7042d14ed8f377c0a9cc3f069fe73133242b5636
[cascardo/linux.git] / arch / x86 / mm / init_64.c
1 /*
2  *  linux/arch/x86_64/mm/init.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz>
6  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
7  */
8
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/ptrace.h>
16 #include <linux/mman.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/initrd.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/proc_fs.h>
26 #include <linux/pci.h>
27 #include <linux/pfn.h>
28 #include <linux/poison.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/memory.h>
31 #include <linux/memory_hotplug.h>
32 #include <linux/memremap.h>
33 #include <linux/nmi.h>
34 #include <linux/gfp.h>
35 #include <linux/kcore.h>
36
37 #include <asm/processor.h>
38 #include <asm/bios_ebda.h>
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/pgalloc.h>
42 #include <asm/dma.h>
43 #include <asm/fixmap.h>
44 #include <asm/e820.h>
45 #include <asm/apic.h>
46 #include <asm/tlb.h>
47 #include <asm/mmu_context.h>
48 #include <asm/proto.h>
49 #include <asm/smp.h>
50 #include <asm/sections.h>
51 #include <asm/kdebug.h>
52 #include <asm/numa.h>
53 #include <asm/cacheflush.h>
54 #include <asm/init.h>
55 #include <asm/uv/uv.h>
56 #include <asm/setup.h>
57
58 #include "mm_internal.h"
59
60 #include "ident_map.c"
61
62 /*
63  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
64  * physical space so we can cache the place of the first one and move
65  * around without checking the pgd every time.
66  */
67
68 pteval_t __supported_pte_mask __read_mostly = ~0;
69 EXPORT_SYMBOL_GPL(__supported_pte_mask);
70
71 int force_personality32;
72
73 /*
74  * noexec32=on|off
75  * Control non executable heap for 32bit processes.
76  * To control the stack too use noexec=off
77  *
78  * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
79  * off  PROT_READ implies PROT_EXEC
80  */
81 static int __init nonx32_setup(char *str)
82 {
83         if (!strcmp(str, "on"))
84                 force_personality32 &= ~READ_IMPLIES_EXEC;
85         else if (!strcmp(str, "off"))
86                 force_personality32 |= READ_IMPLIES_EXEC;
87         return 1;
88 }
89 __setup("noexec32=", nonx32_setup);
90
91 /*
92  * When memory was added/removed make sure all the processes MM have
93  * suitable PGD entries in the local PGD level page.
94  */
95 void sync_global_pgds(unsigned long start, unsigned long end, int removed)
96 {
97         unsigned long address;
98
99         for (address = start; address <= end; address += PGDIR_SIZE) {
100                 const pgd_t *pgd_ref = pgd_offset_k(address);
101                 struct page *page;
102
103                 /*
104                  * When it is called after memory hot remove, pgd_none()
105                  * returns true. In this case (removed == 1), we must clear
106                  * the PGD entries in the local PGD level page.
107                  */
108                 if (pgd_none(*pgd_ref) && !removed)
109                         continue;
110
111                 spin_lock(&pgd_lock);
112                 list_for_each_entry(page, &pgd_list, lru) {
113                         pgd_t *pgd;
114                         spinlock_t *pgt_lock;
115
116                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
117                         /* the pgt_lock only for Xen */
118                         pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
119                         spin_lock(pgt_lock);
120
121                         if (!pgd_none(*pgd_ref) && !pgd_none(*pgd))
122                                 BUG_ON(pgd_page_vaddr(*pgd)
123                                        != pgd_page_vaddr(*pgd_ref));
124
125                         if (removed) {
126                                 if (pgd_none(*pgd_ref) && !pgd_none(*pgd))
127                                         pgd_clear(pgd);
128                         } else {
129                                 if (pgd_none(*pgd))
130                                         set_pgd(pgd, *pgd_ref);
131                         }
132
133                         spin_unlock(pgt_lock);
134                 }
135                 spin_unlock(&pgd_lock);
136         }
137 }
138
139 /*
140  * NOTE: This function is marked __ref because it calls __init function
141  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
142  */
143 static __ref void *spp_getpage(void)
144 {
145         void *ptr;
146
147         if (after_bootmem)
148                 ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
149         else
150                 ptr = alloc_bootmem_pages(PAGE_SIZE);
151
152         if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
153                 panic("set_pte_phys: cannot allocate page data %s\n",
154                         after_bootmem ? "after bootmem" : "");
155         }
156
157         pr_debug("spp_getpage %p\n", ptr);
158
159         return ptr;
160 }
161
162 static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
163 {
164         if (pgd_none(*pgd)) {
165                 pud_t *pud = (pud_t *)spp_getpage();
166                 pgd_populate(&init_mm, pgd, pud);
167                 if (pud != pud_offset(pgd, 0))
168                         printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
169                                pud, pud_offset(pgd, 0));
170         }
171         return pud_offset(pgd, vaddr);
172 }
173
174 static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
175 {
176         if (pud_none(*pud)) {
177                 pmd_t *pmd = (pmd_t *) spp_getpage();
178                 pud_populate(&init_mm, pud, pmd);
179                 if (pmd != pmd_offset(pud, 0))
180                         printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
181                                pmd, pmd_offset(pud, 0));
182         }
183         return pmd_offset(pud, vaddr);
184 }
185
186 static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
187 {
188         if (pmd_none(*pmd)) {
189                 pte_t *pte = (pte_t *) spp_getpage();
190                 pmd_populate_kernel(&init_mm, pmd, pte);
191                 if (pte != pte_offset_kernel(pmd, 0))
192                         printk(KERN_ERR "PAGETABLE BUG #02!\n");
193         }
194         return pte_offset_kernel(pmd, vaddr);
195 }
196
197 void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
198 {
199         pud_t *pud;
200         pmd_t *pmd;
201         pte_t *pte;
202
203         pud = pud_page + pud_index(vaddr);
204         pmd = fill_pmd(pud, vaddr);
205         pte = fill_pte(pmd, vaddr);
206
207         set_pte(pte, new_pte);
208
209         /*
210          * It's enough to flush this one mapping.
211          * (PGE mappings get flushed as well)
212          */
213         __flush_tlb_one(vaddr);
214 }
215
216 void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
217 {
218         pgd_t *pgd;
219         pud_t *pud_page;
220
221         pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
222
223         pgd = pgd_offset_k(vaddr);
224         if (pgd_none(*pgd)) {
225                 printk(KERN_ERR
226                         "PGD FIXMAP MISSING, it should be setup in head.S!\n");
227                 return;
228         }
229         pud_page = (pud_t*)pgd_page_vaddr(*pgd);
230         set_pte_vaddr_pud(pud_page, vaddr, pteval);
231 }
232
233 pmd_t * __init populate_extra_pmd(unsigned long vaddr)
234 {
235         pgd_t *pgd;
236         pud_t *pud;
237
238         pgd = pgd_offset_k(vaddr);
239         pud = fill_pud(pgd, vaddr);
240         return fill_pmd(pud, vaddr);
241 }
242
243 pte_t * __init populate_extra_pte(unsigned long vaddr)
244 {
245         pmd_t *pmd;
246
247         pmd = populate_extra_pmd(vaddr);
248         return fill_pte(pmd, vaddr);
249 }
250
251 /*
252  * Create large page table mappings for a range of physical addresses.
253  */
254 static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
255                                         enum page_cache_mode cache)
256 {
257         pgd_t *pgd;
258         pud_t *pud;
259         pmd_t *pmd;
260         pgprot_t prot;
261
262         pgprot_val(prot) = pgprot_val(PAGE_KERNEL_LARGE) |
263                 pgprot_val(pgprot_4k_2_large(cachemode2pgprot(cache)));
264         BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
265         for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
266                 pgd = pgd_offset_k((unsigned long)__va(phys));
267                 if (pgd_none(*pgd)) {
268                         pud = (pud_t *) spp_getpage();
269                         set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
270                                                 _PAGE_USER));
271                 }
272                 pud = pud_offset(pgd, (unsigned long)__va(phys));
273                 if (pud_none(*pud)) {
274                         pmd = (pmd_t *) spp_getpage();
275                         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
276                                                 _PAGE_USER));
277                 }
278                 pmd = pmd_offset(pud, phys);
279                 BUG_ON(!pmd_none(*pmd));
280                 set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
281         }
282 }
283
284 void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
285 {
286         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_WB);
287 }
288
289 void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
290 {
291         __init_extra_mapping(phys, size, _PAGE_CACHE_MODE_UC);
292 }
293
294 /*
295  * The head.S code sets up the kernel high mapping:
296  *
297  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
298  *
299  * phys_base holds the negative offset to the kernel, which is added
300  * to the compile time generated pmds. This results in invalid pmds up
301  * to the point where we hit the physaddr 0 mapping.
302  *
303  * We limit the mappings to the region from _text to _brk_end.  _brk_end
304  * is rounded up to the 2MB boundary. This catches the invalid pmds as
305  * well, as they are located before _text:
306  */
307 void __init cleanup_highmap(void)
308 {
309         unsigned long vaddr = __START_KERNEL_map;
310         unsigned long vaddr_end = __START_KERNEL_map + KERNEL_IMAGE_SIZE;
311         unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
312         pmd_t *pmd = level2_kernel_pgt;
313
314         /*
315          * Native path, max_pfn_mapped is not set yet.
316          * Xen has valid max_pfn_mapped set in
317          *      arch/x86/xen/mmu.c:xen_setup_kernel_pagetable().
318          */
319         if (max_pfn_mapped)
320                 vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT);
321
322         for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) {
323                 if (pmd_none(*pmd))
324                         continue;
325                 if (vaddr < (unsigned long) _text || vaddr > end)
326                         set_pmd(pmd, __pmd(0));
327         }
328 }
329
330 static unsigned long __meminit
331 phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
332               pgprot_t prot)
333 {
334         unsigned long pages = 0, next;
335         unsigned long last_map_addr = end;
336         int i;
337
338         pte_t *pte = pte_page + pte_index(addr);
339
340         for (i = pte_index(addr); i < PTRS_PER_PTE; i++, addr = next, pte++) {
341                 next = (addr & PAGE_MASK) + PAGE_SIZE;
342                 if (addr >= end) {
343                         if (!after_bootmem &&
344                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RAM) &&
345                             !e820_any_mapped(addr & PAGE_MASK, next, E820_RESERVED_KERN))
346                                 set_pte(pte, __pte(0));
347                         continue;
348                 }
349
350                 /*
351                  * We will re-use the existing mapping.
352                  * Xen for example has some special requirements, like mapping
353                  * pagetable pages as RO. So assume someone who pre-setup
354                  * these mappings are more intelligent.
355                  */
356                 if (pte_val(*pte)) {
357                         if (!after_bootmem)
358                                 pages++;
359                         continue;
360                 }
361
362                 if (0)
363                         printk("   pte=%p addr=%lx pte=%016lx\n",
364                                pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
365                 pages++;
366                 set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
367                 last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
368         }
369
370         update_page_count(PG_LEVEL_4K, pages);
371
372         return last_map_addr;
373 }
374
375 static unsigned long __meminit
376 phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
377               unsigned long page_size_mask, pgprot_t prot)
378 {
379         unsigned long pages = 0, next;
380         unsigned long last_map_addr = end;
381
382         int i = pmd_index(address);
383
384         for (; i < PTRS_PER_PMD; i++, address = next) {
385                 pmd_t *pmd = pmd_page + pmd_index(address);
386                 pte_t *pte;
387                 pgprot_t new_prot = prot;
388
389                 next = (address & PMD_MASK) + PMD_SIZE;
390                 if (address >= end) {
391                         if (!after_bootmem &&
392                             !e820_any_mapped(address & PMD_MASK, next, E820_RAM) &&
393                             !e820_any_mapped(address & PMD_MASK, next, E820_RESERVED_KERN))
394                                 set_pmd(pmd, __pmd(0));
395                         continue;
396                 }
397
398                 if (pmd_val(*pmd)) {
399                         if (!pmd_large(*pmd)) {
400                                 spin_lock(&init_mm.page_table_lock);
401                                 pte = (pte_t *)pmd_page_vaddr(*pmd);
402                                 last_map_addr = phys_pte_init(pte, address,
403                                                                 end, prot);
404                                 spin_unlock(&init_mm.page_table_lock);
405                                 continue;
406                         }
407                         /*
408                          * If we are ok with PG_LEVEL_2M mapping, then we will
409                          * use the existing mapping,
410                          *
411                          * Otherwise, we will split the large page mapping but
412                          * use the same existing protection bits except for
413                          * large page, so that we don't violate Intel's TLB
414                          * Application note (317080) which says, while changing
415                          * the page sizes, new and old translations should
416                          * not differ with respect to page frame and
417                          * attributes.
418                          */
419                         if (page_size_mask & (1 << PG_LEVEL_2M)) {
420                                 if (!after_bootmem)
421                                         pages++;
422                                 last_map_addr = next;
423                                 continue;
424                         }
425                         new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
426                 }
427
428                 if (page_size_mask & (1<<PG_LEVEL_2M)) {
429                         pages++;
430                         spin_lock(&init_mm.page_table_lock);
431                         set_pte((pte_t *)pmd,
432                                 pfn_pte((address & PMD_MASK) >> PAGE_SHIFT,
433                                         __pgprot(pgprot_val(prot) | _PAGE_PSE)));
434                         spin_unlock(&init_mm.page_table_lock);
435                         last_map_addr = next;
436                         continue;
437                 }
438
439                 pte = alloc_low_page();
440                 last_map_addr = phys_pte_init(pte, address, end, new_prot);
441
442                 spin_lock(&init_mm.page_table_lock);
443                 pmd_populate_kernel(&init_mm, pmd, pte);
444                 spin_unlock(&init_mm.page_table_lock);
445         }
446         update_page_count(PG_LEVEL_2M, pages);
447         return last_map_addr;
448 }
449
450 static unsigned long __meminit
451 phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
452                          unsigned long page_size_mask)
453 {
454         unsigned long pages = 0, next;
455         unsigned long last_map_addr = end;
456         int i = pud_index(addr);
457
458         for (; i < PTRS_PER_PUD; i++, addr = next) {
459                 pud_t *pud = pud_page + pud_index(addr);
460                 pmd_t *pmd;
461                 pgprot_t prot = PAGE_KERNEL;
462
463                 next = (addr & PUD_MASK) + PUD_SIZE;
464                 if (addr >= end) {
465                         if (!after_bootmem &&
466                             !e820_any_mapped(addr & PUD_MASK, next, E820_RAM) &&
467                             !e820_any_mapped(addr & PUD_MASK, next, E820_RESERVED_KERN))
468                                 set_pud(pud, __pud(0));
469                         continue;
470                 }
471
472                 if (pud_val(*pud)) {
473                         if (!pud_large(*pud)) {
474                                 pmd = pmd_offset(pud, 0);
475                                 last_map_addr = phys_pmd_init(pmd, addr, end,
476                                                          page_size_mask, prot);
477                                 __flush_tlb_all();
478                                 continue;
479                         }
480                         /*
481                          * If we are ok with PG_LEVEL_1G mapping, then we will
482                          * use the existing mapping.
483                          *
484                          * Otherwise, we will split the gbpage mapping but use
485                          * the same existing protection  bits except for large
486                          * page, so that we don't violate Intel's TLB
487                          * Application note (317080) which says, while changing
488                          * the page sizes, new and old translations should
489                          * not differ with respect to page frame and
490                          * attributes.
491                          */
492                         if (page_size_mask & (1 << PG_LEVEL_1G)) {
493                                 if (!after_bootmem)
494                                         pages++;
495                                 last_map_addr = next;
496                                 continue;
497                         }
498                         prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
499                 }
500
501                 if (page_size_mask & (1<<PG_LEVEL_1G)) {
502                         pages++;
503                         spin_lock(&init_mm.page_table_lock);
504                         set_pte((pte_t *)pud,
505                                 pfn_pte((addr & PUD_MASK) >> PAGE_SHIFT,
506                                         PAGE_KERNEL_LARGE));
507                         spin_unlock(&init_mm.page_table_lock);
508                         last_map_addr = next;
509                         continue;
510                 }
511
512                 pmd = alloc_low_page();
513                 last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
514                                               prot);
515
516                 spin_lock(&init_mm.page_table_lock);
517                 pud_populate(&init_mm, pud, pmd);
518                 spin_unlock(&init_mm.page_table_lock);
519         }
520         __flush_tlb_all();
521
522         update_page_count(PG_LEVEL_1G, pages);
523
524         return last_map_addr;
525 }
526
527 unsigned long __meminit
528 kernel_physical_mapping_init(unsigned long start,
529                              unsigned long end,
530                              unsigned long page_size_mask)
531 {
532         bool pgd_changed = false;
533         unsigned long next, last_map_addr = end;
534         unsigned long addr;
535
536         start = (unsigned long)__va(start);
537         end = (unsigned long)__va(end);
538         addr = start;
539
540         for (; start < end; start = next) {
541                 pgd_t *pgd = pgd_offset_k(start);
542                 pud_t *pud;
543
544                 next = (start & PGDIR_MASK) + PGDIR_SIZE;
545
546                 if (pgd_val(*pgd)) {
547                         pud = (pud_t *)pgd_page_vaddr(*pgd);
548                         last_map_addr = phys_pud_init(pud, __pa(start),
549                                                  __pa(end), page_size_mask);
550                         continue;
551                 }
552
553                 pud = alloc_low_page();
554                 last_map_addr = phys_pud_init(pud, __pa(start), __pa(end),
555                                                  page_size_mask);
556
557                 spin_lock(&init_mm.page_table_lock);
558                 pgd_populate(&init_mm, pgd, pud);
559                 spin_unlock(&init_mm.page_table_lock);
560                 pgd_changed = true;
561         }
562
563         if (pgd_changed)
564                 sync_global_pgds(addr, end - 1, 0);
565
566         __flush_tlb_all();
567
568         return last_map_addr;
569 }
570
571 #ifndef CONFIG_NUMA
572 void __init initmem_init(void)
573 {
574         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
575 }
576 #endif
577
578 void __init paging_init(void)
579 {
580         sparse_memory_present_with_active_regions(MAX_NUMNODES);
581         sparse_init();
582
583         /*
584          * clear the default setting with node 0
585          * note: don't use nodes_clear here, that is really clearing when
586          *       numa support is not compiled in, and later node_set_state
587          *       will not set it back.
588          */
589         node_clear_state(0, N_MEMORY);
590         if (N_MEMORY != N_NORMAL_MEMORY)
591                 node_clear_state(0, N_NORMAL_MEMORY);
592
593         zone_sizes_init();
594 }
595
596 /*
597  * Memory hotplug specific functions
598  */
599 #ifdef CONFIG_MEMORY_HOTPLUG
600 /*
601  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need
602  * updating.
603  */
604 static void  update_end_of_memory_vars(u64 start, u64 size)
605 {
606         unsigned long end_pfn = PFN_UP(start + size);
607
608         if (end_pfn > max_pfn) {
609                 max_pfn = end_pfn;
610                 max_low_pfn = end_pfn;
611                 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
612         }
613 }
614
615 /*
616  * Memory is added always to NORMAL zone. This means you will never get
617  * additional DMA/DMA32 memory.
618  */
619 int arch_add_memory(int nid, u64 start, u64 size, bool for_device)
620 {
621         struct pglist_data *pgdat = NODE_DATA(nid);
622         struct zone *zone = pgdat->node_zones +
623                 zone_for_memory(nid, start, size, ZONE_NORMAL, for_device);
624         unsigned long start_pfn = start >> PAGE_SHIFT;
625         unsigned long nr_pages = size >> PAGE_SHIFT;
626         int ret;
627
628         init_memory_mapping(start, start + size);
629
630         ret = __add_pages(nid, zone, start_pfn, nr_pages);
631         WARN_ON_ONCE(ret);
632
633         /* update max_pfn, max_low_pfn and high_memory */
634         update_end_of_memory_vars(start, size);
635
636         return ret;
637 }
638 EXPORT_SYMBOL_GPL(arch_add_memory);
639
640 #define PAGE_INUSE 0xFD
641
642 static void __meminit free_pagetable(struct page *page, int order)
643 {
644         unsigned long magic;
645         unsigned int nr_pages = 1 << order;
646         struct vmem_altmap *altmap = to_vmem_altmap((unsigned long) page);
647
648         if (altmap) {
649                 vmem_altmap_free(altmap, nr_pages);
650                 return;
651         }
652
653         /* bootmem page has reserved flag */
654         if (PageReserved(page)) {
655                 __ClearPageReserved(page);
656
657                 magic = (unsigned long)page->lru.next;
658                 if (magic == SECTION_INFO || magic == MIX_SECTION_INFO) {
659                         while (nr_pages--)
660                                 put_page_bootmem(page++);
661                 } else
662                         while (nr_pages--)
663                                 free_reserved_page(page++);
664         } else
665                 free_pages((unsigned long)page_address(page), order);
666 }
667
668 static void __meminit free_pte_table(pte_t *pte_start, pmd_t *pmd)
669 {
670         pte_t *pte;
671         int i;
672
673         for (i = 0; i < PTRS_PER_PTE; i++) {
674                 pte = pte_start + i;
675                 if (pte_val(*pte))
676                         return;
677         }
678
679         /* free a pte talbe */
680         free_pagetable(pmd_page(*pmd), 0);
681         spin_lock(&init_mm.page_table_lock);
682         pmd_clear(pmd);
683         spin_unlock(&init_mm.page_table_lock);
684 }
685
686 static void __meminit free_pmd_table(pmd_t *pmd_start, pud_t *pud)
687 {
688         pmd_t *pmd;
689         int i;
690
691         for (i = 0; i < PTRS_PER_PMD; i++) {
692                 pmd = pmd_start + i;
693                 if (pmd_val(*pmd))
694                         return;
695         }
696
697         /* free a pmd talbe */
698         free_pagetable(pud_page(*pud), 0);
699         spin_lock(&init_mm.page_table_lock);
700         pud_clear(pud);
701         spin_unlock(&init_mm.page_table_lock);
702 }
703
704 /* Return true if pgd is changed, otherwise return false. */
705 static bool __meminit free_pud_table(pud_t *pud_start, pgd_t *pgd)
706 {
707         pud_t *pud;
708         int i;
709
710         for (i = 0; i < PTRS_PER_PUD; i++) {
711                 pud = pud_start + i;
712                 if (pud_val(*pud))
713                         return false;
714         }
715
716         /* free a pud table */
717         free_pagetable(pgd_page(*pgd), 0);
718         spin_lock(&init_mm.page_table_lock);
719         pgd_clear(pgd);
720         spin_unlock(&init_mm.page_table_lock);
721
722         return true;
723 }
724
725 static void __meminit
726 remove_pte_table(pte_t *pte_start, unsigned long addr, unsigned long end,
727                  bool direct)
728 {
729         unsigned long next, pages = 0;
730         pte_t *pte;
731         void *page_addr;
732         phys_addr_t phys_addr;
733
734         pte = pte_start + pte_index(addr);
735         for (; addr < end; addr = next, pte++) {
736                 next = (addr + PAGE_SIZE) & PAGE_MASK;
737                 if (next > end)
738                         next = end;
739
740                 if (!pte_present(*pte))
741                         continue;
742
743                 /*
744                  * We mapped [0,1G) memory as identity mapping when
745                  * initializing, in arch/x86/kernel/head_64.S. These
746                  * pagetables cannot be removed.
747                  */
748                 phys_addr = pte_val(*pte) + (addr & PAGE_MASK);
749                 if (phys_addr < (phys_addr_t)0x40000000)
750                         return;
751
752                 if (PAGE_ALIGNED(addr) && PAGE_ALIGNED(next)) {
753                         /*
754                          * Do not free direct mapping pages since they were
755                          * freed when offlining, or simplely not in use.
756                          */
757                         if (!direct)
758                                 free_pagetable(pte_page(*pte), 0);
759
760                         spin_lock(&init_mm.page_table_lock);
761                         pte_clear(&init_mm, addr, pte);
762                         spin_unlock(&init_mm.page_table_lock);
763
764                         /* For non-direct mapping, pages means nothing. */
765                         pages++;
766                 } else {
767                         /*
768                          * If we are here, we are freeing vmemmap pages since
769                          * direct mapped memory ranges to be freed are aligned.
770                          *
771                          * If we are not removing the whole page, it means
772                          * other page structs in this page are being used and
773                          * we canot remove them. So fill the unused page_structs
774                          * with 0xFD, and remove the page when it is wholly
775                          * filled with 0xFD.
776                          */
777                         memset((void *)addr, PAGE_INUSE, next - addr);
778
779                         page_addr = page_address(pte_page(*pte));
780                         if (!memchr_inv(page_addr, PAGE_INUSE, PAGE_SIZE)) {
781                                 free_pagetable(pte_page(*pte), 0);
782
783                                 spin_lock(&init_mm.page_table_lock);
784                                 pte_clear(&init_mm, addr, pte);
785                                 spin_unlock(&init_mm.page_table_lock);
786                         }
787                 }
788         }
789
790         /* Call free_pte_table() in remove_pmd_table(). */
791         flush_tlb_all();
792         if (direct)
793                 update_page_count(PG_LEVEL_4K, -pages);
794 }
795
796 static void __meminit
797 remove_pmd_table(pmd_t *pmd_start, unsigned long addr, unsigned long end,
798                  bool direct)
799 {
800         unsigned long next, pages = 0;
801         pte_t *pte_base;
802         pmd_t *pmd;
803         void *page_addr;
804
805         pmd = pmd_start + pmd_index(addr);
806         for (; addr < end; addr = next, pmd++) {
807                 next = pmd_addr_end(addr, end);
808
809                 if (!pmd_present(*pmd))
810                         continue;
811
812                 if (pmd_large(*pmd)) {
813                         if (IS_ALIGNED(addr, PMD_SIZE) &&
814                             IS_ALIGNED(next, PMD_SIZE)) {
815                                 if (!direct)
816                                         free_pagetable(pmd_page(*pmd),
817                                                        get_order(PMD_SIZE));
818
819                                 spin_lock(&init_mm.page_table_lock);
820                                 pmd_clear(pmd);
821                                 spin_unlock(&init_mm.page_table_lock);
822                                 pages++;
823                         } else {
824                                 /* If here, we are freeing vmemmap pages. */
825                                 memset((void *)addr, PAGE_INUSE, next - addr);
826
827                                 page_addr = page_address(pmd_page(*pmd));
828                                 if (!memchr_inv(page_addr, PAGE_INUSE,
829                                                 PMD_SIZE)) {
830                                         free_pagetable(pmd_page(*pmd),
831                                                        get_order(PMD_SIZE));
832
833                                         spin_lock(&init_mm.page_table_lock);
834                                         pmd_clear(pmd);
835                                         spin_unlock(&init_mm.page_table_lock);
836                                 }
837                         }
838
839                         continue;
840                 }
841
842                 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
843                 remove_pte_table(pte_base, addr, next, direct);
844                 free_pte_table(pte_base, pmd);
845         }
846
847         /* Call free_pmd_table() in remove_pud_table(). */
848         if (direct)
849                 update_page_count(PG_LEVEL_2M, -pages);
850 }
851
852 static void __meminit
853 remove_pud_table(pud_t *pud_start, unsigned long addr, unsigned long end,
854                  bool direct)
855 {
856         unsigned long next, pages = 0;
857         pmd_t *pmd_base;
858         pud_t *pud;
859         void *page_addr;
860
861         pud = pud_start + pud_index(addr);
862         for (; addr < end; addr = next, pud++) {
863                 next = pud_addr_end(addr, end);
864
865                 if (!pud_present(*pud))
866                         continue;
867
868                 if (pud_large(*pud)) {
869                         if (IS_ALIGNED(addr, PUD_SIZE) &&
870                             IS_ALIGNED(next, PUD_SIZE)) {
871                                 if (!direct)
872                                         free_pagetable(pud_page(*pud),
873                                                        get_order(PUD_SIZE));
874
875                                 spin_lock(&init_mm.page_table_lock);
876                                 pud_clear(pud);
877                                 spin_unlock(&init_mm.page_table_lock);
878                                 pages++;
879                         } else {
880                                 /* If here, we are freeing vmemmap pages. */
881                                 memset((void *)addr, PAGE_INUSE, next - addr);
882
883                                 page_addr = page_address(pud_page(*pud));
884                                 if (!memchr_inv(page_addr, PAGE_INUSE,
885                                                 PUD_SIZE)) {
886                                         free_pagetable(pud_page(*pud),
887                                                        get_order(PUD_SIZE));
888
889                                         spin_lock(&init_mm.page_table_lock);
890                                         pud_clear(pud);
891                                         spin_unlock(&init_mm.page_table_lock);
892                                 }
893                         }
894
895                         continue;
896                 }
897
898                 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
899                 remove_pmd_table(pmd_base, addr, next, direct);
900                 free_pmd_table(pmd_base, pud);
901         }
902
903         if (direct)
904                 update_page_count(PG_LEVEL_1G, -pages);
905 }
906
907 /* start and end are both virtual address. */
908 static void __meminit
909 remove_pagetable(unsigned long start, unsigned long end, bool direct)
910 {
911         unsigned long next;
912         unsigned long addr;
913         pgd_t *pgd;
914         pud_t *pud;
915         bool pgd_changed = false;
916
917         for (addr = start; addr < end; addr = next) {
918                 next = pgd_addr_end(addr, end);
919
920                 pgd = pgd_offset_k(addr);
921                 if (!pgd_present(*pgd))
922                         continue;
923
924                 pud = (pud_t *)pgd_page_vaddr(*pgd);
925                 remove_pud_table(pud, addr, next, direct);
926                 if (free_pud_table(pud, pgd))
927                         pgd_changed = true;
928         }
929
930         if (pgd_changed)
931                 sync_global_pgds(start, end - 1, 1);
932
933         flush_tlb_all();
934 }
935
936 void __ref vmemmap_free(unsigned long start, unsigned long end)
937 {
938         remove_pagetable(start, end, false);
939 }
940
941 #ifdef CONFIG_MEMORY_HOTREMOVE
942 static void __meminit
943 kernel_physical_mapping_remove(unsigned long start, unsigned long end)
944 {
945         start = (unsigned long)__va(start);
946         end = (unsigned long)__va(end);
947
948         remove_pagetable(start, end, true);
949 }
950
951 int __ref arch_remove_memory(u64 start, u64 size)
952 {
953         unsigned long start_pfn = start >> PAGE_SHIFT;
954         unsigned long nr_pages = size >> PAGE_SHIFT;
955         struct page *page = pfn_to_page(start_pfn);
956         struct vmem_altmap *altmap;
957         struct zone *zone;
958         int ret;
959
960         /* With altmap the first mapped page is offset from @start */
961         altmap = to_vmem_altmap((unsigned long) page);
962         if (altmap)
963                 page += vmem_altmap_offset(altmap);
964         zone = page_zone(page);
965         ret = __remove_pages(zone, start_pfn, nr_pages);
966         WARN_ON_ONCE(ret);
967         kernel_physical_mapping_remove(start, start + size);
968
969         return ret;
970 }
971 #endif
972 #endif /* CONFIG_MEMORY_HOTPLUG */
973
974 static struct kcore_list kcore_vsyscall;
975
976 static void __init register_page_bootmem_info(void)
977 {
978 #ifdef CONFIG_NUMA
979         int i;
980
981         for_each_online_node(i)
982                 register_page_bootmem_info_node(NODE_DATA(i));
983 #endif
984 }
985
986 void __init mem_init(void)
987 {
988         pci_iommu_alloc();
989
990         /* clear_bss() already clear the empty_zero_page */
991
992         register_page_bootmem_info();
993
994         /* this will put all memory onto the freelists */
995         free_all_bootmem();
996         after_bootmem = 1;
997
998         /* Register memory areas for /proc/kcore */
999         kclist_add(&kcore_vsyscall, (void *)VSYSCALL_ADDR,
1000                          PAGE_SIZE, KCORE_OTHER);
1001
1002         mem_init_print_info(NULL);
1003 }
1004
1005 const int rodata_test_data = 0xC3;
1006 EXPORT_SYMBOL_GPL(rodata_test_data);
1007
1008 int kernel_set_to_readonly;
1009
1010 void set_kernel_text_rw(void)
1011 {
1012         unsigned long start = PFN_ALIGN(_text);
1013         unsigned long end = PFN_ALIGN(__stop___ex_table);
1014
1015         if (!kernel_set_to_readonly)
1016                 return;
1017
1018         pr_debug("Set kernel text: %lx - %lx for read write\n",
1019                  start, end);
1020
1021         /*
1022          * Make the kernel identity mapping for text RW. Kernel text
1023          * mapping will always be RO. Refer to the comment in
1024          * static_protections() in pageattr.c
1025          */
1026         set_memory_rw(start, (end - start) >> PAGE_SHIFT);
1027 }
1028
1029 void set_kernel_text_ro(void)
1030 {
1031         unsigned long start = PFN_ALIGN(_text);
1032         unsigned long end = PFN_ALIGN(__stop___ex_table);
1033
1034         if (!kernel_set_to_readonly)
1035                 return;
1036
1037         pr_debug("Set kernel text: %lx - %lx for read only\n",
1038                  start, end);
1039
1040         /*
1041          * Set the kernel identity mapping for text RO.
1042          */
1043         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1044 }
1045
1046 void mark_rodata_ro(void)
1047 {
1048         unsigned long start = PFN_ALIGN(_text);
1049         unsigned long rodata_start = PFN_ALIGN(__start_rodata);
1050         unsigned long end = (unsigned long) &__end_rodata_hpage_align;
1051         unsigned long text_end = PFN_ALIGN(&__stop___ex_table);
1052         unsigned long rodata_end = PFN_ALIGN(&__end_rodata);
1053         unsigned long all_end;
1054
1055         printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
1056                (end - start) >> 10);
1057         set_memory_ro(start, (end - start) >> PAGE_SHIFT);
1058
1059         kernel_set_to_readonly = 1;
1060
1061         /*
1062          * The rodata/data/bss/brk section (but not the kernel text!)
1063          * should also be not-executable.
1064          *
1065          * We align all_end to PMD_SIZE because the existing mapping
1066          * is a full PMD. If we would align _brk_end to PAGE_SIZE we
1067          * split the PMD and the reminder between _brk_end and the end
1068          * of the PMD will remain mapped executable.
1069          *
1070          * Any PMD which was setup after the one which covers _brk_end
1071          * has been zapped already via cleanup_highmem().
1072          */
1073         all_end = roundup((unsigned long)_brk_end, PMD_SIZE);
1074         set_memory_nx(text_end, (all_end - text_end) >> PAGE_SHIFT);
1075
1076         rodata_test();
1077
1078 #ifdef CONFIG_CPA_DEBUG
1079         printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
1080         set_memory_rw(start, (end-start) >> PAGE_SHIFT);
1081
1082         printk(KERN_INFO "Testing CPA: again\n");
1083         set_memory_ro(start, (end-start) >> PAGE_SHIFT);
1084 #endif
1085
1086         free_init_pages("unused kernel",
1087                         (unsigned long) __va(__pa_symbol(text_end)),
1088                         (unsigned long) __va(__pa_symbol(rodata_start)));
1089         free_init_pages("unused kernel",
1090                         (unsigned long) __va(__pa_symbol(rodata_end)),
1091                         (unsigned long) __va(__pa_symbol(_sdata)));
1092
1093         debug_checkwx();
1094 }
1095
1096 int kern_addr_valid(unsigned long addr)
1097 {
1098         unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
1099         pgd_t *pgd;
1100         pud_t *pud;
1101         pmd_t *pmd;
1102         pte_t *pte;
1103
1104         if (above != 0 && above != -1UL)
1105                 return 0;
1106
1107         pgd = pgd_offset_k(addr);
1108         if (pgd_none(*pgd))
1109                 return 0;
1110
1111         pud = pud_offset(pgd, addr);
1112         if (pud_none(*pud))
1113                 return 0;
1114
1115         if (pud_large(*pud))
1116                 return pfn_valid(pud_pfn(*pud));
1117
1118         pmd = pmd_offset(pud, addr);
1119         if (pmd_none(*pmd))
1120                 return 0;
1121
1122         if (pmd_large(*pmd))
1123                 return pfn_valid(pmd_pfn(*pmd));
1124
1125         pte = pte_offset_kernel(pmd, addr);
1126         if (pte_none(*pte))
1127                 return 0;
1128
1129         return pfn_valid(pte_pfn(*pte));
1130 }
1131
1132 static unsigned long probe_memory_block_size(void)
1133 {
1134         unsigned long bz = MIN_MEMORY_BLOCK_SIZE;
1135
1136         /* if system is UV or has 64GB of RAM or more, use large blocks */
1137         if (is_uv_system() || ((max_pfn << PAGE_SHIFT) >= (64UL << 30)))
1138                 bz = 2UL << 30; /* 2GB */
1139
1140         pr_info("x86/mm: Memory block size: %ldMB\n", bz >> 20);
1141
1142         return bz;
1143 }
1144
1145 static unsigned long memory_block_size_probed;
1146 unsigned long memory_block_size_bytes(void)
1147 {
1148         if (!memory_block_size_probed)
1149                 memory_block_size_probed = probe_memory_block_size();
1150
1151         return memory_block_size_probed;
1152 }
1153
1154 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1155 /*
1156  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
1157  */
1158 static long __meminitdata addr_start, addr_end;
1159 static void __meminitdata *p_start, *p_end;
1160 static int __meminitdata node_start;
1161
1162 static int __meminit vmemmap_populate_hugepages(unsigned long start,
1163                 unsigned long end, int node, struct vmem_altmap *altmap)
1164 {
1165         unsigned long addr;
1166         unsigned long next;
1167         pgd_t *pgd;
1168         pud_t *pud;
1169         pmd_t *pmd;
1170
1171         for (addr = start; addr < end; addr = next) {
1172                 next = pmd_addr_end(addr, end);
1173
1174                 pgd = vmemmap_pgd_populate(addr, node);
1175                 if (!pgd)
1176                         return -ENOMEM;
1177
1178                 pud = vmemmap_pud_populate(pgd, addr, node);
1179                 if (!pud)
1180                         return -ENOMEM;
1181
1182                 pmd = pmd_offset(pud, addr);
1183                 if (pmd_none(*pmd)) {
1184                         void *p;
1185
1186                         p = __vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1187                         if (p) {
1188                                 pte_t entry;
1189
1190                                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
1191                                                 PAGE_KERNEL_LARGE);
1192                                 set_pmd(pmd, __pmd(pte_val(entry)));
1193
1194                                 /* check to see if we have contiguous blocks */
1195                                 if (p_end != p || node_start != node) {
1196                                         if (p_start)
1197                                                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1198                                                        addr_start, addr_end-1, p_start, p_end-1, node_start);
1199                                         addr_start = addr;
1200                                         node_start = node;
1201                                         p_start = p;
1202                                 }
1203
1204                                 addr_end = addr + PMD_SIZE;
1205                                 p_end = p + PMD_SIZE;
1206                                 continue;
1207                         } else if (altmap)
1208                                 return -ENOMEM; /* no fallback */
1209                 } else if (pmd_large(*pmd)) {
1210                         vmemmap_verify((pte_t *)pmd, node, addr, next);
1211                         continue;
1212                 }
1213                 pr_warn_once("vmemmap: falling back to regular page backing\n");
1214                 if (vmemmap_populate_basepages(addr, next, node))
1215                         return -ENOMEM;
1216         }
1217         return 0;
1218 }
1219
1220 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
1221 {
1222         struct vmem_altmap *altmap = to_vmem_altmap(start);
1223         int err;
1224
1225         if (boot_cpu_has(X86_FEATURE_PSE))
1226                 err = vmemmap_populate_hugepages(start, end, node, altmap);
1227         else if (altmap) {
1228                 pr_err_once("%s: no cpu support for altmap allocations\n",
1229                                 __func__);
1230                 err = -ENOMEM;
1231         } else
1232                 err = vmemmap_populate_basepages(start, end, node);
1233         if (!err)
1234                 sync_global_pgds(start, end - 1, 0);
1235         return err;
1236 }
1237
1238 #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) && defined(CONFIG_HAVE_BOOTMEM_INFO_NODE)
1239 void register_page_bootmem_memmap(unsigned long section_nr,
1240                                   struct page *start_page, unsigned long size)
1241 {
1242         unsigned long addr = (unsigned long)start_page;
1243         unsigned long end = (unsigned long)(start_page + size);
1244         unsigned long next;
1245         pgd_t *pgd;
1246         pud_t *pud;
1247         pmd_t *pmd;
1248         unsigned int nr_pages;
1249         struct page *page;
1250
1251         for (; addr < end; addr = next) {
1252                 pte_t *pte = NULL;
1253
1254                 pgd = pgd_offset_k(addr);
1255                 if (pgd_none(*pgd)) {
1256                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1257                         continue;
1258                 }
1259                 get_page_bootmem(section_nr, pgd_page(*pgd), MIX_SECTION_INFO);
1260
1261                 pud = pud_offset(pgd, addr);
1262                 if (pud_none(*pud)) {
1263                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1264                         continue;
1265                 }
1266                 get_page_bootmem(section_nr, pud_page(*pud), MIX_SECTION_INFO);
1267
1268                 if (!boot_cpu_has(X86_FEATURE_PSE)) {
1269                         next = (addr + PAGE_SIZE) & PAGE_MASK;
1270                         pmd = pmd_offset(pud, addr);
1271                         if (pmd_none(*pmd))
1272                                 continue;
1273                         get_page_bootmem(section_nr, pmd_page(*pmd),
1274                                          MIX_SECTION_INFO);
1275
1276                         pte = pte_offset_kernel(pmd, addr);
1277                         if (pte_none(*pte))
1278                                 continue;
1279                         get_page_bootmem(section_nr, pte_page(*pte),
1280                                          SECTION_INFO);
1281                 } else {
1282                         next = pmd_addr_end(addr, end);
1283
1284                         pmd = pmd_offset(pud, addr);
1285                         if (pmd_none(*pmd))
1286                                 continue;
1287
1288                         nr_pages = 1 << (get_order(PMD_SIZE));
1289                         page = pmd_page(*pmd);
1290                         while (nr_pages--)
1291                                 get_page_bootmem(section_nr, page++,
1292                                                  SECTION_INFO);
1293                 }
1294         }
1295 }
1296 #endif
1297
1298 void __meminit vmemmap_populate_print_last(void)
1299 {
1300         if (p_start) {
1301                 pr_debug(" [%lx-%lx] PMD -> [%p-%p] on node %d\n",
1302                         addr_start, addr_end-1, p_start, p_end-1, node_start);
1303                 p_start = NULL;
1304                 p_end = NULL;
1305                 node_start = 0;
1306         }
1307 }
1308 #endif