x86/mm/64: Enable vmapped stacks (CONFIG_HAVE_ARCH_VMAP_STACK=y)
[cascardo/linux.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9
10 #include <asm/tlbflush.h>
11 #include <asm/mmu_context.h>
12 #include <asm/cache.h>
13 #include <asm/apic.h>
14 #include <asm/uv/uv.h>
15 #include <linux/debugfs.h>
16
17 /*
18  *      Smarter SMP flushing macros.
19  *              c/o Linus Torvalds.
20  *
21  *      These mean you can really definitely utterly forget about
22  *      writing to user space from interrupts. (Its not allowed anyway).
23  *
24  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
25  *
26  *      More scalable flush, from Andi Kleen
27  *
28  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
29  */
30
31 #ifdef CONFIG_SMP
32
33 struct flush_tlb_info {
34         struct mm_struct *flush_mm;
35         unsigned long flush_start;
36         unsigned long flush_end;
37 };
38
39 /*
40  * We cannot call mmdrop() because we are in interrupt context,
41  * instead update mm->cpu_vm_mask.
42  */
43 void leave_mm(int cpu)
44 {
45         struct mm_struct *active_mm = this_cpu_read(cpu_tlbstate.active_mm);
46         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK)
47                 BUG();
48         if (cpumask_test_cpu(cpu, mm_cpumask(active_mm))) {
49                 cpumask_clear_cpu(cpu, mm_cpumask(active_mm));
50                 load_cr3(swapper_pg_dir);
51                 /*
52                  * This gets called in the idle path where RCU
53                  * functions differently.  Tracing normally
54                  * uses RCU, so we have to call the tracepoint
55                  * specially here.
56                  */
57                 trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
58         }
59 }
60 EXPORT_SYMBOL_GPL(leave_mm);
61
62 #endif /* CONFIG_SMP */
63
64 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
65                struct task_struct *tsk)
66 {
67         unsigned long flags;
68
69         local_irq_save(flags);
70         switch_mm_irqs_off(prev, next, tsk);
71         local_irq_restore(flags);
72 }
73
74 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
75                         struct task_struct *tsk)
76 {
77         unsigned cpu = smp_processor_id();
78
79         if (likely(prev != next)) {
80                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
81                         /*
82                          * If our current stack is in vmalloc space and isn't
83                          * mapped in the new pgd, we'll double-fault.  Forcibly
84                          * map it.
85                          */
86                         unsigned int stack_pgd_index = pgd_index(current_stack_pointer());
87
88                         pgd_t *pgd = next->pgd + stack_pgd_index;
89
90                         if (unlikely(pgd_none(*pgd)))
91                                 set_pgd(pgd, init_mm.pgd[stack_pgd_index]);
92                 }
93
94 #ifdef CONFIG_SMP
95                 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
96                 this_cpu_write(cpu_tlbstate.active_mm, next);
97 #endif
98
99                 cpumask_set_cpu(cpu, mm_cpumask(next));
100
101                 /*
102                  * Re-load page tables.
103                  *
104                  * This logic has an ordering constraint:
105                  *
106                  *  CPU 0: Write to a PTE for 'next'
107                  *  CPU 0: load bit 1 in mm_cpumask.  if nonzero, send IPI.
108                  *  CPU 1: set bit 1 in next's mm_cpumask
109                  *  CPU 1: load from the PTE that CPU 0 writes (implicit)
110                  *
111                  * We need to prevent an outcome in which CPU 1 observes
112                  * the new PTE value and CPU 0 observes bit 1 clear in
113                  * mm_cpumask.  (If that occurs, then the IPI will never
114                  * be sent, and CPU 0's TLB will contain a stale entry.)
115                  *
116                  * The bad outcome can occur if either CPU's load is
117                  * reordered before that CPU's store, so both CPUs must
118                  * execute full barriers to prevent this from happening.
119                  *
120                  * Thus, switch_mm needs a full barrier between the
121                  * store to mm_cpumask and any operation that could load
122                  * from next->pgd.  TLB fills are special and can happen
123                  * due to instruction fetches or for no reason at all,
124                  * and neither LOCK nor MFENCE orders them.
125                  * Fortunately, load_cr3() is serializing and gives the
126                  * ordering guarantee we need.
127                  *
128                  */
129                 load_cr3(next->pgd);
130
131                 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
132
133                 /* Stop flush ipis for the previous mm */
134                 cpumask_clear_cpu(cpu, mm_cpumask(prev));
135
136                 /* Load per-mm CR4 state */
137                 load_mm_cr4(next);
138
139 #ifdef CONFIG_MODIFY_LDT_SYSCALL
140                 /*
141                  * Load the LDT, if the LDT is different.
142                  *
143                  * It's possible that prev->context.ldt doesn't match
144                  * the LDT register.  This can happen if leave_mm(prev)
145                  * was called and then modify_ldt changed
146                  * prev->context.ldt but suppressed an IPI to this CPU.
147                  * In this case, prev->context.ldt != NULL, because we
148                  * never set context.ldt to NULL while the mm still
149                  * exists.  That means that next->context.ldt !=
150                  * prev->context.ldt, because mms never share an LDT.
151                  */
152                 if (unlikely(prev->context.ldt != next->context.ldt))
153                         load_mm_ldt(next);
154 #endif
155         }
156 #ifdef CONFIG_SMP
157           else {
158                 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK);
159                 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next);
160
161                 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) {
162                         /*
163                          * On established mms, the mm_cpumask is only changed
164                          * from irq context, from ptep_clear_flush() while in
165                          * lazy tlb mode, and here. Irqs are blocked during
166                          * schedule, protecting us from simultaneous changes.
167                          */
168                         cpumask_set_cpu(cpu, mm_cpumask(next));
169
170                         /*
171                          * We were in lazy tlb mode and leave_mm disabled
172                          * tlb flush IPI delivery. We must reload CR3
173                          * to make sure to use no freed page tables.
174                          *
175                          * As above, load_cr3() is serializing and orders TLB
176                          * fills with respect to the mm_cpumask write.
177                          */
178                         load_cr3(next->pgd);
179                         trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
180                         load_mm_cr4(next);
181                         load_mm_ldt(next);
182                 }
183         }
184 #endif
185 }
186
187 #ifdef CONFIG_SMP
188
189 /*
190  * The flush IPI assumes that a thread switch happens in this order:
191  * [cpu0: the cpu that switches]
192  * 1) switch_mm() either 1a) or 1b)
193  * 1a) thread switch to a different mm
194  * 1a1) set cpu_tlbstate to TLBSTATE_OK
195  *      Now the tlb flush NMI handler flush_tlb_func won't call leave_mm
196  *      if cpu0 was in lazy tlb mode.
197  * 1a2) update cpu active_mm
198  *      Now cpu0 accepts tlb flushes for the new mm.
199  * 1a3) cpu_set(cpu, new_mm->cpu_vm_mask);
200  *      Now the other cpus will send tlb flush ipis.
201  * 1a4) change cr3.
202  * 1a5) cpu_clear(cpu, old_mm->cpu_vm_mask);
203  *      Stop ipi delivery for the old mm. This is not synchronized with
204  *      the other cpus, but flush_tlb_func ignore flush ipis for the wrong
205  *      mm, and in the worst case we perform a superfluous tlb flush.
206  * 1b) thread switch without mm change
207  *      cpu active_mm is correct, cpu0 already handles flush ipis.
208  * 1b1) set cpu_tlbstate to TLBSTATE_OK
209  * 1b2) test_and_set the cpu bit in cpu_vm_mask.
210  *      Atomically set the bit [other cpus will start sending flush ipis],
211  *      and test the bit.
212  * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
213  * 2) switch %%esp, ie current
214  *
215  * The interrupt must handle 2 special cases:
216  * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
217  * - the cpu performs speculative tlb reads, i.e. even if the cpu only
218  *   runs in kernel space, the cpu could load tlb entries for user space
219  *   pages.
220  *
221  * The good news is that cpu_tlbstate is local to each cpu, no
222  * write/read ordering problems.
223  */
224
225 /*
226  * TLB flush funcation:
227  * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
228  * 2) Leave the mm if we are in the lazy tlb mode.
229  */
230 static void flush_tlb_func(void *info)
231 {
232         struct flush_tlb_info *f = info;
233
234         inc_irq_stat(irq_tlb_count);
235
236         if (f->flush_mm && f->flush_mm != this_cpu_read(cpu_tlbstate.active_mm))
237                 return;
238
239         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
240         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) {
241                 if (f->flush_end == TLB_FLUSH_ALL) {
242                         local_flush_tlb();
243                         trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, TLB_FLUSH_ALL);
244                 } else {
245                         unsigned long addr;
246                         unsigned long nr_pages =
247                                 (f->flush_end - f->flush_start) / PAGE_SIZE;
248                         addr = f->flush_start;
249                         while (addr < f->flush_end) {
250                                 __flush_tlb_single(addr);
251                                 addr += PAGE_SIZE;
252                         }
253                         trace_tlb_flush(TLB_REMOTE_SHOOTDOWN, nr_pages);
254                 }
255         } else
256                 leave_mm(smp_processor_id());
257
258 }
259
260 void native_flush_tlb_others(const struct cpumask *cpumask,
261                                  struct mm_struct *mm, unsigned long start,
262                                  unsigned long end)
263 {
264         struct flush_tlb_info info;
265
266         if (end == 0)
267                 end = start + PAGE_SIZE;
268         info.flush_mm = mm;
269         info.flush_start = start;
270         info.flush_end = end;
271
272         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
273         if (end == TLB_FLUSH_ALL)
274                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
275         else
276                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
277                                 (end - start) >> PAGE_SHIFT);
278
279         if (is_uv_system()) {
280                 unsigned int cpu;
281
282                 cpu = smp_processor_id();
283                 cpumask = uv_flush_tlb_others(cpumask, mm, start, end, cpu);
284                 if (cpumask)
285                         smp_call_function_many(cpumask, flush_tlb_func,
286                                                                 &info, 1);
287                 return;
288         }
289         smp_call_function_many(cpumask, flush_tlb_func, &info, 1);
290 }
291
292 void flush_tlb_current_task(void)
293 {
294         struct mm_struct *mm = current->mm;
295
296         preempt_disable();
297
298         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
299
300         /* This is an implicit full barrier that synchronizes with switch_mm. */
301         local_flush_tlb();
302
303         trace_tlb_flush(TLB_LOCAL_SHOOTDOWN, TLB_FLUSH_ALL);
304         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
305                 flush_tlb_others(mm_cpumask(mm), mm, 0UL, TLB_FLUSH_ALL);
306         preempt_enable();
307 }
308
309 /*
310  * See Documentation/x86/tlb.txt for details.  We choose 33
311  * because it is large enough to cover the vast majority (at
312  * least 95%) of allocations, and is small enough that we are
313  * confident it will not cause too much overhead.  Each single
314  * flush is about 100 ns, so this caps the maximum overhead at
315  * _about_ 3,000 ns.
316  *
317  * This is in units of pages.
318  */
319 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
320
321 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
322                                 unsigned long end, unsigned long vmflag)
323 {
324         unsigned long addr;
325         /* do a global flush by default */
326         unsigned long base_pages_to_flush = TLB_FLUSH_ALL;
327
328         preempt_disable();
329         if (current->active_mm != mm) {
330                 /* Synchronize with switch_mm. */
331                 smp_mb();
332
333                 goto out;
334         }
335
336         if (!current->mm) {
337                 leave_mm(smp_processor_id());
338
339                 /* Synchronize with switch_mm. */
340                 smp_mb();
341
342                 goto out;
343         }
344
345         if ((end != TLB_FLUSH_ALL) && !(vmflag & VM_HUGETLB))
346                 base_pages_to_flush = (end - start) >> PAGE_SHIFT;
347
348         /*
349          * Both branches below are implicit full barriers (MOV to CR or
350          * INVLPG) that synchronize with switch_mm.
351          */
352         if (base_pages_to_flush > tlb_single_page_flush_ceiling) {
353                 base_pages_to_flush = TLB_FLUSH_ALL;
354                 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
355                 local_flush_tlb();
356         } else {
357                 /* flush range by one by one 'invlpg' */
358                 for (addr = start; addr < end;  addr += PAGE_SIZE) {
359                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
360                         __flush_tlb_single(addr);
361                 }
362         }
363         trace_tlb_flush(TLB_LOCAL_MM_SHOOTDOWN, base_pages_to_flush);
364 out:
365         if (base_pages_to_flush == TLB_FLUSH_ALL) {
366                 start = 0UL;
367                 end = TLB_FLUSH_ALL;
368         }
369         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
370                 flush_tlb_others(mm_cpumask(mm), mm, start, end);
371         preempt_enable();
372 }
373
374 void flush_tlb_page(struct vm_area_struct *vma, unsigned long start)
375 {
376         struct mm_struct *mm = vma->vm_mm;
377
378         preempt_disable();
379
380         if (current->active_mm == mm) {
381                 if (current->mm) {
382                         /*
383                          * Implicit full barrier (INVLPG) that synchronizes
384                          * with switch_mm.
385                          */
386                         __flush_tlb_one(start);
387                 } else {
388                         leave_mm(smp_processor_id());
389
390                         /* Synchronize with switch_mm. */
391                         smp_mb();
392                 }
393         }
394
395         if (cpumask_any_but(mm_cpumask(mm), smp_processor_id()) < nr_cpu_ids)
396                 flush_tlb_others(mm_cpumask(mm), mm, start, 0UL);
397
398         preempt_enable();
399 }
400
401 static void do_flush_tlb_all(void *info)
402 {
403         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
404         __flush_tlb_all();
405         if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_LAZY)
406                 leave_mm(smp_processor_id());
407 }
408
409 void flush_tlb_all(void)
410 {
411         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
412         on_each_cpu(do_flush_tlb_all, NULL, 1);
413 }
414
415 static void do_kernel_range_flush(void *info)
416 {
417         struct flush_tlb_info *f = info;
418         unsigned long addr;
419
420         /* flush range by one by one 'invlpg' */
421         for (addr = f->flush_start; addr < f->flush_end; addr += PAGE_SIZE)
422                 __flush_tlb_single(addr);
423 }
424
425 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
426 {
427
428         /* Balance as user space task's flush, a bit conservative */
429         if (end == TLB_FLUSH_ALL ||
430             (end - start) > tlb_single_page_flush_ceiling * PAGE_SIZE) {
431                 on_each_cpu(do_flush_tlb_all, NULL, 1);
432         } else {
433                 struct flush_tlb_info info;
434                 info.flush_start = start;
435                 info.flush_end = end;
436                 on_each_cpu(do_kernel_range_flush, &info, 1);
437         }
438 }
439
440 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
441                              size_t count, loff_t *ppos)
442 {
443         char buf[32];
444         unsigned int len;
445
446         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
447         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
448 }
449
450 static ssize_t tlbflush_write_file(struct file *file,
451                  const char __user *user_buf, size_t count, loff_t *ppos)
452 {
453         char buf[32];
454         ssize_t len;
455         int ceiling;
456
457         len = min(count, sizeof(buf) - 1);
458         if (copy_from_user(buf, user_buf, len))
459                 return -EFAULT;
460
461         buf[len] = '\0';
462         if (kstrtoint(buf, 0, &ceiling))
463                 return -EINVAL;
464
465         if (ceiling < 0)
466                 return -EINVAL;
467
468         tlb_single_page_flush_ceiling = ceiling;
469         return count;
470 }
471
472 static const struct file_operations fops_tlbflush = {
473         .read = tlbflush_read_file,
474         .write = tlbflush_write_file,
475         .llseek = default_llseek,
476 };
477
478 static int __init create_tlb_single_page_flush_ceiling(void)
479 {
480         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
481                             arch_debugfs_dir, NULL, &fops_tlbflush);
482         return 0;
483 }
484 late_initcall(create_tlb_single_page_flush_ceiling);
485
486 #endif /* CONFIG_SMP */