df393eab0e509bd63da08b1da6a3ec8f435b91a8
[cascardo/linux.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  * Copyright (C) 2013 SuSE Labs
16  *      Borislav Petkov <bp@suse.de> - runtime services VA mapping
17  *
18  * Copied from efi_32.c to eliminate the duplicated code between EFI
19  * 32/64 support code. --ying 2007-10-26
20  *
21  * All EFI Runtime Services are not implemented yet as EFI only
22  * supports physical mode addressing on SoftSDV. This is to be fixed
23  * in a future version.  --drummond 1999-07-20
24  *
25  * Implemented EFI runtime services and virtual mode calls.  --davidm
26  *
27  * Goutham Rao: <goutham.rao@intel.com>
28  *      Skip non-WB memory and ignore empty memory ranges.
29  */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/kernel.h>
34 #include <linux/init.h>
35 #include <linux/efi.h>
36 #include <linux/efi-bgrt.h>
37 #include <linux/export.h>
38 #include <linux/bootmem.h>
39 #include <linux/slab.h>
40 #include <linux/memblock.h>
41 #include <linux/spinlock.h>
42 #include <linux/uaccess.h>
43 #include <linux/time.h>
44 #include <linux/io.h>
45 #include <linux/reboot.h>
46 #include <linux/bcd.h>
47
48 #include <asm/setup.h>
49 #include <asm/efi.h>
50 #include <asm/time.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlbflush.h>
53 #include <asm/x86_init.h>
54 #include <asm/rtc.h>
55 #include <asm/uv/uv.h>
56
57 #define EFI_DEBUG
58
59 struct efi_memory_map memmap;
60
61 static struct efi efi_phys __initdata;
62 static efi_system_table_t efi_systab __initdata;
63
64 static efi_config_table_type_t arch_tables[] __initdata = {
65 #ifdef CONFIG_X86_UV
66         {UV_SYSTEM_TABLE_GUID, "UVsystab", &efi.uv_systab},
67 #endif
68         {NULL_GUID, NULL, NULL},
69 };
70
71 u64 efi_setup;          /* efi setup_data physical address */
72
73 static int add_efi_memmap __initdata;
74 static int __init setup_add_efi_memmap(char *arg)
75 {
76         add_efi_memmap = 1;
77         return 0;
78 }
79 early_param("add_efi_memmap", setup_add_efi_memmap);
80
81 static efi_status_t __init phys_efi_set_virtual_address_map(
82         unsigned long memory_map_size,
83         unsigned long descriptor_size,
84         u32 descriptor_version,
85         efi_memory_desc_t *virtual_map)
86 {
87         efi_status_t status;
88         unsigned long flags;
89         pgd_t *save_pgd;
90
91         save_pgd = efi_call_phys_prolog();
92
93         /* Disable interrupts around EFI calls: */
94         local_irq_save(flags);
95         status = efi_call_phys(efi_phys.set_virtual_address_map,
96                                memory_map_size, descriptor_size,
97                                descriptor_version, virtual_map);
98         local_irq_restore(flags);
99
100         efi_call_phys_epilog(save_pgd);
101
102         return status;
103 }
104
105 void efi_get_time(struct timespec *now)
106 {
107         efi_status_t status;
108         efi_time_t eft;
109         efi_time_cap_t cap;
110
111         status = efi.get_time(&eft, &cap);
112         if (status != EFI_SUCCESS)
113                 pr_err("Oops: efitime: can't read time!\n");
114
115         now->tv_sec = mktime(eft.year, eft.month, eft.day, eft.hour,
116                              eft.minute, eft.second);
117         now->tv_nsec = 0;
118 }
119
120 void __init efi_find_mirror(void)
121 {
122         void *p;
123         u64 mirror_size = 0, total_size = 0;
124
125         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
126                 efi_memory_desc_t *md = p;
127                 unsigned long long start = md->phys_addr;
128                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
129
130                 total_size += size;
131                 if (md->attribute & EFI_MEMORY_MORE_RELIABLE) {
132                         memblock_mark_mirror(start, size);
133                         mirror_size += size;
134                 }
135         }
136         if (mirror_size)
137                 pr_info("Memory: %lldM/%lldM mirrored memory\n",
138                         mirror_size>>20, total_size>>20);
139 }
140
141 /*
142  * Tell the kernel about the EFI memory map.  This might include
143  * more than the max 128 entries that can fit in the e820 legacy
144  * (zeropage) memory map.
145  */
146
147 static void __init do_add_efi_memmap(void)
148 {
149         void *p;
150
151         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
152                 efi_memory_desc_t *md = p;
153                 unsigned long long start = md->phys_addr;
154                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
155                 int e820_type;
156
157                 switch (md->type) {
158                 case EFI_LOADER_CODE:
159                 case EFI_LOADER_DATA:
160                 case EFI_BOOT_SERVICES_CODE:
161                 case EFI_BOOT_SERVICES_DATA:
162                 case EFI_CONVENTIONAL_MEMORY:
163                         if (md->attribute & EFI_MEMORY_WB)
164                                 e820_type = E820_RAM;
165                         else
166                                 e820_type = E820_RESERVED;
167                         break;
168                 case EFI_ACPI_RECLAIM_MEMORY:
169                         e820_type = E820_ACPI;
170                         break;
171                 case EFI_ACPI_MEMORY_NVS:
172                         e820_type = E820_NVS;
173                         break;
174                 case EFI_UNUSABLE_MEMORY:
175                         e820_type = E820_UNUSABLE;
176                         break;
177                 case EFI_PERSISTENT_MEMORY:
178                         e820_type = E820_PMEM;
179                         break;
180                 default:
181                         /*
182                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
183                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
184                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
185                          */
186                         e820_type = E820_RESERVED;
187                         break;
188                 }
189                 e820_add_region(start, size, e820_type);
190         }
191         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
192 }
193
194 int __init efi_memblock_x86_reserve_range(void)
195 {
196         struct efi_info *e = &boot_params.efi_info;
197         phys_addr_t pmap;
198
199         if (efi_enabled(EFI_PARAVIRT))
200                 return 0;
201
202 #ifdef CONFIG_X86_32
203         /* Can't handle data above 4GB at this time */
204         if (e->efi_memmap_hi) {
205                 pr_err("Memory map is above 4GB, disabling EFI.\n");
206                 return -EINVAL;
207         }
208         pmap =  e->efi_memmap;
209 #else
210         pmap = (e->efi_memmap | ((__u64)e->efi_memmap_hi << 32));
211 #endif
212         memmap.phys_map         = pmap;
213         memmap.nr_map           = e->efi_memmap_size /
214                                   e->efi_memdesc_size;
215         memmap.desc_size        = e->efi_memdesc_size;
216         memmap.desc_version     = e->efi_memdesc_version;
217
218         memblock_reserve(pmap, memmap.nr_map * memmap.desc_size);
219
220         efi.memmap = &memmap;
221
222         return 0;
223 }
224
225 void __init efi_print_memmap(void)
226 {
227 #ifdef EFI_DEBUG
228         efi_memory_desc_t *md;
229         void *p;
230         int i;
231
232         for (p = memmap.map, i = 0;
233              p < memmap.map_end;
234              p += memmap.desc_size, i++) {
235                 char buf[64];
236
237                 md = p;
238                 pr_info("mem%02u: %s range=[0x%016llx-0x%016llx] (%lluMB)\n",
239                         i, efi_md_typeattr_format(buf, sizeof(buf), md),
240                         md->phys_addr,
241                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1,
242                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
243         }
244 #endif  /*  EFI_DEBUG  */
245 }
246
247 void __init efi_unmap_memmap(void)
248 {
249         clear_bit(EFI_MEMMAP, &efi.flags);
250         if (memmap.map) {
251                 early_memunmap(memmap.map, memmap.nr_map * memmap.desc_size);
252                 memmap.map = NULL;
253         }
254 }
255
256 static int __init efi_systab_init(void *phys)
257 {
258         if (efi_enabled(EFI_64BIT)) {
259                 efi_system_table_64_t *systab64;
260                 struct efi_setup_data *data = NULL;
261                 u64 tmp = 0;
262
263                 if (efi_setup) {
264                         data = early_memremap(efi_setup, sizeof(*data));
265                         if (!data)
266                                 return -ENOMEM;
267                 }
268                 systab64 = early_memremap((unsigned long)phys,
269                                          sizeof(*systab64));
270                 if (systab64 == NULL) {
271                         pr_err("Couldn't map the system table!\n");
272                         if (data)
273                                 early_memunmap(data, sizeof(*data));
274                         return -ENOMEM;
275                 }
276
277                 efi_systab.hdr = systab64->hdr;
278                 efi_systab.fw_vendor = data ? (unsigned long)data->fw_vendor :
279                                               systab64->fw_vendor;
280                 tmp |= data ? data->fw_vendor : systab64->fw_vendor;
281                 efi_systab.fw_revision = systab64->fw_revision;
282                 efi_systab.con_in_handle = systab64->con_in_handle;
283                 tmp |= systab64->con_in_handle;
284                 efi_systab.con_in = systab64->con_in;
285                 tmp |= systab64->con_in;
286                 efi_systab.con_out_handle = systab64->con_out_handle;
287                 tmp |= systab64->con_out_handle;
288                 efi_systab.con_out = systab64->con_out;
289                 tmp |= systab64->con_out;
290                 efi_systab.stderr_handle = systab64->stderr_handle;
291                 tmp |= systab64->stderr_handle;
292                 efi_systab.stderr = systab64->stderr;
293                 tmp |= systab64->stderr;
294                 efi_systab.runtime = data ?
295                                      (void *)(unsigned long)data->runtime :
296                                      (void *)(unsigned long)systab64->runtime;
297                 tmp |= data ? data->runtime : systab64->runtime;
298                 efi_systab.boottime = (void *)(unsigned long)systab64->boottime;
299                 tmp |= systab64->boottime;
300                 efi_systab.nr_tables = systab64->nr_tables;
301                 efi_systab.tables = data ? (unsigned long)data->tables :
302                                            systab64->tables;
303                 tmp |= data ? data->tables : systab64->tables;
304
305                 early_memunmap(systab64, sizeof(*systab64));
306                 if (data)
307                         early_memunmap(data, sizeof(*data));
308 #ifdef CONFIG_X86_32
309                 if (tmp >> 32) {
310                         pr_err("EFI data located above 4GB, disabling EFI.\n");
311                         return -EINVAL;
312                 }
313 #endif
314         } else {
315                 efi_system_table_32_t *systab32;
316
317                 systab32 = early_memremap((unsigned long)phys,
318                                          sizeof(*systab32));
319                 if (systab32 == NULL) {
320                         pr_err("Couldn't map the system table!\n");
321                         return -ENOMEM;
322                 }
323
324                 efi_systab.hdr = systab32->hdr;
325                 efi_systab.fw_vendor = systab32->fw_vendor;
326                 efi_systab.fw_revision = systab32->fw_revision;
327                 efi_systab.con_in_handle = systab32->con_in_handle;
328                 efi_systab.con_in = systab32->con_in;
329                 efi_systab.con_out_handle = systab32->con_out_handle;
330                 efi_systab.con_out = systab32->con_out;
331                 efi_systab.stderr_handle = systab32->stderr_handle;
332                 efi_systab.stderr = systab32->stderr;
333                 efi_systab.runtime = (void *)(unsigned long)systab32->runtime;
334                 efi_systab.boottime = (void *)(unsigned long)systab32->boottime;
335                 efi_systab.nr_tables = systab32->nr_tables;
336                 efi_systab.tables = systab32->tables;
337
338                 early_memunmap(systab32, sizeof(*systab32));
339         }
340
341         efi.systab = &efi_systab;
342
343         /*
344          * Verify the EFI Table
345          */
346         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
347                 pr_err("System table signature incorrect!\n");
348                 return -EINVAL;
349         }
350         if ((efi.systab->hdr.revision >> 16) == 0)
351                 pr_err("Warning: System table version %d.%02d, expected 1.00 or greater!\n",
352                        efi.systab->hdr.revision >> 16,
353                        efi.systab->hdr.revision & 0xffff);
354
355         return 0;
356 }
357
358 static int __init efi_runtime_init32(void)
359 {
360         efi_runtime_services_32_t *runtime;
361
362         runtime = early_memremap((unsigned long)efi.systab->runtime,
363                         sizeof(efi_runtime_services_32_t));
364         if (!runtime) {
365                 pr_err("Could not map the runtime service table!\n");
366                 return -ENOMEM;
367         }
368
369         /*
370          * We will only need *early* access to the SetVirtualAddressMap
371          * EFI runtime service. All other runtime services will be called
372          * via the virtual mapping.
373          */
374         efi_phys.set_virtual_address_map =
375                         (efi_set_virtual_address_map_t *)
376                         (unsigned long)runtime->set_virtual_address_map;
377         early_memunmap(runtime, sizeof(efi_runtime_services_32_t));
378
379         return 0;
380 }
381
382 static int __init efi_runtime_init64(void)
383 {
384         efi_runtime_services_64_t *runtime;
385
386         runtime = early_memremap((unsigned long)efi.systab->runtime,
387                         sizeof(efi_runtime_services_64_t));
388         if (!runtime) {
389                 pr_err("Could not map the runtime service table!\n");
390                 return -ENOMEM;
391         }
392
393         /*
394          * We will only need *early* access to the SetVirtualAddressMap
395          * EFI runtime service. All other runtime services will be called
396          * via the virtual mapping.
397          */
398         efi_phys.set_virtual_address_map =
399                         (efi_set_virtual_address_map_t *)
400                         (unsigned long)runtime->set_virtual_address_map;
401         early_memunmap(runtime, sizeof(efi_runtime_services_64_t));
402
403         return 0;
404 }
405
406 static int __init efi_runtime_init(void)
407 {
408         int rv;
409
410         /*
411          * Check out the runtime services table. We need to map
412          * the runtime services table so that we can grab the physical
413          * address of several of the EFI runtime functions, needed to
414          * set the firmware into virtual mode.
415          *
416          * When EFI_PARAVIRT is in force then we could not map runtime
417          * service memory region because we do not have direct access to it.
418          * However, runtime services are available through proxy functions
419          * (e.g. in case of Xen dom0 EFI implementation they call special
420          * hypercall which executes relevant EFI functions) and that is why
421          * they are always enabled.
422          */
423
424         if (!efi_enabled(EFI_PARAVIRT)) {
425                 if (efi_enabled(EFI_64BIT))
426                         rv = efi_runtime_init64();
427                 else
428                         rv = efi_runtime_init32();
429
430                 if (rv)
431                         return rv;
432         }
433
434         set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
435
436         return 0;
437 }
438
439 static int __init efi_memmap_init(void)
440 {
441         if (efi_enabled(EFI_PARAVIRT))
442                 return 0;
443
444         /* Map the EFI memory map */
445         memmap.map = early_memremap((unsigned long)memmap.phys_map,
446                                    memmap.nr_map * memmap.desc_size);
447         if (memmap.map == NULL) {
448                 pr_err("Could not map the memory map!\n");
449                 return -ENOMEM;
450         }
451         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
452
453         if (add_efi_memmap)
454                 do_add_efi_memmap();
455
456         set_bit(EFI_MEMMAP, &efi.flags);
457
458         return 0;
459 }
460
461 void __init efi_init(void)
462 {
463         efi_char16_t *c16;
464         char vendor[100] = "unknown";
465         int i = 0;
466         void *tmp;
467
468 #ifdef CONFIG_X86_32
469         if (boot_params.efi_info.efi_systab_hi ||
470             boot_params.efi_info.efi_memmap_hi) {
471                 pr_info("Table located above 4GB, disabling EFI.\n");
472                 return;
473         }
474         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
475 #else
476         efi_phys.systab = (efi_system_table_t *)
477                           (boot_params.efi_info.efi_systab |
478                           ((__u64)boot_params.efi_info.efi_systab_hi<<32));
479 #endif
480
481         if (efi_systab_init(efi_phys.systab))
482                 return;
483
484         efi.config_table = (unsigned long)efi.systab->tables;
485         efi.fw_vendor    = (unsigned long)efi.systab->fw_vendor;
486         efi.runtime      = (unsigned long)efi.systab->runtime;
487
488         /*
489          * Show what we know for posterity
490          */
491         c16 = tmp = early_memremap(efi.systab->fw_vendor, 2);
492         if (c16) {
493                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
494                         vendor[i] = *c16++;
495                 vendor[i] = '\0';
496         } else
497                 pr_err("Could not map the firmware vendor!\n");
498         early_memunmap(tmp, 2);
499
500         pr_info("EFI v%u.%.02u by %s\n",
501                 efi.systab->hdr.revision >> 16,
502                 efi.systab->hdr.revision & 0xffff, vendor);
503
504         if (efi_reuse_config(efi.systab->tables, efi.systab->nr_tables))
505                 return;
506
507         if (efi_config_init(arch_tables))
508                 return;
509
510         /*
511          * Note: We currently don't support runtime services on an EFI
512          * that doesn't match the kernel 32/64-bit mode.
513          */
514
515         if (!efi_runtime_supported())
516                 pr_info("No EFI runtime due to 32/64-bit mismatch with kernel\n");
517         else {
518                 if (efi_runtime_disabled() || efi_runtime_init())
519                         return;
520         }
521         if (efi_memmap_init())
522                 return;
523
524         if (efi_enabled(EFI_DBG))
525                 efi_print_memmap();
526
527         efi_esrt_init();
528 }
529
530 void __init efi_late_init(void)
531 {
532         efi_bgrt_init();
533 }
534
535 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
536 {
537         u64 addr, npages;
538
539         addr = md->virt_addr;
540         npages = md->num_pages;
541
542         memrange_efi_to_native(&addr, &npages);
543
544         if (executable)
545                 set_memory_x(addr, npages);
546         else
547                 set_memory_nx(addr, npages);
548 }
549
550 void __init runtime_code_page_mkexec(void)
551 {
552         efi_memory_desc_t *md;
553         void *p;
554
555         /* Make EFI runtime service code area executable */
556         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
557                 md = p;
558
559                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
560                         continue;
561
562                 efi_set_executable(md, true);
563         }
564 }
565
566 void __init efi_memory_uc(u64 addr, unsigned long size)
567 {
568         unsigned long page_shift = 1UL << EFI_PAGE_SHIFT;
569         u64 npages;
570
571         npages = round_up(size, page_shift) / page_shift;
572         memrange_efi_to_native(&addr, &npages);
573         set_memory_uc(addr, npages);
574 }
575
576 void __init old_map_region(efi_memory_desc_t *md)
577 {
578         u64 start_pfn, end_pfn, end;
579         unsigned long size;
580         void *va;
581
582         start_pfn = PFN_DOWN(md->phys_addr);
583         size      = md->num_pages << PAGE_SHIFT;
584         end       = md->phys_addr + size;
585         end_pfn   = PFN_UP(end);
586
587         if (pfn_range_is_mapped(start_pfn, end_pfn)) {
588                 va = __va(md->phys_addr);
589
590                 if (!(md->attribute & EFI_MEMORY_WB))
591                         efi_memory_uc((u64)(unsigned long)va, size);
592         } else
593                 va = efi_ioremap(md->phys_addr, size,
594                                  md->type, md->attribute);
595
596         md->virt_addr = (u64) (unsigned long) va;
597         if (!va)
598                 pr_err("ioremap of 0x%llX failed!\n",
599                        (unsigned long long)md->phys_addr);
600 }
601
602 /* Merge contiguous regions of the same type and attribute */
603 static void __init efi_merge_regions(void)
604 {
605         void *p;
606         efi_memory_desc_t *md, *prev_md = NULL;
607
608         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
609                 u64 prev_size;
610                 md = p;
611
612                 if (!prev_md) {
613                         prev_md = md;
614                         continue;
615                 }
616
617                 if (prev_md->type != md->type ||
618                     prev_md->attribute != md->attribute) {
619                         prev_md = md;
620                         continue;
621                 }
622
623                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
624
625                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
626                         prev_md->num_pages += md->num_pages;
627                         md->type = EFI_RESERVED_TYPE;
628                         md->attribute = 0;
629                         continue;
630                 }
631                 prev_md = md;
632         }
633 }
634
635 static void __init get_systab_virt_addr(efi_memory_desc_t *md)
636 {
637         unsigned long size;
638         u64 end, systab;
639
640         size = md->num_pages << EFI_PAGE_SHIFT;
641         end = md->phys_addr + size;
642         systab = (u64)(unsigned long)efi_phys.systab;
643         if (md->phys_addr <= systab && systab < end) {
644                 systab += md->virt_addr - md->phys_addr;
645                 efi.systab = (efi_system_table_t *)(unsigned long)systab;
646         }
647 }
648
649 static void __init save_runtime_map(void)
650 {
651 #ifdef CONFIG_KEXEC_CORE
652         efi_memory_desc_t *md;
653         void *tmp, *p, *q = NULL;
654         int count = 0;
655
656         if (efi_enabled(EFI_OLD_MEMMAP))
657                 return;
658
659         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
660                 md = p;
661
662                 if (!(md->attribute & EFI_MEMORY_RUNTIME) ||
663                     (md->type == EFI_BOOT_SERVICES_CODE) ||
664                     (md->type == EFI_BOOT_SERVICES_DATA))
665                         continue;
666                 tmp = krealloc(q, (count + 1) * memmap.desc_size, GFP_KERNEL);
667                 if (!tmp)
668                         goto out;
669                 q = tmp;
670
671                 memcpy(q + count * memmap.desc_size, md, memmap.desc_size);
672                 count++;
673         }
674
675         efi_runtime_map_setup(q, count, memmap.desc_size);
676         return;
677
678 out:
679         kfree(q);
680         pr_err("Error saving runtime map, efi runtime on kexec non-functional!!\n");
681 #endif
682 }
683
684 static void *realloc_pages(void *old_memmap, int old_shift)
685 {
686         void *ret;
687
688         ret = (void *)__get_free_pages(GFP_KERNEL, old_shift + 1);
689         if (!ret)
690                 goto out;
691
692         /*
693          * A first-time allocation doesn't have anything to copy.
694          */
695         if (!old_memmap)
696                 return ret;
697
698         memcpy(ret, old_memmap, PAGE_SIZE << old_shift);
699
700 out:
701         free_pages((unsigned long)old_memmap, old_shift);
702         return ret;
703 }
704
705 /*
706  * Iterate the EFI memory map in reverse order because the regions
707  * will be mapped top-down. The end result is the same as if we had
708  * mapped things forward, but doesn't require us to change the
709  * existing implementation of efi_map_region().
710  */
711 static inline void *efi_map_next_entry_reverse(void *entry)
712 {
713         /* Initial call */
714         if (!entry)
715                 return memmap.map_end - memmap.desc_size;
716
717         entry -= memmap.desc_size;
718         if (entry < memmap.map)
719                 return NULL;
720
721         return entry;
722 }
723
724 /*
725  * efi_map_next_entry - Return the next EFI memory map descriptor
726  * @entry: Previous EFI memory map descriptor
727  *
728  * This is a helper function to iterate over the EFI memory map, which
729  * we do in different orders depending on the current configuration.
730  *
731  * To begin traversing the memory map @entry must be %NULL.
732  *
733  * Returns %NULL when we reach the end of the memory map.
734  */
735 static void *efi_map_next_entry(void *entry)
736 {
737         if (!efi_enabled(EFI_OLD_MEMMAP) && efi_enabled(EFI_64BIT)) {
738                 /*
739                  * Starting in UEFI v2.5 the EFI_PROPERTIES_TABLE
740                  * config table feature requires us to map all entries
741                  * in the same order as they appear in the EFI memory
742                  * map. That is to say, entry N must have a lower
743                  * virtual address than entry N+1. This is because the
744                  * firmware toolchain leaves relative references in
745                  * the code/data sections, which are split and become
746                  * separate EFI memory regions. Mapping things
747                  * out-of-order leads to the firmware accessing
748                  * unmapped addresses.
749                  *
750                  * Since we need to map things this way whether or not
751                  * the kernel actually makes use of
752                  * EFI_PROPERTIES_TABLE, let's just switch to this
753                  * scheme by default for 64-bit.
754                  */
755                 return efi_map_next_entry_reverse(entry);
756         }
757
758         /* Initial call */
759         if (!entry)
760                 return memmap.map;
761
762         entry += memmap.desc_size;
763         if (entry >= memmap.map_end)
764                 return NULL;
765
766         return entry;
767 }
768
769 /*
770  * Map the efi memory ranges of the runtime services and update new_mmap with
771  * virtual addresses.
772  */
773 static void * __init efi_map_regions(int *count, int *pg_shift)
774 {
775         void *p, *new_memmap = NULL;
776         unsigned long left = 0;
777         efi_memory_desc_t *md;
778
779         p = NULL;
780         while ((p = efi_map_next_entry(p))) {
781                 md = p;
782                 if (!(md->attribute & EFI_MEMORY_RUNTIME)) {
783 #ifdef CONFIG_X86_64
784                         if (md->type != EFI_BOOT_SERVICES_CODE &&
785                             md->type != EFI_BOOT_SERVICES_DATA)
786 #endif
787                                 continue;
788                 }
789
790                 efi_map_region(md);
791                 get_systab_virt_addr(md);
792
793                 if (left < memmap.desc_size) {
794                         new_memmap = realloc_pages(new_memmap, *pg_shift);
795                         if (!new_memmap)
796                                 return NULL;
797
798                         left += PAGE_SIZE << *pg_shift;
799                         (*pg_shift)++;
800                 }
801
802                 memcpy(new_memmap + (*count * memmap.desc_size), md,
803                        memmap.desc_size);
804
805                 left -= memmap.desc_size;
806                 (*count)++;
807         }
808
809         return new_memmap;
810 }
811
812 static void __init kexec_enter_virtual_mode(void)
813 {
814 #ifdef CONFIG_KEXEC_CORE
815         efi_memory_desc_t *md;
816         unsigned int num_pages;
817         void *p;
818
819         efi.systab = NULL;
820
821         /*
822          * We don't do virtual mode, since we don't do runtime services, on
823          * non-native EFI
824          */
825         if (!efi_is_native()) {
826                 efi_unmap_memmap();
827                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
828                 return;
829         }
830
831         if (efi_alloc_page_tables()) {
832                 pr_err("Failed to allocate EFI page tables\n");
833                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
834                 return;
835         }
836
837         /*
838         * Map efi regions which were passed via setup_data. The virt_addr is a
839         * fixed addr which was used in first kernel of a kexec boot.
840         */
841         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
842                 md = p;
843                 efi_map_region_fixed(md); /* FIXME: add error handling */
844                 get_systab_virt_addr(md);
845         }
846
847         save_runtime_map();
848
849         BUG_ON(!efi.systab);
850
851         num_pages = ALIGN(memmap.nr_map * memmap.desc_size, PAGE_SIZE);
852         num_pages >>= PAGE_SHIFT;
853
854         if (efi_setup_page_tables(memmap.phys_map, num_pages)) {
855                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
856                 return;
857         }
858
859         efi_sync_low_kernel_mappings();
860
861         /*
862          * Now that EFI is in virtual mode, update the function
863          * pointers in the runtime service table to the new virtual addresses.
864          *
865          * Call EFI services through wrapper functions.
866          */
867         efi.runtime_version = efi_systab.hdr.revision;
868
869         efi_native_runtime_setup();
870
871         efi.set_virtual_address_map = NULL;
872
873         if (efi_enabled(EFI_OLD_MEMMAP) && (__supported_pte_mask & _PAGE_NX))
874                 runtime_code_page_mkexec();
875
876         /* clean DUMMY object */
877         efi_delete_dummy_variable();
878 #endif
879 }
880
881 /*
882  * This function will switch the EFI runtime services to virtual mode.
883  * Essentially, we look through the EFI memmap and map every region that
884  * has the runtime attribute bit set in its memory descriptor into the
885  * efi_pgd page table.
886  *
887  * The old method which used to update that memory descriptor with the
888  * virtual address obtained from ioremap() is still supported when the
889  * kernel is booted with efi=old_map on its command line. Same old
890  * method enabled the runtime services to be called without having to
891  * thunk back into physical mode for every invocation.
892  *
893  * The new method does a pagetable switch in a preemption-safe manner
894  * so that we're in a different address space when calling a runtime
895  * function. For function arguments passing we do copy the PUDs of the
896  * kernel page table into efi_pgd prior to each call.
897  *
898  * Specially for kexec boot, efi runtime maps in previous kernel should
899  * be passed in via setup_data. In that case runtime ranges will be mapped
900  * to the same virtual addresses as the first kernel, see
901  * kexec_enter_virtual_mode().
902  */
903 static void __init __efi_enter_virtual_mode(void)
904 {
905         int count = 0, pg_shift = 0;
906         void *new_memmap = NULL;
907         efi_status_t status;
908
909         efi.systab = NULL;
910
911         if (efi_alloc_page_tables()) {
912                 pr_err("Failed to allocate EFI page tables\n");
913                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
914                 return;
915         }
916
917         efi_merge_regions();
918         new_memmap = efi_map_regions(&count, &pg_shift);
919         if (!new_memmap) {
920                 pr_err("Error reallocating memory, EFI runtime non-functional!\n");
921                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
922                 return;
923         }
924
925         save_runtime_map();
926
927         BUG_ON(!efi.systab);
928
929         if (efi_setup_page_tables(__pa(new_memmap), 1 << pg_shift)) {
930                 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
931                 return;
932         }
933
934         efi_sync_low_kernel_mappings();
935
936         if (efi_is_native()) {
937                 status = phys_efi_set_virtual_address_map(
938                                 memmap.desc_size * count,
939                                 memmap.desc_size,
940                                 memmap.desc_version,
941                                 (efi_memory_desc_t *)__pa(new_memmap));
942         } else {
943                 status = efi_thunk_set_virtual_address_map(
944                                 efi_phys.set_virtual_address_map,
945                                 memmap.desc_size * count,
946                                 memmap.desc_size,
947                                 memmap.desc_version,
948                                 (efi_memory_desc_t *)__pa(new_memmap));
949         }
950
951         if (status != EFI_SUCCESS) {
952                 pr_alert("Unable to switch EFI into virtual mode (status=%lx)!\n",
953                          status);
954                 panic("EFI call to SetVirtualAddressMap() failed!");
955         }
956
957         /*
958          * Now that EFI is in virtual mode, update the function
959          * pointers in the runtime service table to the new virtual addresses.
960          *
961          * Call EFI services through wrapper functions.
962          */
963         efi.runtime_version = efi_systab.hdr.revision;
964
965         if (efi_is_native())
966                 efi_native_runtime_setup();
967         else
968                 efi_thunk_runtime_setup();
969
970         efi.set_virtual_address_map = NULL;
971
972         /*
973          * Apply more restrictive page table mapping attributes now that
974          * SVAM() has been called and the firmware has performed all
975          * necessary relocation fixups for the new virtual addresses.
976          */
977         efi_runtime_update_mappings();
978         efi_dump_pagetable();
979
980         /*
981          * We mapped the descriptor array into the EFI pagetable above
982          * but we're not unmapping it here because if we're running in
983          * EFI mixed mode we need all of memory to be accessible when
984          * we pass parameters to the EFI runtime services in the
985          * thunking code.
986          *
987          * efi_cleanup_page_tables(__pa(new_memmap), 1 << pg_shift);
988          */
989         free_pages((unsigned long)new_memmap, pg_shift);
990
991         /* clean DUMMY object */
992         efi_delete_dummy_variable();
993 }
994
995 void __init efi_enter_virtual_mode(void)
996 {
997         if (efi_enabled(EFI_PARAVIRT))
998                 return;
999
1000         if (efi_setup)
1001                 kexec_enter_virtual_mode();
1002         else
1003                 __efi_enter_virtual_mode();
1004 }
1005
1006 /*
1007  * Convenience functions to obtain memory types and attributes
1008  */
1009 u32 efi_mem_type(unsigned long phys_addr)
1010 {
1011         efi_memory_desc_t *md;
1012         void *p;
1013
1014         if (!efi_enabled(EFI_MEMMAP))
1015                 return 0;
1016
1017         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
1018                 md = p;
1019                 if ((md->phys_addr <= phys_addr) &&
1020                     (phys_addr < (md->phys_addr +
1021                                   (md->num_pages << EFI_PAGE_SHIFT))))
1022                         return md->type;
1023         }
1024         return 0;
1025 }
1026
1027 static int __init arch_parse_efi_cmdline(char *str)
1028 {
1029         if (!str) {
1030                 pr_warn("need at least one option\n");
1031                 return -EINVAL;
1032         }
1033
1034         if (parse_option_str(str, "old_map"))
1035                 set_bit(EFI_OLD_MEMMAP, &efi.flags);
1036
1037         return 0;
1038 }
1039 early_param("efi", arch_parse_efi_cmdline);