, 0x00020000);
6215         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6216 }
6217
6218 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6219 {
6220 #ifdef CONFIG_X86_64
6221         struct desc_ptr dt;
6222         struct kvm_segment seg;
6223         unsigned long val;
6224         int i;
6225
6226         for (i = 0; i < 16; i++)
6227                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6228
6229         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6230         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6231
6232         kvm_get_dr(vcpu, 6, &val);
6233         put_smstate(u64, buf, 0x7f68, val);
6234         kvm_get_dr(vcpu, 7, &val);
6235         put_smstate(u64, buf, 0x7f60, val);
6236
6237         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6238         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6239         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6240
6241         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6242
6243         /* revision id */
6244         put_smstate(u32, buf, 0x7efc, 0x00020064);
6245
6246         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6247
6248         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6249         put_smstate(u16, buf, 0x7e90, seg.selector);
6250         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6251         put_smstate(u32, buf, 0x7e94, seg.limit);
6252         put_smstate(u64, buf, 0x7e98, seg.base);
6253
6254         kvm_x86_ops->get_idt(vcpu, &dt);
6255         put_smstate(u32, buf, 0x7e84, dt.size);
6256         put_smstate(u64, buf, 0x7e88, dt.address);
6257
6258         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6259         put_smstate(u16, buf, 0x7e70, seg.selector);
6260         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6261         put_smstate(u32, buf, 0x7e74, seg.limit);
6262         put_smstate(u64, buf, 0x7e78, seg.base);
6263
6264         kvm_x86_ops->get_gdt(vcpu, &dt);
6265         put_smstate(u32, buf, 0x7e64, dt.size);
6266         put_smstate(u64, buf, 0x7e68, dt.address);
6267
6268         for (i = 0; i < 6; i++)
6269                 process_smi_save_seg_64(vcpu, buf, i);
6270 #else
6271         WARN_ON_ONCE(1);
6272 #endif
6273 }
6274
6275 static void process_smi(struct kvm_vcpu *vcpu)
6276 {
6277         struct kvm_segment cs, ds;
6278         struct desc_ptr dt;
6279         char buf[512];
6280         u32 cr0;
6281
6282         if (is_smm(vcpu)) {
6283                 vcpu->arch.smi_pending = true;
6284                 return;
6285         }
6286
6287         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6288         vcpu->arch.hflags |= HF_SMM_MASK;
6289         memset(buf, 0, 512);
6290         if (guest_cpuid_has_longmode(vcpu))
6291                 process_smi_save_state_64(vcpu, buf);
6292         else
6293                 process_smi_save_state_32(vcpu, buf);
6294
6295         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6296
6297         if (kvm_x86_ops->get_nmi_mask(vcpu))
6298                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6299         else
6300                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6301
6302         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6303         kvm_rip_write(vcpu, 0x8000);
6304
6305         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6306         kvm_x86_ops->set_cr0(vcpu, cr0);
6307         vcpu->arch.cr0 = cr0;
6308
6309         kvm_x86_ops->set_cr4(vcpu, 0);
6310
6311         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6312         dt.address = dt.size = 0;
6313         kvm_x86_ops->set_idt(vcpu, &dt);
6314
6315         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6316
6317         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6318         cs.base = vcpu->arch.smbase;
6319
6320         ds.selector = 0;
6321         ds.base = 0;
6322
6323         cs.limit    = ds.limit = 0xffffffff;
6324         cs.type     = ds.type = 0x3;
6325         cs.dpl      = ds.dpl = 0;
6326         cs.db       = ds.db = 0;
6327         cs.s        = ds.s = 1;
6328         cs.l        = ds.l = 0;
6329         cs.g        = ds.g = 1;
6330         cs.avl      = ds.avl = 0;
6331         cs.present  = ds.present = 1;
6332         cs.unusable = ds.unusable = 0;
6333         cs.padding  = ds.padding = 0;
6334
6335         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6336         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6337         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6338         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6339         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6340         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6341
6342         if (guest_cpuid_has_longmode(vcpu))
6343                 kvm_x86_ops->set_efer(vcpu, 0);
6344
6345         kvm_update_cpuid(vcpu);
6346         kvm_mmu_reset_context(vcpu);
6347 }
6348
6349 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6350 {
6351         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6352 }
6353
6354 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6355 {
6356         u64 eoi_exit_bitmap[4];
6357
6358         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6359                 return;
6360
6361         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6362
6363         if (irqchip_split(vcpu->kvm))
6364                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6365         else {
6366                 if (vcpu->arch.apicv_active)
6367                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6368                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6369         }
6370         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6371                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6372         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6373 }
6374
6375 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6376 {
6377         ++vcpu->stat.tlb_flush;
6378         kvm_x86_ops->tlb_flush(vcpu);
6379 }
6380
6381 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6382 {
6383         struct page *page = NULL;
6384
6385         if (!lapic_in_kernel(vcpu))
6386                 return;
6387
6388         if (!kvm_x86_ops->set_apic_access_page_addr)
6389                 return;
6390
6391         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6392         if (is_error_page(page))
6393                 return;
6394         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6395
6396         /*
6397          * Do not pin apic access page in memory, the MMU notifier
6398          * will call us again if it is migrated or swapped out.
6399          */
6400         put_page(page);
6401 }
6402 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6403
6404 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6405                                            unsigned long address)
6406 {
6407         /*
6408          * The physical address of apic access page is stored in the VMCS.
6409          * Update it when it becomes invalid.
6410          */
6411         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6412                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6413 }
6414
6415 /*
6416  * Returns 1 to let vcpu_run() continue the guest execution loop without
6417  * exiting to the userspace.  Otherwise, the value will be returned to the
6418  * userspace.
6419  */
6420 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6421 {
6422         int r;
6423         bool req_int_win =
6424                 dm_request_for_irq_injection(vcpu) &&
6425                 kvm_cpu_accept_dm_intr(vcpu);
6426
6427         bool req_immediate_exit = false;
6428
6429         if (vcpu->requests) {
6430                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6431                         kvm_mmu_unload(vcpu);
6432                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6433                         __kvm_migrate_timers(vcpu);
6434                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6435                         kvm_gen_update_masterclock(vcpu->kvm);
6436                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6437                         kvm_gen_kvmclock_update(vcpu);
6438                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6439                         r = kvm_guest_time_update(vcpu);
6440                         if (unlikely(r))
6441                                 goto out;
6442                 }
6443                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6444                         kvm_mmu_sync_roots(vcpu);
6445                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6446                         kvm_vcpu_flush_tlb(vcpu);
6447                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6448                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6449                         r = 0;
6450                         goto out;
6451                 }
6452                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6453                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6454                         r = 0;
6455                         goto out;
6456                 }
6457                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6458                         vcpu->fpu_active = 0;
6459                         kvm_x86_ops->fpu_deactivate(vcpu);
6460                 }
6461                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6462                         /* Page is swapped out. Do synthetic halt */
6463                         vcpu->arch.apf.halted = true;
6464                         r = 1;
6465                         goto out;
6466                 }
6467                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6468                         record_steal_time(vcpu);
6469                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6470                         process_smi(vcpu);
6471                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6472                         process_nmi(vcpu);
6473                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6474                         kvm_pmu_handle_event(vcpu);
6475                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6476                         kvm_pmu_deliver_pmi(vcpu);
6477                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6478                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6479                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6480                                      vcpu->arch.ioapic_handled_vectors)) {
6481                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6482                                 vcpu->run->eoi.vector =
6483                                                 vcpu->arch.pending_ioapic_eoi;
6484                                 r = 0;
6485                                 goto out;
6486                         }
6487                 }
6488                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6489                         vcpu_scan_ioapic(vcpu);
6490                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6491                         kvm_vcpu_reload_apic_access_page(vcpu);
6492                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6493                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6494                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6495                         r = 0;
6496                         goto out;
6497                 }
6498                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6499                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6500                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6501                         r = 0;
6502                         goto out;
6503                 }
6504                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6505                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6506                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6507                         r = 0;
6508                         goto out;
6509                 }
6510
6511                 /*
6512                  * KVM_REQ_HV_STIMER has to be processed after
6513                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6514                  * depend on the guest clock being up-to-date
6515                  */
6516                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6517                         kvm_hv_process_stimers(vcpu);
6518         }
6519
6520         /*
6521          * KVM_REQ_EVENT is not set when posted interrupts are set by
6522          * VT-d hardware, so we have to update RVI unconditionally.
6523          */
6524         if (kvm_lapic_enabled(vcpu)) {
6525                 /*
6526                  * Update architecture specific hints for APIC
6527                  * virtual interrupt delivery.
6528                  */
6529                 if (vcpu->arch.apicv_active)
6530                         kvm_x86_ops->hwapic_irr_update(vcpu,
6531                                 kvm_lapic_find_highest_irr(vcpu));
6532         }
6533
6534         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6535                 kvm_apic_accept_events(vcpu);
6536                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6537                         r = 1;
6538                         goto out;
6539                 }
6540
6541                 if (inject_pending_event(vcpu, req_int_win) != 0)
6542                         req_immediate_exit = true;
6543                 /* enable NMI/IRQ window open exits if needed */
6544                 else if (vcpu->arch.nmi_pending)
6545                         kvm_x86_ops->enable_nmi_window(vcpu);
6546                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6547                         kvm_x86_ops->enable_irq_window(vcpu);
6548
6549                 if (kvm_lapic_enabled(vcpu)) {
6550                         update_cr8_intercept(vcpu);
6551                         kvm_lapic_sync_to_vapic(vcpu);
6552                 }
6553         }
6554
6555         r = kvm_mmu_reload(vcpu);
6556         if (unlikely(r)) {
6557                 goto cancel_injection;
6558         }
6559
6560         preempt_disable();
6561
6562         kvm_x86_ops->prepare_guest_switch(vcpu);
6563         if (vcpu->fpu_active)
6564                 kvm_load_guest_fpu(vcpu);
6565         kvm_load_guest_xcr0(vcpu);
6566
6567         vcpu->mode = IN_GUEST_MODE;
6568
6569         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6570
6571         /* We should set ->mode before check ->requests,
6572          * see the comment in make_all_cpus_request.
6573          */
6574         smp_mb__after_srcu_read_unlock();
6575
6576         local_irq_disable();
6577
6578         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6579             || need_resched() || signal_pending(current)) {
6580                 vcpu->mode = OUTSIDE_GUEST_MODE;
6581                 smp_wmb();
6582                 local_irq_enable();
6583                 preempt_enable();
6584                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6585                 r = 1;
6586                 goto cancel_injection;
6587         }
6588
6589         if (req_immediate_exit)
6590                 smp_send_reschedule(vcpu->cpu);
6591
6592         trace_kvm_entry(vcpu->vcpu_id);
6593         wait_lapic_expire(vcpu);
6594         __kvm_guest_enter();
6595
6596         if (unlikely(vcpu->arch.switch_db_regs)) {
6597                 set_debugreg(0, 7);
6598                 set_debugreg(vcpu->arch.eff_db[0], 0);
6599                 set_debugreg(vcpu->arch.eff_db[1], 1);
6600                 set_debugreg(vcpu->arch.eff_db[2], 2);
6601                 set_debugreg(vcpu->arch.eff_db[3], 3);
6602                 set_debugreg(vcpu->arch.dr6, 6);
6603                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6604         }
6605
6606         kvm_x86_ops->run(vcpu);
6607
6608         /*
6609          * Do this here before restoring debug registers on the host.  And
6610          * since we do this before handling the vmexit, a DR access vmexit
6611          * can (a) read the correct value of the debug registers, (b) set
6612          * KVM_DEBUGREG_WONT_EXIT again.
6613          */
6614         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6615                 int i;
6616
6617                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6618                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6619                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6620                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6621         }
6622
6623         /*
6624          * If the guest has used debug registers, at least dr7
6625          * will be disabled while returning to the host.
6626          * If we don't have active breakpoints in the host, we don't
6627          * care about the messed up debug address registers. But if
6628          * we have some of them active, restore the old state.
6629          */
6630         if (hw_breakpoint_active())
6631                 hw_breakpoint_restore();
6632
6633         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6634
6635         vcpu->mode = OUTSIDE_GUEST_MODE;
6636         smp_wmb();
6637
6638         /* Interrupt is enabled by handle_external_intr() */
6639         kvm_x86_ops->handle_external_intr(vcpu);
6640
6641         ++vcpu->stat.exits;
6642
6643         /*
6644          * We must have an instruction between local_irq_enable() and
6645          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6646          * the interrupt shadow.  The stat.exits increment will do nicely.
6647          * But we need to prevent reordering, hence this barrier():
6648          */
6649         barrier();
6650
6651         kvm_guest_exit();
6652
6653         preempt_enable();
6654
6655         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6656
6657         /*
6658          * Profile KVM exit RIPs:
6659          */
6660         if (unlikely(prof_on == KVM_PROFILING)) {
6661                 unsigned long rip = kvm_rip_read(vcpu);
6662                 profile_hit(KVM_PROFILING, (void *)rip);
6663         }
6664
6665         if (unlikely(vcpu->arch.tsc_always_catchup))
6666                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6667
6668         if (vcpu->arch.apic_attention)
6669                 kvm_lapic_sync_from_vapic(vcpu);
6670
6671         r = kvm_x86_ops->handle_exit(vcpu);
6672         return r;
6673
6674 cancel_injection:
6675         kvm_x86_ops->cancel_injection(vcpu);
6676         if (unlikely(vcpu->arch.apic_attention))
6677                 kvm_lapic_sync_from_vapic(vcpu);
6678 out:
6679         return r;
6680 }
6681
6682 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6683 {
6684         if (!kvm_arch_vcpu_runnable(vcpu) &&
6685             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6686                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6687                 kvm_vcpu_block(vcpu);
6688                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6689
6690                 if (kvm_x86_ops->post_block)
6691                         kvm_x86_ops->post_block(vcpu);
6692
6693                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6694                         return 1;
6695         }
6696
6697         kvm_apic_accept_events(vcpu);
6698         switch(vcpu->arch.mp_state) {
6699         case KVM_MP_STATE_HALTED:
6700                 vcpu->arch.pv.pv_unhalted = false;
6701                 vcpu->arch.mp_state =
6702                         KVM_MP_STATE_RUNNABLE;
6703         case KVM_MP_STATE_RUNNABLE:
6704                 vcpu->arch.apf.halted = false;
6705                 break;
6706         case KVM_MP_STATE_INIT_RECEIVED:
6707                 break;
6708         default:
6709                 return -EINTR;
6710                 break;
6711         }
6712         return 1;
6713 }
6714
6715 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6716 {
6717         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6718                 !vcpu->arch.apf.halted);
6719 }
6720
6721 static int vcpu_run(struct kvm_vcpu *vcpu)
6722 {
6723         int r;
6724         struct kvm *kvm = vcpu->kvm;
6725
6726         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6727
6728         for (;;) {
6729                 if (kvm_vcpu_running(vcpu)) {
6730                         r = vcpu_enter_guest(vcpu);
6731                 } else {
6732                         r = vcpu_block(kvm, vcpu);
6733                 }
6734
6735                 if (r <= 0)
6736                         break;
6737
6738                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6739                 if (kvm_cpu_has_pending_timer(vcpu))
6740                         kvm_inject_pending_timer_irqs(vcpu);
6741
6742                 if (dm_request_for_irq_injection(vcpu) &&
6743                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6744                         r = 0;
6745                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6746                         ++vcpu->stat.request_irq_exits;
6747                         break;
6748                 }
6749
6750                 kvm_check_async_pf_completion(vcpu);
6751
6752                 if (signal_pending(current)) {
6753                         r = -EINTR;
6754                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6755                         ++vcpu->stat.signal_exits;
6756                         break;
6757                 }
6758                 if (need_resched()) {
6759                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6760                         cond_resched();
6761                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6762                 }
6763         }
6764
6765         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6766
6767         return r;
6768 }
6769
6770 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6771 {
6772         int r;
6773         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6774         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6775         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6776         if (r != EMULATE_DONE)
6777                 return 0;
6778         return 1;
6779 }
6780
6781 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6782 {
6783         BUG_ON(!vcpu->arch.pio.count);
6784
6785         return complete_emulated_io(vcpu);
6786 }
6787
6788 /*
6789  * Implements the following, as a state machine:
6790  *
6791  * read:
6792  *   for each fragment
6793  *     for each mmio piece in the fragment
6794  *       write gpa, len
6795  *       exit
6796  *       copy data
6797  *   execute insn
6798  *
6799  * write:
6800  *   for each fragment
6801  *     for each mmio piece in the fragment
6802  *       write gpa, len
6803  *       copy data
6804  *       exit
6805  */
6806 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6807 {
6808         struct kvm_run *run = vcpu->run;
6809         struct kvm_mmio_fragment *frag;
6810         unsigned len;
6811
6812         BUG_ON(!vcpu->mmio_needed);
6813
6814         /* Complete previous fragment */
6815         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6816         len = min(8u, frag->len);
6817         if (!vcpu->mmio_is_write)
6818                 memcpy(frag->data, run->mmio.data, len);
6819
6820         if (frag->len <= 8) {
6821                 /* Switch to the next fragment. */
6822                 frag++;
6823                 vcpu->mmio_cur_fragment++;
6824         } else {
6825                 /* Go forward to the next mmio piece. */
6826                 frag->data += len;
6827                 frag->gpa += len;
6828                 frag->len -= len;
6829         }
6830
6831         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6832                 vcpu->mmio_needed = 0;
6833
6834                 /* FIXME: return into emulator if single-stepping.  */
6835                 if (vcpu->mmio_is_write)
6836                         return 1;
6837                 vcpu->mmio_read_completed = 1;
6838                 return complete_emulated_io(vcpu);
6839         }
6840
6841         run->exit_reason = KVM_EXIT_MMIO;
6842         run->mmio.phys_addr = frag->gpa;
6843         if (vcpu->mmio_is_write)
6844                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6845         run->mmio.len = min(8u, frag->len);
6846         run->mmio.is_write = vcpu->mmio_is_write;
6847         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6848         return 0;
6849 }
6850
6851
6852 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6853 {
6854         struct fpu *fpu = &current->thread.fpu;
6855         int r;
6856         sigset_t sigsaved;
6857
6858         fpu__activate_curr(fpu);
6859
6860         if (vcpu->sigset_active)
6861                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6862
6863         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6864                 kvm_vcpu_block(vcpu);
6865                 kvm_apic_accept_events(vcpu);
6866                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6867                 r = -EAGAIN;
6868                 goto out;
6869         }
6870
6871         /* re-sync apic's tpr */
6872         if (!lapic_in_kernel(vcpu)) {
6873                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6874                         r = -EINVAL;
6875                         goto out;
6876                 }
6877         }
6878
6879         if (unlikely(vcpu->arch.complete_userspace_io)) {
6880                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6881                 vcpu->arch.complete_userspace_io = NULL;
6882                 r = cui(vcpu);
6883                 if (r <= 0)
6884                         goto out;
6885         } else
6886                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6887
6888         r = vcpu_run(vcpu);
6889
6890 out:
6891         post_kvm_run_save(vcpu);
6892         if (vcpu->sigset_active)
6893                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6894
6895         return r;
6896 }
6897
6898 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6899 {
6900         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6901                 /*
6902                  * We are here if userspace calls get_regs() in the middle of
6903                  * instruction emulation. Registers state needs to be copied
6904                  * back from emulation context to vcpu. Userspace shouldn't do
6905                  * that usually, but some bad designed PV devices (vmware
6906                  * backdoor interface) need this to work
6907                  */
6908                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6909                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6910         }
6911         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6912         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6913         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6914         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6915         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6916         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6917         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6918         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6919 #ifdef CONFIG_X86_64
6920         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6921         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6922         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6923         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6924         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6925         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6926         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6927         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6928 #endif
6929
6930         regs->rip = kvm_rip_read(vcpu);
6931         regs->rflags = kvm_get_rflags(vcpu);
6932
6933         return 0;
6934 }
6935
6936 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6937 {
6938         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6939         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6940
6941         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6942         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6943         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6944         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6945         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6946         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6947         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6948         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6949 #ifdef CONFIG_X86_64
6950         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6951         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6952         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6953         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6954         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6955         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6956         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6957         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6958 #endif
6959
6960         kvm_rip_write(vcpu, regs->rip);
6961         kvm_set_rflags(vcpu, regs->rflags);
6962
6963         vcpu->arch.exception.pending = false;
6964
6965         kvm_make_request(KVM_REQ_EVENT, vcpu);
6966
6967         return 0;
6968 }
6969
6970 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6971 {
6972         struct kvm_segment cs;
6973
6974         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6975         *db = cs.db;
6976         *l = cs.l;
6977 }
6978 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6979
6980 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6981                                   struct kvm_sregs *sregs)
6982 {
6983         struct desc_ptr dt;
6984
6985         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6986         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6987         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6988         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6989         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6990         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6991
6992         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6993         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6994
6995         kvm_x86_ops->get_idt(vcpu, &dt);
6996         sregs->idt.limit = dt.size;
6997         sregs->idt.base = dt.address;
6998         kvm_x86_ops->get_gdt(vcpu, &dt);
6999         sregs->gdt.limit = dt.size;
7000         sregs->gdt.base = dt.address;
7001
7002         sregs->cr0 = kvm_read_cr0(vcpu);
7003         sregs->cr2 = vcpu->arch.cr2;
7004         sregs->cr3 = kvm_read_cr3(vcpu);
7005         sregs->cr4 = kvm_read_cr4(vcpu);
7006         sregs->cr8 = kvm_get_cr8(vcpu);
7007         sregs->efer = vcpu->arch.efer;
7008         sregs->apic_base = kvm_get_apic_base(vcpu);
7009
7010         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7011
7012         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7013                 set_bit(vcpu->arch.interrupt.nr,
7014                         (unsigned long *)sregs->interrupt_bitmap);
7015
7016         return 0;
7017 }
7018
7019 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7020                                     struct kvm_mp_state *mp_state)
7021 {
7022         kvm_apic_accept_events(vcpu);
7023         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7024                                         vcpu->arch.pv.pv_unhalted)
7025                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7026         else
7027                 mp_state->mp_state = vcpu->arch.mp_state;
7028
7029         return 0;
7030 }
7031
7032 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7033                                     struct kvm_mp_state *mp_state)
7034 {
7035         if (!kvm_vcpu_has_lapic(vcpu) &&
7036             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7037                 return -EINVAL;
7038
7039         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7040                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7041                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7042         } else
7043                 vcpu->arch.mp_state = mp_state->mp_state;
7044         kvm_make_request(KVM_REQ_EVENT, vcpu);
7045         return 0;
7046 }
7047
7048 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7049                     int reason, bool has_error_code, u32 error_code)
7050 {
7051         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7052         int ret;
7053
7054         init_emulate_ctxt(vcpu);
7055
7056         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7057                                    has_error_code, error_code);
7058
7059         if (ret)
7060                 return EMULATE_FAIL;
7061
7062         kvm_rip_write(vcpu, ctxt->eip);
7063         kvm_set_rflags(vcpu, ctxt->eflags);
7064         kvm_make_request(KVM_REQ_EVENT, vcpu);
7065         return EMULATE_DONE;
7066 }
7067 EXPORT_SYMBOL_GPL(kvm_task_switch);
7068
7069 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7070                                   struct kvm_sregs *sregs)
7071 {
7072         struct msr_data apic_base_msr;
7073         int mmu_reset_needed = 0;
7074         int pending_vec, max_bits, idx;
7075         struct desc_ptr dt;
7076
7077         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7078                 return -EINVAL;
7079
7080         dt.size = sregs->idt.limit;
7081         dt.address = sregs->idt.base;
7082         kvm_x86_ops->set_idt(vcpu, &dt);
7083         dt.size = sregs->gdt.limit;
7084         dt.address = sregs->gdt.base;
7085         kvm_x86_ops->set_gdt(vcpu, &dt);
7086
7087         vcpu->arch.cr2 = sregs->cr2;
7088         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7089         vcpu->arch.cr3 = sregs->cr3;
7090         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7091
7092         kvm_set_cr8(vcpu, sregs->cr8);
7093
7094         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7095         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7096         apic_base_msr.data = sregs->apic_base;
7097         apic_base_msr.host_initiated = true;
7098         kvm_set_apic_base(vcpu, &apic_base_msr);
7099
7100         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7101         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7102         vcpu->arch.cr0 = sregs->cr0;
7103
7104         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7105         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7106         if (sregs->cr4 & X86_CR4_OSXSAVE)
7107                 kvm_update_cpuid(vcpu);
7108
7109         idx = srcu_read_lock(&vcpu->kvm->srcu);
7110         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7111                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7112                 mmu_reset_needed = 1;
7113         }
7114         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7115
7116         if (mmu_reset_needed)
7117                 kvm_mmu_reset_context(vcpu);
7118
7119         max_bits = KVM_NR_INTERRUPTS;
7120         pending_vec = find_first_bit(
7121                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7122         if (pending_vec < max_bits) {
7123                 kvm_queue_interrupt(vcpu, pending_vec, false);
7124                 pr_debug("Set back pending irq %d\n", pending_vec);
7125         }
7126
7127         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7128         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7129         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7130         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7131         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7132         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7133
7134         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7135         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7136
7137         update_cr8_intercept(vcpu);
7138
7139         /* Older userspace won't unhalt the vcpu on reset. */
7140         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7141             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7142             !is_protmode(vcpu))
7143                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7144
7145         kvm_make_request(KVM_REQ_EVENT, vcpu);
7146
7147         return 0;
7148 }
7149
7150 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7151                                         struct kvm_guest_debug *dbg)
7152 {
7153         unsigned long rflags;
7154         int i, r;
7155
7156         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7157                 r = -EBUSY;
7158                 if (vcpu->arch.exception.pending)
7159                         goto out;
7160                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7161                         kvm_queue_exception(vcpu, DB_VECTOR);
7162                 else
7163                         kvm_queue_exception(vcpu, BP_VECTOR);
7164         }
7165
7166         /*
7167          * Read rflags as long as potentially injected trace flags are still
7168          * filtered out.
7169          */
7170         rflags = kvm_get_rflags(vcpu);
7171
7172         vcpu->guest_debug = dbg->control;
7173         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7174                 vcpu->guest_debug = 0;
7175
7176         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7177                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7178                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7179                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7180         } else {
7181                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7182                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7183         }
7184         kvm_update_dr7(vcpu);
7185
7186         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7187                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7188                         get_segment_base(vcpu, VCPU_SREG_CS);
7189
7190         /*
7191          * Trigger an rflags update that will inject or remove the trace
7192          * flags.
7193          */
7194         kvm_set_rflags(vcpu, rflags);
7195
7196         kvm_x86_ops->update_bp_intercept(vcpu);
7197
7198         r = 0;
7199
7200 out:
7201
7202         return r;
7203 }
7204
7205 /*
7206  * Translate a guest virtual address to a guest physical address.
7207  */
7208 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7209                                     struct kvm_translation *tr)
7210 {
7211         unsigned long vaddr = tr->linear_address;
7212         gpa_t gpa;
7213         int idx;
7214
7215         idx = srcu_read_lock(&vcpu->kvm->srcu);
7216         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7217         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7218         tr->physical_address = gpa;
7219         tr->valid = gpa != UNMAPPED_GVA;
7220         tr->writeable = 1;
7221         tr->usermode = 0;
7222
7223         return 0;
7224 }
7225
7226 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7227 {
7228         struct fxregs_state *fxsave =
7229                         &vcpu->arch.guest_fpu.state.fxsave;
7230
7231         memcpy(fpu->fpr, fxsave->st_space, 128);
7232         fpu->fcw = fxsave->cwd;
7233         fpu->fsw = fxsave->swd;
7234         fpu->ftwx = fxsave->twd;
7235         fpu->last_opcode = fxsave->fop;
7236         fpu->last_ip = fxsave->rip;
7237         fpu->last_dp = fxsave->rdp;
7238         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7239
7240         return 0;
7241 }
7242
7243 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7244 {
7245         struct fxregs_state *fxsave =
7246                         &vcpu->arch.guest_fpu.state.fxsave;
7247
7248         memcpy(fxsave->st_space, fpu->fpr, 128);
7249         fxsave->cwd = fpu->fcw;
7250         fxsave->swd = fpu->fsw;
7251         fxsave->twd = fpu->ftwx;
7252         fxsave->fop = fpu->last_opcode;
7253         fxsave->rip = fpu->last_ip;
7254         fxsave->rdp = fpu->last_dp;
7255         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7256
7257         return 0;
7258 }
7259
7260 static void fx_init(struct kvm_vcpu *vcpu)
7261 {
7262         fpstate_init(&vcpu->arch.guest_fpu.state);
7263         if (cpu_has_xsaves)
7264                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7265                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7266
7267         /*
7268          * Ensure guest xcr0 is valid for loading
7269          */
7270         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7271
7272         vcpu->arch.cr0 |= X86_CR0_ET;
7273 }
7274
7275 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7276 {
7277         if (vcpu->guest_fpu_loaded)
7278                 return;
7279
7280         /*
7281          * Restore all possible states in the guest,
7282          * and assume host would use all available bits.
7283          * Guest xcr0 would be loaded later.
7284          */
7285         kvm_put_guest_xcr0(vcpu);
7286         vcpu->guest_fpu_loaded = 1;
7287         __kernel_fpu_begin();
7288         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7289         trace_kvm_fpu(1);
7290 }
7291
7292 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7293 {
7294         kvm_put_guest_xcr0(vcpu);
7295
7296         if (!vcpu->guest_fpu_loaded) {
7297                 vcpu->fpu_counter = 0;
7298                 return;
7299         }
7300
7301         vcpu->guest_fpu_loaded = 0;
7302         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7303         __kernel_fpu_end();
7304         ++vcpu->stat.fpu_reload;
7305         /*
7306          * If using eager FPU mode, or if the guest is a frequent user
7307          * of the FPU, just leave the FPU active for next time.
7308          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7309          * the FPU in bursts will revert to loading it on demand.
7310          */
7311         if (!vcpu->arch.eager_fpu) {
7312                 if (++vcpu->fpu_counter < 5)
7313                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7314         }
7315         trace_kvm_fpu(0);
7316 }
7317
7318 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7319 {
7320         kvmclock_reset(vcpu);
7321
7322         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7323         kvm_x86_ops->vcpu_free(vcpu);
7324 }
7325
7326 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7327                                                 unsigned int id)
7328 {
7329         struct kvm_vcpu *vcpu;
7330
7331         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7332                 printk_once(KERN_WARNING
7333                 "kvm: SMP vm created on host with unstable TSC; "
7334                 "guest TSC will not be reliable\n");
7335
7336         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7337
7338         return vcpu;
7339 }
7340
7341 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7342 {
7343         int r;
7344
7345         kvm_vcpu_mtrr_init(vcpu);
7346         r = vcpu_load(vcpu);
7347         if (r)
7348                 return r;
7349         kvm_vcpu_reset(vcpu, false);
7350         kvm_mmu_setup(vcpu);
7351         vcpu_put(vcpu);
7352         return r;
7353 }
7354
7355 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7356 {
7357         struct msr_data msr;
7358         struct kvm *kvm = vcpu->kvm;
7359
7360         if (vcpu_load(vcpu))
7361                 return;
7362         msr.data = 0x0;
7363         msr.index = MSR_IA32_TSC;
7364         msr.host_initiated = true;
7365         kvm_write_tsc(vcpu, &msr);
7366         vcpu_put(vcpu);
7367
7368         if (!kvmclock_periodic_sync)
7369                 return;
7370
7371         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7372                                         KVMCLOCK_SYNC_PERIOD);
7373 }
7374
7375 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7376 {
7377         int r;
7378         vcpu->arch.apf.msr_val = 0;
7379
7380         r = vcpu_load(vcpu);
7381         BUG_ON(r);
7382         kvm_mmu_unload(vcpu);
7383         vcpu_put(vcpu);
7384
7385         kvm_x86_ops->vcpu_free(vcpu);
7386 }
7387
7388 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7389 {
7390         vcpu->arch.hflags = 0;
7391
7392         atomic_set(&vcpu->arch.nmi_queued, 0);
7393         vcpu->arch.nmi_pending = 0;
7394         vcpu->arch.nmi_injected = false;
7395         kvm_clear_interrupt_queue(vcpu);
7396         kvm_clear_exception_queue(vcpu);
7397
7398         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7399         kvm_update_dr0123(vcpu);
7400         vcpu->arch.dr6 = DR6_INIT;
7401         kvm_update_dr6(vcpu);
7402         vcpu->arch.dr7 = DR7_FIXED_1;
7403         kvm_update_dr7(vcpu);
7404
7405         vcpu->arch.cr2 = 0;
7406
7407         kvm_make_request(KVM_REQ_EVENT, vcpu);
7408         vcpu->arch.apf.msr_val = 0;
7409         vcpu->arch.st.msr_val = 0;
7410
7411         kvmclock_reset(vcpu);
7412
7413         kvm_clear_async_pf_completion_queue(vcpu);
7414         kvm_async_pf_hash_reset(vcpu);
7415         vcpu->arch.apf.halted = false;
7416
7417         if (!init_event) {
7418                 kvm_pmu_reset(vcpu);
7419                 vcpu->arch.smbase = 0x30000;
7420         }
7421
7422         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7423         vcpu->arch.regs_avail = ~0;
7424         vcpu->arch.regs_dirty = ~0;
7425
7426         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7427 }
7428
7429 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7430 {
7431         struct kvm_segment cs;
7432
7433         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7434         cs.selector = vector << 8;
7435         cs.base = vector << 12;
7436         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7437         kvm_rip_write(vcpu, 0);
7438 }
7439
7440 int kvm_arch_hardware_enable(void)
7441 {
7442         struct kvm *kvm;
7443         struct kvm_vcpu *vcpu;
7444         int i;
7445         int ret;
7446         u64 local_tsc;
7447         u64 max_tsc = 0;
7448         bool stable, backwards_tsc = false;
7449
7450         kvm_shared_msr_cpu_online();
7451         ret = kvm_x86_ops->hardware_enable();
7452         if (ret != 0)
7453                 return ret;
7454
7455         local_tsc = rdtsc();
7456         stable = !check_tsc_unstable();
7457         list_for_each_entry(kvm, &vm_list, vm_list) {
7458                 kvm_for_each_vcpu(i, vcpu, kvm) {
7459                         if (!stable && vcpu->cpu == smp_processor_id())
7460                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7461                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7462                                 backwards_tsc = true;
7463                                 if (vcpu->arch.last_host_tsc > max_tsc)
7464                                         max_tsc = vcpu->arch.last_host_tsc;
7465                         }
7466                 }
7467         }
7468
7469         /*
7470          * Sometimes, even reliable TSCs go backwards.  This happens on
7471          * platforms that reset TSC during suspend or hibernate actions, but
7472          * maintain synchronization.  We must compensate.  Fortunately, we can
7473          * detect that condition here, which happens early in CPU bringup,
7474          * before any KVM threads can be running.  Unfortunately, we can't
7475          * bring the TSCs fully up to date with real time, as we aren't yet far
7476          * enough into CPU bringup that we know how much real time has actually
7477          * elapsed; our helper function, get_kernel_ns() will be using boot
7478          * variables that haven't been updated yet.
7479          *
7480          * So we simply find the maximum observed TSC above, then record the
7481          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7482          * the adjustment will be applied.  Note that we accumulate
7483          * adjustments, in case multiple suspend cycles happen before some VCPU
7484          * gets a chance to run again.  In the event that no KVM threads get a
7485          * chance to run, we will miss the entire elapsed period, as we'll have
7486          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7487          * loose cycle time.  This isn't too big a deal, since the loss will be
7488          * uniform across all VCPUs (not to mention the scenario is extremely
7489          * unlikely). It is possible that a second hibernate recovery happens
7490          * much faster than a first, causing the observed TSC here to be
7491          * smaller; this would require additional padding adjustment, which is
7492          * why we set last_host_tsc to the local tsc observed here.
7493          *
7494          * N.B. - this code below runs only on platforms with reliable TSC,
7495          * as that is the only way backwards_tsc is set above.  Also note
7496          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7497          * have the same delta_cyc adjustment applied if backwards_tsc
7498          * is detected.  Note further, this adjustment is only done once,
7499          * as we reset last_host_tsc on all VCPUs to stop this from being
7500          * called multiple times (one for each physical CPU bringup).
7501          *
7502          * Platforms with unreliable TSCs don't have to deal with this, they
7503          * will be compensated by the logic in vcpu_load, which sets the TSC to
7504          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7505          * guarantee that they stay in perfect synchronization.
7506          */
7507         if (backwards_tsc) {
7508                 u64 delta_cyc = max_tsc - local_tsc;
7509                 backwards_tsc_observed = true;
7510                 list_for_each_entry(kvm, &vm_list, vm_list) {
7511                         kvm_for_each_vcpu(i, vcpu, kvm) {
7512                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7513                                 vcpu->arch.last_host_tsc = local_tsc;
7514                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7515                         }
7516
7517                         /*
7518                          * We have to disable TSC offset matching.. if you were
7519                          * booting a VM while issuing an S4 host suspend....
7520                          * you may have some problem.  Solving this issue is
7521                          * left as an exercise to the reader.
7522                          */
7523                         kvm->arch.last_tsc_nsec = 0;
7524                         kvm->arch.last_tsc_write = 0;
7525                 }
7526
7527         }
7528         return 0;
7529 }
7530
7531 void kvm_arch_hardware_disable(void)
7532 {
7533         kvm_x86_ops->hardware_disable();
7534         drop_user_return_notifiers();
7535 }
7536
7537 int kvm_arch_hardware_setup(void)
7538 {
7539         int r;
7540
7541         r = kvm_x86_ops->hardware_setup();
7542         if (r != 0)
7543                 return r;
7544
7545         if (kvm_has_tsc_control) {
7546                 /*
7547                  * Make sure the user can only configure tsc_khz values that
7548                  * fit into a signed integer.
7549                  * A min value is not calculated needed because it will always
7550                  * be 1 on all machines.
7551                  */
7552                 u64 max = min(0x7fffffffULL,
7553                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7554                 kvm_max_guest_tsc_khz = max;
7555
7556                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7557         }
7558
7559         kvm_init_msr_list();
7560         return 0;
7561 }
7562
7563 void kvm_arch_hardware_unsetup(void)
7564 {
7565         kvm_x86_ops->hardware_unsetup();
7566 }
7567
7568 void kvm_arch_check_processor_compat(void *rtn)
7569 {
7570         kvm_x86_ops->check_processor_compatibility(rtn);
7571 }
7572
7573 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7574 {
7575         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7576 }
7577 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7578
7579 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7580 {
7581         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7582 }
7583
7584 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7585 {
7586         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7587 }
7588
7589 struct static_key kvm_no_apic_vcpu __read_mostly;
7590
7591 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7592 {
7593         struct page *page;
7594         struct kvm *kvm;
7595         int r;
7596
7597         BUG_ON(vcpu->kvm == NULL);
7598         kvm = vcpu->kvm;
7599
7600         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7601         vcpu->arch.pv.pv_unhalted = false;
7602         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7603         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7604                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7605         else
7606                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7607
7608         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7609         if (!page) {
7610                 r = -ENOMEM;
7611                 goto fail;
7612         }
7613         vcpu->arch.pio_data = page_address(page);
7614
7615         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7616
7617         r = kvm_mmu_create(vcpu);
7618         if (r < 0)
7619                 goto fail_free_pio_data;
7620
7621         if (irqchip_in_kernel(kvm)) {
7622                 r = kvm_create_lapic(vcpu);
7623                 if (r < 0)
7624                         goto fail_mmu_destroy;
7625         } else
7626                 static_key_slow_inc(&kvm_no_apic_vcpu);
7627
7628         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7629                                        GFP_KERNEL);
7630         if (!vcpu->arch.mce_banks) {
7631                 r = -ENOMEM;
7632                 goto fail_free_lapic;
7633         }
7634         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7635
7636         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7637                 r = -ENOMEM;
7638                 goto fail_free_mce_banks;
7639         }
7640
7641         fx_init(vcpu);
7642
7643         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7644         vcpu->arch.pv_time_enabled = false;
7645
7646         vcpu->arch.guest_supported_xcr0 = 0;
7647         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7648
7649         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7650
7651         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7652
7653         kvm_async_pf_hash_reset(vcpu);
7654         kvm_pmu_init(vcpu);
7655
7656         vcpu->arch.pending_external_vector = -1;
7657
7658         kvm_hv_vcpu_init(vcpu);
7659
7660         return 0;
7661
7662 fail_free_mce_banks:
7663         kfree(vcpu->arch.mce_banks);
7664 fail_free_lapic:
7665         kvm_free_lapic(vcpu);
7666 fail_mmu_destroy:
7667         kvm_mmu_destroy(vcpu);
7668 fail_free_pio_data:
7669         free_page((unsigned long)vcpu->arch.pio_data);
7670 fail:
7671         return r;
7672 }
7673
7674 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7675 {
7676         int idx;
7677
7678         kvm_hv_vcpu_uninit(vcpu);
7679         kvm_pmu_destroy(vcpu);
7680         kfree(vcpu->arch.mce_banks);
7681         kvm_free_lapic(vcpu);
7682         idx = srcu_read_lock(&vcpu->kvm->srcu);
7683         kvm_mmu_destroy(vcpu);
7684         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7685         free_page((unsigned long)vcpu->arch.pio_data);
7686         if (!lapic_in_kernel(vcpu))
7687                 static_key_slow_dec(&kvm_no_apic_vcpu);
7688 }
7689
7690 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7691 {
7692         kvm_x86_ops->sched_in(vcpu, cpu);
7693 }
7694
7695 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7696 {
7697         if (type)
7698                 return -EINVAL;
7699
7700         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7701         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7702         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7703         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7704         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7705
7706         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7707         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7708         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7709         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7710                 &kvm->arch.irq_sources_bitmap);
7711
7712         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7713         mutex_init(&kvm->arch.apic_map_lock);
7714         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7715
7716         pvclock_update_vm_gtod_copy(kvm);
7717
7718         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7719         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7720
7721         return 0;
7722 }
7723
7724 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7725 {
7726         int r;
7727         r = vcpu_load(vcpu);
7728         BUG_ON(r);
7729         kvm_mmu_unload(vcpu);
7730         vcpu_put(vcpu);
7731 }
7732
7733 static void kvm_free_vcpus(struct kvm *kvm)
7734 {
7735         unsigned int i;
7736         struct kvm_vcpu *vcpu;
7737
7738         /*
7739          * Unpin any mmu pages first.
7740          */
7741         kvm_for_each_vcpu(i, vcpu, kvm) {
7742                 kvm_clear_async_pf_completion_queue(vcpu);
7743                 kvm_unload_vcpu_mmu(vcpu);
7744         }
7745         kvm_for_each_vcpu(i, vcpu, kvm)
7746                 kvm_arch_vcpu_free(vcpu);
7747
7748         mutex_lock(&kvm->lock);
7749         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7750                 kvm->vcpus[i] = NULL;
7751
7752         atomic_set(&kvm->online_vcpus, 0);
7753         mutex_unlock(&kvm->lock);
7754 }
7755
7756 void kvm_arch_sync_events(struct kvm *kvm)
7757 {
7758         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7759         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7760         kvm_free_all_assigned_devices(kvm);
7761         kvm_free_pit(kvm);
7762 }
7763
7764 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7765 {
7766         int i, r;
7767         unsigned long hva;
7768         struct kvm_memslots *slots = kvm_memslots(kvm);
7769         struct kvm_memory_slot *slot, old;
7770
7771         /* Called with kvm->slots_lock held.  */
7772         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7773                 return -EINVAL;
7774
7775         slot = id_to_memslot(slots, id);
7776         if (size) {
7777                 if (WARN_ON(slot->npages))
7778                         return -EEXIST;
7779
7780                 /*
7781                  * MAP_SHARED to prevent internal slot pages from being moved
7782                  * by fork()/COW.
7783                  */
7784                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7785                               MAP_SHARED | MAP_ANONYMOUS, 0);
7786                 if (IS_ERR((void *)hva))
7787                         return PTR_ERR((void *)hva);
7788         } else {
7789                 if (!slot->npages)
7790                         return 0;
7791
7792                 hva = 0;
7793         }
7794
7795         old = *slot;
7796         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7797                 struct kvm_userspace_memory_region m;
7798
7799                 m.slot = id | (i << 16);
7800                 m.flags = 0;
7801                 m.guest_phys_addr = gpa;
7802                 m.userspace_addr = hva;
7803                 m.memory_size = size;
7804                 r = __kvm_set_memory_region(kvm, &m);
7805                 if (r < 0)
7806                         return r;
7807         }
7808
7809         if (!size) {
7810                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7811                 WARN_ON(r < 0);
7812         }
7813
7814         return 0;
7815 }
7816 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7817
7818 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7819 {
7820         int r;
7821
7822         mutex_lock(&kvm->slots_lock);
7823         r = __x86_set_memory_region(kvm, id, gpa, size);
7824         mutex_unlock(&kvm->slots_lock);
7825
7826         return r;
7827 }
7828 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7829
7830 void kvm_arch_destroy_vm(struct kvm *kvm)
7831 {
7832         if (current->mm == kvm->mm) {
7833                 /*
7834                  * Free memory regions allocated on behalf of userspace,
7835                  * unless the the memory map has changed due to process exit
7836                  * or fd copying.
7837                  */
7838                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7839                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7840                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7841         }
7842         kvm_iommu_unmap_guest(kvm);
7843         kfree(kvm->arch.vpic);
7844         kfree(kvm->arch.vioapic);
7845         kvm_free_vcpus(kvm);
7846         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7847 }
7848
7849 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7850                            struct kvm_memory_slot *dont)
7851 {
7852         int i;
7853
7854         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7855                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7856                         kvfree(free->arch.rmap[i]);
7857                         free->arch.rmap[i] = NULL;
7858                 }
7859                 if (i == 0)
7860                         continue;
7861
7862                 if (!dont || free->arch.lpage_info[i - 1] !=
7863                              dont->arch.lpage_info[i - 1]) {
7864                         kvfree(free->arch.lpage_info[i - 1]);
7865                         free->arch.lpage_info[i - 1] = NULL;
7866                 }
7867         }
7868 }
7869
7870 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7871                             unsigned long npages)
7872 {
7873         int i;
7874
7875         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7876                 unsigned long ugfn;
7877                 int lpages;
7878                 int level = i + 1;
7879
7880                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7881                                       slot->base_gfn, level) + 1;
7882
7883                 slot->arch.rmap[i] =
7884                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7885                 if (!slot->arch.rmap[i])
7886                         goto out_free;
7887                 if (i == 0)
7888                         continue;
7889
7890                 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7891                                         sizeof(*slot->arch.lpage_info[i - 1]));
7892                 if (!slot->arch.lpage_info[i - 1])
7893                         goto out_free;
7894
7895                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7896                         slot->arch.lpage_info[i - 1][0].write_count = 1;
7897                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7898                         slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7899                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7900                 /*
7901                  * If the gfn and userspace address are not aligned wrt each
7902                  * other, or if explicitly asked to, disable large page
7903                  * support for this slot
7904                  */
7905                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7906                     !kvm_largepages_enabled()) {
7907                         unsigned long j;
7908
7909                         for (j = 0; j < lpages; ++j)
7910                                 slot->arch.lpage_info[i - 1][j].write_count = 1;
7911                 }
7912         }
7913
7914         return 0;
7915
7916 out_free:
7917         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7918                 kvfree(slot->arch.rmap[i]);
7919                 slot->arch.rmap[i] = NULL;
7920                 if (i == 0)
7921                         continue;
7922
7923                 kvfree(slot->arch.lpage_info[i - 1]);
7924                 slot->arch.lpage_info[i - 1] = NULL;
7925         }
7926         return -ENOMEM;
7927 }
7928
7929 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7930 {
7931         /*
7932          * memslots->generation has been incremented.
7933          * mmio generation may have reached its maximum value.
7934          */
7935         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7936 }
7937
7938 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7939                                 struct kvm_memory_slot *memslot,
7940                                 const struct kvm_userspace_memory_region *mem,
7941                                 enum kvm_mr_change change)
7942 {
7943         return 0;
7944 }
7945
7946 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7947                                      struct kvm_memory_slot *new)
7948 {
7949         /* Still write protect RO slot */
7950         if (new->flags & KVM_MEM_READONLY) {
7951                 kvm_mmu_slot_remove_write_access(kvm, new);
7952                 return;
7953         }
7954
7955         /*
7956          * Call kvm_x86_ops dirty logging hooks when they are valid.
7957          *
7958          * kvm_x86_ops->slot_disable_log_dirty is called when:
7959          *
7960          *  - KVM_MR_CREATE with dirty logging is disabled
7961          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7962          *
7963          * The reason is, in case of PML, we need to set D-bit for any slots
7964          * with dirty logging disabled in order to eliminate unnecessary GPA
7965          * logging in PML buffer (and potential PML buffer full VMEXT). This
7966          * guarantees leaving PML enabled during guest's lifetime won't have
7967          * any additonal overhead from PML when guest is running with dirty
7968          * logging disabled for memory slots.
7969          *
7970          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7971          * to dirty logging mode.
7972          *
7973          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7974          *
7975          * In case of write protect:
7976          *
7977          * Write protect all pages for dirty logging.
7978          *
7979          * All the sptes including the large sptes which point to this
7980          * slot are set to readonly. We can not create any new large
7981          * spte on this slot until the end of the logging.
7982          *
7983          * See the comments in fast_page_fault().
7984          */
7985         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
7986                 if (kvm_x86_ops->slot_enable_log_dirty)
7987                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
7988                 else
7989                         kvm_mmu_slot_remove_write_access(kvm, new);
7990         } else {
7991                 if (kvm_x86_ops->slot_disable_log_dirty)
7992                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
7993         }
7994 }
7995
7996 void kvm_arch_commit_memory_region(struct kvm *kvm,
7997                                 const struct kvm_userspace_memory_region *mem,
7998                                 const struct kvm_memory_slot *old,
7999                                 const struct kvm_memory_slot *new,
8000                                 enum kvm_mr_change change)
8001 {
8002         int nr_mmu_pages = 0;
8003
8004         if (!kvm->arch.n_requested_mmu_pages)
8005                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8006
8007         if (nr_mmu_pages)
8008                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8009
8010         /*
8011          * Dirty logging tracks sptes in 4k granularity, meaning that large
8012          * sptes have to be split.  If live migration is successful, the guest
8013          * in the source machine will be destroyed and large sptes will be
8014          * created in the destination. However, if the guest continues to run
8015          * in the source machine (for example if live migration fails), small
8016          * sptes will remain around and cause bad performance.
8017          *
8018          * Scan sptes if dirty logging has been stopped, dropping those
8019          * which can be collapsed into a single large-page spte.  Later
8020          * page faults will create the large-page sptes.
8021          */
8022         if ((change != KVM_MR_DELETE) &&
8023                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8024                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8025                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8026
8027         /*
8028          * Set up write protection and/or dirty logging for the new slot.
8029          *
8030          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8031          * been zapped so no dirty logging staff is needed for old slot. For
8032          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8033          * new and it's also covered when dealing with the new slot.
8034          *
8035          * FIXME: const-ify all uses of struct kvm_memory_slot.
8036          */
8037         if (change != KVM_MR_DELETE)
8038                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8039 }
8040
8041 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8042 {
8043         kvm_mmu_invalidate_zap_all_pages(kvm);
8044 }
8045
8046 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8047                                    struct kvm_memory_slot *slot)
8048 {
8049         kvm_mmu_invalidate_zap_all_pages(kvm);
8050 }
8051
8052 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8053 {
8054         if (!list_empty_careful(&vcpu->async_pf.done))
8055                 return true;
8056
8057         if (kvm_apic_has_events(vcpu))
8058                 return true;
8059
8060         if (vcpu->arch.pv.pv_unhalted)
8061                 return true;
8062
8063         if (atomic_read(&vcpu->arch.nmi_queued))
8064                 return true;
8065
8066         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8067                 return true;
8068
8069         if (kvm_arch_interrupt_allowed(vcpu) &&
8070             kvm_cpu_has_interrupt(vcpu))
8071                 return true;
8072
8073         if (kvm_hv_has_stimer_pending(vcpu))
8074                 return true;
8075
8076         return false;
8077 }
8078
8079 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8080 {
8081         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8082                 kvm_x86_ops->check_nested_events(vcpu, false);
8083
8084         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8085 }
8086
8087 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8088 {
8089         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8090 }
8091
8092 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8093 {
8094         return kvm_x86_ops->interrupt_allowed(vcpu);
8095 }
8096
8097 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8098 {
8099         if (is_64_bit_mode(vcpu))
8100                 return kvm_rip_read(vcpu);
8101         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8102                      kvm_rip_read(vcpu));
8103 }
8104 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8105
8106 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8107 {
8108         return kvm_get_linear_rip(vcpu) == linear_rip;
8109 }
8110 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8111
8112 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8113 {
8114         unsigned long rflags;
8115
8116         rflags = kvm_x86_ops->get_rflags(vcpu);
8117         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8118                 rflags &= ~X86_EFLAGS_TF;
8119         return rflags;
8120 }
8121 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8122
8123 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8124 {
8125         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8126             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8127                 rflags |= X86_EFLAGS_TF;
8128         kvm_x86_ops->set_rflags(vcpu, rflags);
8129 }
8130
8131 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8132 {
8133         __kvm_set_rflags(vcpu, rflags);
8134         kvm_make_request(KVM_REQ_EVENT, vcpu);
8135 }
8136 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8137
8138 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8139 {
8140         int r;
8141
8142         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8143               work->wakeup_all)
8144                 return;
8145
8146         r = kvm_mmu_reload(vcpu);
8147         if (unlikely(r))
8148                 return;
8149
8150         if (!vcpu->arch.mmu.direct_map &&
8151               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8152                 return;
8153
8154         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8155 }
8156
8157 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8158 {
8159         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8160 }
8161
8162 static inline u32 kvm_async_pf_next_probe(u32 key)
8163 {
8164         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8165 }
8166
8167 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8168 {
8169         u32 key = kvm_async_pf_hash_fn(gfn);
8170
8171         while (vcpu->arch.apf.gfns[key] != ~0)
8172                 key = kvm_async_pf_next_probe(key);
8173
8174         vcpu->arch.apf.gfns[key] = gfn;
8175 }
8176
8177 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8178 {
8179         int i;
8180         u32 key = kvm_async_pf_hash_fn(gfn);
8181
8182         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8183                      (vcpu->arch.apf.gfns[key] != gfn &&
8184                       vcpu->arch.apf.gfns[key] != ~0); i++)
8185                 key = kvm_async_pf_next_probe(key);
8186
8187         return key;
8188 }
8189
8190 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8191 {
8192         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8193 }
8194
8195 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8196 {
8197         u32 i, j, k;
8198
8199         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8200         while (true) {
8201                 vcpu->arch.apf.gfns[i] = ~0;
8202                 do {
8203                         j = kvm_async_pf_next_probe(j);
8204                         if (vcpu->arch.apf.gfns[j] == ~0)
8205                                 return;
8206                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8207                         /*
8208                          * k lies cyclically in ]i,j]
8209                          * |    i.k.j |
8210                          * |....j i.k.| or  |.k..j i...|
8211                          */
8212                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8213                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8214                 i = j;
8215         }
8216 }
8217
8218 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8219 {
8220
8221         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8222                                       sizeof(val));
8223 }
8224
8225 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8226                                      struct kvm_async_pf *work)
8227 {
8228         struct x86_exception fault;
8229
8230         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8231         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8232
8233         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8234             (vcpu->arch.apf.send_user_only &&
8235              kvm_x86_ops->get_cpl(vcpu) == 0))
8236                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8237         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8238                 fault.vector = PF_VECTOR;
8239                 fault.error_code_valid = true;
8240                 fault.error_code = 0;
8241                 fault.nested_page_fault = false;
8242                 fault.address = work->arch.token;
8243                 kvm_inject_page_fault(vcpu, &fault);
8244         }
8245 }
8246
8247 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8248                                  struct kvm_async_pf *work)
8249 {
8250         struct x86_exception fault;
8251
8252         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8253         if (work->wakeup_all)
8254                 work->arch.token = ~0; /* broadcast wakeup */
8255         else
8256                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8257
8258         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8259             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8260                 fault.vector = PF_VECTOR;
8261                 fault.error_code_valid = true;
8262                 fault.error_code = 0;
8263                 fault.nested_page_fault = false;
8264                 fault.address = work->arch.token;
8265                 kvm_inject_page_fault(vcpu, &fault);
8266         }
8267         vcpu->arch.apf.halted = false;
8268         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8269 }
8270
8271 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8272 {
8273         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8274                 return true;
8275         else
8276                 return !kvm_event_needs_reinjection(vcpu) &&
8277                         kvm_x86_ops->interrupt_allowed(vcpu);
8278 }
8279
8280 void kvm_arch_start_assignment(struct kvm *kvm)
8281 {
8282         atomic_inc(&kvm->arch.assigned_device_count);
8283 }
8284 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8285
8286 void kvm_arch_end_assignment(struct kvm *kvm)
8287 {
8288         atomic_dec(&kvm->arch.assigned_device_count);
8289 }
8290 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8291
8292 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8293 {
8294         return atomic_read(&kvm->arch.assigned_device_count);
8295 }
8296 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8297
8298 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8299 {
8300         atomic_inc(&kvm->arch.noncoherent_dma_count);
8301 }
8302 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8303
8304 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8305 {
8306         atomic_dec(&kvm->arch.noncoherent_dma_count);
8307 }
8308 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8309
8310 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8311 {
8312         return atomic_read(&kvm->arch.noncoherent_dma_count);
8313 }
8314 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8315
8316 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8317                                       struct irq_bypass_producer *prod)
8318 {
8319         struct kvm_kernel_irqfd *irqfd =
8320                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8321
8322         if (kvm_x86_ops->update_pi_irte) {
8323                 irqfd->producer = prod;
8324                 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8325                                 prod->irq, irqfd->gsi, 1);
8326         }
8327
8328         return -EINVAL;
8329 }
8330
8331 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8332                                       struct irq_bypass_producer *prod)
8333 {
8334         int ret;
8335         struct kvm_kernel_irqfd *irqfd =
8336                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8337
8338         if (!kvm_x86_ops->update_pi_irte) {
8339                 WARN_ON(irqfd->producer != NULL);
8340                 return;
8341         }
8342
8343         WARN_ON(irqfd->producer != prod);
8344         irqfd->producer = NULL;
8345
8346         /*
8347          * When producer of consumer is unregistered, we change back to
8348          * remapped mode, so we can re-use the current implementation
8349          * when the irq is masked/disabed or the consumer side (KVM
8350          * int this case doesn't want to receive the interrupts.
8351         */
8352         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8353         if (ret)
8354                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8355                        " fails: %d\n", irqfd->consumer.token, ret);
8356 }
8357
8358 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8359                                    uint32_t guest_irq, bool set)
8360 {
8361         if (!kvm_x86_ops->update_pi_irte)
8362                 return -EINVAL;
8363
8364         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8365 }
8366
8367 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8368 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8369 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8370 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8371 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8372 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8373 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8374 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8375 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8376 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8377 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8378 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8379 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8380 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8381 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8382 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8383 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);