KVM: i8254: don't assume layout of kvm_kpit_state
[cascardo/linux.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
30 #include "assigned-dev.h"
31 #include "pmu.h"
32 #include "hyperv.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
57
58 #define CREATE_TRACE_POINTS
59 #include "trace.h"
60
61 #include <asm/debugreg.h>
62 #include <asm/msr.h>
63 #include <asm/desc.h>
64 #include <asm/mce.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
70
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
74
75 #define emul_to_vcpu(ctxt) \
76         container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static
84 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
85 #else
86 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
87 #endif
88
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91
92 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
93 static void process_nmi(struct kvm_vcpu *vcpu);
94 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
95
96 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98
99 static bool __read_mostly ignore_msrs = 0;
100 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
101
102 unsigned int min_timer_period_us = 500;
103 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
104
105 static bool __read_mostly kvmclock_periodic_sync = true;
106 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
107
108 bool __read_mostly kvm_has_tsc_control;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
110 u32  __read_mostly kvm_max_guest_tsc_khz;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
112 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
114 u64  __read_mostly kvm_max_tsc_scaling_ratio;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio;
117
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm = 250;
120 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
121
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns = 0;
124 module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
125
126 static bool __read_mostly vector_hashing = true;
127 module_param(vector_hashing, bool, S_IRUGO);
128
129 static bool __read_mostly backwards_tsc_observed = false;
130
131 #define KVM_NR_SHARED_MSRS 16
132
133 struct kvm_shared_msrs_global {
134         int nr;
135         u32 msrs[KVM_NR_SHARED_MSRS];
136 };
137
138 struct kvm_shared_msrs {
139         struct user_return_notifier urn;
140         bool registered;
141         struct kvm_shared_msr_values {
142                 u64 host;
143                 u64 curr;
144         } values[KVM_NR_SHARED_MSRS];
145 };
146
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
148 static struct kvm_shared_msrs __percpu *shared_msrs;
149
150 struct kvm_stats_debugfs_item debugfs_entries[] = {
151         { "pf_fixed", VCPU_STAT(pf_fixed) },
152         { "pf_guest", VCPU_STAT(pf_guest) },
153         { "tlb_flush", VCPU_STAT(tlb_flush) },
154         { "invlpg", VCPU_STAT(invlpg) },
155         { "exits", VCPU_STAT(exits) },
156         { "io_exits", VCPU_STAT(io_exits) },
157         { "mmio_exits", VCPU_STAT(mmio_exits) },
158         { "signal_exits", VCPU_STAT(signal_exits) },
159         { "irq_window", VCPU_STAT(irq_window_exits) },
160         { "nmi_window", VCPU_STAT(nmi_window_exits) },
161         { "halt_exits", VCPU_STAT(halt_exits) },
162         { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
163         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
164         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
165         { "hypercalls", VCPU_STAT(hypercalls) },
166         { "request_irq", VCPU_STAT(request_irq_exits) },
167         { "irq_exits", VCPU_STAT(irq_exits) },
168         { "host_state_reload", VCPU_STAT(host_state_reload) },
169         { "efer_reload", VCPU_STAT(efer_reload) },
170         { "fpu_reload", VCPU_STAT(fpu_reload) },
171         { "insn_emulation", VCPU_STAT(insn_emulation) },
172         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
173         { "irq_injections", VCPU_STAT(irq_injections) },
174         { "nmi_injections", VCPU_STAT(nmi_injections) },
175         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
176         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
177         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
178         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
179         { "mmu_flooded", VM_STAT(mmu_flooded) },
180         { "mmu_recycled", VM_STAT(mmu_recycled) },
181         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
182         { "mmu_unsync", VM_STAT(mmu_unsync) },
183         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
184         { "largepages", VM_STAT(lpages) },
185         { NULL }
186 };
187
188 u64 __read_mostly host_xcr0;
189
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
191
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
193 {
194         int i;
195         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
196                 vcpu->arch.apf.gfns[i] = ~0;
197 }
198
199 static void kvm_on_user_return(struct user_return_notifier *urn)
200 {
201         unsigned slot;
202         struct kvm_shared_msrs *locals
203                 = container_of(urn, struct kvm_shared_msrs, urn);
204         struct kvm_shared_msr_values *values;
205
206         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
207                 values = &locals->values[slot];
208                 if (values->host != values->curr) {
209                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
210                         values->curr = values->host;
211                 }
212         }
213         locals->registered = false;
214         user_return_notifier_unregister(urn);
215 }
216
217 static void shared_msr_update(unsigned slot, u32 msr)
218 {
219         u64 value;
220         unsigned int cpu = smp_processor_id();
221         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
222
223         /* only read, and nobody should modify it at this time,
224          * so don't need lock */
225         if (slot >= shared_msrs_global.nr) {
226                 printk(KERN_ERR "kvm: invalid MSR slot!");
227                 return;
228         }
229         rdmsrl_safe(msr, &value);
230         smsr->values[slot].host = value;
231         smsr->values[slot].curr = value;
232 }
233
234 void kvm_define_shared_msr(unsigned slot, u32 msr)
235 {
236         BUG_ON(slot >= KVM_NR_SHARED_MSRS);
237         shared_msrs_global.msrs[slot] = msr;
238         if (slot >= shared_msrs_global.nr)
239                 shared_msrs_global.nr = slot + 1;
240 }
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
242
243 static void kvm_shared_msr_cpu_online(void)
244 {
245         unsigned i;
246
247         for (i = 0; i < shared_msrs_global.nr; ++i)
248                 shared_msr_update(i, shared_msrs_global.msrs[i]);
249 }
250
251 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
252 {
253         unsigned int cpu = smp_processor_id();
254         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
255         int err;
256
257         if (((value ^ smsr->values[slot].curr) & mask) == 0)
258                 return 0;
259         smsr->values[slot].curr = value;
260         err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
261         if (err)
262                 return 1;
263
264         if (!smsr->registered) {
265                 smsr->urn.on_user_return = kvm_on_user_return;
266                 user_return_notifier_register(&smsr->urn);
267                 smsr->registered = true;
268         }
269         return 0;
270 }
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
272
273 static void drop_user_return_notifiers(void)
274 {
275         unsigned int cpu = smp_processor_id();
276         struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
277
278         if (smsr->registered)
279                 kvm_on_user_return(&smsr->urn);
280 }
281
282 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
283 {
284         return vcpu->arch.apic_base;
285 }
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
287
288 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
289 {
290         u64 old_state = vcpu->arch.apic_base &
291                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
292         u64 new_state = msr_info->data &
293                 (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
294         u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
295                 0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
296
297         if (!msr_info->host_initiated &&
298             ((msr_info->data & reserved_bits) != 0 ||
299              new_state == X2APIC_ENABLE ||
300              (new_state == MSR_IA32_APICBASE_ENABLE &&
301               old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
302              (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
303               old_state == 0)))
304                 return 1;
305
306         kvm_lapic_set_base(vcpu, msr_info->data);
307         return 0;
308 }
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
310
311 asmlinkage __visible void kvm_spurious_fault(void)
312 {
313         /* Fault while not rebooting.  We want the trace. */
314         BUG();
315 }
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
317
318 #define EXCPT_BENIGN            0
319 #define EXCPT_CONTRIBUTORY      1
320 #define EXCPT_PF                2
321
322 static int exception_class(int vector)
323 {
324         switch (vector) {
325         case PF_VECTOR:
326                 return EXCPT_PF;
327         case DE_VECTOR:
328         case TS_VECTOR:
329         case NP_VECTOR:
330         case SS_VECTOR:
331         case GP_VECTOR:
332                 return EXCPT_CONTRIBUTORY;
333         default:
334                 break;
335         }
336         return EXCPT_BENIGN;
337 }
338
339 #define EXCPT_FAULT             0
340 #define EXCPT_TRAP              1
341 #define EXCPT_ABORT             2
342 #define EXCPT_INTERRUPT         3
343
344 static int exception_type(int vector)
345 {
346         unsigned int mask;
347
348         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
349                 return EXCPT_INTERRUPT;
350
351         mask = 1 << vector;
352
353         /* #DB is trap, as instruction watchpoints are handled elsewhere */
354         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
355                 return EXCPT_TRAP;
356
357         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
358                 return EXCPT_ABORT;
359
360         /* Reserved exceptions will result in fault */
361         return EXCPT_FAULT;
362 }
363
364 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
365                 unsigned nr, bool has_error, u32 error_code,
366                 bool reinject)
367 {
368         u32 prev_nr;
369         int class1, class2;
370
371         kvm_make_request(KVM_REQ_EVENT, vcpu);
372
373         if (!vcpu->arch.exception.pending) {
374         queue:
375                 if (has_error && !is_protmode(vcpu))
376                         has_error = false;
377                 vcpu->arch.exception.pending = true;
378                 vcpu->arch.exception.has_error_code = has_error;
379                 vcpu->arch.exception.nr = nr;
380                 vcpu->arch.exception.error_code = error_code;
381                 vcpu->arch.exception.reinject = reinject;
382                 return;
383         }
384
385         /* to check exception */
386         prev_nr = vcpu->arch.exception.nr;
387         if (prev_nr == DF_VECTOR) {
388                 /* triple fault -> shutdown */
389                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
390                 return;
391         }
392         class1 = exception_class(prev_nr);
393         class2 = exception_class(nr);
394         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
395                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
396                 /* generate double fault per SDM Table 5-5 */
397                 vcpu->arch.exception.pending = true;
398                 vcpu->arch.exception.has_error_code = true;
399                 vcpu->arch.exception.nr = DF_VECTOR;
400                 vcpu->arch.exception.error_code = 0;
401         } else
402                 /* replace previous exception with a new one in a hope
403                    that instruction re-execution will regenerate lost
404                    exception */
405                 goto queue;
406 }
407
408 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
409 {
410         kvm_multiple_exception(vcpu, nr, false, 0, false);
411 }
412 EXPORT_SYMBOL_GPL(kvm_queue_exception);
413
414 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
415 {
416         kvm_multiple_exception(vcpu, nr, false, 0, true);
417 }
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
419
420 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
421 {
422         if (err)
423                 kvm_inject_gp(vcpu, 0);
424         else
425                 kvm_x86_ops->skip_emulated_instruction(vcpu);
426 }
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
428
429 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
430 {
431         ++vcpu->stat.pf_guest;
432         vcpu->arch.cr2 = fault->address;
433         kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
434 }
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
436
437 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
438 {
439         if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
440                 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
441         else
442                 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
443
444         return fault->nested_page_fault;
445 }
446
447 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
448 {
449         atomic_inc(&vcpu->arch.nmi_queued);
450         kvm_make_request(KVM_REQ_NMI, vcpu);
451 }
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
453
454 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
455 {
456         kvm_multiple_exception(vcpu, nr, true, error_code, false);
457 }
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
459
460 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
461 {
462         kvm_multiple_exception(vcpu, nr, true, error_code, true);
463 }
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
465
466 /*
467  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
468  * a #GP and return false.
469  */
470 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
471 {
472         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
473                 return true;
474         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
475         return false;
476 }
477 EXPORT_SYMBOL_GPL(kvm_require_cpl);
478
479 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
480 {
481         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
482                 return true;
483
484         kvm_queue_exception(vcpu, UD_VECTOR);
485         return false;
486 }
487 EXPORT_SYMBOL_GPL(kvm_require_dr);
488
489 /*
490  * This function will be used to read from the physical memory of the currently
491  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492  * can read from guest physical or from the guest's guest physical memory.
493  */
494 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
495                             gfn_t ngfn, void *data, int offset, int len,
496                             u32 access)
497 {
498         struct x86_exception exception;
499         gfn_t real_gfn;
500         gpa_t ngpa;
501
502         ngpa     = gfn_to_gpa(ngfn);
503         real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
504         if (real_gfn == UNMAPPED_GVA)
505                 return -EFAULT;
506
507         real_gfn = gpa_to_gfn(real_gfn);
508
509         return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
510 }
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
512
513 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
514                                void *data, int offset, int len, u32 access)
515 {
516         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
517                                        data, offset, len, access);
518 }
519
520 /*
521  * Load the pae pdptrs.  Return true is they are all valid.
522  */
523 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
524 {
525         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
526         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
527         int i;
528         int ret;
529         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
530
531         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
532                                       offset * sizeof(u64), sizeof(pdpte),
533                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
534         if (ret < 0) {
535                 ret = 0;
536                 goto out;
537         }
538         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
539                 if (is_present_gpte(pdpte[i]) &&
540                     (pdpte[i] &
541                      vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
542                         ret = 0;
543                         goto out;
544                 }
545         }
546         ret = 1;
547
548         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
549         __set_bit(VCPU_EXREG_PDPTR,
550                   (unsigned long *)&vcpu->arch.regs_avail);
551         __set_bit(VCPU_EXREG_PDPTR,
552                   (unsigned long *)&vcpu->arch.regs_dirty);
553 out:
554
555         return ret;
556 }
557 EXPORT_SYMBOL_GPL(load_pdptrs);
558
559 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
560 {
561         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
562         bool changed = true;
563         int offset;
564         gfn_t gfn;
565         int r;
566
567         if (is_long_mode(vcpu) || !is_pae(vcpu))
568                 return false;
569
570         if (!test_bit(VCPU_EXREG_PDPTR,
571                       (unsigned long *)&vcpu->arch.regs_avail))
572                 return true;
573
574         gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
575         offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
576         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
577                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
578         if (r < 0)
579                 goto out;
580         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
581 out:
582
583         return changed;
584 }
585
586 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
587 {
588         unsigned long old_cr0 = kvm_read_cr0(vcpu);
589         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
590
591         cr0 |= X86_CR0_ET;
592
593 #ifdef CONFIG_X86_64
594         if (cr0 & 0xffffffff00000000UL)
595                 return 1;
596 #endif
597
598         cr0 &= ~CR0_RESERVED_BITS;
599
600         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
601                 return 1;
602
603         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
604                 return 1;
605
606         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
607 #ifdef CONFIG_X86_64
608                 if ((vcpu->arch.efer & EFER_LME)) {
609                         int cs_db, cs_l;
610
611                         if (!is_pae(vcpu))
612                                 return 1;
613                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
614                         if (cs_l)
615                                 return 1;
616                 } else
617 #endif
618                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
619                                                  kvm_read_cr3(vcpu)))
620                         return 1;
621         }
622
623         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
624                 return 1;
625
626         kvm_x86_ops->set_cr0(vcpu, cr0);
627
628         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
629                 kvm_clear_async_pf_completion_queue(vcpu);
630                 kvm_async_pf_hash_reset(vcpu);
631         }
632
633         if ((cr0 ^ old_cr0) & update_bits)
634                 kvm_mmu_reset_context(vcpu);
635
636         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
637             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
638             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
639                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
640
641         return 0;
642 }
643 EXPORT_SYMBOL_GPL(kvm_set_cr0);
644
645 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
646 {
647         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
648 }
649 EXPORT_SYMBOL_GPL(kvm_lmsw);
650
651 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
652 {
653         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
654                         !vcpu->guest_xcr0_loaded) {
655                 /* kvm_set_xcr() also depends on this */
656                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
657                 vcpu->guest_xcr0_loaded = 1;
658         }
659 }
660
661 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
662 {
663         if (vcpu->guest_xcr0_loaded) {
664                 if (vcpu->arch.xcr0 != host_xcr0)
665                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
666                 vcpu->guest_xcr0_loaded = 0;
667         }
668 }
669
670 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
671 {
672         u64 xcr0 = xcr;
673         u64 old_xcr0 = vcpu->arch.xcr0;
674         u64 valid_bits;
675
676         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
677         if (index != XCR_XFEATURE_ENABLED_MASK)
678                 return 1;
679         if (!(xcr0 & XFEATURE_MASK_FP))
680                 return 1;
681         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
682                 return 1;
683
684         /*
685          * Do not allow the guest to set bits that we do not support
686          * saving.  However, xcr0 bit 0 is always set, even if the
687          * emulated CPU does not support XSAVE (see fx_init).
688          */
689         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
690         if (xcr0 & ~valid_bits)
691                 return 1;
692
693         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
694             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
695                 return 1;
696
697         if (xcr0 & XFEATURE_MASK_AVX512) {
698                 if (!(xcr0 & XFEATURE_MASK_YMM))
699                         return 1;
700                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
701                         return 1;
702         }
703         kvm_put_guest_xcr0(vcpu);
704         vcpu->arch.xcr0 = xcr0;
705
706         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
707                 kvm_update_cpuid(vcpu);
708         return 0;
709 }
710
711 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
712 {
713         if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
714             __kvm_set_xcr(vcpu, index, xcr)) {
715                 kvm_inject_gp(vcpu, 0);
716                 return 1;
717         }
718         return 0;
719 }
720 EXPORT_SYMBOL_GPL(kvm_set_xcr);
721
722 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
723 {
724         unsigned long old_cr4 = kvm_read_cr4(vcpu);
725         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
726                                    X86_CR4_SMEP | X86_CR4_SMAP;
727
728         if (cr4 & CR4_RESERVED_BITS)
729                 return 1;
730
731         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
732                 return 1;
733
734         if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
735                 return 1;
736
737         if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
738                 return 1;
739
740         if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
741                 return 1;
742
743         if (is_long_mode(vcpu)) {
744                 if (!(cr4 & X86_CR4_PAE))
745                         return 1;
746         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
747                    && ((cr4 ^ old_cr4) & pdptr_bits)
748                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
749                                    kvm_read_cr3(vcpu)))
750                 return 1;
751
752         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
753                 if (!guest_cpuid_has_pcid(vcpu))
754                         return 1;
755
756                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
757                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
758                         return 1;
759         }
760
761         if (kvm_x86_ops->set_cr4(vcpu, cr4))
762                 return 1;
763
764         if (((cr4 ^ old_cr4) & pdptr_bits) ||
765             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
766                 kvm_mmu_reset_context(vcpu);
767
768         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
769                 kvm_update_cpuid(vcpu);
770
771         return 0;
772 }
773 EXPORT_SYMBOL_GPL(kvm_set_cr4);
774
775 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
776 {
777 #ifdef CONFIG_X86_64
778         cr3 &= ~CR3_PCID_INVD;
779 #endif
780
781         if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
782                 kvm_mmu_sync_roots(vcpu);
783                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
784                 return 0;
785         }
786
787         if (is_long_mode(vcpu)) {
788                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
789                         return 1;
790         } else if (is_pae(vcpu) && is_paging(vcpu) &&
791                    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
792                 return 1;
793
794         vcpu->arch.cr3 = cr3;
795         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
796         kvm_mmu_new_cr3(vcpu);
797         return 0;
798 }
799 EXPORT_SYMBOL_GPL(kvm_set_cr3);
800
801 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
802 {
803         if (cr8 & CR8_RESERVED_BITS)
804                 return 1;
805         if (lapic_in_kernel(vcpu))
806                 kvm_lapic_set_tpr(vcpu, cr8);
807         else
808                 vcpu->arch.cr8 = cr8;
809         return 0;
810 }
811 EXPORT_SYMBOL_GPL(kvm_set_cr8);
812
813 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
814 {
815         if (lapic_in_kernel(vcpu))
816                 return kvm_lapic_get_cr8(vcpu);
817         else
818                 return vcpu->arch.cr8;
819 }
820 EXPORT_SYMBOL_GPL(kvm_get_cr8);
821
822 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
823 {
824         int i;
825
826         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
827                 for (i = 0; i < KVM_NR_DB_REGS; i++)
828                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
829                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
830         }
831 }
832
833 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
834 {
835         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
836                 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
837 }
838
839 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
840 {
841         unsigned long dr7;
842
843         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
844                 dr7 = vcpu->arch.guest_debug_dr7;
845         else
846                 dr7 = vcpu->arch.dr7;
847         kvm_x86_ops->set_dr7(vcpu, dr7);
848         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
849         if (dr7 & DR7_BP_EN_MASK)
850                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
851 }
852
853 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
854 {
855         u64 fixed = DR6_FIXED_1;
856
857         if (!guest_cpuid_has_rtm(vcpu))
858                 fixed |= DR6_RTM;
859         return fixed;
860 }
861
862 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
863 {
864         switch (dr) {
865         case 0 ... 3:
866                 vcpu->arch.db[dr] = val;
867                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
868                         vcpu->arch.eff_db[dr] = val;
869                 break;
870         case 4:
871                 /* fall through */
872         case 6:
873                 if (val & 0xffffffff00000000ULL)
874                         return -1; /* #GP */
875                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
876                 kvm_update_dr6(vcpu);
877                 break;
878         case 5:
879                 /* fall through */
880         default: /* 7 */
881                 if (val & 0xffffffff00000000ULL)
882                         return -1; /* #GP */
883                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
884                 kvm_update_dr7(vcpu);
885                 break;
886         }
887
888         return 0;
889 }
890
891 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
892 {
893         if (__kvm_set_dr(vcpu, dr, val)) {
894                 kvm_inject_gp(vcpu, 0);
895                 return 1;
896         }
897         return 0;
898 }
899 EXPORT_SYMBOL_GPL(kvm_set_dr);
900
901 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
902 {
903         switch (dr) {
904         case 0 ... 3:
905                 *val = vcpu->arch.db[dr];
906                 break;
907         case 4:
908                 /* fall through */
909         case 6:
910                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
911                         *val = vcpu->arch.dr6;
912                 else
913                         *val = kvm_x86_ops->get_dr6(vcpu);
914                 break;
915         case 5:
916                 /* fall through */
917         default: /* 7 */
918                 *val = vcpu->arch.dr7;
919                 break;
920         }
921         return 0;
922 }
923 EXPORT_SYMBOL_GPL(kvm_get_dr);
924
925 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
926 {
927         u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
928         u64 data;
929         int err;
930
931         err = kvm_pmu_rdpmc(vcpu, ecx, &data);
932         if (err)
933                 return err;
934         kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
935         kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
936         return err;
937 }
938 EXPORT_SYMBOL_GPL(kvm_rdpmc);
939
940 /*
941  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
942  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
943  *
944  * This list is modified at module load time to reflect the
945  * capabilities of the host cpu. This capabilities test skips MSRs that are
946  * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
947  * may depend on host virtualization features rather than host cpu features.
948  */
949
950 static u32 msrs_to_save[] = {
951         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
952         MSR_STAR,
953 #ifdef CONFIG_X86_64
954         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
955 #endif
956         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
957         MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
958 };
959
960 static unsigned num_msrs_to_save;
961
962 static u32 emulated_msrs[] = {
963         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
964         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
965         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
966         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
967         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
968         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
969         HV_X64_MSR_RESET,
970         HV_X64_MSR_VP_INDEX,
971         HV_X64_MSR_VP_RUNTIME,
972         HV_X64_MSR_SCONTROL,
973         HV_X64_MSR_STIMER0_CONFIG,
974         HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
975         MSR_KVM_PV_EOI_EN,
976
977         MSR_IA32_TSC_ADJUST,
978         MSR_IA32_TSCDEADLINE,
979         MSR_IA32_MISC_ENABLE,
980         MSR_IA32_MCG_STATUS,
981         MSR_IA32_MCG_CTL,
982         MSR_IA32_SMBASE,
983 };
984
985 static unsigned num_emulated_msrs;
986
987 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
988 {
989         if (efer & efer_reserved_bits)
990                 return false;
991
992         if (efer & EFER_FFXSR) {
993                 struct kvm_cpuid_entry2 *feat;
994
995                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
996                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
997                         return false;
998         }
999
1000         if (efer & EFER_SVME) {
1001                 struct kvm_cpuid_entry2 *feat;
1002
1003                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1004                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1005                         return false;
1006         }
1007
1008         return true;
1009 }
1010 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1011
1012 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1013 {
1014         u64 old_efer = vcpu->arch.efer;
1015
1016         if (!kvm_valid_efer(vcpu, efer))
1017                 return 1;
1018
1019         if (is_paging(vcpu)
1020             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1021                 return 1;
1022
1023         efer &= ~EFER_LMA;
1024         efer |= vcpu->arch.efer & EFER_LMA;
1025
1026         kvm_x86_ops->set_efer(vcpu, efer);
1027
1028         /* Update reserved bits */
1029         if ((efer ^ old_efer) & EFER_NX)
1030                 kvm_mmu_reset_context(vcpu);
1031
1032         return 0;
1033 }
1034
1035 void kvm_enable_efer_bits(u64 mask)
1036 {
1037        efer_reserved_bits &= ~mask;
1038 }
1039 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1040
1041 /*
1042  * Writes msr value into into the appropriate "register".
1043  * Returns 0 on success, non-0 otherwise.
1044  * Assumes vcpu_load() was already called.
1045  */
1046 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1047 {
1048         switch (msr->index) {
1049         case MSR_FS_BASE:
1050         case MSR_GS_BASE:
1051         case MSR_KERNEL_GS_BASE:
1052         case MSR_CSTAR:
1053         case MSR_LSTAR:
1054                 if (is_noncanonical_address(msr->data))
1055                         return 1;
1056                 break;
1057         case MSR_IA32_SYSENTER_EIP:
1058         case MSR_IA32_SYSENTER_ESP:
1059                 /*
1060                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1061                  * non-canonical address is written on Intel but not on
1062                  * AMD (which ignores the top 32-bits, because it does
1063                  * not implement 64-bit SYSENTER).
1064                  *
1065                  * 64-bit code should hence be able to write a non-canonical
1066                  * value on AMD.  Making the address canonical ensures that
1067                  * vmentry does not fail on Intel after writing a non-canonical
1068                  * value, and that something deterministic happens if the guest
1069                  * invokes 64-bit SYSENTER.
1070                  */
1071                 msr->data = get_canonical(msr->data);
1072         }
1073         return kvm_x86_ops->set_msr(vcpu, msr);
1074 }
1075 EXPORT_SYMBOL_GPL(kvm_set_msr);
1076
1077 /*
1078  * Adapt set_msr() to msr_io()'s calling convention
1079  */
1080 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1081 {
1082         struct msr_data msr;
1083         int r;
1084
1085         msr.index = index;
1086         msr.host_initiated = true;
1087         r = kvm_get_msr(vcpu, &msr);
1088         if (r)
1089                 return r;
1090
1091         *data = msr.data;
1092         return 0;
1093 }
1094
1095 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1096 {
1097         struct msr_data msr;
1098
1099         msr.data = *data;
1100         msr.index = index;
1101         msr.host_initiated = true;
1102         return kvm_set_msr(vcpu, &msr);
1103 }
1104
1105 #ifdef CONFIG_X86_64
1106 struct pvclock_gtod_data {
1107         seqcount_t      seq;
1108
1109         struct { /* extract of a clocksource struct */
1110                 int vclock_mode;
1111                 cycle_t cycle_last;
1112                 cycle_t mask;
1113                 u32     mult;
1114                 u32     shift;
1115         } clock;
1116
1117         u64             boot_ns;
1118         u64             nsec_base;
1119 };
1120
1121 static struct pvclock_gtod_data pvclock_gtod_data;
1122
1123 static void update_pvclock_gtod(struct timekeeper *tk)
1124 {
1125         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1126         u64 boot_ns;
1127
1128         boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1129
1130         write_seqcount_begin(&vdata->seq);
1131
1132         /* copy pvclock gtod data */
1133         vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1134         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1135         vdata->clock.mask               = tk->tkr_mono.mask;
1136         vdata->clock.mult               = tk->tkr_mono.mult;
1137         vdata->clock.shift              = tk->tkr_mono.shift;
1138
1139         vdata->boot_ns                  = boot_ns;
1140         vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1141
1142         write_seqcount_end(&vdata->seq);
1143 }
1144 #endif
1145
1146 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1147 {
1148         /*
1149          * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1150          * vcpu_enter_guest.  This function is only called from
1151          * the physical CPU that is running vcpu.
1152          */
1153         kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1154 }
1155
1156 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1157 {
1158         int version;
1159         int r;
1160         struct pvclock_wall_clock wc;
1161         struct timespec boot;
1162
1163         if (!wall_clock)
1164                 return;
1165
1166         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1167         if (r)
1168                 return;
1169
1170         if (version & 1)
1171                 ++version;  /* first time write, random junk */
1172
1173         ++version;
1174
1175         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1176                 return;
1177
1178         /*
1179          * The guest calculates current wall clock time by adding
1180          * system time (updated by kvm_guest_time_update below) to the
1181          * wall clock specified here.  guest system time equals host
1182          * system time for us, thus we must fill in host boot time here.
1183          */
1184         getboottime(&boot);
1185
1186         if (kvm->arch.kvmclock_offset) {
1187                 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1188                 boot = timespec_sub(boot, ts);
1189         }
1190         wc.sec = boot.tv_sec;
1191         wc.nsec = boot.tv_nsec;
1192         wc.version = version;
1193
1194         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1195
1196         version++;
1197         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1198 }
1199
1200 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1201 {
1202         do_shl32_div32(dividend, divisor);
1203         return dividend;
1204 }
1205
1206 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1207                                s8 *pshift, u32 *pmultiplier)
1208 {
1209         uint64_t scaled64;
1210         int32_t  shift = 0;
1211         uint64_t tps64;
1212         uint32_t tps32;
1213
1214         tps64 = base_hz;
1215         scaled64 = scaled_hz;
1216         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1217                 tps64 >>= 1;
1218                 shift--;
1219         }
1220
1221         tps32 = (uint32_t)tps64;
1222         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1223                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1224                         scaled64 >>= 1;
1225                 else
1226                         tps32 <<= 1;
1227                 shift++;
1228         }
1229
1230         *pshift = shift;
1231         *pmultiplier = div_frac(scaled64, tps32);
1232
1233         pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1234                  __func__, base_hz, scaled_hz, shift, *pmultiplier);
1235 }
1236
1237 #ifdef CONFIG_X86_64
1238 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1239 #endif
1240
1241 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1242 static unsigned long max_tsc_khz;
1243
1244 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1245 {
1246         return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1247                                    vcpu->arch.virtual_tsc_shift);
1248 }
1249
1250 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1251 {
1252         u64 v = (u64)khz * (1000000 + ppm);
1253         do_div(v, 1000000);
1254         return v;
1255 }
1256
1257 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1258 {
1259         u64 ratio;
1260
1261         /* Guest TSC same frequency as host TSC? */
1262         if (!scale) {
1263                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1264                 return 0;
1265         }
1266
1267         /* TSC scaling supported? */
1268         if (!kvm_has_tsc_control) {
1269                 if (user_tsc_khz > tsc_khz) {
1270                         vcpu->arch.tsc_catchup = 1;
1271                         vcpu->arch.tsc_always_catchup = 1;
1272                         return 0;
1273                 } else {
1274                         WARN(1, "user requested TSC rate below hardware speed\n");
1275                         return -1;
1276                 }
1277         }
1278
1279         /* TSC scaling required  - calculate ratio */
1280         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1281                                 user_tsc_khz, tsc_khz);
1282
1283         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1284                 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1285                           user_tsc_khz);
1286                 return -1;
1287         }
1288
1289         vcpu->arch.tsc_scaling_ratio = ratio;
1290         return 0;
1291 }
1292
1293 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1294 {
1295         u32 thresh_lo, thresh_hi;
1296         int use_scaling = 0;
1297
1298         /* tsc_khz can be zero if TSC calibration fails */
1299         if (user_tsc_khz == 0) {
1300                 /* set tsc_scaling_ratio to a safe value */
1301                 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1302                 return -1;
1303         }
1304
1305         /* Compute a scale to convert nanoseconds in TSC cycles */
1306         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1307                            &vcpu->arch.virtual_tsc_shift,
1308                            &vcpu->arch.virtual_tsc_mult);
1309         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1310
1311         /*
1312          * Compute the variation in TSC rate which is acceptable
1313          * within the range of tolerance and decide if the
1314          * rate being applied is within that bounds of the hardware
1315          * rate.  If so, no scaling or compensation need be done.
1316          */
1317         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1318         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1319         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1320                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1321                 use_scaling = 1;
1322         }
1323         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1324 }
1325
1326 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1327 {
1328         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1329                                       vcpu->arch.virtual_tsc_mult,
1330                                       vcpu->arch.virtual_tsc_shift);
1331         tsc += vcpu->arch.this_tsc_write;
1332         return tsc;
1333 }
1334
1335 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1336 {
1337 #ifdef CONFIG_X86_64
1338         bool vcpus_matched;
1339         struct kvm_arch *ka = &vcpu->kvm->arch;
1340         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1341
1342         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1343                          atomic_read(&vcpu->kvm->online_vcpus));
1344
1345         /*
1346          * Once the masterclock is enabled, always perform request in
1347          * order to update it.
1348          *
1349          * In order to enable masterclock, the host clocksource must be TSC
1350          * and the vcpus need to have matched TSCs.  When that happens,
1351          * perform request to enable masterclock.
1352          */
1353         if (ka->use_master_clock ||
1354             (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1355                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1356
1357         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1358                             atomic_read(&vcpu->kvm->online_vcpus),
1359                             ka->use_master_clock, gtod->clock.vclock_mode);
1360 #endif
1361 }
1362
1363 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1364 {
1365         u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1366         vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1367 }
1368
1369 /*
1370  * Multiply tsc by a fixed point number represented by ratio.
1371  *
1372  * The most significant 64-N bits (mult) of ratio represent the
1373  * integral part of the fixed point number; the remaining N bits
1374  * (frac) represent the fractional part, ie. ratio represents a fixed
1375  * point number (mult + frac * 2^(-N)).
1376  *
1377  * N equals to kvm_tsc_scaling_ratio_frac_bits.
1378  */
1379 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1380 {
1381         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1382 }
1383
1384 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1385 {
1386         u64 _tsc = tsc;
1387         u64 ratio = vcpu->arch.tsc_scaling_ratio;
1388
1389         if (ratio != kvm_default_tsc_scaling_ratio)
1390                 _tsc = __scale_tsc(ratio, tsc);
1391
1392         return _tsc;
1393 }
1394 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1395
1396 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1397 {
1398         u64 tsc;
1399
1400         tsc = kvm_scale_tsc(vcpu, rdtsc());
1401
1402         return target_tsc - tsc;
1403 }
1404
1405 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1406 {
1407         return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1408 }
1409 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1410
1411 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1412 {
1413         struct kvm *kvm = vcpu->kvm;
1414         u64 offset, ns, elapsed;
1415         unsigned long flags;
1416         s64 usdiff;
1417         bool matched;
1418         bool already_matched;
1419         u64 data = msr->data;
1420
1421         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1422         offset = kvm_compute_tsc_offset(vcpu, data);
1423         ns = get_kernel_ns();
1424         elapsed = ns - kvm->arch.last_tsc_nsec;
1425
1426         if (vcpu->arch.virtual_tsc_khz) {
1427                 int faulted = 0;
1428
1429                 /* n.b - signed multiplication and division required */
1430                 usdiff = data - kvm->arch.last_tsc_write;
1431 #ifdef CONFIG_X86_64
1432                 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1433 #else
1434                 /* do_div() only does unsigned */
1435                 asm("1: idivl %[divisor]\n"
1436                     "2: xor %%edx, %%edx\n"
1437                     "   movl $0, %[faulted]\n"
1438                     "3:\n"
1439                     ".section .fixup,\"ax\"\n"
1440                     "4: movl $1, %[faulted]\n"
1441                     "   jmp  3b\n"
1442                     ".previous\n"
1443
1444                 _ASM_EXTABLE(1b, 4b)
1445
1446                 : "=A"(usdiff), [faulted] "=r" (faulted)
1447                 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1448
1449 #endif
1450                 do_div(elapsed, 1000);
1451                 usdiff -= elapsed;
1452                 if (usdiff < 0)
1453                         usdiff = -usdiff;
1454
1455                 /* idivl overflow => difference is larger than USEC_PER_SEC */
1456                 if (faulted)
1457                         usdiff = USEC_PER_SEC;
1458         } else
1459                 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1460
1461         /*
1462          * Special case: TSC write with a small delta (1 second) of virtual
1463          * cycle time against real time is interpreted as an attempt to
1464          * synchronize the CPU.
1465          *
1466          * For a reliable TSC, we can match TSC offsets, and for an unstable
1467          * TSC, we add elapsed time in this computation.  We could let the
1468          * compensation code attempt to catch up if we fall behind, but
1469          * it's better to try to match offsets from the beginning.
1470          */
1471         if (usdiff < USEC_PER_SEC &&
1472             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1473                 if (!check_tsc_unstable()) {
1474                         offset = kvm->arch.cur_tsc_offset;
1475                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1476                 } else {
1477                         u64 delta = nsec_to_cycles(vcpu, elapsed);
1478                         data += delta;
1479                         offset = kvm_compute_tsc_offset(vcpu, data);
1480                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1481                 }
1482                 matched = true;
1483                 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1484         } else {
1485                 /*
1486                  * We split periods of matched TSC writes into generations.
1487                  * For each generation, we track the original measured
1488                  * nanosecond time, offset, and write, so if TSCs are in
1489                  * sync, we can match exact offset, and if not, we can match
1490                  * exact software computation in compute_guest_tsc()
1491                  *
1492                  * These values are tracked in kvm->arch.cur_xxx variables.
1493                  */
1494                 kvm->arch.cur_tsc_generation++;
1495                 kvm->arch.cur_tsc_nsec = ns;
1496                 kvm->arch.cur_tsc_write = data;
1497                 kvm->arch.cur_tsc_offset = offset;
1498                 matched = false;
1499                 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1500                          kvm->arch.cur_tsc_generation, data);
1501         }
1502
1503         /*
1504          * We also track th most recent recorded KHZ, write and time to
1505          * allow the matching interval to be extended at each write.
1506          */
1507         kvm->arch.last_tsc_nsec = ns;
1508         kvm->arch.last_tsc_write = data;
1509         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1510
1511         vcpu->arch.last_guest_tsc = data;
1512
1513         /* Keep track of which generation this VCPU has synchronized to */
1514         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1515         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1516         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1517
1518         if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1519                 update_ia32_tsc_adjust_msr(vcpu, offset);
1520         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1521         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1522
1523         spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1524         if (!matched) {
1525                 kvm->arch.nr_vcpus_matched_tsc = 0;
1526         } else if (!already_matched) {
1527                 kvm->arch.nr_vcpus_matched_tsc++;
1528         }
1529
1530         kvm_track_tsc_matching(vcpu);
1531         spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1532 }
1533
1534 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1535
1536 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1537                                            s64 adjustment)
1538 {
1539         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1540 }
1541
1542 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1543 {
1544         if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1545                 WARN_ON(adjustment < 0);
1546         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1547         kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1548 }
1549
1550 #ifdef CONFIG_X86_64
1551
1552 static cycle_t read_tsc(void)
1553 {
1554         cycle_t ret = (cycle_t)rdtsc_ordered();
1555         u64 last = pvclock_gtod_data.clock.cycle_last;
1556
1557         if (likely(ret >= last))
1558                 return ret;
1559
1560         /*
1561          * GCC likes to generate cmov here, but this branch is extremely
1562          * predictable (it's just a funciton of time and the likely is
1563          * very likely) and there's a data dependence, so force GCC
1564          * to generate a branch instead.  I don't barrier() because
1565          * we don't actually need a barrier, and if this function
1566          * ever gets inlined it will generate worse code.
1567          */
1568         asm volatile ("");
1569         return last;
1570 }
1571
1572 static inline u64 vgettsc(cycle_t *cycle_now)
1573 {
1574         long v;
1575         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1576
1577         *cycle_now = read_tsc();
1578
1579         v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1580         return v * gtod->clock.mult;
1581 }
1582
1583 static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1584 {
1585         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1586         unsigned long seq;
1587         int mode;
1588         u64 ns;
1589
1590         do {
1591                 seq = read_seqcount_begin(&gtod->seq);
1592                 mode = gtod->clock.vclock_mode;
1593                 ns = gtod->nsec_base;
1594                 ns += vgettsc(cycle_now);
1595                 ns >>= gtod->clock.shift;
1596                 ns += gtod->boot_ns;
1597         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1598         *t = ns;
1599
1600         return mode;
1601 }
1602
1603 /* returns true if host is using tsc clocksource */
1604 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1605 {
1606         /* checked again under seqlock below */
1607         if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1608                 return false;
1609
1610         return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1611 }
1612 #endif
1613
1614 /*
1615  *
1616  * Assuming a stable TSC across physical CPUS, and a stable TSC
1617  * across virtual CPUs, the following condition is possible.
1618  * Each numbered line represents an event visible to both
1619  * CPUs at the next numbered event.
1620  *
1621  * "timespecX" represents host monotonic time. "tscX" represents
1622  * RDTSC value.
1623  *
1624  *              VCPU0 on CPU0           |       VCPU1 on CPU1
1625  *
1626  * 1.  read timespec0,tsc0
1627  * 2.                                   | timespec1 = timespec0 + N
1628  *                                      | tsc1 = tsc0 + M
1629  * 3. transition to guest               | transition to guest
1630  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1631  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1632  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1633  *
1634  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1635  *
1636  *      - ret0 < ret1
1637  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1638  *              ...
1639  *      - 0 < N - M => M < N
1640  *
1641  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1642  * always the case (the difference between two distinct xtime instances
1643  * might be smaller then the difference between corresponding TSC reads,
1644  * when updating guest vcpus pvclock areas).
1645  *
1646  * To avoid that problem, do not allow visibility of distinct
1647  * system_timestamp/tsc_timestamp values simultaneously: use a master
1648  * copy of host monotonic time values. Update that master copy
1649  * in lockstep.
1650  *
1651  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1652  *
1653  */
1654
1655 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1656 {
1657 #ifdef CONFIG_X86_64
1658         struct kvm_arch *ka = &kvm->arch;
1659         int vclock_mode;
1660         bool host_tsc_clocksource, vcpus_matched;
1661
1662         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1663                         atomic_read(&kvm->online_vcpus));
1664
1665         /*
1666          * If the host uses TSC clock, then passthrough TSC as stable
1667          * to the guest.
1668          */
1669         host_tsc_clocksource = kvm_get_time_and_clockread(
1670                                         &ka->master_kernel_ns,
1671                                         &ka->master_cycle_now);
1672
1673         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1674                                 && !backwards_tsc_observed
1675                                 && !ka->boot_vcpu_runs_old_kvmclock;
1676
1677         if (ka->use_master_clock)
1678                 atomic_set(&kvm_guest_has_master_clock, 1);
1679
1680         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1681         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1682                                         vcpus_matched);
1683 #endif
1684 }
1685
1686 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1687 {
1688         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1689 }
1690
1691 static void kvm_gen_update_masterclock(struct kvm *kvm)
1692 {
1693 #ifdef CONFIG_X86_64
1694         int i;
1695         struct kvm_vcpu *vcpu;
1696         struct kvm_arch *ka = &kvm->arch;
1697
1698         spin_lock(&ka->pvclock_gtod_sync_lock);
1699         kvm_make_mclock_inprogress_request(kvm);
1700         /* no guest entries from this point */
1701         pvclock_update_vm_gtod_copy(kvm);
1702
1703         kvm_for_each_vcpu(i, vcpu, kvm)
1704                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1705
1706         /* guest entries allowed */
1707         kvm_for_each_vcpu(i, vcpu, kvm)
1708                 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1709
1710         spin_unlock(&ka->pvclock_gtod_sync_lock);
1711 #endif
1712 }
1713
1714 static int kvm_guest_time_update(struct kvm_vcpu *v)
1715 {
1716         unsigned long flags, tgt_tsc_khz;
1717         struct kvm_vcpu_arch *vcpu = &v->arch;
1718         struct kvm_arch *ka = &v->kvm->arch;
1719         s64 kernel_ns;
1720         u64 tsc_timestamp, host_tsc;
1721         struct pvclock_vcpu_time_info guest_hv_clock;
1722         u8 pvclock_flags;
1723         bool use_master_clock;
1724
1725         kernel_ns = 0;
1726         host_tsc = 0;
1727
1728         /*
1729          * If the host uses TSC clock, then passthrough TSC as stable
1730          * to the guest.
1731          */
1732         spin_lock(&ka->pvclock_gtod_sync_lock);
1733         use_master_clock = ka->use_master_clock;
1734         if (use_master_clock) {
1735                 host_tsc = ka->master_cycle_now;
1736                 kernel_ns = ka->master_kernel_ns;
1737         }
1738         spin_unlock(&ka->pvclock_gtod_sync_lock);
1739
1740         /* Keep irq disabled to prevent changes to the clock */
1741         local_irq_save(flags);
1742         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1743         if (unlikely(tgt_tsc_khz == 0)) {
1744                 local_irq_restore(flags);
1745                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1746                 return 1;
1747         }
1748         if (!use_master_clock) {
1749                 host_tsc = rdtsc();
1750                 kernel_ns = get_kernel_ns();
1751         }
1752
1753         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1754
1755         /*
1756          * We may have to catch up the TSC to match elapsed wall clock
1757          * time for two reasons, even if kvmclock is used.
1758          *   1) CPU could have been running below the maximum TSC rate
1759          *   2) Broken TSC compensation resets the base at each VCPU
1760          *      entry to avoid unknown leaps of TSC even when running
1761          *      again on the same CPU.  This may cause apparent elapsed
1762          *      time to disappear, and the guest to stand still or run
1763          *      very slowly.
1764          */
1765         if (vcpu->tsc_catchup) {
1766                 u64 tsc = compute_guest_tsc(v, kernel_ns);
1767                 if (tsc > tsc_timestamp) {
1768                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1769                         tsc_timestamp = tsc;
1770                 }
1771         }
1772
1773         local_irq_restore(flags);
1774
1775         if (!vcpu->pv_time_enabled)
1776                 return 0;
1777
1778         if (kvm_has_tsc_control)
1779                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1780
1781         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1782                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1783                                    &vcpu->hv_clock.tsc_shift,
1784                                    &vcpu->hv_clock.tsc_to_system_mul);
1785                 vcpu->hw_tsc_khz = tgt_tsc_khz;
1786         }
1787
1788         /* With all the info we got, fill in the values */
1789         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1790         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1791         vcpu->last_guest_tsc = tsc_timestamp;
1792
1793         if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1794                 &guest_hv_clock, sizeof(guest_hv_clock))))
1795                 return 0;
1796
1797         /* This VCPU is paused, but it's legal for a guest to read another
1798          * VCPU's kvmclock, so we really have to follow the specification where
1799          * it says that version is odd if data is being modified, and even after
1800          * it is consistent.
1801          *
1802          * Version field updates must be kept separate.  This is because
1803          * kvm_write_guest_cached might use a "rep movs" instruction, and
1804          * writes within a string instruction are weakly ordered.  So there
1805          * are three writes overall.
1806          *
1807          * As a small optimization, only write the version field in the first
1808          * and third write.  The vcpu->pv_time cache is still valid, because the
1809          * version field is the first in the struct.
1810          */
1811         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1812
1813         vcpu->hv_clock.version = guest_hv_clock.version + 1;
1814         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1815                                 &vcpu->hv_clock,
1816                                 sizeof(vcpu->hv_clock.version));
1817
1818         smp_wmb();
1819
1820         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1821         pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1822
1823         if (vcpu->pvclock_set_guest_stopped_request) {
1824                 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1825                 vcpu->pvclock_set_guest_stopped_request = false;
1826         }
1827
1828         /* If the host uses TSC clocksource, then it is stable */
1829         if (use_master_clock)
1830                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1831
1832         vcpu->hv_clock.flags = pvclock_flags;
1833
1834         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1835
1836         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1837                                 &vcpu->hv_clock,
1838                                 sizeof(vcpu->hv_clock));
1839
1840         smp_wmb();
1841
1842         vcpu->hv_clock.version++;
1843         kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1844                                 &vcpu->hv_clock,
1845                                 sizeof(vcpu->hv_clock.version));
1846         return 0;
1847 }
1848
1849 /*
1850  * kvmclock updates which are isolated to a given vcpu, such as
1851  * vcpu->cpu migration, should not allow system_timestamp from
1852  * the rest of the vcpus to remain static. Otherwise ntp frequency
1853  * correction applies to one vcpu's system_timestamp but not
1854  * the others.
1855  *
1856  * So in those cases, request a kvmclock update for all vcpus.
1857  * We need to rate-limit these requests though, as they can
1858  * considerably slow guests that have a large number of vcpus.
1859  * The time for a remote vcpu to update its kvmclock is bound
1860  * by the delay we use to rate-limit the updates.
1861  */
1862
1863 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1864
1865 static void kvmclock_update_fn(struct work_struct *work)
1866 {
1867         int i;
1868         struct delayed_work *dwork = to_delayed_work(work);
1869         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1870                                            kvmclock_update_work);
1871         struct kvm *kvm = container_of(ka, struct kvm, arch);
1872         struct kvm_vcpu *vcpu;
1873
1874         kvm_for_each_vcpu(i, vcpu, kvm) {
1875                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1876                 kvm_vcpu_kick(vcpu);
1877         }
1878 }
1879
1880 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1881 {
1882         struct kvm *kvm = v->kvm;
1883
1884         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1885         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1886                                         KVMCLOCK_UPDATE_DELAY);
1887 }
1888
1889 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1890
1891 static void kvmclock_sync_fn(struct work_struct *work)
1892 {
1893         struct delayed_work *dwork = to_delayed_work(work);
1894         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1895                                            kvmclock_sync_work);
1896         struct kvm *kvm = container_of(ka, struct kvm, arch);
1897
1898         if (!kvmclock_periodic_sync)
1899                 return;
1900
1901         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1902         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1903                                         KVMCLOCK_SYNC_PERIOD);
1904 }
1905
1906 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1907 {
1908         u64 mcg_cap = vcpu->arch.mcg_cap;
1909         unsigned bank_num = mcg_cap & 0xff;
1910
1911         switch (msr) {
1912         case MSR_IA32_MCG_STATUS:
1913                 vcpu->arch.mcg_status = data;
1914                 break;
1915         case MSR_IA32_MCG_CTL:
1916                 if (!(mcg_cap & MCG_CTL_P))
1917                         return 1;
1918                 if (data != 0 && data != ~(u64)0)
1919                         return -1;
1920                 vcpu->arch.mcg_ctl = data;
1921                 break;
1922         default:
1923                 if (msr >= MSR_IA32_MC0_CTL &&
1924                     msr < MSR_IA32_MCx_CTL(bank_num)) {
1925                         u32 offset = msr - MSR_IA32_MC0_CTL;
1926                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1927                          * some Linux kernels though clear bit 10 in bank 4 to
1928                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1929                          * this to avoid an uncatched #GP in the guest
1930                          */
1931                         if ((offset & 0x3) == 0 &&
1932                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1933                                 return -1;
1934                         vcpu->arch.mce_banks[offset] = data;
1935                         break;
1936                 }
1937                 return 1;
1938         }
1939         return 0;
1940 }
1941
1942 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1943 {
1944         struct kvm *kvm = vcpu->kvm;
1945         int lm = is_long_mode(vcpu);
1946         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1947                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1948         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1949                 : kvm->arch.xen_hvm_config.blob_size_32;
1950         u32 page_num = data & ~PAGE_MASK;
1951         u64 page_addr = data & PAGE_MASK;
1952         u8 *page;
1953         int r;
1954
1955         r = -E2BIG;
1956         if (page_num >= blob_size)
1957                 goto out;
1958         r = -ENOMEM;
1959         page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1960         if (IS_ERR(page)) {
1961                 r = PTR_ERR(page);
1962                 goto out;
1963         }
1964         if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1965                 goto out_free;
1966         r = 0;
1967 out_free:
1968         kfree(page);
1969 out:
1970         return r;
1971 }
1972
1973 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1974 {
1975         gpa_t gpa = data & ~0x3f;
1976
1977         /* Bits 2:5 are reserved, Should be zero */
1978         if (data & 0x3c)
1979                 return 1;
1980
1981         vcpu->arch.apf.msr_val = data;
1982
1983         if (!(data & KVM_ASYNC_PF_ENABLED)) {
1984                 kvm_clear_async_pf_completion_queue(vcpu);
1985                 kvm_async_pf_hash_reset(vcpu);
1986                 return 0;
1987         }
1988
1989         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1990                                         sizeof(u32)))
1991                 return 1;
1992
1993         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1994         kvm_async_pf_wakeup_all(vcpu);
1995         return 0;
1996 }
1997
1998 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1999 {
2000         vcpu->arch.pv_time_enabled = false;
2001 }
2002
2003 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
2004 {
2005         u64 delta;
2006
2007         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2008                 return;
2009
2010         delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
2011         vcpu->arch.st.last_steal = current->sched_info.run_delay;
2012         vcpu->arch.st.accum_steal = delta;
2013 }
2014
2015 static void record_steal_time(struct kvm_vcpu *vcpu)
2016 {
2017         accumulate_steal_time(vcpu);
2018
2019         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2020                 return;
2021
2022         if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2023                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2024                 return;
2025
2026         vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
2027         vcpu->arch.st.steal.version += 2;
2028         vcpu->arch.st.accum_steal = 0;
2029
2030         kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2031                 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2032 }
2033
2034 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2035 {
2036         bool pr = false;
2037         u32 msr = msr_info->index;
2038         u64 data = msr_info->data;
2039
2040         switch (msr) {
2041         case MSR_AMD64_NB_CFG:
2042         case MSR_IA32_UCODE_REV:
2043         case MSR_IA32_UCODE_WRITE:
2044         case MSR_VM_HSAVE_PA:
2045         case MSR_AMD64_PATCH_LOADER:
2046         case MSR_AMD64_BU_CFG2:
2047                 break;
2048
2049         case MSR_EFER:
2050                 return set_efer(vcpu, data);
2051         case MSR_K7_HWCR:
2052                 data &= ~(u64)0x40;     /* ignore flush filter disable */
2053                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2054                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
2055                 data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2056                 if (data != 0) {
2057                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2058                                     data);
2059                         return 1;
2060                 }
2061                 break;
2062         case MSR_FAM10H_MMIO_CONF_BASE:
2063                 if (data != 0) {
2064                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2065                                     "0x%llx\n", data);
2066                         return 1;
2067                 }
2068                 break;
2069         case MSR_IA32_DEBUGCTLMSR:
2070                 if (!data) {
2071                         /* We support the non-activated case already */
2072                         break;
2073                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2074                         /* Values other than LBR and BTF are vendor-specific,
2075                            thus reserved and should throw a #GP */
2076                         return 1;
2077                 }
2078                 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2079                             __func__, data);
2080                 break;
2081         case 0x200 ... 0x2ff:
2082                 return kvm_mtrr_set_msr(vcpu, msr, data);
2083         case MSR_IA32_APICBASE:
2084                 return kvm_set_apic_base(vcpu, msr_info);
2085         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2086                 return kvm_x2apic_msr_write(vcpu, msr, data);
2087         case MSR_IA32_TSCDEADLINE:
2088                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2089                 break;
2090         case MSR_IA32_TSC_ADJUST:
2091                 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2092                         if (!msr_info->host_initiated) {
2093                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2094                                 adjust_tsc_offset_guest(vcpu, adj);
2095                         }
2096                         vcpu->arch.ia32_tsc_adjust_msr = data;
2097                 }
2098                 break;
2099         case MSR_IA32_MISC_ENABLE:
2100                 vcpu->arch.ia32_misc_enable_msr = data;
2101                 break;
2102         case MSR_IA32_SMBASE:
2103                 if (!msr_info->host_initiated)
2104                         return 1;
2105                 vcpu->arch.smbase = data;
2106                 break;
2107         case MSR_KVM_WALL_CLOCK_NEW:
2108         case MSR_KVM_WALL_CLOCK:
2109                 vcpu->kvm->arch.wall_clock = data;
2110                 kvm_write_wall_clock(vcpu->kvm, data);
2111                 break;
2112         case MSR_KVM_SYSTEM_TIME_NEW:
2113         case MSR_KVM_SYSTEM_TIME: {
2114                 u64 gpa_offset;
2115                 struct kvm_arch *ka = &vcpu->kvm->arch;
2116
2117                 kvmclock_reset(vcpu);
2118
2119                 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2120                         bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2121
2122                         if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2123                                 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2124                                         &vcpu->requests);
2125
2126                         ka->boot_vcpu_runs_old_kvmclock = tmp;
2127                 }
2128
2129                 vcpu->arch.time = data;
2130                 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2131
2132                 /* we verify if the enable bit is set... */
2133                 if (!(data & 1))
2134                         break;
2135
2136                 gpa_offset = data & ~(PAGE_MASK | 1);
2137
2138                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2139                      &vcpu->arch.pv_time, data & ~1ULL,
2140                      sizeof(struct pvclock_vcpu_time_info)))
2141                         vcpu->arch.pv_time_enabled = false;
2142                 else
2143                         vcpu->arch.pv_time_enabled = true;
2144
2145                 break;
2146         }
2147         case MSR_KVM_ASYNC_PF_EN:
2148                 if (kvm_pv_enable_async_pf(vcpu, data))
2149                         return 1;
2150                 break;
2151         case MSR_KVM_STEAL_TIME:
2152
2153                 if (unlikely(!sched_info_on()))
2154                         return 1;
2155
2156                 if (data & KVM_STEAL_RESERVED_MASK)
2157                         return 1;
2158
2159                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2160                                                 data & KVM_STEAL_VALID_BITS,
2161                                                 sizeof(struct kvm_steal_time)))
2162                         return 1;
2163
2164                 vcpu->arch.st.msr_val = data;
2165
2166                 if (!(data & KVM_MSR_ENABLED))
2167                         break;
2168
2169                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2170
2171                 break;
2172         case MSR_KVM_PV_EOI_EN:
2173                 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2174                         return 1;
2175                 break;
2176
2177         case MSR_IA32_MCG_CTL:
2178         case MSR_IA32_MCG_STATUS:
2179         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2180                 return set_msr_mce(vcpu, msr, data);
2181
2182         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2183         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2184                 pr = true; /* fall through */
2185         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2186         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2187                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2188                         return kvm_pmu_set_msr(vcpu, msr_info);
2189
2190                 if (pr || data != 0)
2191                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2192                                     "0x%x data 0x%llx\n", msr, data);
2193                 break;
2194         case MSR_K7_CLK_CTL:
2195                 /*
2196                  * Ignore all writes to this no longer documented MSR.
2197                  * Writes are only relevant for old K7 processors,
2198                  * all pre-dating SVM, but a recommended workaround from
2199                  * AMD for these chips. It is possible to specify the
2200                  * affected processor models on the command line, hence
2201                  * the need to ignore the workaround.
2202                  */
2203                 break;
2204         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2205         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2206         case HV_X64_MSR_CRASH_CTL:
2207         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2208                 return kvm_hv_set_msr_common(vcpu, msr, data,
2209                                              msr_info->host_initiated);
2210         case MSR_IA32_BBL_CR_CTL3:
2211                 /* Drop writes to this legacy MSR -- see rdmsr
2212                  * counterpart for further detail.
2213                  */
2214                 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2215                 break;
2216         case MSR_AMD64_OSVW_ID_LENGTH:
2217                 if (!guest_cpuid_has_osvw(vcpu))
2218                         return 1;
2219                 vcpu->arch.osvw.length = data;
2220                 break;
2221         case MSR_AMD64_OSVW_STATUS:
2222                 if (!guest_cpuid_has_osvw(vcpu))
2223                         return 1;
2224                 vcpu->arch.osvw.status = data;
2225                 break;
2226         default:
2227                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2228                         return xen_hvm_config(vcpu, data);
2229                 if (kvm_pmu_is_valid_msr(vcpu, msr))
2230                         return kvm_pmu_set_msr(vcpu, msr_info);
2231                 if (!ignore_msrs) {
2232                         vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2233                                     msr, data);
2234                         return 1;
2235                 } else {
2236                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2237                                     msr, data);
2238                         break;
2239                 }
2240         }
2241         return 0;
2242 }
2243 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2244
2245
2246 /*
2247  * Reads an msr value (of 'msr_index') into 'pdata'.
2248  * Returns 0 on success, non-0 otherwise.
2249  * Assumes vcpu_load() was already called.
2250  */
2251 int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2252 {
2253         return kvm_x86_ops->get_msr(vcpu, msr);
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_get_msr);
2256
2257 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2258 {
2259         u64 data;
2260         u64 mcg_cap = vcpu->arch.mcg_cap;
2261         unsigned bank_num = mcg_cap & 0xff;
2262
2263         switch (msr) {
2264         case MSR_IA32_P5_MC_ADDR:
2265         case MSR_IA32_P5_MC_TYPE:
2266                 data = 0;
2267                 break;
2268         case MSR_IA32_MCG_CAP:
2269                 data = vcpu->arch.mcg_cap;
2270                 break;
2271         case MSR_IA32_MCG_CTL:
2272                 if (!(mcg_cap & MCG_CTL_P))
2273                         return 1;
2274                 data = vcpu->arch.mcg_ctl;
2275                 break;
2276         case MSR_IA32_MCG_STATUS:
2277                 data = vcpu->arch.mcg_status;
2278                 break;
2279         default:
2280                 if (msr >= MSR_IA32_MC0_CTL &&
2281                     msr < MSR_IA32_MCx_CTL(bank_num)) {
2282                         u32 offset = msr - MSR_IA32_MC0_CTL;
2283                         data = vcpu->arch.mce_banks[offset];
2284                         break;
2285                 }
2286                 return 1;
2287         }
2288         *pdata = data;
2289         return 0;
2290 }
2291
2292 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2293 {
2294         switch (msr_info->index) {
2295         case MSR_IA32_PLATFORM_ID:
2296         case MSR_IA32_EBL_CR_POWERON:
2297         case MSR_IA32_DEBUGCTLMSR:
2298         case MSR_IA32_LASTBRANCHFROMIP:
2299         case MSR_IA32_LASTBRANCHTOIP:
2300         case MSR_IA32_LASTINTFROMIP:
2301         case MSR_IA32_LASTINTTOIP:
2302         case MSR_K8_SYSCFG:
2303         case MSR_K8_TSEG_ADDR:
2304         case MSR_K8_TSEG_MASK:
2305         case MSR_K7_HWCR:
2306         case MSR_VM_HSAVE_PA:
2307         case MSR_K8_INT_PENDING_MSG:
2308         case MSR_AMD64_NB_CFG:
2309         case MSR_FAM10H_MMIO_CONF_BASE:
2310         case MSR_AMD64_BU_CFG2:
2311                 msr_info->data = 0;
2312                 break;
2313         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2314         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2315         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2316         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2317                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2318                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2319                 msr_info->data = 0;
2320                 break;
2321         case MSR_IA32_UCODE_REV:
2322                 msr_info->data = 0x100000000ULL;
2323                 break;
2324         case MSR_MTRRcap:
2325         case 0x200 ... 0x2ff:
2326                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2327         case 0xcd: /* fsb frequency */
2328                 msr_info->data = 3;
2329                 break;
2330                 /*
2331                  * MSR_EBC_FREQUENCY_ID
2332                  * Conservative value valid for even the basic CPU models.
2333                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2334                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2335                  * and 266MHz for model 3, or 4. Set Core Clock
2336                  * Frequency to System Bus Frequency Ratio to 1 (bits
2337                  * 31:24) even though these are only valid for CPU
2338                  * models > 2, however guests may end up dividing or
2339                  * multiplying by zero otherwise.
2340                  */
2341         case MSR_EBC_FREQUENCY_ID:
2342                 msr_info->data = 1 << 24;
2343                 break;
2344         case MSR_IA32_APICBASE:
2345                 msr_info->data = kvm_get_apic_base(vcpu);
2346                 break;
2347         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2348                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2349                 break;
2350         case MSR_IA32_TSCDEADLINE:
2351                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2352                 break;
2353         case MSR_IA32_TSC_ADJUST:
2354                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2355                 break;
2356         case MSR_IA32_MISC_ENABLE:
2357                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2358                 break;
2359         case MSR_IA32_SMBASE:
2360                 if (!msr_info->host_initiated)
2361                         return 1;
2362                 msr_info->data = vcpu->arch.smbase;
2363                 break;
2364         case MSR_IA32_PERF_STATUS:
2365                 /* TSC increment by tick */
2366                 msr_info->data = 1000ULL;
2367                 /* CPU multiplier */
2368                 msr_info->data |= (((uint64_t)4ULL) << 40);
2369                 break;
2370         case MSR_EFER:
2371                 msr_info->data = vcpu->arch.efer;
2372                 break;
2373         case MSR_KVM_WALL_CLOCK:
2374         case MSR_KVM_WALL_CLOCK_NEW:
2375                 msr_info->data = vcpu->kvm->arch.wall_clock;
2376                 break;
2377         case MSR_KVM_SYSTEM_TIME:
2378         case MSR_KVM_SYSTEM_TIME_NEW:
2379                 msr_info->data = vcpu->arch.time;
2380                 break;
2381         case MSR_KVM_ASYNC_PF_EN:
2382                 msr_info->data = vcpu->arch.apf.msr_val;
2383                 break;
2384         case MSR_KVM_STEAL_TIME:
2385                 msr_info->data = vcpu->arch.st.msr_val;
2386                 break;
2387         case MSR_KVM_PV_EOI_EN:
2388                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
2389                 break;
2390         case MSR_IA32_P5_MC_ADDR:
2391         case MSR_IA32_P5_MC_TYPE:
2392         case MSR_IA32_MCG_CAP:
2393         case MSR_IA32_MCG_CTL:
2394         case MSR_IA32_MCG_STATUS:
2395         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2396                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2397         case MSR_K7_CLK_CTL:
2398                 /*
2399                  * Provide expected ramp-up count for K7. All other
2400                  * are set to zero, indicating minimum divisors for
2401                  * every field.
2402                  *
2403                  * This prevents guest kernels on AMD host with CPU
2404                  * type 6, model 8 and higher from exploding due to
2405                  * the rdmsr failing.
2406                  */
2407                 msr_info->data = 0x20000000;
2408                 break;
2409         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2410         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2411         case HV_X64_MSR_CRASH_CTL:
2412         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2413                 return kvm_hv_get_msr_common(vcpu,
2414                                              msr_info->index, &msr_info->data);
2415                 break;
2416         case MSR_IA32_BBL_CR_CTL3:
2417                 /* This legacy MSR exists but isn't fully documented in current
2418                  * silicon.  It is however accessed by winxp in very narrow
2419                  * scenarios where it sets bit #19, itself documented as
2420                  * a "reserved" bit.  Best effort attempt to source coherent
2421                  * read data here should the balance of the register be
2422                  * interpreted by the guest:
2423                  *
2424                  * L2 cache control register 3: 64GB range, 256KB size,
2425                  * enabled, latency 0x1, configured
2426                  */
2427                 msr_info->data = 0xbe702111;
2428                 break;
2429         case MSR_AMD64_OSVW_ID_LENGTH:
2430                 if (!guest_cpuid_has_osvw(vcpu))
2431                         return 1;
2432                 msr_info->data = vcpu->arch.osvw.length;
2433                 break;
2434         case MSR_AMD64_OSVW_STATUS:
2435                 if (!guest_cpuid_has_osvw(vcpu))
2436                         return 1;
2437                 msr_info->data = vcpu->arch.osvw.status;
2438                 break;
2439         default:
2440                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2441                         return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2442                 if (!ignore_msrs) {
2443                         vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2444                         return 1;
2445                 } else {
2446                         vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2447                         msr_info->data = 0;
2448                 }
2449                 break;
2450         }
2451         return 0;
2452 }
2453 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2454
2455 /*
2456  * Read or write a bunch of msrs. All parameters are kernel addresses.
2457  *
2458  * @return number of msrs set successfully.
2459  */
2460 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2461                     struct kvm_msr_entry *entries,
2462                     int (*do_msr)(struct kvm_vcpu *vcpu,
2463                                   unsigned index, u64 *data))
2464 {
2465         int i, idx;
2466
2467         idx = srcu_read_lock(&vcpu->kvm->srcu);
2468         for (i = 0; i < msrs->nmsrs; ++i)
2469                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2470                         break;
2471         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2472
2473         return i;
2474 }
2475
2476 /*
2477  * Read or write a bunch of msrs. Parameters are user addresses.
2478  *
2479  * @return number of msrs set successfully.
2480  */
2481 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2482                   int (*do_msr)(struct kvm_vcpu *vcpu,
2483                                 unsigned index, u64 *data),
2484                   int writeback)
2485 {
2486         struct kvm_msrs msrs;
2487         struct kvm_msr_entry *entries;
2488         int r, n;
2489         unsigned size;
2490
2491         r = -EFAULT;
2492         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2493                 goto out;
2494
2495         r = -E2BIG;
2496         if (msrs.nmsrs >= MAX_IO_MSRS)
2497                 goto out;
2498
2499         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2500         entries = memdup_user(user_msrs->entries, size);
2501         if (IS_ERR(entries)) {
2502                 r = PTR_ERR(entries);
2503                 goto out;
2504         }
2505
2506         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2507         if (r < 0)
2508                 goto out_free;
2509
2510         r = -EFAULT;
2511         if (writeback && copy_to_user(user_msrs->entries, entries, size))
2512                 goto out_free;
2513
2514         r = n;
2515
2516 out_free:
2517         kfree(entries);
2518 out:
2519         return r;
2520 }
2521
2522 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2523 {
2524         int r;
2525
2526         switch (ext) {
2527         case KVM_CAP_IRQCHIP:
2528         case KVM_CAP_HLT:
2529         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2530         case KVM_CAP_SET_TSS_ADDR:
2531         case KVM_CAP_EXT_CPUID:
2532         case KVM_CAP_EXT_EMUL_CPUID:
2533         case KVM_CAP_CLOCKSOURCE:
2534         case KVM_CAP_PIT:
2535         case KVM_CAP_NOP_IO_DELAY:
2536         case KVM_CAP_MP_STATE:
2537         case KVM_CAP_SYNC_MMU:
2538         case KVM_CAP_USER_NMI:
2539         case KVM_CAP_REINJECT_CONTROL:
2540         case KVM_CAP_IRQ_INJECT_STATUS:
2541         case KVM_CAP_IOEVENTFD:
2542         case KVM_CAP_IOEVENTFD_NO_LENGTH:
2543         case KVM_CAP_PIT2:
2544         case KVM_CAP_PIT_STATE2:
2545         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2546         case KVM_CAP_XEN_HVM:
2547         case KVM_CAP_ADJUST_CLOCK:
2548         case KVM_CAP_VCPU_EVENTS:
2549         case KVM_CAP_HYPERV:
2550         case KVM_CAP_HYPERV_VAPIC:
2551         case KVM_CAP_HYPERV_SPIN:
2552         case KVM_CAP_HYPERV_SYNIC:
2553         case KVM_CAP_PCI_SEGMENT:
2554         case KVM_CAP_DEBUGREGS:
2555         case KVM_CAP_X86_ROBUST_SINGLESTEP:
2556         case KVM_CAP_XSAVE:
2557         case KVM_CAP_ASYNC_PF:
2558         case KVM_CAP_GET_TSC_KHZ:
2559         case KVM_CAP_KVMCLOCK_CTRL:
2560         case KVM_CAP_READONLY_MEM:
2561         case KVM_CAP_HYPERV_TIME:
2562         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2563         case KVM_CAP_TSC_DEADLINE_TIMER:
2564         case KVM_CAP_ENABLE_CAP_VM:
2565         case KVM_CAP_DISABLE_QUIRKS:
2566         case KVM_CAP_SET_BOOT_CPU_ID:
2567         case KVM_CAP_SPLIT_IRQCHIP:
2568 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2569         case KVM_CAP_ASSIGN_DEV_IRQ:
2570         case KVM_CAP_PCI_2_3:
2571 #endif
2572                 r = 1;
2573                 break;
2574         case KVM_CAP_X86_SMM:
2575                 /* SMBASE is usually relocated above 1M on modern chipsets,
2576                  * and SMM handlers might indeed rely on 4G segment limits,
2577                  * so do not report SMM to be available if real mode is
2578                  * emulated via vm86 mode.  Still, do not go to great lengths
2579                  * to avoid userspace's usage of the feature, because it is a
2580                  * fringe case that is not enabled except via specific settings
2581                  * of the module parameters.
2582                  */
2583                 r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2584                 break;
2585         case KVM_CAP_COALESCED_MMIO:
2586                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2587                 break;
2588         case KVM_CAP_VAPIC:
2589                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2590                 break;
2591         case KVM_CAP_NR_VCPUS:
2592                 r = KVM_SOFT_MAX_VCPUS;
2593                 break;
2594         case KVM_CAP_MAX_VCPUS:
2595                 r = KVM_MAX_VCPUS;
2596                 break;
2597         case KVM_CAP_NR_MEMSLOTS:
2598                 r = KVM_USER_MEM_SLOTS;
2599                 break;
2600         case KVM_CAP_PV_MMU:    /* obsolete */
2601                 r = 0;
2602                 break;
2603 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2604         case KVM_CAP_IOMMU:
2605                 r = iommu_present(&pci_bus_type);
2606                 break;
2607 #endif
2608         case KVM_CAP_MCE:
2609                 r = KVM_MAX_MCE_BANKS;
2610                 break;
2611         case KVM_CAP_XCRS:
2612                 r = cpu_has_xsave;
2613                 break;
2614         case KVM_CAP_TSC_CONTROL:
2615                 r = kvm_has_tsc_control;
2616                 break;
2617         default:
2618                 r = 0;
2619                 break;
2620         }
2621         return r;
2622
2623 }
2624
2625 long kvm_arch_dev_ioctl(struct file *filp,
2626                         unsigned int ioctl, unsigned long arg)
2627 {
2628         void __user *argp = (void __user *)arg;
2629         long r;
2630
2631         switch (ioctl) {
2632         case KVM_GET_MSR_INDEX_LIST: {
2633                 struct kvm_msr_list __user *user_msr_list = argp;
2634                 struct kvm_msr_list msr_list;
2635                 unsigned n;
2636
2637                 r = -EFAULT;
2638                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2639                         goto out;
2640                 n = msr_list.nmsrs;
2641                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2642                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2643                         goto out;
2644                 r = -E2BIG;
2645                 if (n < msr_list.nmsrs)
2646                         goto out;
2647                 r = -EFAULT;
2648                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2649                                  num_msrs_to_save * sizeof(u32)))
2650                         goto out;
2651                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2652                                  &emulated_msrs,
2653                                  num_emulated_msrs * sizeof(u32)))
2654                         goto out;
2655                 r = 0;
2656                 break;
2657         }
2658         case KVM_GET_SUPPORTED_CPUID:
2659         case KVM_GET_EMULATED_CPUID: {
2660                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2661                 struct kvm_cpuid2 cpuid;
2662
2663                 r = -EFAULT;
2664                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2665                         goto out;
2666
2667                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2668                                             ioctl);
2669                 if (r)
2670                         goto out;
2671
2672                 r = -EFAULT;
2673                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2674                         goto out;
2675                 r = 0;
2676                 break;
2677         }
2678         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2679                 u64 mce_cap;
2680
2681                 mce_cap = KVM_MCE_CAP_SUPPORTED;
2682                 r = -EFAULT;
2683                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2684                         goto out;
2685                 r = 0;
2686                 break;
2687         }
2688         default:
2689                 r = -EINVAL;
2690         }
2691 out:
2692         return r;
2693 }
2694
2695 static void wbinvd_ipi(void *garbage)
2696 {
2697         wbinvd();
2698 }
2699
2700 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2701 {
2702         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2703 }
2704
2705 static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2706 {
2707         set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2708 }
2709
2710 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2711 {
2712         /* Address WBINVD may be executed by guest */
2713         if (need_emulate_wbinvd(vcpu)) {
2714                 if (kvm_x86_ops->has_wbinvd_exit())
2715                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2716                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2717                         smp_call_function_single(vcpu->cpu,
2718                                         wbinvd_ipi, NULL, 1);
2719         }
2720
2721         kvm_x86_ops->vcpu_load(vcpu, cpu);
2722
2723         /* Apply any externally detected TSC adjustments (due to suspend) */
2724         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2725                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2726                 vcpu->arch.tsc_offset_adjustment = 0;
2727                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2728         }
2729
2730         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2731                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2732                                 rdtsc() - vcpu->arch.last_host_tsc;
2733                 if (tsc_delta < 0)
2734                         mark_tsc_unstable("KVM discovered backwards TSC");
2735                 if (check_tsc_unstable()) {
2736                         u64 offset = kvm_compute_tsc_offset(vcpu,
2737                                                 vcpu->arch.last_guest_tsc);
2738                         kvm_x86_ops->write_tsc_offset(vcpu, offset);
2739                         vcpu->arch.tsc_catchup = 1;
2740                 }
2741                 /*
2742                  * On a host with synchronized TSC, there is no need to update
2743                  * kvmclock on vcpu->cpu migration
2744                  */
2745                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2746                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2747                 if (vcpu->cpu != cpu)
2748                         kvm_migrate_timers(vcpu);
2749                 vcpu->cpu = cpu;
2750         }
2751
2752         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2753         vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
2754 }
2755
2756 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2757 {
2758         kvm_x86_ops->vcpu_put(vcpu);
2759         kvm_put_guest_fpu(vcpu);
2760         vcpu->arch.last_host_tsc = rdtsc();
2761 }
2762
2763 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2764                                     struct kvm_lapic_state *s)
2765 {
2766         if (vcpu->arch.apicv_active)
2767                 kvm_x86_ops->sync_pir_to_irr(vcpu);
2768
2769         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2770
2771         return 0;
2772 }
2773
2774 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2775                                     struct kvm_lapic_state *s)
2776 {
2777         kvm_apic_post_state_restore(vcpu, s);
2778         update_cr8_intercept(vcpu);
2779
2780         return 0;
2781 }
2782
2783 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2784 {
2785         return (!lapic_in_kernel(vcpu) ||
2786                 kvm_apic_accept_pic_intr(vcpu));
2787 }
2788
2789 /*
2790  * if userspace requested an interrupt window, check that the
2791  * interrupt window is open.
2792  *
2793  * No need to exit to userspace if we already have an interrupt queued.
2794  */
2795 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2796 {
2797         return kvm_arch_interrupt_allowed(vcpu) &&
2798                 !kvm_cpu_has_interrupt(vcpu) &&
2799                 !kvm_event_needs_reinjection(vcpu) &&
2800                 kvm_cpu_accept_dm_intr(vcpu);
2801 }
2802
2803 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2804                                     struct kvm_interrupt *irq)
2805 {
2806         if (irq->irq >= KVM_NR_INTERRUPTS)
2807                 return -EINVAL;
2808
2809         if (!irqchip_in_kernel(vcpu->kvm)) {
2810                 kvm_queue_interrupt(vcpu, irq->irq, false);
2811                 kvm_make_request(KVM_REQ_EVENT, vcpu);
2812                 return 0;
2813         }
2814
2815         /*
2816          * With in-kernel LAPIC, we only use this to inject EXTINT, so
2817          * fail for in-kernel 8259.
2818          */
2819         if (pic_in_kernel(vcpu->kvm))
2820                 return -ENXIO;
2821
2822         if (vcpu->arch.pending_external_vector != -1)
2823                 return -EEXIST;
2824
2825         vcpu->arch.pending_external_vector = irq->irq;
2826         kvm_make_request(KVM_REQ_EVENT, vcpu);
2827         return 0;
2828 }
2829
2830 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2831 {
2832         kvm_inject_nmi(vcpu);
2833
2834         return 0;
2835 }
2836
2837 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2838 {
2839         kvm_make_request(KVM_REQ_SMI, vcpu);
2840
2841         return 0;
2842 }
2843
2844 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2845                                            struct kvm_tpr_access_ctl *tac)
2846 {
2847         if (tac->flags)
2848                 return -EINVAL;
2849         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2850         return 0;
2851 }
2852
2853 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2854                                         u64 mcg_cap)
2855 {
2856         int r;
2857         unsigned bank_num = mcg_cap & 0xff, bank;
2858
2859         r = -EINVAL;
2860         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2861                 goto out;
2862         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2863                 goto out;
2864         r = 0;
2865         vcpu->arch.mcg_cap = mcg_cap;
2866         /* Init IA32_MCG_CTL to all 1s */
2867         if (mcg_cap & MCG_CTL_P)
2868                 vcpu->arch.mcg_ctl = ~(u64)0;
2869         /* Init IA32_MCi_CTL to all 1s */
2870         for (bank = 0; bank < bank_num; bank++)
2871                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2872 out:
2873         return r;
2874 }
2875
2876 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2877                                       struct kvm_x86_mce *mce)
2878 {
2879         u64 mcg_cap = vcpu->arch.mcg_cap;
2880         unsigned bank_num = mcg_cap & 0xff;
2881         u64 *banks = vcpu->arch.mce_banks;
2882
2883         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2884                 return -EINVAL;
2885         /*
2886          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2887          * reporting is disabled
2888          */
2889         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2890             vcpu->arch.mcg_ctl != ~(u64)0)
2891                 return 0;
2892         banks += 4 * mce->bank;
2893         /*
2894          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2895          * reporting is disabled for the bank
2896          */
2897         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2898                 return 0;
2899         if (mce->status & MCI_STATUS_UC) {
2900                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2901                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2902                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2903                         return 0;
2904                 }
2905                 if (banks[1] & MCI_STATUS_VAL)
2906                         mce->status |= MCI_STATUS_OVER;
2907                 banks[2] = mce->addr;
2908                 banks[3] = mce->misc;
2909                 vcpu->arch.mcg_status = mce->mcg_status;
2910                 banks[1] = mce->status;
2911                 kvm_queue_exception(vcpu, MC_VECTOR);
2912         } else if (!(banks[1] & MCI_STATUS_VAL)
2913                    || !(banks[1] & MCI_STATUS_UC)) {
2914                 if (banks[1] & MCI_STATUS_VAL)
2915                         mce->status |= MCI_STATUS_OVER;
2916                 banks[2] = mce->addr;
2917                 banks[3] = mce->misc;
2918                 banks[1] = mce->status;
2919         } else
2920                 banks[1] |= MCI_STATUS_OVER;
2921         return 0;
2922 }
2923
2924 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2925                                                struct kvm_vcpu_events *events)
2926 {
2927         process_nmi(vcpu);
2928         events->exception.injected =
2929                 vcpu->arch.exception.pending &&
2930                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2931         events->exception.nr = vcpu->arch.exception.nr;
2932         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2933         events->exception.pad = 0;
2934         events->exception.error_code = vcpu->arch.exception.error_code;
2935
2936         events->interrupt.injected =
2937                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2938         events->interrupt.nr = vcpu->arch.interrupt.nr;
2939         events->interrupt.soft = 0;
2940         events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2941
2942         events->nmi.injected = vcpu->arch.nmi_injected;
2943         events->nmi.pending = vcpu->arch.nmi_pending != 0;
2944         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2945         events->nmi.pad = 0;
2946
2947         events->sipi_vector = 0; /* never valid when reporting to user space */
2948
2949         events->smi.smm = is_smm(vcpu);
2950         events->smi.pending = vcpu->arch.smi_pending;
2951         events->smi.smm_inside_nmi =
2952                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2953         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2954
2955         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2956                          | KVM_VCPUEVENT_VALID_SHADOW
2957                          | KVM_VCPUEVENT_VALID_SMM);
2958         memset(&events->reserved, 0, sizeof(events->reserved));
2959 }
2960
2961 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2962                                               struct kvm_vcpu_events *events)
2963 {
2964         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2965                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2966                               | KVM_VCPUEVENT_VALID_SHADOW
2967                               | KVM_VCPUEVENT_VALID_SMM))
2968                 return -EINVAL;
2969
2970         process_nmi(vcpu);
2971         vcpu->arch.exception.pending = events->exception.injected;
2972         vcpu->arch.exception.nr = events->exception.nr;
2973         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2974         vcpu->arch.exception.error_code = events->exception.error_code;
2975
2976         vcpu->arch.interrupt.pending = events->interrupt.injected;
2977         vcpu->arch.interrupt.nr = events->interrupt.nr;
2978         vcpu->arch.interrupt.soft = events->interrupt.soft;
2979         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2980                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2981                                                   events->interrupt.shadow);
2982
2983         vcpu->arch.nmi_injected = events->nmi.injected;
2984         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2985                 vcpu->arch.nmi_pending = events->nmi.pending;
2986         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2987
2988         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2989             lapic_in_kernel(vcpu))
2990                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2991
2992         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
2993                 if (events->smi.smm)
2994                         vcpu->arch.hflags |= HF_SMM_MASK;
2995                 else
2996                         vcpu->arch.hflags &= ~HF_SMM_MASK;
2997                 vcpu->arch.smi_pending = events->smi.pending;
2998                 if (events->smi.smm_inside_nmi)
2999                         vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3000                 else
3001                         vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3002                 if (lapic_in_kernel(vcpu)) {
3003                         if (events->smi.latched_init)
3004                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3005                         else
3006                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3007                 }
3008         }
3009
3010         kvm_make_request(KVM_REQ_EVENT, vcpu);
3011
3012         return 0;
3013 }
3014
3015 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3016                                              struct kvm_debugregs *dbgregs)
3017 {
3018         unsigned long val;
3019
3020         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3021         kvm_get_dr(vcpu, 6, &val);
3022         dbgregs->dr6 = val;
3023         dbgregs->dr7 = vcpu->arch.dr7;
3024         dbgregs->flags = 0;
3025         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3026 }
3027
3028 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3029                                             struct kvm_debugregs *dbgregs)
3030 {
3031         if (dbgregs->flags)
3032                 return -EINVAL;
3033
3034         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3035         kvm_update_dr0123(vcpu);
3036         vcpu->arch.dr6 = dbgregs->dr6;
3037         kvm_update_dr6(vcpu);
3038         vcpu->arch.dr7 = dbgregs->dr7;
3039         kvm_update_dr7(vcpu);
3040
3041         return 0;
3042 }
3043
3044 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3045
3046 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3047 {
3048         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3049         u64 xstate_bv = xsave->header.xfeatures;
3050         u64 valid;
3051
3052         /*
3053          * Copy legacy XSAVE area, to avoid complications with CPUID
3054          * leaves 0 and 1 in the loop below.
3055          */
3056         memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3057
3058         /* Set XSTATE_BV */
3059         *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3060
3061         /*
3062          * Copy each region from the possibly compacted offset to the
3063          * non-compacted offset.
3064          */
3065         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3066         while (valid) {
3067                 u64 feature = valid & -valid;
3068                 int index = fls64(feature) - 1;
3069                 void *src = get_xsave_addr(xsave, feature);
3070
3071                 if (src) {
3072                         u32 size, offset, ecx, edx;
3073                         cpuid_count(XSTATE_CPUID, index,
3074                                     &size, &offset, &ecx, &edx);
3075                         memcpy(dest + offset, src, size);
3076                 }
3077
3078                 valid -= feature;
3079         }
3080 }
3081
3082 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3083 {
3084         struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3085         u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3086         u64 valid;
3087
3088         /*
3089          * Copy legacy XSAVE area, to avoid complications with CPUID
3090          * leaves 0 and 1 in the loop below.
3091          */
3092         memcpy(xsave, src, XSAVE_HDR_OFFSET);
3093
3094         /* Set XSTATE_BV and possibly XCOMP_BV.  */
3095         xsave->header.xfeatures = xstate_bv;
3096         if (cpu_has_xsaves)
3097                 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3098
3099         /*
3100          * Copy each region from the non-compacted offset to the
3101          * possibly compacted offset.
3102          */
3103         valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3104         while (valid) {
3105                 u64 feature = valid & -valid;
3106                 int index = fls64(feature) - 1;
3107                 void *dest = get_xsave_addr(xsave, feature);
3108
3109                 if (dest) {
3110                         u32 size, offset, ecx, edx;
3111                         cpuid_count(XSTATE_CPUID, index,
3112                                     &size, &offset, &ecx, &edx);
3113                         memcpy(dest, src + offset, size);
3114                 }
3115
3116                 valid -= feature;
3117         }
3118 }
3119
3120 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3121                                          struct kvm_xsave *guest_xsave)
3122 {
3123         if (cpu_has_xsave) {
3124                 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3125                 fill_xsave((u8 *) guest_xsave->region, vcpu);
3126         } else {
3127                 memcpy(guest_xsave->region,
3128                         &vcpu->arch.guest_fpu.state.fxsave,
3129                         sizeof(struct fxregs_state));
3130                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3131                         XFEATURE_MASK_FPSSE;
3132         }
3133 }
3134
3135 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3136                                         struct kvm_xsave *guest_xsave)
3137 {
3138         u64 xstate_bv =
3139                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3140
3141         if (cpu_has_xsave) {
3142                 /*
3143                  * Here we allow setting states that are not present in
3144                  * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3145                  * with old userspace.
3146                  */
3147                 if (xstate_bv & ~kvm_supported_xcr0())
3148                         return -EINVAL;
3149                 load_xsave(vcpu, (u8 *)guest_xsave->region);
3150         } else {
3151                 if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3152                         return -EINVAL;
3153                 memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3154                         guest_xsave->region, sizeof(struct fxregs_state));
3155         }
3156         return 0;
3157 }
3158
3159 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3160                                         struct kvm_xcrs *guest_xcrs)
3161 {
3162         if (!cpu_has_xsave) {
3163                 guest_xcrs->nr_xcrs = 0;
3164                 return;
3165         }
3166
3167         guest_xcrs->nr_xcrs = 1;
3168         guest_xcrs->flags = 0;
3169         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3170         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3171 }
3172
3173 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3174                                        struct kvm_xcrs *guest_xcrs)
3175 {
3176         int i, r = 0;
3177
3178         if (!cpu_has_xsave)
3179                 return -EINVAL;
3180
3181         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3182                 return -EINVAL;
3183
3184         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3185                 /* Only support XCR0 currently */
3186                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3187                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3188                                 guest_xcrs->xcrs[i].value);
3189                         break;
3190                 }
3191         if (r)
3192                 r = -EINVAL;
3193         return r;
3194 }
3195
3196 /*
3197  * kvm_set_guest_paused() indicates to the guest kernel that it has been
3198  * stopped by the hypervisor.  This function will be called from the host only.
3199  * EINVAL is returned when the host attempts to set the flag for a guest that
3200  * does not support pv clocks.
3201  */
3202 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3203 {
3204         if (!vcpu->arch.pv_time_enabled)
3205                 return -EINVAL;
3206         vcpu->arch.pvclock_set_guest_stopped_request = true;
3207         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3208         return 0;
3209 }
3210
3211 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3212                                      struct kvm_enable_cap *cap)
3213 {
3214         if (cap->flags)
3215                 return -EINVAL;
3216
3217         switch (cap->cap) {
3218         case KVM_CAP_HYPERV_SYNIC:
3219                 return kvm_hv_activate_synic(vcpu);
3220         default:
3221                 return -EINVAL;
3222         }
3223 }
3224
3225 long kvm_arch_vcpu_ioctl(struct file *filp,
3226                          unsigned int ioctl, unsigned long arg)
3227 {
3228         struct kvm_vcpu *vcpu = filp->private_data;
3229         void __user *argp = (void __user *)arg;
3230         int r;
3231         union {
3232                 struct kvm_lapic_state *lapic;
3233                 struct kvm_xsave *xsave;
3234                 struct kvm_xcrs *xcrs;
3235                 void *buffer;
3236         } u;
3237
3238         u.buffer = NULL;
3239         switch (ioctl) {
3240         case KVM_GET_LAPIC: {
3241                 r = -EINVAL;
3242                 if (!lapic_in_kernel(vcpu))
3243                         goto out;
3244                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3245
3246                 r = -ENOMEM;
3247                 if (!u.lapic)
3248                         goto out;
3249                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3250                 if (r)
3251                         goto out;
3252                 r = -EFAULT;
3253                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3254                         goto out;
3255                 r = 0;
3256                 break;
3257         }
3258         case KVM_SET_LAPIC: {
3259                 r = -EINVAL;
3260                 if (!lapic_in_kernel(vcpu))
3261                         goto out;
3262                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3263                 if (IS_ERR(u.lapic))
3264                         return PTR_ERR(u.lapic);
3265
3266                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3267                 break;
3268         }
3269         case KVM_INTERRUPT: {
3270                 struct kvm_interrupt irq;
3271
3272                 r = -EFAULT;
3273                 if (copy_from_user(&irq, argp, sizeof irq))
3274                         goto out;
3275                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3276                 break;
3277         }
3278         case KVM_NMI: {
3279                 r = kvm_vcpu_ioctl_nmi(vcpu);
3280                 break;
3281         }
3282         case KVM_SMI: {
3283                 r = kvm_vcpu_ioctl_smi(vcpu);
3284                 break;
3285         }
3286         case KVM_SET_CPUID: {
3287                 struct kvm_cpuid __user *cpuid_arg = argp;
3288                 struct kvm_cpuid cpuid;
3289
3290                 r = -EFAULT;
3291                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3292                         goto out;
3293                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3294                 break;
3295         }
3296         case KVM_SET_CPUID2: {
3297                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3298                 struct kvm_cpuid2 cpuid;
3299
3300                 r = -EFAULT;
3301                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3302                         goto out;
3303                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3304                                               cpuid_arg->entries);
3305                 break;
3306         }
3307         case KVM_GET_CPUID2: {
3308                 struct kvm_cpuid2 __user *cpuid_arg = argp;
3309                 struct kvm_cpuid2 cpuid;
3310
3311                 r = -EFAULT;
3312                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3313                         goto out;
3314                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3315                                               cpuid_arg->entries);
3316                 if (r)
3317                         goto out;
3318                 r = -EFAULT;
3319                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3320                         goto out;
3321                 r = 0;
3322                 break;
3323         }
3324         case KVM_GET_MSRS:
3325                 r = msr_io(vcpu, argp, do_get_msr, 1);
3326                 break;
3327         case KVM_SET_MSRS:
3328                 r = msr_io(vcpu, argp, do_set_msr, 0);
3329                 break;
3330         case KVM_TPR_ACCESS_REPORTING: {
3331                 struct kvm_tpr_access_ctl tac;
3332
3333                 r = -EFAULT;
3334                 if (copy_from_user(&tac, argp, sizeof tac))
3335                         goto out;
3336                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3337                 if (r)
3338                         goto out;
3339                 r = -EFAULT;
3340                 if (copy_to_user(argp, &tac, sizeof tac))
3341                         goto out;
3342                 r = 0;
3343                 break;
3344         };
3345         case KVM_SET_VAPIC_ADDR: {
3346                 struct kvm_vapic_addr va;
3347
3348                 r = -EINVAL;
3349                 if (!lapic_in_kernel(vcpu))
3350                         goto out;
3351                 r = -EFAULT;
3352                 if (copy_from_user(&va, argp, sizeof va))
3353                         goto out;
3354                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3355                 break;
3356         }
3357         case KVM_X86_SETUP_MCE: {
3358                 u64 mcg_cap;
3359
3360                 r = -EFAULT;
3361                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3362                         goto out;
3363                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3364                 break;
3365         }
3366         case KVM_X86_SET_MCE: {
3367                 struct kvm_x86_mce mce;
3368
3369                 r = -EFAULT;
3370                 if (copy_from_user(&mce, argp, sizeof mce))
3371                         goto out;
3372                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3373                 break;
3374         }
3375         case KVM_GET_VCPU_EVENTS: {
3376                 struct kvm_vcpu_events events;
3377
3378                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3379
3380                 r = -EFAULT;
3381                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3382                         break;
3383                 r = 0;
3384                 break;
3385         }
3386         case KVM_SET_VCPU_EVENTS: {
3387                 struct kvm_vcpu_events events;
3388
3389                 r = -EFAULT;
3390                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3391                         break;
3392
3393                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3394                 break;
3395         }
3396         case KVM_GET_DEBUGREGS: {
3397                 struct kvm_debugregs dbgregs;
3398
3399                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3400
3401                 r = -EFAULT;
3402                 if (copy_to_user(argp, &dbgregs,
3403                                  sizeof(struct kvm_debugregs)))
3404                         break;
3405                 r = 0;
3406                 break;
3407         }
3408         case KVM_SET_DEBUGREGS: {
3409                 struct kvm_debugregs dbgregs;
3410
3411                 r = -EFAULT;
3412                 if (copy_from_user(&dbgregs, argp,
3413                                    sizeof(struct kvm_debugregs)))
3414                         break;
3415
3416                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3417                 break;
3418         }
3419         case KVM_GET_XSAVE: {
3420                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3421                 r = -ENOMEM;
3422                 if (!u.xsave)
3423                         break;
3424
3425                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3426
3427                 r = -EFAULT;
3428                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3429                         break;
3430                 r = 0;
3431                 break;
3432         }
3433         case KVM_SET_XSAVE: {
3434                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3435                 if (IS_ERR(u.xsave))
3436                         return PTR_ERR(u.xsave);
3437
3438                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3439                 break;
3440         }
3441         case KVM_GET_XCRS: {
3442                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3443                 r = -ENOMEM;
3444                 if (!u.xcrs)
3445                         break;
3446
3447                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3448
3449                 r = -EFAULT;
3450                 if (copy_to_user(argp, u.xcrs,
3451                                  sizeof(struct kvm_xcrs)))
3452                         break;
3453                 r = 0;
3454                 break;
3455         }
3456         case KVM_SET_XCRS: {
3457                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3458                 if (IS_ERR(u.xcrs))
3459                         return PTR_ERR(u.xcrs);
3460
3461                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3462                 break;
3463         }
3464         case KVM_SET_TSC_KHZ: {
3465                 u32 user_tsc_khz;
3466
3467                 r = -EINVAL;
3468                 user_tsc_khz = (u32)arg;
3469
3470                 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3471                         goto out;
3472
3473                 if (user_tsc_khz == 0)
3474                         user_tsc_khz = tsc_khz;
3475
3476                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3477                         r = 0;
3478
3479                 goto out;
3480         }
3481         case KVM_GET_TSC_KHZ: {
3482                 r = vcpu->arch.virtual_tsc_khz;
3483                 goto out;
3484         }
3485         case KVM_KVMCLOCK_CTRL: {
3486                 r = kvm_set_guest_paused(vcpu);
3487                 goto out;
3488         }
3489         case KVM_ENABLE_CAP: {
3490                 struct kvm_enable_cap cap;
3491
3492                 r = -EFAULT;
3493                 if (copy_from_user(&cap, argp, sizeof(cap)))
3494                         goto out;
3495                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3496                 break;
3497         }
3498         default:
3499                 r = -EINVAL;
3500         }
3501 out:
3502         kfree(u.buffer);
3503         return r;
3504 }
3505
3506 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3507 {
3508         return VM_FAULT_SIGBUS;
3509 }
3510
3511 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3512 {
3513         int ret;
3514
3515         if (addr > (unsigned int)(-3 * PAGE_SIZE))
3516                 return -EINVAL;
3517         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3518         return ret;
3519 }
3520
3521 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3522                                               u64 ident_addr)
3523 {
3524         kvm->arch.ept_identity_map_addr = ident_addr;
3525         return 0;
3526 }
3527
3528 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3529                                           u32 kvm_nr_mmu_pages)
3530 {
3531         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3532                 return -EINVAL;
3533
3534         mutex_lock(&kvm->slots_lock);
3535
3536         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3537         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3538
3539         mutex_unlock(&kvm->slots_lock);
3540         return 0;
3541 }
3542
3543 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3544 {
3545         return kvm->arch.n_max_mmu_pages;
3546 }
3547
3548 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3549 {
3550         int r;
3551
3552         r = 0;
3553         switch (chip->chip_id) {
3554         case KVM_IRQCHIP_PIC_MASTER:
3555                 memcpy(&chip->chip.pic,
3556                         &pic_irqchip(kvm)->pics[0],
3557                         sizeof(struct kvm_pic_state));
3558                 break;
3559         case KVM_IRQCHIP_PIC_SLAVE:
3560                 memcpy(&chip->chip.pic,
3561                         &pic_irqchip(kvm)->pics[1],
3562                         sizeof(struct kvm_pic_state));
3563                 break;
3564         case KVM_IRQCHIP_IOAPIC:
3565                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3566                 break;
3567         default:
3568                 r = -EINVAL;
3569                 break;
3570         }
3571         return r;
3572 }
3573
3574 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3575 {
3576         int r;
3577
3578         r = 0;
3579         switch (chip->chip_id) {
3580         case KVM_IRQCHIP_PIC_MASTER:
3581                 spin_lock(&pic_irqchip(kvm)->lock);
3582                 memcpy(&pic_irqchip(kvm)->pics[0],
3583                         &chip->chip.pic,
3584                         sizeof(struct kvm_pic_state));
3585                 spin_unlock(&pic_irqchip(kvm)->lock);
3586                 break;
3587         case KVM_IRQCHIP_PIC_SLAVE:
3588                 spin_lock(&pic_irqchip(kvm)->lock);
3589                 memcpy(&pic_irqchip(kvm)->pics[1],
3590                         &chip->chip.pic,
3591                         sizeof(struct kvm_pic_state));
3592                 spin_unlock(&pic_irqchip(kvm)->lock);
3593                 break;
3594         case KVM_IRQCHIP_IOAPIC:
3595                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3596                 break;
3597         default:
3598                 r = -EINVAL;
3599                 break;
3600         }
3601         kvm_pic_update_irq(pic_irqchip(kvm));
3602         return r;
3603 }
3604
3605 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3606 {
3607         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3608
3609         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3610
3611         mutex_lock(&kps->lock);
3612         memcpy(ps, &kps->channels, sizeof(*ps));
3613         mutex_unlock(&kps->lock);
3614         return 0;
3615 }
3616
3617 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3618 {
3619         int i;
3620         struct kvm_pit *pit = kvm->arch.vpit;
3621
3622         mutex_lock(&pit->pit_state.lock);
3623         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3624         for (i = 0; i < 3; i++)
3625                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3626         mutex_unlock(&pit->pit_state.lock);
3627         return 0;
3628 }
3629
3630 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3631 {
3632         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3633         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3634                 sizeof(ps->channels));
3635         ps->flags = kvm->arch.vpit->pit_state.flags;
3636         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3637         memset(&ps->reserved, 0, sizeof(ps->reserved));
3638         return 0;
3639 }
3640
3641 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3642 {
3643         int start = 0;
3644         int i;
3645         u32 prev_legacy, cur_legacy;
3646         struct kvm_pit *pit = kvm->arch.vpit;
3647
3648         mutex_lock(&pit->pit_state.lock);
3649         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3650         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3651         if (!prev_legacy && cur_legacy)
3652                 start = 1;
3653         memcpy(&pit->pit_state.channels, &ps->channels,
3654                sizeof(pit->pit_state.channels));
3655         pit->pit_state.flags = ps->flags;
3656         for (i = 0; i < 3; i++)
3657                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3658                                    start && i == 0);
3659         mutex_unlock(&pit->pit_state.lock);
3660         return 0;
3661 }
3662
3663 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3664                                  struct kvm_reinject_control *control)
3665 {
3666         struct kvm_pit *pit = kvm->arch.vpit;
3667
3668         if (!pit)
3669                 return -ENXIO;
3670
3671         /* pit->pit_state.lock was overloaded to prevent userspace from getting
3672          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3673          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3674          */
3675         mutex_lock(&pit->pit_state.lock);
3676         kvm_pit_set_reinject(pit, control->pit_reinject);
3677         mutex_unlock(&pit->pit_state.lock);
3678
3679         return 0;
3680 }
3681
3682 /**
3683  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3684  * @kvm: kvm instance
3685  * @log: slot id and address to which we copy the log
3686  *
3687  * Steps 1-4 below provide general overview of dirty page logging. See
3688  * kvm_get_dirty_log_protect() function description for additional details.
3689  *
3690  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3691  * always flush the TLB (step 4) even if previous step failed  and the dirty
3692  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3693  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3694  * writes will be marked dirty for next log read.
3695  *
3696  *   1. Take a snapshot of the bit and clear it if needed.
3697  *   2. Write protect the corresponding page.
3698  *   3. Copy the snapshot to the userspace.
3699  *   4. Flush TLB's if needed.
3700  */
3701 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3702 {
3703         bool is_dirty = false;
3704         int r;
3705
3706         mutex_lock(&kvm->slots_lock);
3707
3708         /*
3709          * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3710          */
3711         if (kvm_x86_ops->flush_log_dirty)
3712                 kvm_x86_ops->flush_log_dirty(kvm);
3713
3714         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3715
3716         /*
3717          * All the TLBs can be flushed out of mmu lock, see the comments in
3718          * kvm_mmu_slot_remove_write_access().
3719          */
3720         lockdep_assert_held(&kvm->slots_lock);
3721         if (is_dirty)
3722                 kvm_flush_remote_tlbs(kvm);
3723
3724         mutex_unlock(&kvm->slots_lock);
3725         return r;
3726 }
3727
3728 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3729                         bool line_status)
3730 {
3731         if (!irqchip_in_kernel(kvm))
3732                 return -ENXIO;
3733
3734         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3735                                         irq_event->irq, irq_event->level,
3736                                         line_status);
3737         return 0;
3738 }
3739
3740 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3741                                    struct kvm_enable_cap *cap)
3742 {
3743         int r;
3744
3745         if (cap->flags)
3746                 return -EINVAL;
3747
3748         switch (cap->cap) {
3749         case KVM_CAP_DISABLE_QUIRKS:
3750                 kvm->arch.disabled_quirks = cap->args[0];
3751                 r = 0;
3752                 break;
3753         case KVM_CAP_SPLIT_IRQCHIP: {
3754                 mutex_lock(&kvm->lock);
3755                 r = -EINVAL;
3756                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3757                         goto split_irqchip_unlock;
3758                 r = -EEXIST;
3759                 if (irqchip_in_kernel(kvm))
3760                         goto split_irqchip_unlock;
3761                 if (atomic_read(&kvm->online_vcpus))
3762                         goto split_irqchip_unlock;
3763                 r = kvm_setup_empty_irq_routing(kvm);
3764                 if (r)
3765                         goto split_irqchip_unlock;
3766                 /* Pairs with irqchip_in_kernel. */
3767                 smp_wmb();
3768                 kvm->arch.irqchip_split = true;
3769                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3770                 r = 0;
3771 split_irqchip_unlock:
3772                 mutex_unlock(&kvm->lock);
3773                 break;
3774         }
3775         default:
3776                 r = -EINVAL;
3777                 break;
3778         }
3779         return r;
3780 }
3781
3782 long kvm_arch_vm_ioctl(struct file *filp,
3783                        unsigned int ioctl, unsigned long arg)
3784 {
3785         struct kvm *kvm = filp->private_data;
3786         void __user *argp = (void __user *)arg;
3787         int r = -ENOTTY;
3788         /*
3789          * This union makes it completely explicit to gcc-3.x
3790          * that these two variables' stack usage should be
3791          * combined, not added together.
3792          */
3793         union {
3794                 struct kvm_pit_state ps;
3795                 struct kvm_pit_state2 ps2;
3796                 struct kvm_pit_config pit_config;
3797         } u;
3798
3799         switch (ioctl) {
3800         case KVM_SET_TSS_ADDR:
3801                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3802                 break;
3803         case KVM_SET_IDENTITY_MAP_ADDR: {
3804                 u64 ident_addr;
3805
3806                 r = -EFAULT;
3807                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3808                         goto out;
3809                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3810                 break;
3811         }
3812         case KVM_SET_NR_MMU_PAGES:
3813                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3814                 break;
3815         case KVM_GET_NR_MMU_PAGES:
3816                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3817                 break;
3818         case KVM_CREATE_IRQCHIP: {
3819                 struct kvm_pic *vpic;
3820
3821                 mutex_lock(&kvm->lock);
3822                 r = -EEXIST;
3823                 if (kvm->arch.vpic)
3824                         goto create_irqchip_unlock;
3825                 r = -EINVAL;
3826                 if (atomic_read(&kvm->online_vcpus))
3827                         goto create_irqchip_unlock;
3828                 r = -ENOMEM;
3829                 vpic = kvm_create_pic(kvm);
3830                 if (vpic) {
3831                         r = kvm_ioapic_init(kvm);
3832                         if (r) {
3833                                 mutex_lock(&kvm->slots_lock);
3834                                 kvm_destroy_pic(vpic);
3835                                 mutex_unlock(&kvm->slots_lock);
3836                                 goto create_irqchip_unlock;
3837                         }
3838                 } else
3839                         goto create_irqchip_unlock;
3840                 r = kvm_setup_default_irq_routing(kvm);
3841                 if (r) {
3842                         mutex_lock(&kvm->slots_lock);
3843                         mutex_lock(&kvm->irq_lock);
3844                         kvm_ioapic_destroy(kvm);
3845                         kvm_destroy_pic(vpic);
3846                         mutex_unlock(&kvm->irq_lock);
3847                         mutex_unlock(&kvm->slots_lock);
3848                         goto create_irqchip_unlock;
3849                 }
3850                 /* Write kvm->irq_routing before kvm->arch.vpic.  */
3851                 smp_wmb();
3852                 kvm->arch.vpic = vpic;
3853         create_irqchip_unlock:
3854                 mutex_unlock(&kvm->lock);
3855                 break;
3856         }
3857         case KVM_CREATE_PIT:
3858                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3859                 goto create_pit;
3860         case KVM_CREATE_PIT2:
3861                 r = -EFAULT;
3862                 if (copy_from_user(&u.pit_config, argp,
3863                                    sizeof(struct kvm_pit_config)))
3864                         goto out;
3865         create_pit:
3866                 mutex_lock(&kvm->slots_lock);
3867                 r = -EEXIST;
3868                 if (kvm->arch.vpit)
3869                         goto create_pit_unlock;
3870                 r = -ENOMEM;
3871                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3872                 if (kvm->arch.vpit)
3873                         r = 0;
3874         create_pit_unlock:
3875                 mutex_unlock(&kvm->slots_lock);
3876                 break;
3877         case KVM_GET_IRQCHIP: {
3878                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3879                 struct kvm_irqchip *chip;
3880
3881                 chip = memdup_user(argp, sizeof(*chip));
3882                 if (IS_ERR(chip)) {
3883                         r = PTR_ERR(chip);
3884                         goto out;
3885                 }
3886
3887                 r = -ENXIO;
3888                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3889                         goto get_irqchip_out;
3890                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3891                 if (r)
3892                         goto get_irqchip_out;
3893                 r = -EFAULT;
3894                 if (copy_to_user(argp, chip, sizeof *chip))
3895                         goto get_irqchip_out;
3896                 r = 0;
3897         get_irqchip_out:
3898                 kfree(chip);
3899                 break;
3900         }
3901         case KVM_SET_IRQCHIP: {
3902                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3903                 struct kvm_irqchip *chip;
3904
3905                 chip = memdup_user(argp, sizeof(*chip));
3906                 if (IS_ERR(chip)) {
3907                         r = PTR_ERR(chip);
3908                         goto out;
3909                 }
3910
3911                 r = -ENXIO;
3912                 if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3913                         goto set_irqchip_out;
3914                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3915                 if (r)
3916                         goto set_irqchip_out;
3917                 r = 0;
3918         set_irqchip_out:
3919                 kfree(chip);
3920                 break;
3921         }
3922         case KVM_GET_PIT: {
3923                 r = -EFAULT;
3924                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3925                         goto out;
3926                 r = -ENXIO;
3927                 if (!kvm->arch.vpit)
3928                         goto out;
3929                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3930                 if (r)
3931                         goto out;
3932                 r = -EFAULT;
3933                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3934                         goto out;
3935                 r = 0;
3936                 break;
3937         }
3938         case KVM_SET_PIT: {
3939                 r = -EFAULT;
3940                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3941                         goto out;
3942                 r = -ENXIO;
3943                 if (!kvm->arch.vpit)
3944                         goto out;
3945                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3946                 break;
3947         }
3948         case KVM_GET_PIT2: {
3949                 r = -ENXIO;
3950                 if (!kvm->arch.vpit)
3951                         goto out;
3952                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3953                 if (r)
3954                         goto out;
3955                 r = -EFAULT;
3956                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3957                         goto out;
3958                 r = 0;
3959                 break;
3960         }
3961         case KVM_SET_PIT2: {
3962                 r = -EFAULT;
3963                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3964                         goto out;
3965                 r = -ENXIO;
3966                 if (!kvm->arch.vpit)
3967                         goto out;
3968                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3969                 break;
3970         }
3971         case KVM_REINJECT_CONTROL: {
3972                 struct kvm_reinject_control control;
3973                 r =  -EFAULT;
3974                 if (copy_from_user(&control, argp, sizeof(control)))
3975                         goto out;
3976                 r = kvm_vm_ioctl_reinject(kvm, &control);
3977                 break;
3978         }
3979         case KVM_SET_BOOT_CPU_ID:
3980                 r = 0;
3981                 mutex_lock(&kvm->lock);
3982                 if (atomic_read(&kvm->online_vcpus) != 0)
3983                         r = -EBUSY;
3984                 else
3985                         kvm->arch.bsp_vcpu_id = arg;
3986                 mutex_unlock(&kvm->lock);
3987                 break;
3988         case KVM_XEN_HVM_CONFIG: {
3989                 r = -EFAULT;
3990                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3991                                    sizeof(struct kvm_xen_hvm_config)))
3992                         goto out;
3993                 r = -EINVAL;
3994                 if (kvm->arch.xen_hvm_config.flags)
3995                         goto out;
3996                 r = 0;
3997                 break;
3998         }
3999         case KVM_SET_CLOCK: {
4000                 struct kvm_clock_data user_ns;
4001                 u64 now_ns;
4002                 s64 delta;
4003
4004                 r = -EFAULT;
4005                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4006                         goto out;
4007
4008                 r = -EINVAL;
4009                 if (user_ns.flags)
4010                         goto out;
4011
4012                 r = 0;
4013                 local_irq_disable();
4014                 now_ns = get_kernel_ns();
4015                 delta = user_ns.clock - now_ns;
4016                 local_irq_enable();
4017                 kvm->arch.kvmclock_offset = delta;
4018                 kvm_gen_update_masterclock(kvm);
4019                 break;
4020         }
4021         case KVM_GET_CLOCK: {
4022                 struct kvm_clock_data user_ns;
4023                 u64 now_ns;
4024
4025                 local_irq_disable();
4026                 now_ns = get_kernel_ns();
4027                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4028                 local_irq_enable();
4029                 user_ns.flags = 0;
4030                 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4031
4032                 r = -EFAULT;
4033                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4034                         goto out;
4035                 r = 0;
4036                 break;
4037         }
4038         case KVM_ENABLE_CAP: {
4039                 struct kvm_enable_cap cap;
4040
4041                 r = -EFAULT;
4042                 if (copy_from_user(&cap, argp, sizeof(cap)))
4043                         goto out;
4044                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4045                 break;
4046         }
4047         default:
4048                 r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4049         }
4050 out:
4051         return r;
4052 }
4053
4054 static void kvm_init_msr_list(void)
4055 {
4056         u32 dummy[2];
4057         unsigned i, j;
4058
4059         for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4060                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4061                         continue;
4062
4063                 /*
4064                  * Even MSRs that are valid in the host may not be exposed
4065                  * to the guests in some cases.
4066                  */
4067                 switch (msrs_to_save[i]) {
4068                 case MSR_IA32_BNDCFGS:
4069                         if (!kvm_x86_ops->mpx_supported())
4070                                 continue;
4071                         break;
4072                 case MSR_TSC_AUX:
4073                         if (!kvm_x86_ops->rdtscp_supported())
4074                                 continue;
4075                         break;
4076                 default:
4077                         break;
4078                 }
4079
4080                 if (j < i)
4081                         msrs_to_save[j] = msrs_to_save[i];
4082                 j++;
4083         }
4084         num_msrs_to_save = j;
4085
4086         for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4087                 switch (emulated_msrs[i]) {
4088                 case MSR_IA32_SMBASE:
4089                         if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4090                                 continue;
4091                         break;
4092                 default:
4093                         break;
4094                 }
4095
4096                 if (j < i)
4097                         emulated_msrs[j] = emulated_msrs[i];
4098                 j++;
4099         }
4100         num_emulated_msrs = j;
4101 }
4102
4103 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4104                            const void *v)
4105 {
4106         int handled = 0;
4107         int n;
4108
4109         do {
4110                 n = min(len, 8);
4111                 if (!(lapic_in_kernel(vcpu) &&
4112                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4113                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4114                         break;
4115                 handled += n;
4116                 addr += n;
4117                 len -= n;
4118                 v += n;
4119         } while (len);
4120
4121         return handled;
4122 }
4123
4124 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4125 {
4126         int handled = 0;
4127         int n;
4128
4129         do {
4130                 n = min(len, 8);
4131                 if (!(lapic_in_kernel(vcpu) &&
4132                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4133                                          addr, n, v))
4134                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4135                         break;
4136                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4137                 handled += n;
4138                 addr += n;
4139                 len -= n;
4140                 v += n;
4141         } while (len);
4142
4143         return handled;
4144 }
4145
4146 static void kvm_set_segment(struct kvm_vcpu *vcpu,
4147                         struct kvm_segment *var, int seg)
4148 {
4149         kvm_x86_ops->set_segment(vcpu, var, seg);
4150 }
4151
4152 void kvm_get_segment(struct kvm_vcpu *vcpu,
4153                      struct kvm_segment *var, int seg)
4154 {
4155         kvm_x86_ops->get_segment(vcpu, var, seg);
4156 }
4157
4158 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4159                            struct x86_exception *exception)
4160 {
4161         gpa_t t_gpa;
4162
4163         BUG_ON(!mmu_is_nested(vcpu));
4164
4165         /* NPT walks are always user-walks */
4166         access |= PFERR_USER_MASK;
4167         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4168
4169         return t_gpa;
4170 }
4171
4172 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4173                               struct x86_exception *exception)
4174 {
4175         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4176         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4177 }
4178
4179  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4180                                 struct x86_exception *exception)
4181 {
4182         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4183         access |= PFERR_FETCH_MASK;
4184         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4185 }
4186
4187 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4188                                struct x86_exception *exception)
4189 {
4190         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4191         access |= PFERR_WRITE_MASK;
4192         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4193 }
4194
4195 /* uses this to access any guest's mapped memory without checking CPL */
4196 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4197                                 struct x86_exception *exception)
4198 {
4199         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4200 }
4201
4202 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4203                                       struct kvm_vcpu *vcpu, u32 access,
4204                                       struct x86_exception *exception)
4205 {
4206         void *data = val;
4207         int r = X86EMUL_CONTINUE;
4208
4209         while (bytes) {
4210                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4211                                                             exception);
4212                 unsigned offset = addr & (PAGE_SIZE-1);
4213                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4214                 int ret;
4215
4216                 if (gpa == UNMAPPED_GVA)
4217                         return X86EMUL_PROPAGATE_FAULT;
4218                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4219                                                offset, toread);
4220                 if (ret < 0) {
4221                         r = X86EMUL_IO_NEEDED;
4222                         goto out;
4223                 }
4224
4225                 bytes -= toread;
4226                 data += toread;
4227                 addr += toread;
4228         }
4229 out:
4230         return r;
4231 }
4232
4233 /* used for instruction fetching */
4234 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4235                                 gva_t addr, void *val, unsigned int bytes,
4236                                 struct x86_exception *exception)
4237 {
4238         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4239         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4240         unsigned offset;
4241         int ret;
4242
4243         /* Inline kvm_read_guest_virt_helper for speed.  */
4244         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4245                                                     exception);
4246         if (unlikely(gpa == UNMAPPED_GVA))
4247                 return X86EMUL_PROPAGATE_FAULT;
4248
4249         offset = addr & (PAGE_SIZE-1);
4250         if (WARN_ON(offset + bytes > PAGE_SIZE))
4251                 bytes = (unsigned)PAGE_SIZE - offset;
4252         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4253                                        offset, bytes);
4254         if (unlikely(ret < 0))
4255                 return X86EMUL_IO_NEEDED;
4256
4257         return X86EMUL_CONTINUE;
4258 }
4259
4260 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4261                                gva_t addr, void *val, unsigned int bytes,
4262                                struct x86_exception *exception)
4263 {
4264         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4265         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4266
4267         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4268                                           exception);
4269 }
4270 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4271
4272 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4273                                       gva_t addr, void *val, unsigned int bytes,
4274                                       struct x86_exception *exception)
4275 {
4276         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4277         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4278 }
4279
4280 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4281                 unsigned long addr, void *val, unsigned int bytes)
4282 {
4283         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4284         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4285
4286         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4287 }
4288
4289 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4290                                        gva_t addr, void *val,
4291                                        unsigned int bytes,
4292                                        struct x86_exception *exception)
4293 {
4294         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4295         void *data = val;
4296         int r = X86EMUL_CONTINUE;
4297
4298         while (bytes) {
4299                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4300                                                              PFERR_WRITE_MASK,
4301                                                              exception);
4302                 unsigned offset = addr & (PAGE_SIZE-1);
4303                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4304                 int ret;
4305
4306                 if (gpa == UNMAPPED_GVA)
4307                         return X86EMUL_PROPAGATE_FAULT;
4308                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4309                 if (ret < 0) {
4310                         r = X86EMUL_IO_NEEDED;
4311                         goto out;
4312                 }
4313
4314                 bytes -= towrite;
4315                 data += towrite;
4316                 addr += towrite;
4317         }
4318 out:
4319         return r;
4320 }
4321 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4322
4323 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4324                                 gpa_t *gpa, struct x86_exception *exception,
4325                                 bool write)
4326 {
4327         u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4328                 | (write ? PFERR_WRITE_MASK : 0);
4329
4330         if (vcpu_match_mmio_gva(vcpu, gva)
4331             && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4332                                  vcpu->arch.access, access)) {
4333                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4334                                         (gva & (PAGE_SIZE - 1));
4335                 trace_vcpu_match_mmio(gva, *gpa, write, false);
4336                 return 1;
4337         }
4338
4339         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4340
4341         if (*gpa == UNMAPPED_GVA)
4342                 return -1;
4343
4344         /* For APIC access vmexit */
4345         if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4346                 return 1;
4347
4348         if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4349                 trace_vcpu_match_mmio(gva, *gpa, write, true);
4350                 return 1;
4351         }
4352
4353         return 0;
4354 }
4355
4356 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4357                         const void *val, int bytes)
4358 {
4359         int ret;
4360
4361         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4362         if (ret < 0)
4363                 return 0;
4364         kvm_page_track_write(vcpu, gpa, val, bytes);
4365         return 1;
4366 }
4367
4368 struct read_write_emulator_ops {
4369         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4370                                   int bytes);
4371         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4372                                   void *val, int bytes);
4373         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4374                                int bytes, void *val);
4375         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4376                                     void *val, int bytes);
4377         bool write;
4378 };
4379
4380 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4381 {
4382         if (vcpu->mmio_read_completed) {
4383                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4384                                vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4385                 vcpu->mmio_read_completed = 0;
4386                 return 1;
4387         }
4388
4389         return 0;
4390 }
4391
4392 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4393                         void *val, int bytes)
4394 {
4395         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4396 }
4397
4398 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4399                          void *val, int bytes)
4400 {
4401         return emulator_write_phys(vcpu, gpa, val, bytes);
4402 }
4403
4404 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4405 {
4406         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4407         return vcpu_mmio_write(vcpu, gpa, bytes, val);
4408 }
4409
4410 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4411                           void *val, int bytes)
4412 {
4413         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4414         return X86EMUL_IO_NEEDED;
4415 }
4416
4417 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4418                            void *val, int bytes)
4419 {
4420         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4421
4422         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4423         return X86EMUL_CONTINUE;
4424 }
4425
4426 static const struct read_write_emulator_ops read_emultor = {
4427         .read_write_prepare = read_prepare,
4428         .read_write_emulate = read_emulate,
4429         .read_write_mmio = vcpu_mmio_read,
4430         .read_write_exit_mmio = read_exit_mmio,
4431 };
4432
4433 static const struct read_write_emulator_ops write_emultor = {
4434         .read_write_emulate = write_emulate,
4435         .read_write_mmio = write_mmio,
4436         .read_write_exit_mmio = write_exit_mmio,
4437         .write = true,
4438 };
4439
4440 static int emulator_read_write_onepage(unsigned long addr, void *val,
4441                                        unsigned int bytes,
4442                                        struct x86_exception *exception,
4443                                        struct kvm_vcpu *vcpu,
4444                                        const struct read_write_emulator_ops *ops)
4445 {
4446         gpa_t gpa;
4447         int handled, ret;
4448         bool write = ops->write;
4449         struct kvm_mmio_fragment *frag;
4450
4451         ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4452
4453         if (ret < 0)
4454                 return X86EMUL_PROPAGATE_FAULT;
4455
4456         /* For APIC access vmexit */
4457         if (ret)
4458                 goto mmio;
4459
4460         if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4461                 return X86EMUL_CONTINUE;
4462
4463 mmio:
4464         /*
4465          * Is this MMIO handled locally?
4466          */
4467         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4468         if (handled == bytes)
4469                 return X86EMUL_CONTINUE;
4470
4471         gpa += handled;
4472         bytes -= handled;
4473         val += handled;
4474
4475         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4476         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4477         frag->gpa = gpa;
4478         frag->data = val;
4479         frag->len = bytes;
4480         return X86EMUL_CONTINUE;
4481 }
4482
4483 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4484                         unsigned long addr,
4485                         void *val, unsigned int bytes,
4486                         struct x86_exception *exception,
4487                         const struct read_write_emulator_ops *ops)
4488 {
4489         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4490         gpa_t gpa;
4491         int rc;
4492
4493         if (ops->read_write_prepare &&
4494                   ops->read_write_prepare(vcpu, val, bytes))
4495                 return X86EMUL_CONTINUE;
4496
4497         vcpu->mmio_nr_fragments = 0;
4498
4499         /* Crossing a page boundary? */
4500         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4501                 int now;
4502
4503                 now = -addr & ~PAGE_MASK;
4504                 rc = emulator_read_write_onepage(addr, val, now, exception,
4505                                                  vcpu, ops);
4506
4507                 if (rc != X86EMUL_CONTINUE)
4508                         return rc;
4509                 addr += now;
4510                 if (ctxt->mode != X86EMUL_MODE_PROT64)
4511                         addr = (u32)addr;
4512                 val += now;
4513                 bytes -= now;
4514         }
4515
4516         rc = emulator_read_write_onepage(addr, val, bytes, exception,
4517                                          vcpu, ops);
4518         if (rc != X86EMUL_CONTINUE)
4519                 return rc;
4520
4521         if (!vcpu->mmio_nr_fragments)
4522                 return rc;
4523
4524         gpa = vcpu->mmio_fragments[0].gpa;
4525
4526         vcpu->mmio_needed = 1;
4527         vcpu->mmio_cur_fragment = 0;
4528
4529         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4530         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4531         vcpu->run->exit_reason = KVM_EXIT_MMIO;
4532         vcpu->run->mmio.phys_addr = gpa;
4533
4534         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4535 }
4536
4537 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4538                                   unsigned long addr,
4539                                   void *val,
4540                                   unsigned int bytes,
4541                                   struct x86_exception *exception)
4542 {
4543         return emulator_read_write(ctxt, addr, val, bytes,
4544                                    exception, &read_emultor);
4545 }
4546
4547 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4548                             unsigned long addr,
4549                             const void *val,
4550                             unsigned int bytes,
4551                             struct x86_exception *exception)
4552 {
4553         return emulator_read_write(ctxt, addr, (void *)val, bytes,
4554                                    exception, &write_emultor);
4555 }
4556
4557 #define CMPXCHG_TYPE(t, ptr, old, new) \
4558         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4559
4560 #ifdef CONFIG_X86_64
4561 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4562 #else
4563 #  define CMPXCHG64(ptr, old, new) \
4564         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4565 #endif
4566
4567 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4568                                      unsigned long addr,
4569                                      const void *old,
4570                                      const void *new,
4571                                      unsigned int bytes,
4572                                      struct x86_exception *exception)
4573 {
4574         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4575         gpa_t gpa;
4576         struct page *page;
4577         char *kaddr;
4578         bool exchanged;
4579
4580         /* guests cmpxchg8b have to be emulated atomically */
4581         if (bytes > 8 || (bytes & (bytes - 1)))
4582                 goto emul_write;
4583
4584         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4585
4586         if (gpa == UNMAPPED_GVA ||
4587             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4588                 goto emul_write;
4589
4590         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4591                 goto emul_write;
4592
4593         page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4594         if (is_error_page(page))
4595                 goto emul_write;
4596
4597         kaddr = kmap_atomic(page);
4598         kaddr += offset_in_page(gpa);
4599         switch (bytes) {
4600         case 1:
4601                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4602                 break;
4603         case 2:
4604                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4605                 break;
4606         case 4:
4607                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4608                 break;
4609         case 8:
4610                 exchanged = CMPXCHG64(kaddr, old, new);
4611                 break;
4612         default:
4613                 BUG();
4614         }
4615         kunmap_atomic(kaddr);
4616         kvm_release_page_dirty(page);
4617
4618         if (!exchanged)
4619                 return X86EMUL_CMPXCHG_FAILED;
4620
4621         kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4622         kvm_page_track_write(vcpu, gpa, new, bytes);
4623
4624         return X86EMUL_CONTINUE;
4625
4626 emul_write:
4627         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4628
4629         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4630 }
4631
4632 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4633 {
4634         /* TODO: String I/O for in kernel device */
4635         int r;
4636
4637         if (vcpu->arch.pio.in)
4638                 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4639                                     vcpu->arch.pio.size, pd);
4640         else
4641                 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4642                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
4643                                      pd);
4644         return r;
4645 }
4646
4647 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4648                                unsigned short port, void *val,
4649                                unsigned int count, bool in)
4650 {
4651         vcpu->arch.pio.port = port;
4652         vcpu->arch.pio.in = in;
4653         vcpu->arch.pio.count  = count;
4654         vcpu->arch.pio.size = size;
4655
4656         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4657                 vcpu->arch.pio.count = 0;
4658                 return 1;
4659         }
4660
4661         vcpu->run->exit_reason = KVM_EXIT_IO;
4662         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4663         vcpu->run->io.size = size;
4664         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4665         vcpu->run->io.count = count;
4666         vcpu->run->io.port = port;
4667
4668         return 0;
4669 }
4670
4671 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4672                                     int size, unsigned short port, void *val,
4673                                     unsigned int count)
4674 {
4675         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4676         int ret;
4677
4678         if (vcpu->arch.pio.count)
4679                 goto data_avail;
4680
4681         ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4682         if (ret) {
4683 data_avail:
4684                 memcpy(val, vcpu->arch.pio_data, size * count);
4685                 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4686                 vcpu->arch.pio.count = 0;
4687                 return 1;
4688         }
4689
4690         return 0;
4691 }
4692
4693 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4694                                      int size, unsigned short port,
4695                                      const void *val, unsigned int count)
4696 {
4697         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4698
4699         memcpy(vcpu->arch.pio_data, val, size * count);
4700         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4701         return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4702 }
4703
4704 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4705 {
4706         return kvm_x86_ops->get_segment_base(vcpu, seg);
4707 }
4708
4709 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4710 {
4711         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4712 }
4713
4714 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4715 {
4716         if (!need_emulate_wbinvd(vcpu))
4717                 return X86EMUL_CONTINUE;
4718
4719         if (kvm_x86_ops->has_wbinvd_exit()) {
4720                 int cpu = get_cpu();
4721
4722                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4723                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4724                                 wbinvd_ipi, NULL, 1);
4725                 put_cpu();
4726                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4727         } else
4728                 wbinvd();
4729         return X86EMUL_CONTINUE;
4730 }
4731
4732 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4733 {
4734         kvm_x86_ops->skip_emulated_instruction(vcpu);
4735         return kvm_emulate_wbinvd_noskip(vcpu);
4736 }
4737 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4738
4739
4740
4741 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4742 {
4743         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4744 }
4745
4746 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4747                            unsigned long *dest)
4748 {
4749         return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4750 }
4751
4752 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4753                            unsigned long value)
4754 {
4755
4756         return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4757 }
4758
4759 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4760 {
4761         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4762 }
4763
4764 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4765 {
4766         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4767         unsigned long value;
4768
4769         switch (cr) {
4770         case 0:
4771                 value = kvm_read_cr0(vcpu);
4772                 break;
4773         case 2:
4774                 value = vcpu->arch.cr2;
4775                 break;
4776         case 3:
4777                 value = kvm_read_cr3(vcpu);
4778                 break;
4779         case 4:
4780                 value = kvm_read_cr4(vcpu);
4781                 break;
4782         case 8:
4783                 value = kvm_get_cr8(vcpu);
4784                 break;
4785         default:
4786                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4787                 return 0;
4788         }
4789
4790         return value;
4791 }
4792
4793 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4794 {
4795         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4796         int res = 0;
4797
4798         switch (cr) {
4799         case 0:
4800                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4801                 break;
4802         case 2:
4803                 vcpu->arch.cr2 = val;
4804                 break;
4805         case 3:
4806                 res = kvm_set_cr3(vcpu, val);
4807                 break;
4808         case 4:
4809                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4810                 break;
4811         case 8:
4812                 res = kvm_set_cr8(vcpu, val);
4813                 break;
4814         default:
4815                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4816                 res = -1;
4817         }
4818
4819         return res;
4820 }
4821
4822 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4823 {
4824         return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4825 }
4826
4827 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4828 {
4829         kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4830 }
4831
4832 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4833 {
4834         kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4835 }
4836
4837 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4838 {
4839         kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4840 }
4841
4842 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4843 {
4844         kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4845 }
4846
4847 static unsigned long emulator_get_cached_segment_base(
4848         struct x86_emulate_ctxt *ctxt, int seg)
4849 {
4850         return get_segment_base(emul_to_vcpu(ctxt), seg);
4851 }
4852
4853 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4854                                  struct desc_struct *desc, u32 *base3,
4855                                  int seg)
4856 {
4857         struct kvm_segment var;
4858
4859         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4860         *selector = var.selector;
4861
4862         if (var.unusable) {
4863                 memset(desc, 0, sizeof(*desc));
4864                 return false;
4865         }
4866
4867         if (var.g)
4868                 var.limit >>= 12;
4869         set_desc_limit(desc, var.limit);
4870         set_desc_base(desc, (unsigned long)var.base);
4871 #ifdef CONFIG_X86_64
4872         if (base3)
4873                 *base3 = var.base >> 32;
4874 #endif
4875         desc->type = var.type;
4876         desc->s = var.s;
4877         desc->dpl = var.dpl;
4878         desc->p = var.present;
4879         desc->avl = var.avl;
4880         desc->l = var.l;
4881         desc->d = var.db;
4882         desc->g = var.g;
4883
4884         return true;
4885 }
4886
4887 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4888                                  struct desc_struct *desc, u32 base3,
4889                                  int seg)
4890 {
4891         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4892         struct kvm_segment var;
4893
4894         var.selector = selector;
4895         var.base = get_desc_base(desc);
4896 #ifdef CONFIG_X86_64
4897         var.base |= ((u64)base3) << 32;
4898 #endif
4899         var.limit = get_desc_limit(desc);
4900         if (desc->g)
4901                 var.limit = (var.limit << 12) | 0xfff;
4902         var.type = desc->type;
4903         var.dpl = desc->dpl;
4904         var.db = desc->d;
4905         var.s = desc->s;
4906         var.l = desc->l;
4907         var.g = desc->g;
4908         var.avl = desc->avl;
4909         var.present = desc->p;
4910         var.unusable = !var.present;
4911         var.padding = 0;
4912
4913         kvm_set_segment(vcpu, &var, seg);
4914         return;
4915 }
4916
4917 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4918                             u32 msr_index, u64 *pdata)
4919 {
4920         struct msr_data msr;
4921         int r;
4922
4923         msr.index = msr_index;
4924         msr.host_initiated = false;
4925         r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4926         if (r)
4927                 return r;
4928
4929         *pdata = msr.data;
4930         return 0;
4931 }
4932
4933 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4934                             u32 msr_index, u64 data)
4935 {
4936         struct msr_data msr;
4937
4938         msr.data = data;
4939         msr.index = msr_index;
4940         msr.host_initiated = false;
4941         return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4942 }
4943
4944 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4945 {
4946         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4947
4948         return vcpu->arch.smbase;
4949 }
4950
4951 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4952 {
4953         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4954
4955         vcpu->arch.smbase = smbase;
4956 }
4957
4958 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
4959                               u32 pmc)
4960 {
4961         return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
4962 }
4963
4964 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4965                              u32 pmc, u64 *pdata)
4966 {
4967         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
4968 }
4969
4970 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4971 {
4972         emul_to_vcpu(ctxt)->arch.halt_request = 1;
4973 }
4974
4975 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4976 {
4977         preempt_disable();
4978         kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4979         /*
4980          * CR0.TS may reference the host fpu state, not the guest fpu state,
4981          * so it may be clear at this point.
4982          */
4983         clts();
4984 }
4985
4986 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4987 {
4988         preempt_enable();
4989 }
4990
4991 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4992                               struct x86_instruction_info *info,
4993                               enum x86_intercept_stage stage)
4994 {
4995         return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4996 }
4997
4998 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4999                                u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5000 {
5001         kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5002 }
5003
5004 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5005 {
5006         return kvm_register_read(emul_to_vcpu(ctxt), reg);
5007 }
5008
5009 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5010 {
5011         kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5012 }
5013
5014 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5015 {
5016         kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5017 }
5018
5019 static const struct x86_emulate_ops emulate_ops = {
5020         .read_gpr            = emulator_read_gpr,
5021         .write_gpr           = emulator_write_gpr,
5022         .read_std            = kvm_read_guest_virt_system,
5023         .write_std           = kvm_write_guest_virt_system,
5024         .read_phys           = kvm_read_guest_phys_system,
5025         .fetch               = kvm_fetch_guest_virt,
5026         .read_emulated       = emulator_read_emulated,
5027         .write_emulated      = emulator_write_emulated,
5028         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5029         .invlpg              = emulator_invlpg,
5030         .pio_in_emulated     = emulator_pio_in_emulated,
5031         .pio_out_emulated    = emulator_pio_out_emulated,
5032         .get_segment         = emulator_get_segment,
5033         .set_segment         = emulator_set_segment,
5034         .get_cached_segment_base = emulator_get_cached_segment_base,
5035         .get_gdt             = emulator_get_gdt,
5036         .get_idt             = emulator_get_idt,
5037         .set_gdt             = emulator_set_gdt,
5038         .set_idt             = emulator_set_idt,
5039         .get_cr              = emulator_get_cr,
5040         .set_cr              = emulator_set_cr,
5041         .cpl                 = emulator_get_cpl,
5042         .get_dr              = emulator_get_dr,
5043         .set_dr              = emulator_set_dr,
5044         .get_smbase          = emulator_get_smbase,
5045         .set_smbase          = emulator_set_smbase,
5046         .set_msr             = emulator_set_msr,
5047         .get_msr             = emulator_get_msr,
5048         .check_pmc           = emulator_check_pmc,
5049         .read_pmc            = emulator_read_pmc,
5050         .halt                = emulator_halt,
5051         .wbinvd              = emulator_wbinvd,
5052         .fix_hypercall       = emulator_fix_hypercall,
5053         .get_fpu             = emulator_get_fpu,
5054         .put_fpu             = emulator_put_fpu,
5055         .intercept           = emulator_intercept,
5056         .get_cpuid           = emulator_get_cpuid,
5057         .set_nmi_mask        = emulator_set_nmi_mask,
5058 };
5059
5060 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5061 {
5062         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5063         /*
5064          * an sti; sti; sequence only disable interrupts for the first
5065          * instruction. So, if the last instruction, be it emulated or
5066          * not, left the system with the INT_STI flag enabled, it
5067          * means that the last instruction is an sti. We should not
5068          * leave the flag on in this case. The same goes for mov ss
5069          */
5070         if (int_shadow & mask)
5071                 mask = 0;
5072         if (unlikely(int_shadow || mask)) {
5073                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5074                 if (!mask)
5075                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5076         }
5077 }
5078
5079 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5080 {
5081         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5082         if (ctxt->exception.vector == PF_VECTOR)
5083                 return kvm_propagate_fault(vcpu, &ctxt->exception);
5084
5085         if (ctxt->exception.error_code_valid)
5086                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5087                                       ctxt->exception.error_code);
5088         else
5089                 kvm_queue_exception(vcpu, ctxt->exception.vector);
5090         return false;
5091 }
5092
5093 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5094 {
5095         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5096         int cs_db, cs_l;
5097
5098         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5099
5100         ctxt->eflags = kvm_get_rflags(vcpu);
5101         ctxt->eip = kvm_rip_read(vcpu);
5102         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5103                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5104                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5105                      cs_db                              ? X86EMUL_MODE_PROT32 :
5106                                                           X86EMUL_MODE_PROT16;
5107         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5108         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5109         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5110         ctxt->emul_flags = vcpu->arch.hflags;
5111
5112         init_decode_cache(ctxt);
5113         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5114 }
5115
5116 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5117 {
5118         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5119         int ret;
5120
5121         init_emulate_ctxt(vcpu);
5122
5123         ctxt->op_bytes = 2;
5124         ctxt->ad_bytes = 2;
5125         ctxt->_eip = ctxt->eip + inc_eip;
5126         ret = emulate_int_real(ctxt, irq);
5127
5128         if (ret != X86EMUL_CONTINUE)
5129                 return EMULATE_FAIL;
5130
5131         ctxt->eip = ctxt->_eip;
5132         kvm_rip_write(vcpu, ctxt->eip);
5133         kvm_set_rflags(vcpu, ctxt->eflags);
5134
5135         if (irq == NMI_VECTOR)
5136                 vcpu->arch.nmi_pending = 0;
5137         else
5138                 vcpu->arch.interrupt.pending = false;
5139
5140         return EMULATE_DONE;
5141 }
5142 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5143
5144 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5145 {
5146         int r = EMULATE_DONE;
5147
5148         ++vcpu->stat.insn_emulation_fail;
5149         trace_kvm_emulate_insn_failed(vcpu);
5150         if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5151                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5152                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5153                 vcpu->run->internal.ndata = 0;
5154                 r = EMULATE_FAIL;
5155         }
5156         kvm_queue_exception(vcpu, UD_VECTOR);
5157
5158         return r;
5159 }
5160
5161 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5162                                   bool write_fault_to_shadow_pgtable,
5163                                   int emulation_type)
5164 {
5165         gpa_t gpa = cr2;
5166         kvm_pfn_t pfn;
5167
5168         if (emulation_type & EMULTYPE_NO_REEXECUTE)
5169                 return false;
5170
5171         if (!vcpu->arch.mmu.direct_map) {
5172                 /*
5173                  * Write permission should be allowed since only
5174                  * write access need to be emulated.
5175                  */
5176                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5177
5178                 /*
5179                  * If the mapping is invalid in guest, let cpu retry
5180                  * it to generate fault.
5181                  */
5182                 if (gpa == UNMAPPED_GVA)
5183                         return true;
5184         }
5185
5186         /*
5187          * Do not retry the unhandleable instruction if it faults on the
5188          * readonly host memory, otherwise it will goto a infinite loop:
5189          * retry instruction -> write #PF -> emulation fail -> retry
5190          * instruction -> ...
5191          */
5192         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5193
5194         /*
5195          * If the instruction failed on the error pfn, it can not be fixed,
5196          * report the error to userspace.
5197          */
5198         if (is_error_noslot_pfn(pfn))
5199                 return false;
5200
5201         kvm_release_pfn_clean(pfn);
5202
5203         /* The instructions are well-emulated on direct mmu. */
5204         if (vcpu->arch.mmu.direct_map) {
5205                 unsigned int indirect_shadow_pages;
5206
5207                 spin_lock(&vcpu->kvm->mmu_lock);
5208                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5209                 spin_unlock(&vcpu->kvm->mmu_lock);
5210
5211                 if (indirect_shadow_pages)
5212                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5213
5214                 return true;
5215         }
5216
5217         /*
5218          * if emulation was due to access to shadowed page table
5219          * and it failed try to unshadow page and re-enter the
5220          * guest to let CPU execute the instruction.
5221          */
5222         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5223
5224         /*
5225          * If the access faults on its page table, it can not
5226          * be fixed by unprotecting shadow page and it should
5227          * be reported to userspace.
5228          */
5229         return !write_fault_to_shadow_pgtable;
5230 }
5231
5232 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5233                               unsigned long cr2,  int emulation_type)
5234 {
5235         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5236         unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5237
5238         last_retry_eip = vcpu->arch.last_retry_eip;
5239         last_retry_addr = vcpu->arch.last_retry_addr;
5240
5241         /*
5242          * If the emulation is caused by #PF and it is non-page_table
5243          * writing instruction, it means the VM-EXIT is caused by shadow
5244          * page protected, we can zap the shadow page and retry this
5245          * instruction directly.
5246          *
5247          * Note: if the guest uses a non-page-table modifying instruction
5248          * on the PDE that points to the instruction, then we will unmap
5249          * the instruction and go to an infinite loop. So, we cache the
5250          * last retried eip and the last fault address, if we meet the eip
5251          * and the address again, we can break out of the potential infinite
5252          * loop.
5253          */
5254         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5255
5256         if (!(emulation_type & EMULTYPE_RETRY))
5257                 return false;
5258
5259         if (x86_page_table_writing_insn(ctxt))
5260                 return false;
5261
5262         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5263                 return false;
5264
5265         vcpu->arch.last_retry_eip = ctxt->eip;
5266         vcpu->arch.last_retry_addr = cr2;
5267
5268         if (!vcpu->arch.mmu.direct_map)
5269                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5270
5271         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5272
5273         return true;
5274 }
5275
5276 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5277 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5278
5279 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5280 {
5281         if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5282                 /* This is a good place to trace that we are exiting SMM.  */
5283                 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5284
5285                 if (unlikely(vcpu->arch.smi_pending)) {
5286                         kvm_make_request(KVM_REQ_SMI, vcpu);
5287                         vcpu->arch.smi_pending = 0;
5288                 } else {
5289                         /* Process a latched INIT, if any.  */
5290                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5291                 }
5292         }
5293
5294         kvm_mmu_reset_context(vcpu);
5295 }
5296
5297 static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5298 {
5299         unsigned changed = vcpu->arch.hflags ^ emul_flags;
5300
5301         vcpu->arch.hflags = emul_flags;
5302
5303         if (changed & HF_SMM_MASK)
5304                 kvm_smm_changed(vcpu);
5305 }
5306
5307 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5308                                 unsigned long *db)
5309 {
5310         u32 dr6 = 0;
5311         int i;
5312         u32 enable, rwlen;
5313
5314         enable = dr7;
5315         rwlen = dr7 >> 16;
5316         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5317                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5318                         dr6 |= (1 << i);
5319         return dr6;
5320 }
5321
5322 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5323 {
5324         struct kvm_run *kvm_run = vcpu->run;
5325
5326         /*
5327          * rflags is the old, "raw" value of the flags.  The new value has
5328          * not been saved yet.
5329          *
5330          * This is correct even for TF set by the guest, because "the
5331          * processor will not generate this exception after the instruction
5332          * that sets the TF flag".
5333          */
5334         if (unlikely(rflags & X86_EFLAGS_TF)) {
5335                 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5336                         kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5337                                                   DR6_RTM;
5338                         kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5339                         kvm_run->debug.arch.exception = DB_VECTOR;
5340                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5341                         *r = EMULATE_USER_EXIT;
5342                 } else {
5343                         vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5344                         /*
5345                          * "Certain debug exceptions may clear bit 0-3.  The
5346                          * remaining contents of the DR6 register are never
5347                          * cleared by the processor".
5348                          */
5349                         vcpu->arch.dr6 &= ~15;
5350                         vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5351                         kvm_queue_exception(vcpu, DB_VECTOR);
5352                 }
5353         }
5354 }
5355
5356 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5357 {
5358         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5359             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5360                 struct kvm_run *kvm_run = vcpu->run;
5361                 unsigned long eip = kvm_get_linear_rip(vcpu);
5362                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5363                                            vcpu->arch.guest_debug_dr7,
5364                                            vcpu->arch.eff_db);
5365
5366                 if (dr6 != 0) {
5367                         kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5368                         kvm_run->debug.arch.pc = eip;
5369                         kvm_run->debug.arch.exception = DB_VECTOR;
5370                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
5371                         *r = EMULATE_USER_EXIT;
5372                         return true;
5373                 }
5374         }
5375
5376         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5377             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5378                 unsigned long eip = kvm_get_linear_rip(vcpu);
5379                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5380                                            vcpu->arch.dr7,
5381                                            vcpu->arch.db);
5382
5383                 if (dr6 != 0) {
5384                         vcpu->arch.dr6 &= ~15;
5385                         vcpu->arch.dr6 |= dr6 | DR6_RTM;
5386                         kvm_queue_exception(vcpu, DB_VECTOR);
5387                         *r = EMULATE_DONE;
5388                         return true;
5389                 }
5390         }
5391
5392         return false;
5393 }
5394
5395 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5396                             unsigned long cr2,
5397                             int emulation_type,
5398                             void *insn,
5399                             int insn_len)
5400 {
5401         int r;
5402         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5403         bool writeback = true;
5404         bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5405
5406         /*
5407          * Clear write_fault_to_shadow_pgtable here to ensure it is
5408          * never reused.
5409          */
5410         vcpu->arch.write_fault_to_shadow_pgtable = false;
5411         kvm_clear_exception_queue(vcpu);
5412
5413         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5414                 init_emulate_ctxt(vcpu);
5415
5416                 /*
5417                  * We will reenter on the same instruction since
5418                  * we do not set complete_userspace_io.  This does not
5419                  * handle watchpoints yet, those would be handled in
5420                  * the emulate_ops.
5421                  */
5422                 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5423                         return r;
5424
5425                 ctxt->interruptibility = 0;
5426                 ctxt->have_exception = false;
5427                 ctxt->exception.vector = -1;
5428                 ctxt->perm_ok = false;
5429
5430                 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5431
5432                 r = x86_decode_insn(ctxt, insn, insn_len);
5433
5434                 trace_kvm_emulate_insn_start(vcpu);
5435                 ++vcpu->stat.insn_emulation;
5436                 if (r != EMULATION_OK)  {
5437                         if (emulation_type & EMULTYPE_TRAP_UD)
5438                                 return EMULATE_FAIL;
5439                         if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5440                                                 emulation_type))
5441                                 return EMULATE_DONE;
5442                         if (emulation_type & EMULTYPE_SKIP)
5443                                 return EMULATE_FAIL;
5444                         return handle_emulation_failure(vcpu);
5445                 }
5446         }
5447
5448         if (emulation_type & EMULTYPE_SKIP) {
5449                 kvm_rip_write(vcpu, ctxt->_eip);
5450                 if (ctxt->eflags & X86_EFLAGS_RF)
5451                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5452                 return EMULATE_DONE;
5453         }
5454
5455         if (retry_instruction(ctxt, cr2, emulation_type))
5456                 return EMULATE_DONE;
5457
5458         /* this is needed for vmware backdoor interface to work since it
5459            changes registers values  during IO operation */
5460         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5461                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5462                 emulator_invalidate_register_cache(ctxt);
5463         }
5464
5465 restart:
5466         r = x86_emulate_insn(ctxt);
5467
5468         if (r == EMULATION_INTERCEPTED)
5469                 return EMULATE_DONE;
5470
5471         if (r == EMULATION_FAILED) {
5472                 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5473                                         emulation_type))
5474                         return EMULATE_DONE;
5475
5476                 return handle_emulation_failure(vcpu);
5477         }
5478
5479         if (ctxt->have_exception) {
5480                 r = EMULATE_DONE;
5481                 if (inject_emulated_exception(vcpu))
5482                         return r;
5483         } else if (vcpu->arch.pio.count) {
5484                 if (!vcpu->arch.pio.in) {
5485                         /* FIXME: return into emulator if single-stepping.  */
5486                         vcpu->arch.pio.count = 0;
5487                 } else {
5488                         writeback = false;
5489                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
5490                 }
5491                 r = EMULATE_USER_EXIT;
5492         } else if (vcpu->mmio_needed) {
5493                 if (!vcpu->mmio_is_write)
5494                         writeback = false;
5495                 r = EMULATE_USER_EXIT;
5496                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5497         } else if (r == EMULATION_RESTART)
5498                 goto restart;
5499         else
5500                 r = EMULATE_DONE;
5501
5502         if (writeback) {
5503                 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5504                 toggle_interruptibility(vcpu, ctxt->interruptibility);
5505                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5506                 if (vcpu->arch.hflags != ctxt->emul_flags)
5507                         kvm_set_hflags(vcpu, ctxt->emul_flags);
5508                 kvm_rip_write(vcpu, ctxt->eip);
5509                 if (r == EMULATE_DONE)
5510                         kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5511                 if (!ctxt->have_exception ||
5512                     exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5513                         __kvm_set_rflags(vcpu, ctxt->eflags);
5514
5515                 /*
5516                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5517                  * do nothing, and it will be requested again as soon as
5518                  * the shadow expires.  But we still need to check here,
5519                  * because POPF has no interrupt shadow.
5520                  */
5521                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5522                         kvm_make_request(KVM_REQ_EVENT, vcpu);
5523         } else
5524                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5525
5526         return r;
5527 }
5528 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5529
5530 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5531 {
5532         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5533         int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5534                                             size, port, &val, 1);
5535         /* do not return to emulator after return from userspace */
5536         vcpu->arch.pio.count = 0;
5537         return ret;
5538 }
5539 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5540
5541 static void tsc_bad(void *info)
5542 {
5543         __this_cpu_write(cpu_tsc_khz, 0);
5544 }
5545
5546 static void tsc_khz_changed(void *data)
5547 {
5548         struct cpufreq_freqs *freq = data;
5549         unsigned long khz = 0;
5550
5551         if (data)
5552                 khz = freq->new;
5553         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5554                 khz = cpufreq_quick_get(raw_smp_processor_id());
5555         if (!khz)
5556                 khz = tsc_khz;
5557         __this_cpu_write(cpu_tsc_khz, khz);
5558 }
5559
5560 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5561                                      void *data)
5562 {
5563         struct cpufreq_freqs *freq = data;
5564         struct kvm *kvm;
5565         struct kvm_vcpu *vcpu;
5566         int i, send_ipi = 0;
5567
5568         /*
5569          * We allow guests to temporarily run on slowing clocks,
5570          * provided we notify them after, or to run on accelerating
5571          * clocks, provided we notify them before.  Thus time never
5572          * goes backwards.
5573          *
5574          * However, we have a problem.  We can't atomically update
5575          * the frequency of a given CPU from this function; it is
5576          * merely a notifier, which can be called from any CPU.
5577          * Changing the TSC frequency at arbitrary points in time
5578          * requires a recomputation of local variables related to
5579          * the TSC for each VCPU.  We must flag these local variables
5580          * to be updated and be sure the update takes place with the
5581          * new frequency before any guests proceed.
5582          *
5583          * Unfortunately, the combination of hotplug CPU and frequency
5584          * change creates an intractable locking scenario; the order
5585          * of when these callouts happen is undefined with respect to
5586          * CPU hotplug, and they can race with each other.  As such,
5587          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5588          * undefined; you can actually have a CPU frequency change take
5589          * place in between the computation of X and the setting of the
5590          * variable.  To protect against this problem, all updates of
5591          * the per_cpu tsc_khz variable are done in an interrupt
5592          * protected IPI, and all callers wishing to update the value
5593          * must wait for a synchronous IPI to complete (which is trivial
5594          * if the caller is on the CPU already).  This establishes the
5595          * necessary total order on variable updates.
5596          *
5597          * Note that because a guest time update may take place
5598          * anytime after the setting of the VCPU's request bit, the
5599          * correct TSC value must be set before the request.  However,
5600          * to ensure the update actually makes it to any guest which
5601          * starts running in hardware virtualization between the set
5602          * and the acquisition of the spinlock, we must also ping the
5603          * CPU after setting the request bit.
5604          *
5605          */
5606
5607         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5608                 return 0;
5609         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5610                 return 0;
5611
5612         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5613
5614         spin_lock(&kvm_lock);
5615         list_for_each_entry(kvm, &vm_list, vm_list) {
5616                 kvm_for_each_vcpu(i, vcpu, kvm) {
5617                         if (vcpu->cpu != freq->cpu)
5618                                 continue;
5619                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5620                         if (vcpu->cpu != smp_processor_id())
5621                                 send_ipi = 1;
5622                 }
5623         }
5624         spin_unlock(&kvm_lock);
5625
5626         if (freq->old < freq->new && send_ipi) {
5627                 /*
5628                  * We upscale the frequency.  Must make the guest
5629                  * doesn't see old kvmclock values while running with
5630                  * the new frequency, otherwise we risk the guest sees
5631                  * time go backwards.
5632                  *
5633                  * In case we update the frequency for another cpu
5634                  * (which might be in guest context) send an interrupt
5635                  * to kick the cpu out of guest context.  Next time
5636                  * guest context is entered kvmclock will be updated,
5637                  * so the guest will not see stale values.
5638                  */
5639                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5640         }
5641         return 0;
5642 }
5643
5644 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5645         .notifier_call  = kvmclock_cpufreq_notifier
5646 };
5647
5648 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5649                                         unsigned long action, void *hcpu)
5650 {
5651         unsigned int cpu = (unsigned long)hcpu;
5652
5653         switch (action) {
5654                 case CPU_ONLINE:
5655                 case CPU_DOWN_FAILED:
5656                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5657                         break;
5658                 case CPU_DOWN_PREPARE:
5659                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
5660                         break;
5661         }
5662         return NOTIFY_OK;
5663 }
5664
5665 static struct notifier_block kvmclock_cpu_notifier_block = {
5666         .notifier_call  = kvmclock_cpu_notifier,
5667         .priority = -INT_MAX
5668 };
5669
5670 static void kvm_timer_init(void)
5671 {
5672         int cpu;
5673
5674         max_tsc_khz = tsc_khz;
5675
5676         cpu_notifier_register_begin();
5677         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5678 #ifdef CONFIG_CPU_FREQ
5679                 struct cpufreq_policy policy;
5680                 memset(&policy, 0, sizeof(policy));
5681                 cpu = get_cpu();
5682                 cpufreq_get_policy(&policy, cpu);
5683                 if (policy.cpuinfo.max_freq)
5684                         max_tsc_khz = policy.cpuinfo.max_freq;
5685                 put_cpu();
5686 #endif
5687                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5688                                           CPUFREQ_TRANSITION_NOTIFIER);
5689         }
5690         pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5691         for_each_online_cpu(cpu)
5692                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5693
5694         __register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5695         cpu_notifier_register_done();
5696
5697 }
5698
5699 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5700
5701 int kvm_is_in_guest(void)
5702 {
5703         return __this_cpu_read(current_vcpu) != NULL;
5704 }
5705
5706 static int kvm_is_user_mode(void)
5707 {
5708         int user_mode = 3;
5709
5710         if (__this_cpu_read(current_vcpu))
5711                 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5712
5713         return user_mode != 0;
5714 }
5715
5716 static unsigned long kvm_get_guest_ip(void)
5717 {
5718         unsigned long ip = 0;
5719
5720         if (__this_cpu_read(current_vcpu))
5721                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5722
5723         return ip;
5724 }
5725
5726 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5727         .is_in_guest            = kvm_is_in_guest,
5728         .is_user_mode           = kvm_is_user_mode,
5729         .get_guest_ip           = kvm_get_guest_ip,
5730 };
5731
5732 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5733 {
5734         __this_cpu_write(current_vcpu, vcpu);
5735 }
5736 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5737
5738 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5739 {
5740         __this_cpu_write(current_vcpu, NULL);
5741 }
5742 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5743
5744 static void kvm_set_mmio_spte_mask(void)
5745 {
5746         u64 mask;
5747         int maxphyaddr = boot_cpu_data.x86_phys_bits;
5748
5749         /*
5750          * Set the reserved bits and the present bit of an paging-structure
5751          * entry to generate page fault with PFER.RSV = 1.
5752          */
5753          /* Mask the reserved physical address bits. */
5754         mask = rsvd_bits(maxphyaddr, 51);
5755
5756         /* Bit 62 is always reserved for 32bit host. */
5757         mask |= 0x3ull << 62;
5758
5759         /* Set the present bit. */
5760         mask |= 1ull;
5761
5762 #ifdef CONFIG_X86_64
5763         /*
5764          * If reserved bit is not supported, clear the present bit to disable
5765          * mmio page fault.
5766          */
5767         if (maxphyaddr == 52)
5768                 mask &= ~1ull;
5769 #endif
5770
5771         kvm_mmu_set_mmio_spte_mask(mask);
5772 }
5773
5774 #ifdef CONFIG_X86_64
5775 static void pvclock_gtod_update_fn(struct work_struct *work)
5776 {
5777         struct kvm *kvm;
5778
5779         struct kvm_vcpu *vcpu;
5780         int i;
5781
5782         spin_lock(&kvm_lock);
5783         list_for_each_entry(kvm, &vm_list, vm_list)
5784                 kvm_for_each_vcpu(i, vcpu, kvm)
5785                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5786         atomic_set(&kvm_guest_has_master_clock, 0);
5787         spin_unlock(&kvm_lock);
5788 }
5789
5790 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5791
5792 /*
5793  * Notification about pvclock gtod data update.
5794  */
5795 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5796                                void *priv)
5797 {
5798         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5799         struct timekeeper *tk = priv;
5800
5801         update_pvclock_gtod(tk);
5802
5803         /* disable master clock if host does not trust, or does not
5804          * use, TSC clocksource
5805          */
5806         if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5807             atomic_read(&kvm_guest_has_master_clock) != 0)
5808                 queue_work(system_long_wq, &pvclock_gtod_work);
5809
5810         return 0;
5811 }
5812
5813 static struct notifier_block pvclock_gtod_notifier = {
5814         .notifier_call = pvclock_gtod_notify,
5815 };
5816 #endif
5817
5818 int kvm_arch_init(void *opaque)
5819 {
5820         int r;
5821         struct kvm_x86_ops *ops = opaque;
5822
5823         if (kvm_x86_ops) {
5824                 printk(KERN_ERR "kvm: already loaded the other module\n");
5825                 r = -EEXIST;
5826                 goto out;
5827         }
5828
5829         if (!ops->cpu_has_kvm_support()) {
5830                 printk(KERN_ERR "kvm: no hardware support\n");
5831                 r = -EOPNOTSUPP;
5832                 goto out;
5833         }
5834         if (ops->disabled_by_bios()) {
5835                 printk(KERN_ERR "kvm: disabled by bios\n");
5836                 r = -EOPNOTSUPP;
5837                 goto out;
5838         }
5839
5840         r = -ENOMEM;
5841         shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5842         if (!shared_msrs) {
5843                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5844                 goto out;
5845         }
5846
5847         r = kvm_mmu_module_init();
5848         if (r)
5849                 goto out_free_percpu;
5850
5851         kvm_set_mmio_spte_mask();
5852
5853         kvm_x86_ops = ops;
5854
5855         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5856                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
5857
5858         kvm_timer_init();
5859
5860         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5861
5862         if (cpu_has_xsave)
5863                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5864
5865         kvm_lapic_init();
5866 #ifdef CONFIG_X86_64
5867         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5868 #endif
5869
5870         return 0;
5871
5872 out_free_percpu:
5873         free_percpu(shared_msrs);
5874 out:
5875         return r;
5876 }
5877
5878 void kvm_arch_exit(void)
5879 {
5880         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5881
5882         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5883                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5884                                             CPUFREQ_TRANSITION_NOTIFIER);
5885         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5886 #ifdef CONFIG_X86_64
5887         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5888 #endif
5889         kvm_x86_ops = NULL;
5890         kvm_mmu_module_exit();
5891         free_percpu(shared_msrs);
5892 }
5893
5894 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5895 {
5896         ++vcpu->stat.halt_exits;
5897         if (lapic_in_kernel(vcpu)) {
5898                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5899                 return 1;
5900         } else {
5901                 vcpu->run->exit_reason = KVM_EXIT_HLT;
5902                 return 0;
5903         }
5904 }
5905 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5906
5907 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5908 {
5909         kvm_x86_ops->skip_emulated_instruction(vcpu);
5910         return kvm_vcpu_halt(vcpu);
5911 }
5912 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5913
5914 /*
5915  * kvm_pv_kick_cpu_op:  Kick a vcpu.
5916  *
5917  * @apicid - apicid of vcpu to be kicked.
5918  */
5919 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5920 {
5921         struct kvm_lapic_irq lapic_irq;
5922
5923         lapic_irq.shorthand = 0;
5924         lapic_irq.dest_mode = 0;
5925         lapic_irq.dest_id = apicid;
5926         lapic_irq.msi_redir_hint = false;
5927
5928         lapic_irq.delivery_mode = APIC_DM_REMRD;
5929         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5930 }
5931
5932 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5933 {
5934         vcpu->arch.apicv_active = false;
5935         kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5936 }
5937
5938 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5939 {
5940         unsigned long nr, a0, a1, a2, a3, ret;
5941         int op_64_bit, r = 1;
5942
5943         kvm_x86_ops->skip_emulated_instruction(vcpu);
5944
5945         if (kvm_hv_hypercall_enabled(vcpu->kvm))
5946                 return kvm_hv_hypercall(vcpu);
5947
5948         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5949         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5950         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5951         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5952         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5953
5954         trace_kvm_hypercall(nr, a0, a1, a2, a3);
5955
5956         op_64_bit = is_64_bit_mode(vcpu);
5957         if (!op_64_bit) {
5958                 nr &= 0xFFFFFFFF;
5959                 a0 &= 0xFFFFFFFF;
5960                 a1 &= 0xFFFFFFFF;
5961                 a2 &= 0xFFFFFFFF;
5962                 a3 &= 0xFFFFFFFF;
5963         }
5964
5965         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5966                 ret = -KVM_EPERM;
5967                 goto out;
5968         }
5969
5970         switch (nr) {
5971         case KVM_HC_VAPIC_POLL_IRQ:
5972                 ret = 0;
5973                 break;
5974         case KVM_HC_KICK_CPU:
5975                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5976                 ret = 0;
5977                 break;
5978         default:
5979                 ret = -KVM_ENOSYS;
5980                 break;
5981         }
5982 out:
5983         if (!op_64_bit)
5984                 ret = (u32)ret;
5985         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5986         ++vcpu->stat.hypercalls;
5987         return r;
5988 }
5989 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5990
5991 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5992 {
5993         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5994         char instruction[3];
5995         unsigned long rip = kvm_rip_read(vcpu);
5996
5997         kvm_x86_ops->patch_hypercall(vcpu, instruction);
5998
5999         return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6000 }
6001
6002 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6003 {
6004         return vcpu->run->request_interrupt_window &&
6005                 likely(!pic_in_kernel(vcpu->kvm));
6006 }
6007
6008 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6009 {
6010         struct kvm_run *kvm_run = vcpu->run;
6011
6012         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6013         kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6014         kvm_run->cr8 = kvm_get_cr8(vcpu);
6015         kvm_run->apic_base = kvm_get_apic_base(vcpu);
6016         kvm_run->ready_for_interrupt_injection =
6017                 pic_in_kernel(vcpu->kvm) ||
6018                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
6019 }
6020
6021 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6022 {
6023         int max_irr, tpr;
6024
6025         if (!kvm_x86_ops->update_cr8_intercept)
6026                 return;
6027
6028         if (!lapic_in_kernel(vcpu))
6029                 return;
6030
6031         if (vcpu->arch.apicv_active)
6032                 return;
6033
6034         if (!vcpu->arch.apic->vapic_addr)
6035                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6036         else
6037                 max_irr = -1;
6038
6039         if (max_irr != -1)
6040                 max_irr >>= 4;
6041
6042         tpr = kvm_lapic_get_cr8(vcpu);
6043
6044         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6045 }
6046
6047 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6048 {
6049         int r;
6050
6051         /* try to reinject previous events if any */
6052         if (vcpu->arch.exception.pending) {
6053                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
6054                                         vcpu->arch.exception.has_error_code,
6055                                         vcpu->arch.exception.error_code);
6056
6057                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6058                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6059                                              X86_EFLAGS_RF);
6060
6061                 if (vcpu->arch.exception.nr == DB_VECTOR &&
6062                     (vcpu->arch.dr7 & DR7_GD)) {
6063                         vcpu->arch.dr7 &= ~DR7_GD;
6064                         kvm_update_dr7(vcpu);
6065                 }
6066
6067                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6068                                           vcpu->arch.exception.has_error_code,
6069                                           vcpu->arch.exception.error_code,
6070                                           vcpu->arch.exception.reinject);
6071                 return 0;
6072         }
6073
6074         if (vcpu->arch.nmi_injected) {
6075                 kvm_x86_ops->set_nmi(vcpu);
6076                 return 0;
6077         }
6078
6079         if (vcpu->arch.interrupt.pending) {
6080                 kvm_x86_ops->set_irq(vcpu);
6081                 return 0;
6082         }
6083
6084         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6085                 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6086                 if (r != 0)
6087                         return r;
6088         }
6089
6090         /* try to inject new event if pending */
6091         if (vcpu->arch.nmi_pending) {
6092                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
6093                         --vcpu->arch.nmi_pending;
6094                         vcpu->arch.nmi_injected = true;
6095                         kvm_x86_ops->set_nmi(vcpu);
6096                 }
6097         } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6098                 /*
6099                  * Because interrupts can be injected asynchronously, we are
6100                  * calling check_nested_events again here to avoid a race condition.
6101                  * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6102                  * proposal and current concerns.  Perhaps we should be setting
6103                  * KVM_REQ_EVENT only on certain events and not unconditionally?
6104                  */
6105                 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6106                         r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6107                         if (r != 0)
6108                                 return r;
6109                 }
6110                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6111                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6112                                             false);
6113                         kvm_x86_ops->set_irq(vcpu);
6114                 }
6115         }
6116         return 0;
6117 }
6118
6119 static void process_nmi(struct kvm_vcpu *vcpu)
6120 {
6121         unsigned limit = 2;
6122
6123         /*
6124          * x86 is limited to one NMI running, and one NMI pending after it.
6125          * If an NMI is already in progress, limit further NMIs to just one.
6126          * Otherwise, allow two (and we'll inject the first one immediately).
6127          */
6128         if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6129                 limit = 1;
6130
6131         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6132         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6133         kvm_make_request(KVM_REQ_EVENT, vcpu);
6134 }
6135
6136 #define put_smstate(type, buf, offset, val)                       \
6137         *(type *)((buf) + (offset) - 0x7e00) = val
6138
6139 static u32 process_smi_get_segment_flags(struct kvm_segment *seg)
6140 {
6141         u32 flags = 0;
6142         flags |= seg->g       << 23;
6143         flags |= seg->db      << 22;
6144         flags |= seg->l       << 21;
6145         flags |= seg->avl     << 20;
6146         flags |= seg->present << 15;
6147         flags |= seg->dpl     << 13;
6148         flags |= seg->s       << 12;
6149         flags |= seg->type    << 8;
6150         return flags;
6151 }
6152
6153 static void process_smi_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6154 {
6155         struct kvm_segment seg;
6156         int offset;
6157
6158         kvm_get_segment(vcpu, &seg, n);
6159         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6160
6161         if (n < 3)
6162                 offset = 0x7f84 + n * 12;
6163         else
6164                 offset = 0x7f2c + (n - 3) * 12;
6165
6166         put_smstate(u32, buf, offset + 8, seg.base);
6167         put_smstate(u32, buf, offset + 4, seg.limit);
6168         put_smstate(u32, buf, offset, process_smi_get_segment_flags(&seg));
6169 }
6170
6171 #ifdef CONFIG_X86_64
6172 static void process_smi_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6173 {
6174         struct kvm_segment seg;
6175         int offset;
6176         u16 flags;
6177
6178         kvm_get_segment(vcpu, &seg, n);
6179         offset = 0x7e00 + n * 16;
6180
6181         flags = process_smi_get_segment_flags(&seg) >> 8;
6182         put_smstate(u16, buf, offset, seg.selector);
6183         put_smstate(u16, buf, offset + 2, flags);
6184         put_smstate(u32, buf, offset + 4, seg.limit);
6185         put_smstate(u64, buf, offset + 8, seg.base);
6186 }
6187 #endif
6188
6189 static void process_smi_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6190 {
6191         struct desc_ptr dt;
6192         struct kvm_segment seg;
6193         unsigned long val;
6194         int i;
6195
6196         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6197         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6198         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6199         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6200
6201         for (i = 0; i < 8; i++)
6202                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6203
6204         kvm_get_dr(vcpu, 6, &val);
6205         put_smstate(u32, buf, 0x7fcc, (u32)val);
6206         kvm_get_dr(vcpu, 7, &val);
6207         put_smstate(u32, buf, 0x7fc8, (u32)val);
6208
6209         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6210         put_smstate(u32, buf, 0x7fc4, seg.selector);
6211         put_smstate(u32, buf, 0x7f64, seg.base);
6212         put_smstate(u32, buf, 0x7f60, seg.limit);
6213         put_smstate(u32, buf, 0x7f5c, process_smi_get_segment_flags(&seg));
6214
6215         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6216         put_smstate(u32, buf, 0x7fc0, seg.selector);
6217         put_smstate(u32, buf, 0x7f80, seg.base);
6218         put_smstate(u32, buf, 0x7f7c, seg.limit);
6219         put_smstate(u32, buf, 0x7f78, process_smi_get_segment_flags(&seg));
6220
6221         kvm_x86_ops->get_gdt(vcpu, &dt);
6222         put_smstate(u32, buf, 0x7f74, dt.address);
6223         put_smstate(u32, buf, 0x7f70, dt.size);
6224
6225         kvm_x86_ops->get_idt(vcpu, &dt);
6226         put_smstate(u32, buf, 0x7f58, dt.address);
6227         put_smstate(u32, buf, 0x7f54, dt.size);
6228
6229         for (i = 0; i < 6; i++)
6230                 process_smi_save_seg_32(vcpu, buf, i);
6231
6232         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6233
6234         /* revision id */
6235         put_smstate(u32, buf, 0x7efc, 0x00020000);
6236         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6237 }
6238
6239 static void process_smi_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6240 {
6241 #ifdef CONFIG_X86_64
6242         struct desc_ptr dt;
6243         struct kvm_segment seg;
6244         unsigned long val;
6245         int i;
6246
6247         for (i = 0; i < 16; i++)
6248                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6249
6250         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6251         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6252
6253         kvm_get_dr(vcpu, 6, &val);
6254         put_smstate(u64, buf, 0x7f68, val);
6255         kvm_get_dr(vcpu, 7, &val);
6256         put_smstate(u64, buf, 0x7f60, val);
6257
6258         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6259         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6260         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6261
6262         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6263
6264         /* revision id */
6265         put_smstate(u32, buf, 0x7efc, 0x00020064);
6266
6267         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6268
6269         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6270         put_smstate(u16, buf, 0x7e90, seg.selector);
6271         put_smstate(u16, buf, 0x7e92, process_smi_get_segment_flags(&seg) >> 8);
6272         put_smstate(u32, buf, 0x7e94, seg.limit);
6273         put_smstate(u64, buf, 0x7e98, seg.base);
6274
6275         kvm_x86_ops->get_idt(vcpu, &dt);
6276         put_smstate(u32, buf, 0x7e84, dt.size);
6277         put_smstate(u64, buf, 0x7e88, dt.address);
6278
6279         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6280         put_smstate(u16, buf, 0x7e70, seg.selector);
6281         put_smstate(u16, buf, 0x7e72, process_smi_get_segment_flags(&seg) >> 8);
6282         put_smstate(u32, buf, 0x7e74, seg.limit);
6283         put_smstate(u64, buf, 0x7e78, seg.base);
6284
6285         kvm_x86_ops->get_gdt(vcpu, &dt);
6286         put_smstate(u32, buf, 0x7e64, dt.size);
6287         put_smstate(u64, buf, 0x7e68, dt.address);
6288
6289         for (i = 0; i < 6; i++)
6290                 process_smi_save_seg_64(vcpu, buf, i);
6291 #else
6292         WARN_ON_ONCE(1);
6293 #endif
6294 }
6295
6296 static void process_smi(struct kvm_vcpu *vcpu)
6297 {
6298         struct kvm_segment cs, ds;
6299         struct desc_ptr dt;
6300         char buf[512];
6301         u32 cr0;
6302
6303         if (is_smm(vcpu)) {
6304                 vcpu->arch.smi_pending = true;
6305                 return;
6306         }
6307
6308         trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6309         vcpu->arch.hflags |= HF_SMM_MASK;
6310         memset(buf, 0, 512);
6311         if (guest_cpuid_has_longmode(vcpu))
6312                 process_smi_save_state_64(vcpu, buf);
6313         else
6314                 process_smi_save_state_32(vcpu, buf);
6315
6316         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6317
6318         if (kvm_x86_ops->get_nmi_mask(vcpu))
6319                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6320         else
6321                 kvm_x86_ops->set_nmi_mask(vcpu, true);
6322
6323         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6324         kvm_rip_write(vcpu, 0x8000);
6325
6326         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6327         kvm_x86_ops->set_cr0(vcpu, cr0);
6328         vcpu->arch.cr0 = cr0;
6329
6330         kvm_x86_ops->set_cr4(vcpu, 0);
6331
6332         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6333         dt.address = dt.size = 0;
6334         kvm_x86_ops->set_idt(vcpu, &dt);
6335
6336         __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6337
6338         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6339         cs.base = vcpu->arch.smbase;
6340
6341         ds.selector = 0;
6342         ds.base = 0;
6343
6344         cs.limit    = ds.limit = 0xffffffff;
6345         cs.type     = ds.type = 0x3;
6346         cs.dpl      = ds.dpl = 0;
6347         cs.db       = ds.db = 0;
6348         cs.s        = ds.s = 1;
6349         cs.l        = ds.l = 0;
6350         cs.g        = ds.g = 1;
6351         cs.avl      = ds.avl = 0;
6352         cs.present  = ds.present = 1;
6353         cs.unusable = ds.unusable = 0;
6354         cs.padding  = ds.padding = 0;
6355
6356         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6357         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6358         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6359         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6360         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6361         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6362
6363         if (guest_cpuid_has_longmode(vcpu))
6364                 kvm_x86_ops->set_efer(vcpu, 0);
6365
6366         kvm_update_cpuid(vcpu);
6367         kvm_mmu_reset_context(vcpu);
6368 }
6369
6370 void kvm_make_scan_ioapic_request(struct kvm *kvm)
6371 {
6372         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6373 }
6374
6375 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6376 {
6377         u64 eoi_exit_bitmap[4];
6378
6379         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6380                 return;
6381
6382         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6383
6384         if (irqchip_split(vcpu->kvm))
6385                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6386         else {
6387                 if (vcpu->arch.apicv_active)
6388                         kvm_x86_ops->sync_pir_to_irr(vcpu);
6389                 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6390         }
6391         bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6392                   vcpu_to_synic(vcpu)->vec_bitmap, 256);
6393         kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6394 }
6395
6396 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6397 {
6398         ++vcpu->stat.tlb_flush;
6399         kvm_x86_ops->tlb_flush(vcpu);
6400 }
6401
6402 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6403 {
6404         struct page *page = NULL;
6405
6406         if (!lapic_in_kernel(vcpu))
6407                 return;
6408
6409         if (!kvm_x86_ops->set_apic_access_page_addr)
6410                 return;
6411
6412         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6413         if (is_error_page(page))
6414                 return;
6415         kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6416
6417         /*
6418          * Do not pin apic access page in memory, the MMU notifier
6419          * will call us again if it is migrated or swapped out.
6420          */
6421         put_page(page);
6422 }
6423 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6424
6425 void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6426                                            unsigned long address)
6427 {
6428         /*
6429          * The physical address of apic access page is stored in the VMCS.
6430          * Update it when it becomes invalid.
6431          */
6432         if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6433                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6434 }
6435
6436 /*
6437  * Returns 1 to let vcpu_run() continue the guest execution loop without
6438  * exiting to the userspace.  Otherwise, the value will be returned to the
6439  * userspace.
6440  */
6441 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6442 {
6443         int r;
6444         bool req_int_win =
6445                 dm_request_for_irq_injection(vcpu) &&
6446                 kvm_cpu_accept_dm_intr(vcpu);
6447
6448         bool req_immediate_exit = false;
6449
6450         if (vcpu->requests) {
6451                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6452                         kvm_mmu_unload(vcpu);
6453                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6454                         __kvm_migrate_timers(vcpu);
6455                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6456                         kvm_gen_update_masterclock(vcpu->kvm);
6457                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6458                         kvm_gen_kvmclock_update(vcpu);
6459                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6460                         r = kvm_guest_time_update(vcpu);
6461                         if (unlikely(r))
6462                                 goto out;
6463                 }
6464                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6465                         kvm_mmu_sync_roots(vcpu);
6466                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6467                         kvm_vcpu_flush_tlb(vcpu);
6468                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6469                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6470                         r = 0;
6471                         goto out;
6472                 }
6473                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6474                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6475                         r = 0;
6476                         goto out;
6477                 }
6478                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6479                         vcpu->fpu_active = 0;
6480                         kvm_x86_ops->fpu_deactivate(vcpu);
6481                 }
6482                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6483                         /* Page is swapped out. Do synthetic halt */
6484                         vcpu->arch.apf.halted = true;
6485                         r = 1;
6486                         goto out;
6487                 }
6488                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6489                         record_steal_time(vcpu);
6490                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
6491                         process_smi(vcpu);
6492                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
6493                         process_nmi(vcpu);
6494                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
6495                         kvm_pmu_handle_event(vcpu);
6496                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
6497                         kvm_pmu_deliver_pmi(vcpu);
6498                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6499                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6500                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
6501                                      vcpu->arch.ioapic_handled_vectors)) {
6502                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6503                                 vcpu->run->eoi.vector =
6504                                                 vcpu->arch.pending_ioapic_eoi;
6505                                 r = 0;
6506                                 goto out;
6507                         }
6508                 }
6509                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6510                         vcpu_scan_ioapic(vcpu);
6511                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6512                         kvm_vcpu_reload_apic_access_page(vcpu);
6513                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6514                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6515                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6516                         r = 0;
6517                         goto out;
6518                 }
6519                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6520                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6521                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6522                         r = 0;
6523                         goto out;
6524                 }
6525                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6526                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6527                         vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6528                         r = 0;
6529                         goto out;
6530                 }
6531
6532                 /*
6533                  * KVM_REQ_HV_STIMER has to be processed after
6534                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6535                  * depend on the guest clock being up-to-date
6536                  */
6537                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6538                         kvm_hv_process_stimers(vcpu);
6539         }
6540
6541         /*
6542          * KVM_REQ_EVENT is not set when posted interrupts are set by
6543          * VT-d hardware, so we have to update RVI unconditionally.
6544          */
6545         if (kvm_lapic_enabled(vcpu)) {
6546                 /*
6547                  * Update architecture specific hints for APIC
6548                  * virtual interrupt delivery.
6549                  */
6550                 if (vcpu->arch.apicv_active)
6551                         kvm_x86_ops->hwapic_irr_update(vcpu,
6552                                 kvm_lapic_find_highest_irr(vcpu));
6553         }
6554
6555         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6556                 kvm_apic_accept_events(vcpu);
6557                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6558                         r = 1;
6559                         goto out;
6560                 }
6561
6562                 if (inject_pending_event(vcpu, req_int_win) != 0)
6563                         req_immediate_exit = true;
6564                 /* enable NMI/IRQ window open exits if needed */
6565                 else if (vcpu->arch.nmi_pending)
6566                         kvm_x86_ops->enable_nmi_window(vcpu);
6567                 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6568                         kvm_x86_ops->enable_irq_window(vcpu);
6569
6570                 if (kvm_lapic_enabled(vcpu)) {
6571                         update_cr8_intercept(vcpu);
6572                         kvm_lapic_sync_to_vapic(vcpu);
6573                 }
6574         }
6575
6576         r = kvm_mmu_reload(vcpu);
6577         if (unlikely(r)) {
6578                 goto cancel_injection;
6579         }
6580
6581         preempt_disable();
6582
6583         kvm_x86_ops->prepare_guest_switch(vcpu);
6584         if (vcpu->fpu_active)
6585                 kvm_load_guest_fpu(vcpu);
6586         kvm_load_guest_xcr0(vcpu);
6587
6588         vcpu->mode = IN_GUEST_MODE;
6589
6590         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6591
6592         /* We should set ->mode before check ->requests,
6593          * see the comment in make_all_cpus_request.
6594          */
6595         smp_mb__after_srcu_read_unlock();
6596
6597         local_irq_disable();
6598
6599         if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6600             || need_resched() || signal_pending(current)) {
6601                 vcpu->mode = OUTSIDE_GUEST_MODE;
6602                 smp_wmb();
6603                 local_irq_enable();
6604                 preempt_enable();
6605                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6606                 r = 1;
6607                 goto cancel_injection;
6608         }
6609
6610         if (req_immediate_exit)
6611                 smp_send_reschedule(vcpu->cpu);
6612
6613         trace_kvm_entry(vcpu->vcpu_id);
6614         wait_lapic_expire(vcpu);
6615         __kvm_guest_enter();
6616
6617         if (unlikely(vcpu->arch.switch_db_regs)) {
6618                 set_debugreg(0, 7);
6619                 set_debugreg(vcpu->arch.eff_db[0], 0);
6620                 set_debugreg(vcpu->arch.eff_db[1], 1);
6621                 set_debugreg(vcpu->arch.eff_db[2], 2);
6622                 set_debugreg(vcpu->arch.eff_db[3], 3);
6623                 set_debugreg(vcpu->arch.dr6, 6);
6624                 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6625         }
6626
6627         kvm_x86_ops->run(vcpu);
6628
6629         /*
6630          * Do this here before restoring debug registers on the host.  And
6631          * since we do this before handling the vmexit, a DR access vmexit
6632          * can (a) read the correct value of the debug registers, (b) set
6633          * KVM_DEBUGREG_WONT_EXIT again.
6634          */
6635         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6636                 int i;
6637
6638                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6639                 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6640                 for (i = 0; i < KVM_NR_DB_REGS; i++)
6641                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6642         }
6643
6644         /*
6645          * If the guest has used debug registers, at least dr7
6646          * will be disabled while returning to the host.
6647          * If we don't have active breakpoints in the host, we don't
6648          * care about the messed up debug address registers. But if
6649          * we have some of them active, restore the old state.
6650          */
6651         if (hw_breakpoint_active())
6652                 hw_breakpoint_restore();
6653
6654         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6655
6656         vcpu->mode = OUTSIDE_GUEST_MODE;
6657         smp_wmb();
6658
6659         /* Interrupt is enabled by handle_external_intr() */
6660         kvm_x86_ops->handle_external_intr(vcpu);
6661
6662         ++vcpu->stat.exits;
6663
6664         /*
6665          * We must have an instruction between local_irq_enable() and
6666          * kvm_guest_exit(), so the timer interrupt isn't delayed by
6667          * the interrupt shadow.  The stat.exits increment will do nicely.
6668          * But we need to prevent reordering, hence this barrier():
6669          */
6670         barrier();
6671
6672         kvm_guest_exit();
6673
6674         preempt_enable();
6675
6676         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6677
6678         /*
6679          * Profile KVM exit RIPs:
6680          */
6681         if (unlikely(prof_on == KVM_PROFILING)) {
6682                 unsigned long rip = kvm_rip_read(vcpu);
6683                 profile_hit(KVM_PROFILING, (void *)rip);
6684         }
6685
6686         if (unlikely(vcpu->arch.tsc_always_catchup))
6687                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6688
6689         if (vcpu->arch.apic_attention)
6690                 kvm_lapic_sync_from_vapic(vcpu);
6691
6692         r = kvm_x86_ops->handle_exit(vcpu);
6693         return r;
6694
6695 cancel_injection:
6696         kvm_x86_ops->cancel_injection(vcpu);
6697         if (unlikely(vcpu->arch.apic_attention))
6698                 kvm_lapic_sync_from_vapic(vcpu);
6699 out:
6700         return r;
6701 }
6702
6703 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6704 {
6705         if (!kvm_arch_vcpu_runnable(vcpu) &&
6706             (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6707                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6708                 kvm_vcpu_block(vcpu);
6709                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6710
6711                 if (kvm_x86_ops->post_block)
6712                         kvm_x86_ops->post_block(vcpu);
6713
6714                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6715                         return 1;
6716         }
6717
6718         kvm_apic_accept_events(vcpu);
6719         switch(vcpu->arch.mp_state) {
6720         case KVM_MP_STATE_HALTED:
6721                 vcpu->arch.pv.pv_unhalted = false;
6722                 vcpu->arch.mp_state =
6723                         KVM_MP_STATE_RUNNABLE;
6724         case KVM_MP_STATE_RUNNABLE:
6725                 vcpu->arch.apf.halted = false;
6726                 break;
6727         case KVM_MP_STATE_INIT_RECEIVED:
6728                 break;
6729         default:
6730                 return -EINTR;
6731                 break;
6732         }
6733         return 1;
6734 }
6735
6736 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6737 {
6738         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6739                 !vcpu->arch.apf.halted);
6740 }
6741
6742 static int vcpu_run(struct kvm_vcpu *vcpu)
6743 {
6744         int r;
6745         struct kvm *kvm = vcpu->kvm;
6746
6747         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6748
6749         for (;;) {
6750                 if (kvm_vcpu_running(vcpu)) {
6751                         r = vcpu_enter_guest(vcpu);
6752                 } else {
6753                         r = vcpu_block(kvm, vcpu);
6754                 }
6755
6756                 if (r <= 0)
6757                         break;
6758
6759                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6760                 if (kvm_cpu_has_pending_timer(vcpu))
6761                         kvm_inject_pending_timer_irqs(vcpu);
6762
6763                 if (dm_request_for_irq_injection(vcpu) &&
6764                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6765                         r = 0;
6766                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6767                         ++vcpu->stat.request_irq_exits;
6768                         break;
6769                 }
6770
6771                 kvm_check_async_pf_completion(vcpu);
6772
6773                 if (signal_pending(current)) {
6774                         r = -EINTR;
6775                         vcpu->run->exit_reason = KVM_EXIT_INTR;
6776                         ++vcpu->stat.signal_exits;
6777                         break;
6778                 }
6779                 if (need_resched()) {
6780                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6781                         cond_resched();
6782                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6783                 }
6784         }
6785
6786         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6787
6788         return r;
6789 }
6790
6791 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6792 {
6793         int r;
6794         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6795         r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6796         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6797         if (r != EMULATE_DONE)
6798                 return 0;
6799         return 1;
6800 }
6801
6802 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6803 {
6804         BUG_ON(!vcpu->arch.pio.count);
6805
6806         return complete_emulated_io(vcpu);
6807 }
6808
6809 /*
6810  * Implements the following, as a state machine:
6811  *
6812  * read:
6813  *   for each fragment
6814  *     for each mmio piece in the fragment
6815  *       write gpa, len
6816  *       exit
6817  *       copy data
6818  *   execute insn
6819  *
6820  * write:
6821  *   for each fragment
6822  *     for each mmio piece in the fragment
6823  *       write gpa, len
6824  *       copy data
6825  *       exit
6826  */
6827 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6828 {
6829         struct kvm_run *run = vcpu->run;
6830         struct kvm_mmio_fragment *frag;
6831         unsigned len;
6832
6833         BUG_ON(!vcpu->mmio_needed);
6834
6835         /* Complete previous fragment */
6836         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6837         len = min(8u, frag->len);
6838         if (!vcpu->mmio_is_write)
6839                 memcpy(frag->data, run->mmio.data, len);
6840
6841         if (frag->len <= 8) {
6842                 /* Switch to the next fragment. */
6843                 frag++;
6844                 vcpu->mmio_cur_fragment++;
6845         } else {
6846                 /* Go forward to the next mmio piece. */
6847                 frag->data += len;
6848                 frag->gpa += len;
6849                 frag->len -= len;
6850         }
6851
6852         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6853                 vcpu->mmio_needed = 0;
6854
6855                 /* FIXME: return into emulator if single-stepping.  */
6856                 if (vcpu->mmio_is_write)
6857                         return 1;
6858                 vcpu->mmio_read_completed = 1;
6859                 return complete_emulated_io(vcpu);
6860         }
6861
6862         run->exit_reason = KVM_EXIT_MMIO;
6863         run->mmio.phys_addr = frag->gpa;
6864         if (vcpu->mmio_is_write)
6865                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6866         run->mmio.len = min(8u, frag->len);
6867         run->mmio.is_write = vcpu->mmio_is_write;
6868         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6869         return 0;
6870 }
6871
6872
6873 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6874 {
6875         struct fpu *fpu = &current->thread.fpu;
6876         int r;
6877         sigset_t sigsaved;
6878
6879         fpu__activate_curr(fpu);
6880
6881         if (vcpu->sigset_active)
6882                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6883
6884         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6885                 kvm_vcpu_block(vcpu);
6886                 kvm_apic_accept_events(vcpu);
6887                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6888                 r = -EAGAIN;
6889                 goto out;
6890         }
6891
6892         /* re-sync apic's tpr */
6893         if (!lapic_in_kernel(vcpu)) {
6894                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6895                         r = -EINVAL;
6896                         goto out;
6897                 }
6898         }
6899
6900         if (unlikely(vcpu->arch.complete_userspace_io)) {
6901                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6902                 vcpu->arch.complete_userspace_io = NULL;
6903                 r = cui(vcpu);
6904                 if (r <= 0)
6905                         goto out;
6906         } else
6907                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6908
6909         r = vcpu_run(vcpu);
6910
6911 out:
6912         post_kvm_run_save(vcpu);
6913         if (vcpu->sigset_active)
6914                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6915
6916         return r;
6917 }
6918
6919 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6920 {
6921         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6922                 /*
6923                  * We are here if userspace calls get_regs() in the middle of
6924                  * instruction emulation. Registers state needs to be copied
6925                  * back from emulation context to vcpu. Userspace shouldn't do
6926                  * that usually, but some bad designed PV devices (vmware
6927                  * backdoor interface) need this to work
6928                  */
6929                 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6930                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6931         }
6932         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6933         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6934         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6935         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6936         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6937         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6938         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6939         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6940 #ifdef CONFIG_X86_64
6941         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6942         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6943         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6944         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6945         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6946         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6947         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6948         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6949 #endif
6950
6951         regs->rip = kvm_rip_read(vcpu);
6952         regs->rflags = kvm_get_rflags(vcpu);
6953
6954         return 0;
6955 }
6956
6957 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6958 {
6959         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6960         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6961
6962         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6963         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6964         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6965         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6966         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6967         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6968         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6969         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6970 #ifdef CONFIG_X86_64
6971         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6972         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6973         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6974         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6975         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6976         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6977         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6978         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6979 #endif
6980
6981         kvm_rip_write(vcpu, regs->rip);
6982         kvm_set_rflags(vcpu, regs->rflags);
6983
6984         vcpu->arch.exception.pending = false;
6985
6986         kvm_make_request(KVM_REQ_EVENT, vcpu);
6987
6988         return 0;
6989 }
6990
6991 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6992 {
6993         struct kvm_segment cs;
6994
6995         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6996         *db = cs.db;
6997         *l = cs.l;
6998 }
6999 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7000
7001 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7002                                   struct kvm_sregs *sregs)
7003 {
7004         struct desc_ptr dt;
7005
7006         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7007         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7008         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7009         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7010         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7011         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7012
7013         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7014         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7015
7016         kvm_x86_ops->get_idt(vcpu, &dt);
7017         sregs->idt.limit = dt.size;
7018         sregs->idt.base = dt.address;
7019         kvm_x86_ops->get_gdt(vcpu, &dt);
7020         sregs->gdt.limit = dt.size;
7021         sregs->gdt.base = dt.address;
7022
7023         sregs->cr0 = kvm_read_cr0(vcpu);
7024         sregs->cr2 = vcpu->arch.cr2;
7025         sregs->cr3 = kvm_read_cr3(vcpu);
7026         sregs->cr4 = kvm_read_cr4(vcpu);
7027         sregs->cr8 = kvm_get_cr8(vcpu);
7028         sregs->efer = vcpu->arch.efer;
7029         sregs->apic_base = kvm_get_apic_base(vcpu);
7030
7031         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7032
7033         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7034                 set_bit(vcpu->arch.interrupt.nr,
7035                         (unsigned long *)sregs->interrupt_bitmap);
7036
7037         return 0;
7038 }
7039
7040 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7041                                     struct kvm_mp_state *mp_state)
7042 {
7043         kvm_apic_accept_events(vcpu);
7044         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7045                                         vcpu->arch.pv.pv_unhalted)
7046                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7047         else
7048                 mp_state->mp_state = vcpu->arch.mp_state;
7049
7050         return 0;
7051 }
7052
7053 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7054                                     struct kvm_mp_state *mp_state)
7055 {
7056         if (!lapic_in_kernel(vcpu) &&
7057             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7058                 return -EINVAL;
7059
7060         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7061                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7062                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7063         } else
7064                 vcpu->arch.mp_state = mp_state->mp_state;
7065         kvm_make_request(KVM_REQ_EVENT, vcpu);
7066         return 0;
7067 }
7068
7069 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7070                     int reason, bool has_error_code, u32 error_code)
7071 {
7072         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7073         int ret;
7074
7075         init_emulate_ctxt(vcpu);
7076
7077         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7078                                    has_error_code, error_code);
7079
7080         if (ret)
7081                 return EMULATE_FAIL;
7082
7083         kvm_rip_write(vcpu, ctxt->eip);
7084         kvm_set_rflags(vcpu, ctxt->eflags);
7085         kvm_make_request(KVM_REQ_EVENT, vcpu);
7086         return EMULATE_DONE;
7087 }
7088 EXPORT_SYMBOL_GPL(kvm_task_switch);
7089
7090 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7091                                   struct kvm_sregs *sregs)
7092 {
7093         struct msr_data apic_base_msr;
7094         int mmu_reset_needed = 0;
7095         int pending_vec, max_bits, idx;
7096         struct desc_ptr dt;
7097
7098         if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7099                 return -EINVAL;
7100
7101         dt.size = sregs->idt.limit;
7102         dt.address = sregs->idt.base;
7103         kvm_x86_ops->set_idt(vcpu, &dt);
7104         dt.size = sregs->gdt.limit;
7105         dt.address = sregs->gdt.base;
7106         kvm_x86_ops->set_gdt(vcpu, &dt);
7107
7108         vcpu->arch.cr2 = sregs->cr2;
7109         mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7110         vcpu->arch.cr3 = sregs->cr3;
7111         __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7112
7113         kvm_set_cr8(vcpu, sregs->cr8);
7114
7115         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7116         kvm_x86_ops->set_efer(vcpu, sregs->efer);
7117         apic_base_msr.data = sregs->apic_base;
7118         apic_base_msr.host_initiated = true;
7119         kvm_set_apic_base(vcpu, &apic_base_msr);
7120
7121         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7122         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7123         vcpu->arch.cr0 = sregs->cr0;
7124
7125         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7126         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7127         if (sregs->cr4 & X86_CR4_OSXSAVE)
7128                 kvm_update_cpuid(vcpu);
7129
7130         idx = srcu_read_lock(&vcpu->kvm->srcu);
7131         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7132                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7133                 mmu_reset_needed = 1;
7134         }
7135         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7136
7137         if (mmu_reset_needed)
7138                 kvm_mmu_reset_context(vcpu);
7139
7140         max_bits = KVM_NR_INTERRUPTS;
7141         pending_vec = find_first_bit(
7142                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7143         if (pending_vec < max_bits) {
7144                 kvm_queue_interrupt(vcpu, pending_vec, false);
7145                 pr_debug("Set back pending irq %d\n", pending_vec);
7146         }
7147
7148         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7149         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7150         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7151         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7152         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7153         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7154
7155         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7156         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7157
7158         update_cr8_intercept(vcpu);
7159
7160         /* Older userspace won't unhalt the vcpu on reset. */
7161         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7162             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7163             !is_protmode(vcpu))
7164                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7165
7166         kvm_make_request(KVM_REQ_EVENT, vcpu);
7167
7168         return 0;
7169 }
7170
7171 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7172                                         struct kvm_guest_debug *dbg)
7173 {
7174         unsigned long rflags;
7175         int i, r;
7176
7177         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7178                 r = -EBUSY;
7179                 if (vcpu->arch.exception.pending)
7180                         goto out;
7181                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7182                         kvm_queue_exception(vcpu, DB_VECTOR);
7183                 else
7184                         kvm_queue_exception(vcpu, BP_VECTOR);
7185         }
7186
7187         /*
7188          * Read rflags as long as potentially injected trace flags are still
7189          * filtered out.
7190          */
7191         rflags = kvm_get_rflags(vcpu);
7192
7193         vcpu->guest_debug = dbg->control;
7194         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7195                 vcpu->guest_debug = 0;
7196
7197         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7198                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
7199                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7200                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7201         } else {
7202                 for (i = 0; i < KVM_NR_DB_REGS; i++)
7203                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7204         }
7205         kvm_update_dr7(vcpu);
7206
7207         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7208                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7209                         get_segment_base(vcpu, VCPU_SREG_CS);
7210
7211         /*
7212          * Trigger an rflags update that will inject or remove the trace
7213          * flags.
7214          */
7215         kvm_set_rflags(vcpu, rflags);
7216
7217         kvm_x86_ops->update_bp_intercept(vcpu);
7218
7219         r = 0;
7220
7221 out:
7222
7223         return r;
7224 }
7225
7226 /*
7227  * Translate a guest virtual address to a guest physical address.
7228  */
7229 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7230                                     struct kvm_translation *tr)
7231 {
7232         unsigned long vaddr = tr->linear_address;
7233         gpa_t gpa;
7234         int idx;
7235
7236         idx = srcu_read_lock(&vcpu->kvm->srcu);
7237         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7238         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7239         tr->physical_address = gpa;
7240         tr->valid = gpa != UNMAPPED_GVA;
7241         tr->writeable = 1;
7242         tr->usermode = 0;
7243
7244         return 0;
7245 }
7246
7247 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7248 {
7249         struct fxregs_state *fxsave =
7250                         &vcpu->arch.guest_fpu.state.fxsave;
7251
7252         memcpy(fpu->fpr, fxsave->st_space, 128);
7253         fpu->fcw = fxsave->cwd;
7254         fpu->fsw = fxsave->swd;
7255         fpu->ftwx = fxsave->twd;
7256         fpu->last_opcode = fxsave->fop;
7257         fpu->last_ip = fxsave->rip;
7258         fpu->last_dp = fxsave->rdp;
7259         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7260
7261         return 0;
7262 }
7263
7264 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7265 {
7266         struct fxregs_state *fxsave =
7267                         &vcpu->arch.guest_fpu.state.fxsave;
7268
7269         memcpy(fxsave->st_space, fpu->fpr, 128);
7270         fxsave->cwd = fpu->fcw;
7271         fxsave->swd = fpu->fsw;
7272         fxsave->twd = fpu->ftwx;
7273         fxsave->fop = fpu->last_opcode;
7274         fxsave->rip = fpu->last_ip;
7275         fxsave->rdp = fpu->last_dp;
7276         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7277
7278         return 0;
7279 }
7280
7281 static void fx_init(struct kvm_vcpu *vcpu)
7282 {
7283         fpstate_init(&vcpu->arch.guest_fpu.state);
7284         if (cpu_has_xsaves)
7285                 vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7286                         host_xcr0 | XSTATE_COMPACTION_ENABLED;
7287
7288         /*
7289          * Ensure guest xcr0 is valid for loading
7290          */
7291         vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7292
7293         vcpu->arch.cr0 |= X86_CR0_ET;
7294 }
7295
7296 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7297 {
7298         if (vcpu->guest_fpu_loaded)
7299                 return;
7300
7301         /*
7302          * Restore all possible states in the guest,
7303          * and assume host would use all available bits.
7304          * Guest xcr0 would be loaded later.
7305          */
7306         kvm_put_guest_xcr0(vcpu);
7307         vcpu->guest_fpu_loaded = 1;
7308         __kernel_fpu_begin();
7309         __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7310         trace_kvm_fpu(1);
7311 }
7312
7313 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7314 {
7315         kvm_put_guest_xcr0(vcpu);
7316
7317         if (!vcpu->guest_fpu_loaded) {
7318                 vcpu->fpu_counter = 0;
7319                 return;
7320         }
7321
7322         vcpu->guest_fpu_loaded = 0;
7323         copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7324         __kernel_fpu_end();
7325         ++vcpu->stat.fpu_reload;
7326         /*
7327          * If using eager FPU mode, or if the guest is a frequent user
7328          * of the FPU, just leave the FPU active for next time.
7329          * Every 255 times fpu_counter rolls over to 0; a guest that uses
7330          * the FPU in bursts will revert to loading it on demand.
7331          */
7332         if (!vcpu->arch.eager_fpu) {
7333                 if (++vcpu->fpu_counter < 5)
7334                         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7335         }
7336         trace_kvm_fpu(0);
7337 }
7338
7339 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7340 {
7341         kvmclock_reset(vcpu);
7342
7343         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7344         kvm_x86_ops->vcpu_free(vcpu);
7345 }
7346
7347 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7348                                                 unsigned int id)
7349 {
7350         struct kvm_vcpu *vcpu;
7351
7352         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7353                 printk_once(KERN_WARNING
7354                 "kvm: SMP vm created on host with unstable TSC; "
7355                 "guest TSC will not be reliable\n");
7356
7357         vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7358
7359         return vcpu;
7360 }
7361
7362 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7363 {
7364         int r;
7365
7366         kvm_vcpu_mtrr_init(vcpu);
7367         r = vcpu_load(vcpu);
7368         if (r)
7369                 return r;
7370         kvm_vcpu_reset(vcpu, false);
7371         kvm_mmu_setup(vcpu);
7372         vcpu_put(vcpu);
7373         return r;
7374 }
7375
7376 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7377 {
7378         struct msr_data msr;
7379         struct kvm *kvm = vcpu->kvm;
7380
7381         if (vcpu_load(vcpu))
7382                 return;
7383         msr.data = 0x0;
7384         msr.index = MSR_IA32_TSC;
7385         msr.host_initiated = true;
7386         kvm_write_tsc(vcpu, &msr);
7387         vcpu_put(vcpu);
7388
7389         if (!kvmclock_periodic_sync)
7390                 return;
7391
7392         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7393                                         KVMCLOCK_SYNC_PERIOD);
7394 }
7395
7396 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7397 {
7398         int r;
7399         vcpu->arch.apf.msr_val = 0;
7400
7401         r = vcpu_load(vcpu);
7402         BUG_ON(r);
7403         kvm_mmu_unload(vcpu);
7404         vcpu_put(vcpu);
7405
7406         kvm_x86_ops->vcpu_free(vcpu);
7407 }
7408
7409 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7410 {
7411         vcpu->arch.hflags = 0;
7412
7413         atomic_set(&vcpu->arch.nmi_queued, 0);
7414         vcpu->arch.nmi_pending = 0;
7415         vcpu->arch.nmi_injected = false;
7416         kvm_clear_interrupt_queue(vcpu);
7417         kvm_clear_exception_queue(vcpu);
7418
7419         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7420         kvm_update_dr0123(vcpu);
7421         vcpu->arch.dr6 = DR6_INIT;
7422         kvm_update_dr6(vcpu);
7423         vcpu->arch.dr7 = DR7_FIXED_1;
7424         kvm_update_dr7(vcpu);
7425
7426         vcpu->arch.cr2 = 0;
7427
7428         kvm_make_request(KVM_REQ_EVENT, vcpu);
7429         vcpu->arch.apf.msr_val = 0;
7430         vcpu->arch.st.msr_val = 0;
7431
7432         kvmclock_reset(vcpu);
7433
7434         kvm_clear_async_pf_completion_queue(vcpu);
7435         kvm_async_pf_hash_reset(vcpu);
7436         vcpu->arch.apf.halted = false;
7437
7438         if (!init_event) {
7439                 kvm_pmu_reset(vcpu);
7440                 vcpu->arch.smbase = 0x30000;
7441         }
7442
7443         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7444         vcpu->arch.regs_avail = ~0;
7445         vcpu->arch.regs_dirty = ~0;
7446
7447         kvm_x86_ops->vcpu_reset(vcpu, init_event);
7448 }
7449
7450 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7451 {
7452         struct kvm_segment cs;
7453
7454         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7455         cs.selector = vector << 8;
7456         cs.base = vector << 12;
7457         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7458         kvm_rip_write(vcpu, 0);
7459 }
7460
7461 int kvm_arch_hardware_enable(void)
7462 {
7463         struct kvm *kvm;
7464         struct kvm_vcpu *vcpu;
7465         int i;
7466         int ret;
7467         u64 local_tsc;
7468         u64 max_tsc = 0;
7469         bool stable, backwards_tsc = false;
7470
7471         kvm_shared_msr_cpu_online();
7472         ret = kvm_x86_ops->hardware_enable();
7473         if (ret != 0)
7474                 return ret;
7475
7476         local_tsc = rdtsc();
7477         stable = !check_tsc_unstable();
7478         list_for_each_entry(kvm, &vm_list, vm_list) {
7479                 kvm_for_each_vcpu(i, vcpu, kvm) {
7480                         if (!stable && vcpu->cpu == smp_processor_id())
7481                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7482                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7483                                 backwards_tsc = true;
7484                                 if (vcpu->arch.last_host_tsc > max_tsc)
7485                                         max_tsc = vcpu->arch.last_host_tsc;
7486                         }
7487                 }
7488         }
7489
7490         /*
7491          * Sometimes, even reliable TSCs go backwards.  This happens on
7492          * platforms that reset TSC during suspend or hibernate actions, but
7493          * maintain synchronization.  We must compensate.  Fortunately, we can
7494          * detect that condition here, which happens early in CPU bringup,
7495          * before any KVM threads can be running.  Unfortunately, we can't
7496          * bring the TSCs fully up to date with real time, as we aren't yet far
7497          * enough into CPU bringup that we know how much real time has actually
7498          * elapsed; our helper function, get_kernel_ns() will be using boot
7499          * variables that haven't been updated yet.
7500          *
7501          * So we simply find the maximum observed TSC above, then record the
7502          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7503          * the adjustment will be applied.  Note that we accumulate
7504          * adjustments, in case multiple suspend cycles happen before some VCPU
7505          * gets a chance to run again.  In the event that no KVM threads get a
7506          * chance to run, we will miss the entire elapsed period, as we'll have
7507          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7508          * loose cycle time.  This isn't too big a deal, since the loss will be
7509          * uniform across all VCPUs (not to mention the scenario is extremely
7510          * unlikely). It is possible that a second hibernate recovery happens
7511          * much faster than a first, causing the observed TSC here to be
7512          * smaller; this would require additional padding adjustment, which is
7513          * why we set last_host_tsc to the local tsc observed here.
7514          *
7515          * N.B. - this code below runs only on platforms with reliable TSC,
7516          * as that is the only way backwards_tsc is set above.  Also note
7517          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7518          * have the same delta_cyc adjustment applied if backwards_tsc
7519          * is detected.  Note further, this adjustment is only done once,
7520          * as we reset last_host_tsc on all VCPUs to stop this from being
7521          * called multiple times (one for each physical CPU bringup).
7522          *
7523          * Platforms with unreliable TSCs don't have to deal with this, they
7524          * will be compensated by the logic in vcpu_load, which sets the TSC to
7525          * catchup mode.  This will catchup all VCPUs to real time, but cannot
7526          * guarantee that they stay in perfect synchronization.
7527          */
7528         if (backwards_tsc) {
7529                 u64 delta_cyc = max_tsc - local_tsc;
7530                 backwards_tsc_observed = true;
7531                 list_for_each_entry(kvm, &vm_list, vm_list) {
7532                         kvm_for_each_vcpu(i, vcpu, kvm) {
7533                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
7534                                 vcpu->arch.last_host_tsc = local_tsc;
7535                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7536                         }
7537
7538                         /*
7539                          * We have to disable TSC offset matching.. if you were
7540                          * booting a VM while issuing an S4 host suspend....
7541                          * you may have some problem.  Solving this issue is
7542                          * left as an exercise to the reader.
7543                          */
7544                         kvm->arch.last_tsc_nsec = 0;
7545                         kvm->arch.last_tsc_write = 0;
7546                 }
7547
7548         }
7549         return 0;
7550 }
7551
7552 void kvm_arch_hardware_disable(void)
7553 {
7554         kvm_x86_ops->hardware_disable();
7555         drop_user_return_notifiers();
7556 }
7557
7558 int kvm_arch_hardware_setup(void)
7559 {
7560         int r;
7561
7562         r = kvm_x86_ops->hardware_setup();
7563         if (r != 0)
7564                 return r;
7565
7566         if (kvm_has_tsc_control) {
7567                 /*
7568                  * Make sure the user can only configure tsc_khz values that
7569                  * fit into a signed integer.
7570                  * A min value is not calculated needed because it will always
7571                  * be 1 on all machines.
7572                  */
7573                 u64 max = min(0x7fffffffULL,
7574                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7575                 kvm_max_guest_tsc_khz = max;
7576
7577                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7578         }
7579
7580         kvm_init_msr_list();
7581         return 0;
7582 }
7583
7584 void kvm_arch_hardware_unsetup(void)
7585 {
7586         kvm_x86_ops->hardware_unsetup();
7587 }
7588
7589 void kvm_arch_check_processor_compat(void *rtn)
7590 {
7591         kvm_x86_ops->check_processor_compatibility(rtn);
7592 }
7593
7594 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7595 {
7596         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7597 }
7598 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7599
7600 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7601 {
7602         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7603 }
7604
7605 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
7606 {
7607         return irqchip_in_kernel(vcpu->kvm) == lapic_in_kernel(vcpu);
7608 }
7609
7610 struct static_key kvm_no_apic_vcpu __read_mostly;
7611 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7612
7613 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7614 {
7615         struct page *page;
7616         struct kvm *kvm;
7617         int r;
7618
7619         BUG_ON(vcpu->kvm == NULL);
7620         kvm = vcpu->kvm;
7621
7622         vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7623         vcpu->arch.pv.pv_unhalted = false;
7624         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7625         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7626                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7627         else
7628                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7629
7630         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7631         if (!page) {
7632                 r = -ENOMEM;
7633                 goto fail;
7634         }
7635         vcpu->arch.pio_data = page_address(page);
7636
7637         kvm_set_tsc_khz(vcpu, max_tsc_khz);
7638
7639         r = kvm_mmu_create(vcpu);
7640         if (r < 0)
7641                 goto fail_free_pio_data;
7642
7643         if (irqchip_in_kernel(kvm)) {
7644                 r = kvm_create_lapic(vcpu);
7645                 if (r < 0)
7646                         goto fail_mmu_destroy;
7647         } else
7648                 static_key_slow_inc(&kvm_no_apic_vcpu);
7649
7650         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7651                                        GFP_KERNEL);
7652         if (!vcpu->arch.mce_banks) {
7653                 r = -ENOMEM;
7654                 goto fail_free_lapic;
7655         }
7656         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7657
7658         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7659                 r = -ENOMEM;
7660                 goto fail_free_mce_banks;
7661         }
7662
7663         fx_init(vcpu);
7664
7665         vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7666         vcpu->arch.pv_time_enabled = false;
7667
7668         vcpu->arch.guest_supported_xcr0 = 0;
7669         vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7670
7671         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7672
7673         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7674
7675         kvm_async_pf_hash_reset(vcpu);
7676         kvm_pmu_init(vcpu);
7677
7678         vcpu->arch.pending_external_vector = -1;
7679
7680         kvm_hv_vcpu_init(vcpu);
7681
7682         return 0;
7683
7684 fail_free_mce_banks:
7685         kfree(vcpu->arch.mce_banks);
7686 fail_free_lapic:
7687         kvm_free_lapic(vcpu);
7688 fail_mmu_destroy:
7689         kvm_mmu_destroy(vcpu);
7690 fail_free_pio_data:
7691         free_page((unsigned long)vcpu->arch.pio_data);
7692 fail:
7693         return r;
7694 }
7695
7696 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7697 {
7698         int idx;
7699
7700         kvm_hv_vcpu_uninit(vcpu);
7701         kvm_pmu_destroy(vcpu);
7702         kfree(vcpu->arch.mce_banks);
7703         kvm_free_lapic(vcpu);
7704         idx = srcu_read_lock(&vcpu->kvm->srcu);
7705         kvm_mmu_destroy(vcpu);
7706         srcu_read_unlock(&vcpu->kvm->srcu, idx);
7707         free_page((unsigned long)vcpu->arch.pio_data);
7708         if (!lapic_in_kernel(vcpu))
7709                 static_key_slow_dec(&kvm_no_apic_vcpu);
7710 }
7711
7712 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7713 {
7714         kvm_x86_ops->sched_in(vcpu, cpu);
7715 }
7716
7717 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7718 {
7719         if (type)
7720                 return -EINVAL;
7721
7722         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7723         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7724         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7725         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7726         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7727
7728         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7729         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7730         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7731         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7732                 &kvm->arch.irq_sources_bitmap);
7733
7734         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7735         mutex_init(&kvm->arch.apic_map_lock);
7736         spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7737
7738         pvclock_update_vm_gtod_copy(kvm);
7739
7740         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7741         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7742
7743         kvm_page_track_init(kvm);
7744         kvm_mmu_init_vm(kvm);
7745
7746         return 0;
7747 }
7748
7749 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7750 {
7751         int r;
7752         r = vcpu_load(vcpu);
7753         BUG_ON(r);
7754         kvm_mmu_unload(vcpu);
7755         vcpu_put(vcpu);
7756 }
7757
7758 static void kvm_free_vcpus(struct kvm *kvm)
7759 {
7760         unsigned int i;
7761         struct kvm_vcpu *vcpu;
7762
7763         /*
7764          * Unpin any mmu pages first.
7765          */
7766         kvm_for_each_vcpu(i, vcpu, kvm) {
7767                 kvm_clear_async_pf_completion_queue(vcpu);
7768                 kvm_unload_vcpu_mmu(vcpu);
7769         }
7770         kvm_for_each_vcpu(i, vcpu, kvm)
7771                 kvm_arch_vcpu_free(vcpu);
7772
7773         mutex_lock(&kvm->lock);
7774         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7775                 kvm->vcpus[i] = NULL;
7776
7777         atomic_set(&kvm->online_vcpus, 0);
7778         mutex_unlock(&kvm->lock);
7779 }
7780
7781 void kvm_arch_sync_events(struct kvm *kvm)
7782 {
7783         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7784         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7785         kvm_free_all_assigned_devices(kvm);
7786         kvm_free_pit(kvm);
7787 }
7788
7789 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7790 {
7791         int i, r;
7792         unsigned long hva;
7793         struct kvm_memslots *slots = kvm_memslots(kvm);
7794         struct kvm_memory_slot *slot, old;
7795
7796         /* Called with kvm->slots_lock held.  */
7797         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7798                 return -EINVAL;
7799
7800         slot = id_to_memslot(slots, id);
7801         if (size) {
7802                 if (WARN_ON(slot->npages))
7803                         return -EEXIST;
7804
7805                 /*
7806                  * MAP_SHARED to prevent internal slot pages from being moved
7807                  * by fork()/COW.
7808                  */
7809                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7810                               MAP_SHARED | MAP_ANONYMOUS, 0);
7811                 if (IS_ERR((void *)hva))
7812                         return PTR_ERR((void *)hva);
7813         } else {
7814                 if (!slot->npages)
7815                         return 0;
7816
7817                 hva = 0;
7818         }
7819
7820         old = *slot;
7821         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7822                 struct kvm_userspace_memory_region m;
7823
7824                 m.slot = id | (i << 16);
7825                 m.flags = 0;
7826                 m.guest_phys_addr = gpa;
7827                 m.userspace_addr = hva;
7828                 m.memory_size = size;
7829                 r = __kvm_set_memory_region(kvm, &m);
7830                 if (r < 0)
7831                         return r;
7832         }
7833
7834         if (!size) {
7835                 r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7836                 WARN_ON(r < 0);
7837         }
7838
7839         return 0;
7840 }
7841 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7842
7843 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7844 {
7845         int r;
7846
7847         mutex_lock(&kvm->slots_lock);
7848         r = __x86_set_memory_region(kvm, id, gpa, size);
7849         mutex_unlock(&kvm->slots_lock);
7850
7851         return r;
7852 }
7853 EXPORT_SYMBOL_GPL(x86_set_memory_region);
7854
7855 void kvm_arch_destroy_vm(struct kvm *kvm)
7856 {
7857         if (current->mm == kvm->mm) {
7858                 /*
7859                  * Free memory regions allocated on behalf of userspace,
7860                  * unless the the memory map has changed due to process exit
7861                  * or fd copying.
7862                  */
7863                 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7864                 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7865                 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7866         }
7867         kvm_iommu_unmap_guest(kvm);
7868         kfree(kvm->arch.vpic);
7869         kfree(kvm->arch.vioapic);
7870         kvm_free_vcpus(kvm);
7871         kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7872         kvm_mmu_uninit_vm(kvm);
7873 }
7874
7875 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7876                            struct kvm_memory_slot *dont)
7877 {
7878         int i;
7879
7880         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7881                 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7882                         kvfree(free->arch.rmap[i]);
7883                         free->arch.rmap[i] = NULL;
7884                 }
7885                 if (i == 0)
7886                         continue;
7887
7888                 if (!dont || free->arch.lpage_info[i - 1] !=
7889                              dont->arch.lpage_info[i - 1]) {
7890                         kvfree(free->arch.lpage_info[i - 1]);
7891                         free->arch.lpage_info[i - 1] = NULL;
7892                 }
7893         }
7894
7895         kvm_page_track_free_memslot(free, dont);
7896 }
7897
7898 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7899                             unsigned long npages)
7900 {
7901         int i;
7902
7903         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7904                 struct kvm_lpage_info *linfo;
7905                 unsigned long ugfn;
7906                 int lpages;
7907                 int level = i + 1;
7908
7909                 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7910                                       slot->base_gfn, level) + 1;
7911
7912                 slot->arch.rmap[i] =
7913                         kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7914                 if (!slot->arch.rmap[i])
7915                         goto out_free;
7916                 if (i == 0)
7917                         continue;
7918
7919                 linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7920                 if (!linfo)
7921                         goto out_free;
7922
7923                 slot->arch.lpage_info[i - 1] = linfo;
7924
7925                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7926                         linfo[0].disallow_lpage = 1;
7927                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7928                         linfo[lpages - 1].disallow_lpage = 1;
7929                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7930                 /*
7931                  * If the gfn and userspace address are not aligned wrt each
7932                  * other, or if explicitly asked to, disable large page
7933                  * support for this slot
7934                  */
7935                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7936                     !kvm_largepages_enabled()) {
7937                         unsigned long j;
7938
7939                         for (j = 0; j < lpages; ++j)
7940                                 linfo[j].disallow_lpage = 1;
7941                 }
7942         }
7943
7944         if (kvm_page_track_create_memslot(slot, npages))
7945                 goto out_free;
7946
7947         return 0;
7948
7949 out_free:
7950         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7951                 kvfree(slot->arch.rmap[i]);
7952                 slot->arch.rmap[i] = NULL;
7953                 if (i == 0)
7954                         continue;
7955
7956                 kvfree(slot->arch.lpage_info[i - 1]);
7957                 slot->arch.lpage_info[i - 1] = NULL;
7958         }
7959         return -ENOMEM;
7960 }
7961
7962 void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7963 {
7964         /*
7965          * memslots->generation has been incremented.
7966          * mmio generation may have reached its maximum value.
7967          */
7968         kvm_mmu_invalidate_mmio_sptes(kvm, slots);
7969 }
7970
7971 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7972                                 struct kvm_memory_slot *memslot,
7973                                 const struct kvm_userspace_memory_region *mem,
7974                                 enum kvm_mr_change change)
7975 {
7976         return 0;
7977 }
7978
7979 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
7980                                      struct kvm_memory_slot *new)
7981 {
7982         /* Still write protect RO slot */
7983         if (new->flags & KVM_MEM_READONLY) {
7984                 kvm_mmu_slot_remove_write_access(kvm, new);
7985                 return;
7986         }
7987
7988         /*
7989          * Call kvm_x86_ops dirty logging hooks when they are valid.
7990          *
7991          * kvm_x86_ops->slot_disable_log_dirty is called when:
7992          *
7993          *  - KVM_MR_CREATE with dirty logging is disabled
7994          *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7995          *
7996          * The reason is, in case of PML, we need to set D-bit for any slots
7997          * with dirty logging disabled in order to eliminate unnecessary GPA
7998          * logging in PML buffer (and potential PML buffer full VMEXT). This
7999          * guarantees leaving PML enabled during guest's lifetime won't have
8000          * any additonal overhead from PML when guest is running with dirty
8001          * logging disabled for memory slots.
8002          *
8003          * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8004          * to dirty logging mode.
8005          *
8006          * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8007          *
8008          * In case of write protect:
8009          *
8010          * Write protect all pages for dirty logging.
8011          *
8012          * All the sptes including the large sptes which point to this
8013          * slot are set to readonly. We can not create any new large
8014          * spte on this slot until the end of the logging.
8015          *
8016          * See the comments in fast_page_fault().
8017          */
8018         if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8019                 if (kvm_x86_ops->slot_enable_log_dirty)
8020                         kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8021                 else
8022                         kvm_mmu_slot_remove_write_access(kvm, new);
8023         } else {
8024                 if (kvm_x86_ops->slot_disable_log_dirty)
8025                         kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8026         }
8027 }
8028
8029 void kvm_arch_commit_memory_region(struct kvm *kvm,
8030                                 const struct kvm_userspace_memory_region *mem,
8031                                 const struct kvm_memory_slot *old,
8032                                 const struct kvm_memory_slot *new,
8033                                 enum kvm_mr_change change)
8034 {
8035         int nr_mmu_pages = 0;
8036
8037         if (!kvm->arch.n_requested_mmu_pages)
8038                 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8039
8040         if (nr_mmu_pages)
8041                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8042
8043         /*
8044          * Dirty logging tracks sptes in 4k granularity, meaning that large
8045          * sptes have to be split.  If live migration is successful, the guest
8046          * in the source machine will be destroyed and large sptes will be
8047          * created in the destination. However, if the guest continues to run
8048          * in the source machine (for example if live migration fails), small
8049          * sptes will remain around and cause bad performance.
8050          *
8051          * Scan sptes if dirty logging has been stopped, dropping those
8052          * which can be collapsed into a single large-page spte.  Later
8053          * page faults will create the large-page sptes.
8054          */
8055         if ((change != KVM_MR_DELETE) &&
8056                 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8057                 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8058                 kvm_mmu_zap_collapsible_sptes(kvm, new);
8059
8060         /*
8061          * Set up write protection and/or dirty logging for the new slot.
8062          *
8063          * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8064          * been zapped so no dirty logging staff is needed for old slot. For
8065          * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8066          * new and it's also covered when dealing with the new slot.
8067          *
8068          * FIXME: const-ify all uses of struct kvm_memory_slot.
8069          */
8070         if (change != KVM_MR_DELETE)
8071                 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8072 }
8073
8074 void kvm_arch_flush_shadow_all(struct kvm *kvm)
8075 {
8076         kvm_mmu_invalidate_zap_all_pages(kvm);
8077 }
8078
8079 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8080                                    struct kvm_memory_slot *slot)
8081 {
8082         kvm_mmu_invalidate_zap_all_pages(kvm);
8083 }
8084
8085 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8086 {
8087         if (!list_empty_careful(&vcpu->async_pf.done))
8088                 return true;
8089
8090         if (kvm_apic_has_events(vcpu))
8091                 return true;
8092
8093         if (vcpu->arch.pv.pv_unhalted)
8094                 return true;
8095
8096         if (atomic_read(&vcpu->arch.nmi_queued))
8097                 return true;
8098
8099         if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8100                 return true;
8101
8102         if (kvm_arch_interrupt_allowed(vcpu) &&
8103             kvm_cpu_has_interrupt(vcpu))
8104                 return true;
8105
8106         if (kvm_hv_has_stimer_pending(vcpu))
8107                 return true;
8108
8109         return false;
8110 }
8111
8112 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8113 {
8114         if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8115                 kvm_x86_ops->check_nested_events(vcpu, false);
8116
8117         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8118 }
8119
8120 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8121 {
8122         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8123 }
8124
8125 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8126 {
8127         return kvm_x86_ops->interrupt_allowed(vcpu);
8128 }
8129
8130 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8131 {
8132         if (is_64_bit_mode(vcpu))
8133                 return kvm_rip_read(vcpu);
8134         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8135                      kvm_rip_read(vcpu));
8136 }
8137 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8138
8139 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8140 {
8141         return kvm_get_linear_rip(vcpu) == linear_rip;
8142 }
8143 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8144
8145 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8146 {
8147         unsigned long rflags;
8148
8149         rflags = kvm_x86_ops->get_rflags(vcpu);
8150         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8151                 rflags &= ~X86_EFLAGS_TF;
8152         return rflags;
8153 }
8154 EXPORT_SYMBOL_GPL(kvm_get_rflags);
8155
8156 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8157 {
8158         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8159             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8160                 rflags |= X86_EFLAGS_TF;
8161         kvm_x86_ops->set_rflags(vcpu, rflags);
8162 }
8163
8164 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8165 {
8166         __kvm_set_rflags(vcpu, rflags);
8167         kvm_make_request(KVM_REQ_EVENT, vcpu);
8168 }
8169 EXPORT_SYMBOL_GPL(kvm_set_rflags);
8170
8171 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8172 {
8173         int r;
8174
8175         if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8176               work->wakeup_all)
8177                 return;
8178
8179         r = kvm_mmu_reload(vcpu);
8180         if (unlikely(r))
8181                 return;
8182
8183         if (!vcpu->arch.mmu.direct_map &&
8184               work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8185                 return;
8186
8187         vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8188 }
8189
8190 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8191 {
8192         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8193 }
8194
8195 static inline u32 kvm_async_pf_next_probe(u32 key)
8196 {
8197         return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8198 }
8199
8200 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8201 {
8202         u32 key = kvm_async_pf_hash_fn(gfn);
8203
8204         while (vcpu->arch.apf.gfns[key] != ~0)
8205                 key = kvm_async_pf_next_probe(key);
8206
8207         vcpu->arch.apf.gfns[key] = gfn;
8208 }
8209
8210 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8211 {
8212         int i;
8213         u32 key = kvm_async_pf_hash_fn(gfn);
8214
8215         for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8216                      (vcpu->arch.apf.gfns[key] != gfn &&
8217                       vcpu->arch.apf.gfns[key] != ~0); i++)
8218                 key = kvm_async_pf_next_probe(key);
8219
8220         return key;
8221 }
8222
8223 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8224 {
8225         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8226 }
8227
8228 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8229 {
8230         u32 i, j, k;
8231
8232         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8233         while (true) {
8234                 vcpu->arch.apf.gfns[i] = ~0;
8235                 do {
8236                         j = kvm_async_pf_next_probe(j);
8237                         if (vcpu->arch.apf.gfns[j] == ~0)
8238                                 return;
8239                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8240                         /*
8241                          * k lies cyclically in ]i,j]
8242                          * |    i.k.j |
8243                          * |....j i.k.| or  |.k..j i...|
8244                          */
8245                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8246                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8247                 i = j;
8248         }
8249 }
8250
8251 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8252 {
8253
8254         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8255                                       sizeof(val));
8256 }
8257
8258 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8259                                      struct kvm_async_pf *work)
8260 {
8261         struct x86_exception fault;
8262
8263         trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8264         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8265
8266         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8267             (vcpu->arch.apf.send_user_only &&
8268              kvm_x86_ops->get_cpl(vcpu) == 0))
8269                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8270         else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8271                 fault.vector = PF_VECTOR;
8272                 fault.error_code_valid = true;
8273                 fault.error_code = 0;
8274                 fault.nested_page_fault = false;
8275                 fault.address = work->arch.token;
8276                 kvm_inject_page_fault(vcpu, &fault);
8277         }
8278 }
8279
8280 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8281                                  struct kvm_async_pf *work)
8282 {
8283         struct x86_exception fault;
8284
8285         trace_kvm_async_pf_ready(work->arch.token, work->gva);
8286         if (work->wakeup_all)
8287                 work->arch.token = ~0; /* broadcast wakeup */
8288         else
8289                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8290
8291         if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8292             !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8293                 fault.vector = PF_VECTOR;
8294                 fault.error_code_valid = true;
8295                 fault.error_code = 0;
8296                 fault.nested_page_fault = false;
8297                 fault.address = work->arch.token;
8298                 kvm_inject_page_fault(vcpu, &fault);
8299         }
8300         vcpu->arch.apf.halted = false;
8301         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8302 }
8303
8304 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8305 {
8306         if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8307                 return true;
8308         else
8309                 return !kvm_event_needs_reinjection(vcpu) &&
8310                         kvm_x86_ops->interrupt_allowed(vcpu);
8311 }
8312
8313 void kvm_arch_start_assignment(struct kvm *kvm)
8314 {
8315         atomic_inc(&kvm->arch.assigned_device_count);
8316 }
8317 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8318
8319 void kvm_arch_end_assignment(struct kvm *kvm)
8320 {
8321         atomic_dec(&kvm->arch.assigned_device_count);
8322 }
8323 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8324
8325 bool kvm_arch_has_assigned_device(struct kvm *kvm)
8326 {
8327         return atomic_read(&kvm->arch.assigned_device_count);
8328 }
8329 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8330
8331 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8332 {
8333         atomic_inc(&kvm->arch.noncoherent_dma_count);
8334 }
8335 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8336
8337 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8338 {
8339         atomic_dec(&kvm->arch.noncoherent_dma_count);
8340 }
8341 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8342
8343 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8344 {
8345         return atomic_read(&kvm->arch.noncoherent_dma_count);
8346 }
8347 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8348
8349 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8350                                       struct irq_bypass_producer *prod)
8351 {
8352         struct kvm_kernel_irqfd *irqfd =
8353                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8354
8355         if (kvm_x86_ops->update_pi_irte) {
8356                 irqfd->producer = prod;
8357                 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8358                                 prod->irq, irqfd->gsi, 1);
8359         }
8360
8361         return -EINVAL;
8362 }
8363
8364 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8365                                       struct irq_bypass_producer *prod)
8366 {
8367         int ret;
8368         struct kvm_kernel_irqfd *irqfd =
8369                 container_of(cons, struct kvm_kernel_irqfd, consumer);
8370
8371         if (!kvm_x86_ops->update_pi_irte) {
8372                 WARN_ON(irqfd->producer != NULL);
8373                 return;
8374         }
8375
8376         WARN_ON(irqfd->producer != prod);
8377         irqfd->producer = NULL;
8378
8379         /*
8380          * When producer of consumer is unregistered, we change back to
8381          * remapped mode, so we can re-use the current implementation
8382          * when the irq is masked/disabed or the consumer side (KVM
8383          * int this case doesn't want to receive the interrupts.
8384         */
8385         ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8386         if (ret)
8387                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8388                        " fails: %d\n", irqfd->consumer.token, ret);
8389 }
8390
8391 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8392                                    uint32_t guest_irq, bool set)
8393 {
8394         if (!kvm_x86_ops->update_pi_irte)
8395                 return -EINVAL;
8396
8397         return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8398 }
8399
8400 bool kvm_vector_hashing_enabled(void)
8401 {
8402         return vector_hashing;
8403 }
8404 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8405
8406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8413 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8414 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);