x86/paravirt: Add paravirt_{read,write}_msr()
[cascardo/linux.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34 #include <linux/edd.h>
35 #include <linux/frame.h>
36
37 #ifdef CONFIG_KEXEC_CORE
38 #include <linux/kexec.h>
39 #endif
40
41 #include <xen/xen.h>
42 #include <xen/events.h>
43 #include <xen/interface/xen.h>
44 #include <xen/interface/version.h>
45 #include <xen/interface/physdev.h>
46 #include <xen/interface/vcpu.h>
47 #include <xen/interface/memory.h>
48 #include <xen/interface/nmi.h>
49 #include <xen/interface/xen-mca.h>
50 #include <xen/features.h>
51 #include <xen/page.h>
52 #include <xen/hvm.h>
53 #include <xen/hvc-console.h>
54 #include <xen/acpi.h>
55
56 #include <asm/paravirt.h>
57 #include <asm/apic.h>
58 #include <asm/page.h>
59 #include <asm/xen/pci.h>
60 #include <asm/xen/hypercall.h>
61 #include <asm/xen/hypervisor.h>
62 #include <asm/fixmap.h>
63 #include <asm/processor.h>
64 #include <asm/proto.h>
65 #include <asm/msr-index.h>
66 #include <asm/traps.h>
67 #include <asm/setup.h>
68 #include <asm/desc.h>
69 #include <asm/pgalloc.h>
70 #include <asm/pgtable.h>
71 #include <asm/tlbflush.h>
72 #include <asm/reboot.h>
73 #include <asm/stackprotector.h>
74 #include <asm/hypervisor.h>
75 #include <asm/mach_traps.h>
76 #include <asm/mwait.h>
77 #include <asm/pci_x86.h>
78 #include <asm/cpu.h>
79
80 #ifdef CONFIG_ACPI
81 #include <linux/acpi.h>
82 #include <asm/acpi.h>
83 #include <acpi/pdc_intel.h>
84 #include <acpi/processor.h>
85 #include <xen/interface/platform.h>
86 #endif
87
88 #include "xen-ops.h"
89 #include "mmu.h"
90 #include "smp.h"
91 #include "multicalls.h"
92 #include "pmu.h"
93
94 EXPORT_SYMBOL_GPL(hypercall_page);
95
96 /*
97  * Pointer to the xen_vcpu_info structure or
98  * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
99  * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
100  * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
101  * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
102  * acknowledge pending events.
103  * Also more subtly it is used by the patched version of irq enable/disable
104  * e.g. xen_irq_enable_direct and xen_iret in PV mode.
105  *
106  * The desire to be able to do those mask/unmask operations as a single
107  * instruction by using the per-cpu offset held in %gs is the real reason
108  * vcpu info is in a per-cpu pointer and the original reason for this
109  * hypercall.
110  *
111  */
112 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
113
114 /*
115  * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
116  * hypercall. This can be used both in PV and PVHVM mode. The structure
117  * overrides the default per_cpu(xen_vcpu, cpu) value.
118  */
119 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
120
121 enum xen_domain_type xen_domain_type = XEN_NATIVE;
122 EXPORT_SYMBOL_GPL(xen_domain_type);
123
124 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
125 EXPORT_SYMBOL(machine_to_phys_mapping);
126 unsigned long  machine_to_phys_nr;
127 EXPORT_SYMBOL(machine_to_phys_nr);
128
129 struct start_info *xen_start_info;
130 EXPORT_SYMBOL_GPL(xen_start_info);
131
132 struct shared_info xen_dummy_shared_info;
133
134 void *xen_initial_gdt;
135
136 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
137 __read_mostly int xen_have_vector_callback;
138 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
139
140 /*
141  * Point at some empty memory to start with. We map the real shared_info
142  * page as soon as fixmap is up and running.
143  */
144 struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
145
146 /*
147  * Flag to determine whether vcpu info placement is available on all
148  * VCPUs.  We assume it is to start with, and then set it to zero on
149  * the first failure.  This is because it can succeed on some VCPUs
150  * and not others, since it can involve hypervisor memory allocation,
151  * or because the guest failed to guarantee all the appropriate
152  * constraints on all VCPUs (ie buffer can't cross a page boundary).
153  *
154  * Note that any particular CPU may be using a placed vcpu structure,
155  * but we can only optimise if the all are.
156  *
157  * 0: not available, 1: available
158  */
159 static int have_vcpu_info_placement = 1;
160
161 struct tls_descs {
162         struct desc_struct desc[3];
163 };
164
165 /*
166  * Updating the 3 TLS descriptors in the GDT on every task switch is
167  * surprisingly expensive so we avoid updating them if they haven't
168  * changed.  Since Xen writes different descriptors than the one
169  * passed in the update_descriptor hypercall we keep shadow copies to
170  * compare against.
171  */
172 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
173
174 static void clamp_max_cpus(void)
175 {
176 #ifdef CONFIG_SMP
177         if (setup_max_cpus > MAX_VIRT_CPUS)
178                 setup_max_cpus = MAX_VIRT_CPUS;
179 #endif
180 }
181
182 static void xen_vcpu_setup(int cpu)
183 {
184         struct vcpu_register_vcpu_info info;
185         int err;
186         struct vcpu_info *vcpup;
187
188         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
189
190         /*
191          * This path is called twice on PVHVM - first during bootup via
192          * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
193          * hotplugged: cpu_up -> xen_hvm_cpu_notify.
194          * As we can only do the VCPUOP_register_vcpu_info once lets
195          * not over-write its result.
196          *
197          * For PV it is called during restore (xen_vcpu_restore) and bootup
198          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
199          * use this function.
200          */
201         if (xen_hvm_domain()) {
202                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
203                         return;
204         }
205         if (cpu < MAX_VIRT_CPUS)
206                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
207
208         if (!have_vcpu_info_placement) {
209                 if (cpu >= MAX_VIRT_CPUS)
210                         clamp_max_cpus();
211                 return;
212         }
213
214         vcpup = &per_cpu(xen_vcpu_info, cpu);
215         info.mfn = arbitrary_virt_to_mfn(vcpup);
216         info.offset = offset_in_page(vcpup);
217
218         /* Check to see if the hypervisor will put the vcpu_info
219            structure where we want it, which allows direct access via
220            a percpu-variable.
221            N.B. This hypercall can _only_ be called once per CPU. Subsequent
222            calls will error out with -EINVAL. This is due to the fact that
223            hypervisor has no unregister variant and this hypercall does not
224            allow to over-write info.mfn and info.offset.
225          */
226         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
227
228         if (err) {
229                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
230                 have_vcpu_info_placement = 0;
231                 clamp_max_cpus();
232         } else {
233                 /* This cpu is using the registered vcpu info, even if
234                    later ones fail to. */
235                 per_cpu(xen_vcpu, cpu) = vcpup;
236         }
237 }
238
239 /*
240  * On restore, set the vcpu placement up again.
241  * If it fails, then we're in a bad state, since
242  * we can't back out from using it...
243  */
244 void xen_vcpu_restore(void)
245 {
246         int cpu;
247
248         for_each_possible_cpu(cpu) {
249                 bool other_cpu = (cpu != smp_processor_id());
250                 bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, cpu, NULL);
251
252                 if (other_cpu && is_up &&
253                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
254                         BUG();
255
256                 xen_setup_runstate_info(cpu);
257
258                 if (have_vcpu_info_placement)
259                         xen_vcpu_setup(cpu);
260
261                 if (other_cpu && is_up &&
262                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
263                         BUG();
264         }
265 }
266
267 static void __init xen_banner(void)
268 {
269         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
270         struct xen_extraversion extra;
271         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
272
273         pr_info("Booting paravirtualized kernel %son %s\n",
274                 xen_feature(XENFEAT_auto_translated_physmap) ?
275                         "with PVH extensions " : "", pv_info.name);
276         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
277                version >> 16, version & 0xffff, extra.extraversion,
278                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
279 }
280 /* Check if running on Xen version (major, minor) or later */
281 bool
282 xen_running_on_version_or_later(unsigned int major, unsigned int minor)
283 {
284         unsigned int version;
285
286         if (!xen_domain())
287                 return false;
288
289         version = HYPERVISOR_xen_version(XENVER_version, NULL);
290         if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
291                 ((version >> 16) > major))
292                 return true;
293         return false;
294 }
295
296 #define CPUID_THERM_POWER_LEAF 6
297 #define APERFMPERF_PRESENT 0
298
299 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
300 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
301
302 static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
303 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
304 static __read_mostly unsigned int cpuid_leaf5_edx_val;
305
306 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
307                       unsigned int *cx, unsigned int *dx)
308 {
309         unsigned maskebx = ~0;
310         unsigned maskecx = ~0;
311         unsigned maskedx = ~0;
312         unsigned setecx = 0;
313         /*
314          * Mask out inconvenient features, to try and disable as many
315          * unsupported kernel subsystems as possible.
316          */
317         switch (*ax) {
318         case 1:
319                 maskecx = cpuid_leaf1_ecx_mask;
320                 setecx = cpuid_leaf1_ecx_set_mask;
321                 maskedx = cpuid_leaf1_edx_mask;
322                 break;
323
324         case CPUID_MWAIT_LEAF:
325                 /* Synthesize the values.. */
326                 *ax = 0;
327                 *bx = 0;
328                 *cx = cpuid_leaf5_ecx_val;
329                 *dx = cpuid_leaf5_edx_val;
330                 return;
331
332         case CPUID_THERM_POWER_LEAF:
333                 /* Disabling APERFMPERF for kernel usage */
334                 maskecx = ~(1 << APERFMPERF_PRESENT);
335                 break;
336
337         case 0xb:
338                 /* Suppress extended topology stuff */
339                 maskebx = 0;
340                 break;
341         }
342
343         asm(XEN_EMULATE_PREFIX "cpuid"
344                 : "=a" (*ax),
345                   "=b" (*bx),
346                   "=c" (*cx),
347                   "=d" (*dx)
348                 : "0" (*ax), "2" (*cx));
349
350         *bx &= maskebx;
351         *cx &= maskecx;
352         *cx |= setecx;
353         *dx &= maskedx;
354 }
355 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
356
357 static bool __init xen_check_mwait(void)
358 {
359 #ifdef CONFIG_ACPI
360         struct xen_platform_op op = {
361                 .cmd                    = XENPF_set_processor_pminfo,
362                 .u.set_pminfo.id        = -1,
363                 .u.set_pminfo.type      = XEN_PM_PDC,
364         };
365         uint32_t buf[3];
366         unsigned int ax, bx, cx, dx;
367         unsigned int mwait_mask;
368
369         /* We need to determine whether it is OK to expose the MWAIT
370          * capability to the kernel to harvest deeper than C3 states from ACPI
371          * _CST using the processor_harvest_xen.c module. For this to work, we
372          * need to gather the MWAIT_LEAF values (which the cstate.c code
373          * checks against). The hypervisor won't expose the MWAIT flag because
374          * it would break backwards compatibility; so we will find out directly
375          * from the hardware and hypercall.
376          */
377         if (!xen_initial_domain())
378                 return false;
379
380         /*
381          * When running under platform earlier than Xen4.2, do not expose
382          * mwait, to avoid the risk of loading native acpi pad driver
383          */
384         if (!xen_running_on_version_or_later(4, 2))
385                 return false;
386
387         ax = 1;
388         cx = 0;
389
390         native_cpuid(&ax, &bx, &cx, &dx);
391
392         mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
393                      (1 << (X86_FEATURE_MWAIT % 32));
394
395         if ((cx & mwait_mask) != mwait_mask)
396                 return false;
397
398         /* We need to emulate the MWAIT_LEAF and for that we need both
399          * ecx and edx. The hypercall provides only partial information.
400          */
401
402         ax = CPUID_MWAIT_LEAF;
403         bx = 0;
404         cx = 0;
405         dx = 0;
406
407         native_cpuid(&ax, &bx, &cx, &dx);
408
409         /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
410          * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
411          */
412         buf[0] = ACPI_PDC_REVISION_ID;
413         buf[1] = 1;
414         buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
415
416         set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
417
418         if ((HYPERVISOR_platform_op(&op) == 0) &&
419             (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
420                 cpuid_leaf5_ecx_val = cx;
421                 cpuid_leaf5_edx_val = dx;
422         }
423         return true;
424 #else
425         return false;
426 #endif
427 }
428 static void __init xen_init_cpuid_mask(void)
429 {
430         unsigned int ax, bx, cx, dx;
431         unsigned int xsave_mask;
432
433         cpuid_leaf1_edx_mask =
434                 ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
435                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
436
437         if (!xen_initial_domain())
438                 cpuid_leaf1_edx_mask &=
439                         ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
440
441         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
442
443         ax = 1;
444         cx = 0;
445         cpuid(1, &ax, &bx, &cx, &dx);
446
447         xsave_mask =
448                 (1 << (X86_FEATURE_XSAVE % 32)) |
449                 (1 << (X86_FEATURE_OSXSAVE % 32));
450
451         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
452         if ((cx & xsave_mask) != xsave_mask)
453                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
454         if (xen_check_mwait())
455                 cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
456 }
457
458 static void xen_set_debugreg(int reg, unsigned long val)
459 {
460         HYPERVISOR_set_debugreg(reg, val);
461 }
462
463 static unsigned long xen_get_debugreg(int reg)
464 {
465         return HYPERVISOR_get_debugreg(reg);
466 }
467
468 static void xen_end_context_switch(struct task_struct *next)
469 {
470         xen_mc_flush();
471         paravirt_end_context_switch(next);
472 }
473
474 static unsigned long xen_store_tr(void)
475 {
476         return 0;
477 }
478
479 /*
480  * Set the page permissions for a particular virtual address.  If the
481  * address is a vmalloc mapping (or other non-linear mapping), then
482  * find the linear mapping of the page and also set its protections to
483  * match.
484  */
485 static void set_aliased_prot(void *v, pgprot_t prot)
486 {
487         int level;
488         pte_t *ptep;
489         pte_t pte;
490         unsigned long pfn;
491         struct page *page;
492         unsigned char dummy;
493
494         ptep = lookup_address((unsigned long)v, &level);
495         BUG_ON(ptep == NULL);
496
497         pfn = pte_pfn(*ptep);
498         page = pfn_to_page(pfn);
499
500         pte = pfn_pte(pfn, prot);
501
502         /*
503          * Careful: update_va_mapping() will fail if the virtual address
504          * we're poking isn't populated in the page tables.  We don't
505          * need to worry about the direct map (that's always in the page
506          * tables), but we need to be careful about vmap space.  In
507          * particular, the top level page table can lazily propagate
508          * entries between processes, so if we've switched mms since we
509          * vmapped the target in the first place, we might not have the
510          * top-level page table entry populated.
511          *
512          * We disable preemption because we want the same mm active when
513          * we probe the target and when we issue the hypercall.  We'll
514          * have the same nominal mm, but if we're a kernel thread, lazy
515          * mm dropping could change our pgd.
516          *
517          * Out of an abundance of caution, this uses __get_user() to fault
518          * in the target address just in case there's some obscure case
519          * in which the target address isn't readable.
520          */
521
522         preempt_disable();
523
524         pagefault_disable();    /* Avoid warnings due to being atomic. */
525         __get_user(dummy, (unsigned char __user __force *)v);
526         pagefault_enable();
527
528         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
529                 BUG();
530
531         if (!PageHighMem(page)) {
532                 void *av = __va(PFN_PHYS(pfn));
533
534                 if (av != v)
535                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
536                                 BUG();
537         } else
538                 kmap_flush_unused();
539
540         preempt_enable();
541 }
542
543 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
544 {
545         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
546         int i;
547
548         /*
549          * We need to mark the all aliases of the LDT pages RO.  We
550          * don't need to call vm_flush_aliases(), though, since that's
551          * only responsible for flushing aliases out the TLBs, not the
552          * page tables, and Xen will flush the TLB for us if needed.
553          *
554          * To avoid confusing future readers: none of this is necessary
555          * to load the LDT.  The hypervisor only checks this when the
556          * LDT is faulted in due to subsequent descriptor access.
557          */
558
559         for(i = 0; i < entries; i += entries_per_page)
560                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
561 }
562
563 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
564 {
565         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
566         int i;
567
568         for(i = 0; i < entries; i += entries_per_page)
569                 set_aliased_prot(ldt + i, PAGE_KERNEL);
570 }
571
572 static void xen_set_ldt(const void *addr, unsigned entries)
573 {
574         struct mmuext_op *op;
575         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
576
577         trace_xen_cpu_set_ldt(addr, entries);
578
579         op = mcs.args;
580         op->cmd = MMUEXT_SET_LDT;
581         op->arg1.linear_addr = (unsigned long)addr;
582         op->arg2.nr_ents = entries;
583
584         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
585
586         xen_mc_issue(PARAVIRT_LAZY_CPU);
587 }
588
589 static void xen_load_gdt(const struct desc_ptr *dtr)
590 {
591         unsigned long va = dtr->address;
592         unsigned int size = dtr->size + 1;
593         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
594         unsigned long frames[pages];
595         int f;
596
597         /*
598          * A GDT can be up to 64k in size, which corresponds to 8192
599          * 8-byte entries, or 16 4k pages..
600          */
601
602         BUG_ON(size > 65536);
603         BUG_ON(va & ~PAGE_MASK);
604
605         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
606                 int level;
607                 pte_t *ptep;
608                 unsigned long pfn, mfn;
609                 void *virt;
610
611                 /*
612                  * The GDT is per-cpu and is in the percpu data area.
613                  * That can be virtually mapped, so we need to do a
614                  * page-walk to get the underlying MFN for the
615                  * hypercall.  The page can also be in the kernel's
616                  * linear range, so we need to RO that mapping too.
617                  */
618                 ptep = lookup_address(va, &level);
619                 BUG_ON(ptep == NULL);
620
621                 pfn = pte_pfn(*ptep);
622                 mfn = pfn_to_mfn(pfn);
623                 virt = __va(PFN_PHYS(pfn));
624
625                 frames[f] = mfn;
626
627                 make_lowmem_page_readonly((void *)va);
628                 make_lowmem_page_readonly(virt);
629         }
630
631         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
632                 BUG();
633 }
634
635 /*
636  * load_gdt for early boot, when the gdt is only mapped once
637  */
638 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
639 {
640         unsigned long va = dtr->address;
641         unsigned int size = dtr->size + 1;
642         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
643         unsigned long frames[pages];
644         int f;
645
646         /*
647          * A GDT can be up to 64k in size, which corresponds to 8192
648          * 8-byte entries, or 16 4k pages..
649          */
650
651         BUG_ON(size > 65536);
652         BUG_ON(va & ~PAGE_MASK);
653
654         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
655                 pte_t pte;
656                 unsigned long pfn, mfn;
657
658                 pfn = virt_to_pfn(va);
659                 mfn = pfn_to_mfn(pfn);
660
661                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
662
663                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
664                         BUG();
665
666                 frames[f] = mfn;
667         }
668
669         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
670                 BUG();
671 }
672
673 static inline bool desc_equal(const struct desc_struct *d1,
674                               const struct desc_struct *d2)
675 {
676         return d1->a == d2->a && d1->b == d2->b;
677 }
678
679 static void load_TLS_descriptor(struct thread_struct *t,
680                                 unsigned int cpu, unsigned int i)
681 {
682         struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
683         struct desc_struct *gdt;
684         xmaddr_t maddr;
685         struct multicall_space mc;
686
687         if (desc_equal(shadow, &t->tls_array[i]))
688                 return;
689
690         *shadow = t->tls_array[i];
691
692         gdt = get_cpu_gdt_table(cpu);
693         maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
694         mc = __xen_mc_entry(0);
695
696         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
697 }
698
699 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
700 {
701         /*
702          * XXX sleazy hack: If we're being called in a lazy-cpu zone
703          * and lazy gs handling is enabled, it means we're in a
704          * context switch, and %gs has just been saved.  This means we
705          * can zero it out to prevent faults on exit from the
706          * hypervisor if the next process has no %gs.  Either way, it
707          * has been saved, and the new value will get loaded properly.
708          * This will go away as soon as Xen has been modified to not
709          * save/restore %gs for normal hypercalls.
710          *
711          * On x86_64, this hack is not used for %gs, because gs points
712          * to KERNEL_GS_BASE (and uses it for PDA references), so we
713          * must not zero %gs on x86_64
714          *
715          * For x86_64, we need to zero %fs, otherwise we may get an
716          * exception between the new %fs descriptor being loaded and
717          * %fs being effectively cleared at __switch_to().
718          */
719         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
720 #ifdef CONFIG_X86_32
721                 lazy_load_gs(0);
722 #else
723                 loadsegment(fs, 0);
724 #endif
725         }
726
727         xen_mc_batch();
728
729         load_TLS_descriptor(t, cpu, 0);
730         load_TLS_descriptor(t, cpu, 1);
731         load_TLS_descriptor(t, cpu, 2);
732
733         xen_mc_issue(PARAVIRT_LAZY_CPU);
734 }
735
736 #ifdef CONFIG_X86_64
737 static void xen_load_gs_index(unsigned int idx)
738 {
739         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
740                 BUG();
741 }
742 #endif
743
744 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
745                                 const void *ptr)
746 {
747         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
748         u64 entry = *(u64 *)ptr;
749
750         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
751
752         preempt_disable();
753
754         xen_mc_flush();
755         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
756                 BUG();
757
758         preempt_enable();
759 }
760
761 static int cvt_gate_to_trap(int vector, const gate_desc *val,
762                             struct trap_info *info)
763 {
764         unsigned long addr;
765
766         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
767                 return 0;
768
769         info->vector = vector;
770
771         addr = gate_offset(*val);
772 #ifdef CONFIG_X86_64
773         /*
774          * Look for known traps using IST, and substitute them
775          * appropriately.  The debugger ones are the only ones we care
776          * about.  Xen will handle faults like double_fault,
777          * so we should never see them.  Warn if
778          * there's an unexpected IST-using fault handler.
779          */
780         if (addr == (unsigned long)debug)
781                 addr = (unsigned long)xen_debug;
782         else if (addr == (unsigned long)int3)
783                 addr = (unsigned long)xen_int3;
784         else if (addr == (unsigned long)stack_segment)
785                 addr = (unsigned long)xen_stack_segment;
786         else if (addr == (unsigned long)double_fault) {
787                 /* Don't need to handle these */
788                 return 0;
789 #ifdef CONFIG_X86_MCE
790         } else if (addr == (unsigned long)machine_check) {
791                 /*
792                  * when xen hypervisor inject vMCE to guest,
793                  * use native mce handler to handle it
794                  */
795                 ;
796 #endif
797         } else if (addr == (unsigned long)nmi)
798                 /*
799                  * Use the native version as well.
800                  */
801                 ;
802         else {
803                 /* Some other trap using IST? */
804                 if (WARN_ON(val->ist != 0))
805                         return 0;
806         }
807 #endif  /* CONFIG_X86_64 */
808         info->address = addr;
809
810         info->cs = gate_segment(*val);
811         info->flags = val->dpl;
812         /* interrupt gates clear IF */
813         if (val->type == GATE_INTERRUPT)
814                 info->flags |= 1 << 2;
815
816         return 1;
817 }
818
819 /* Locations of each CPU's IDT */
820 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
821
822 /* Set an IDT entry.  If the entry is part of the current IDT, then
823    also update Xen. */
824 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
825 {
826         unsigned long p = (unsigned long)&dt[entrynum];
827         unsigned long start, end;
828
829         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
830
831         preempt_disable();
832
833         start = __this_cpu_read(idt_desc.address);
834         end = start + __this_cpu_read(idt_desc.size) + 1;
835
836         xen_mc_flush();
837
838         native_write_idt_entry(dt, entrynum, g);
839
840         if (p >= start && (p + 8) <= end) {
841                 struct trap_info info[2];
842
843                 info[1].address = 0;
844
845                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
846                         if (HYPERVISOR_set_trap_table(info))
847                                 BUG();
848         }
849
850         preempt_enable();
851 }
852
853 static void xen_convert_trap_info(const struct desc_ptr *desc,
854                                   struct trap_info *traps)
855 {
856         unsigned in, out, count;
857
858         count = (desc->size+1) / sizeof(gate_desc);
859         BUG_ON(count > 256);
860
861         for (in = out = 0; in < count; in++) {
862                 gate_desc *entry = (gate_desc*)(desc->address) + in;
863
864                 if (cvt_gate_to_trap(in, entry, &traps[out]))
865                         out++;
866         }
867         traps[out].address = 0;
868 }
869
870 void xen_copy_trap_info(struct trap_info *traps)
871 {
872         const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
873
874         xen_convert_trap_info(desc, traps);
875 }
876
877 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
878    hold a spinlock to protect the static traps[] array (static because
879    it avoids allocation, and saves stack space). */
880 static void xen_load_idt(const struct desc_ptr *desc)
881 {
882         static DEFINE_SPINLOCK(lock);
883         static struct trap_info traps[257];
884
885         trace_xen_cpu_load_idt(desc);
886
887         spin_lock(&lock);
888
889         memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
890
891         xen_convert_trap_info(desc, traps);
892
893         xen_mc_flush();
894         if (HYPERVISOR_set_trap_table(traps))
895                 BUG();
896
897         spin_unlock(&lock);
898 }
899
900 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
901    they're handled differently. */
902 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
903                                 const void *desc, int type)
904 {
905         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
906
907         preempt_disable();
908
909         switch (type) {
910         case DESC_LDT:
911         case DESC_TSS:
912                 /* ignore */
913                 break;
914
915         default: {
916                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
917
918                 xen_mc_flush();
919                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
920                         BUG();
921         }
922
923         }
924
925         preempt_enable();
926 }
927
928 /*
929  * Version of write_gdt_entry for use at early boot-time needed to
930  * update an entry as simply as possible.
931  */
932 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
933                                             const void *desc, int type)
934 {
935         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
936
937         switch (type) {
938         case DESC_LDT:
939         case DESC_TSS:
940                 /* ignore */
941                 break;
942
943         default: {
944                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
945
946                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
947                         dt[entry] = *(struct desc_struct *)desc;
948         }
949
950         }
951 }
952
953 static void xen_load_sp0(struct tss_struct *tss,
954                          struct thread_struct *thread)
955 {
956         struct multicall_space mcs;
957
958         mcs = xen_mc_entry(0);
959         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
960         xen_mc_issue(PARAVIRT_LAZY_CPU);
961         tss->x86_tss.sp0 = thread->sp0;
962 }
963
964 void xen_set_iopl_mask(unsigned mask)
965 {
966         struct physdev_set_iopl set_iopl;
967
968         /* Force the change at ring 0. */
969         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
970         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
971 }
972
973 static void xen_io_delay(void)
974 {
975 }
976
977 static void xen_clts(void)
978 {
979         struct multicall_space mcs;
980
981         mcs = xen_mc_entry(0);
982
983         MULTI_fpu_taskswitch(mcs.mc, 0);
984
985         xen_mc_issue(PARAVIRT_LAZY_CPU);
986 }
987
988 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
989
990 static unsigned long xen_read_cr0(void)
991 {
992         unsigned long cr0 = this_cpu_read(xen_cr0_value);
993
994         if (unlikely(cr0 == 0)) {
995                 cr0 = native_read_cr0();
996                 this_cpu_write(xen_cr0_value, cr0);
997         }
998
999         return cr0;
1000 }
1001
1002 static void xen_write_cr0(unsigned long cr0)
1003 {
1004         struct multicall_space mcs;
1005
1006         this_cpu_write(xen_cr0_value, cr0);
1007
1008         /* Only pay attention to cr0.TS; everything else is
1009            ignored. */
1010         mcs = xen_mc_entry(0);
1011
1012         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1013
1014         xen_mc_issue(PARAVIRT_LAZY_CPU);
1015 }
1016
1017 static void xen_write_cr4(unsigned long cr4)
1018 {
1019         cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1020
1021         native_write_cr4(cr4);
1022 }
1023 #ifdef CONFIG_X86_64
1024 static inline unsigned long xen_read_cr8(void)
1025 {
1026         return 0;
1027 }
1028 static inline void xen_write_cr8(unsigned long val)
1029 {
1030         BUG_ON(val);
1031 }
1032 #endif
1033
1034 static u64 xen_read_msr_safe(unsigned int msr, int *err)
1035 {
1036         u64 val;
1037
1038         if (pmu_msr_read(msr, &val, err))
1039                 return val;
1040
1041         val = native_read_msr_safe(msr, err);
1042         switch (msr) {
1043         case MSR_IA32_APICBASE:
1044 #ifdef CONFIG_X86_X2APIC
1045                 if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1046 #endif
1047                         val &= ~X2APIC_ENABLE;
1048                 break;
1049         }
1050         return val;
1051 }
1052
1053 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1054 {
1055         int ret;
1056
1057         ret = 0;
1058
1059         switch (msr) {
1060 #ifdef CONFIG_X86_64
1061                 unsigned which;
1062                 u64 base;
1063
1064         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1065         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1066         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1067
1068         set:
1069                 base = ((u64)high << 32) | low;
1070                 if (HYPERVISOR_set_segment_base(which, base) != 0)
1071                         ret = -EIO;
1072                 break;
1073 #endif
1074
1075         case MSR_STAR:
1076         case MSR_CSTAR:
1077         case MSR_LSTAR:
1078         case MSR_SYSCALL_MASK:
1079         case MSR_IA32_SYSENTER_CS:
1080         case MSR_IA32_SYSENTER_ESP:
1081         case MSR_IA32_SYSENTER_EIP:
1082                 /* Fast syscall setup is all done in hypercalls, so
1083                    these are all ignored.  Stub them out here to stop
1084                    Xen console noise. */
1085                 break;
1086
1087         default:
1088                 if (!pmu_msr_write(msr, low, high, &ret))
1089                         ret = native_write_msr_safe(msr, low, high);
1090         }
1091
1092         return ret;
1093 }
1094
1095 static u64 xen_read_msr(unsigned int msr)
1096 {
1097         /*
1098          * This will silently swallow a #GP from RDMSR.  It may be worth
1099          * changing that.
1100          */
1101         int err;
1102
1103         return xen_read_msr_safe(msr, &err);
1104 }
1105
1106 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1107 {
1108         /*
1109          * This will silently swallow a #GP from WRMSR.  It may be worth
1110          * changing that.
1111          */
1112         xen_write_msr_safe(msr, low, high);
1113 }
1114
1115 void xen_setup_shared_info(void)
1116 {
1117         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1118                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
1119                            xen_start_info->shared_info);
1120
1121                 HYPERVISOR_shared_info =
1122                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1123         } else
1124                 HYPERVISOR_shared_info =
1125                         (struct shared_info *)__va(xen_start_info->shared_info);
1126
1127 #ifndef CONFIG_SMP
1128         /* In UP this is as good a place as any to set up shared info */
1129         xen_setup_vcpu_info_placement();
1130 #endif
1131
1132         xen_setup_mfn_list_list();
1133 }
1134
1135 /* This is called once we have the cpu_possible_mask */
1136 void xen_setup_vcpu_info_placement(void)
1137 {
1138         int cpu;
1139
1140         for_each_possible_cpu(cpu)
1141                 xen_vcpu_setup(cpu);
1142
1143         /* xen_vcpu_setup managed to place the vcpu_info within the
1144          * percpu area for all cpus, so make use of it. Note that for
1145          * PVH we want to use native IRQ mechanism. */
1146         if (have_vcpu_info_placement && !xen_pvh_domain()) {
1147                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1148                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1149                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1150                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1151                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1152         }
1153 }
1154
1155 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1156                           unsigned long addr, unsigned len)
1157 {
1158         char *start, *end, *reloc;
1159         unsigned ret;
1160
1161         start = end = reloc = NULL;
1162
1163 #define SITE(op, x)                                                     \
1164         case PARAVIRT_PATCH(op.x):                                      \
1165         if (have_vcpu_info_placement) {                                 \
1166                 start = (char *)xen_##x##_direct;                       \
1167                 end = xen_##x##_direct_end;                             \
1168                 reloc = xen_##x##_direct_reloc;                         \
1169         }                                                               \
1170         goto patch_site
1171
1172         switch (type) {
1173                 SITE(pv_irq_ops, irq_enable);
1174                 SITE(pv_irq_ops, irq_disable);
1175                 SITE(pv_irq_ops, save_fl);
1176                 SITE(pv_irq_ops, restore_fl);
1177 #undef SITE
1178
1179         patch_site:
1180                 if (start == NULL || (end-start) > len)
1181                         goto default_patch;
1182
1183                 ret = paravirt_patch_insns(insnbuf, len, start, end);
1184
1185                 /* Note: because reloc is assigned from something that
1186                    appears to be an array, gcc assumes it's non-null,
1187                    but doesn't know its relationship with start and
1188                    end. */
1189                 if (reloc > start && reloc < end) {
1190                         int reloc_off = reloc - start;
1191                         long *relocp = (long *)(insnbuf + reloc_off);
1192                         long delta = start - (char *)addr;
1193
1194                         *relocp += delta;
1195                 }
1196                 break;
1197
1198         default_patch:
1199         default:
1200                 ret = paravirt_patch_default(type, clobbers, insnbuf,
1201                                              addr, len);
1202                 break;
1203         }
1204
1205         return ret;
1206 }
1207
1208 static const struct pv_info xen_info __initconst = {
1209         .paravirt_enabled = 1,
1210         .shared_kernel_pmd = 0,
1211
1212 #ifdef CONFIG_X86_64
1213         .extra_user_64bit_cs = FLAT_USER_CS64,
1214 #endif
1215         .features = 0,
1216         .name = "Xen",
1217 };
1218
1219 static const struct pv_init_ops xen_init_ops __initconst = {
1220         .patch = xen_patch,
1221 };
1222
1223 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1224         .cpuid = xen_cpuid,
1225
1226         .set_debugreg = xen_set_debugreg,
1227         .get_debugreg = xen_get_debugreg,
1228
1229         .clts = xen_clts,
1230
1231         .read_cr0 = xen_read_cr0,
1232         .write_cr0 = xen_write_cr0,
1233
1234         .read_cr4 = native_read_cr4,
1235         .read_cr4_safe = native_read_cr4_safe,
1236         .write_cr4 = xen_write_cr4,
1237
1238 #ifdef CONFIG_X86_64
1239         .read_cr8 = xen_read_cr8,
1240         .write_cr8 = xen_write_cr8,
1241 #endif
1242
1243         .wbinvd = native_wbinvd,
1244
1245         .read_msr = xen_read_msr,
1246         .write_msr = xen_write_msr,
1247
1248         .read_msr_safe = xen_read_msr_safe,
1249         .write_msr_safe = xen_write_msr_safe,
1250
1251         .read_pmc = xen_read_pmc,
1252
1253         .iret = xen_iret,
1254 #ifdef CONFIG_X86_64
1255         .usergs_sysret64 = xen_sysret64,
1256 #endif
1257
1258         .load_tr_desc = paravirt_nop,
1259         .set_ldt = xen_set_ldt,
1260         .load_gdt = xen_load_gdt,
1261         .load_idt = xen_load_idt,
1262         .load_tls = xen_load_tls,
1263 #ifdef CONFIG_X86_64
1264         .load_gs_index = xen_load_gs_index,
1265 #endif
1266
1267         .alloc_ldt = xen_alloc_ldt,
1268         .free_ldt = xen_free_ldt,
1269
1270         .store_idt = native_store_idt,
1271         .store_tr = xen_store_tr,
1272
1273         .write_ldt_entry = xen_write_ldt_entry,
1274         .write_gdt_entry = xen_write_gdt_entry,
1275         .write_idt_entry = xen_write_idt_entry,
1276         .load_sp0 = xen_load_sp0,
1277
1278         .set_iopl_mask = xen_set_iopl_mask,
1279         .io_delay = xen_io_delay,
1280
1281         /* Xen takes care of %gs when switching to usermode for us */
1282         .swapgs = paravirt_nop,
1283
1284         .start_context_switch = paravirt_start_context_switch,
1285         .end_context_switch = xen_end_context_switch,
1286 };
1287
1288 static void xen_reboot(int reason)
1289 {
1290         struct sched_shutdown r = { .reason = reason };
1291         int cpu;
1292
1293         for_each_online_cpu(cpu)
1294                 xen_pmu_finish(cpu);
1295
1296         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1297                 BUG();
1298 }
1299
1300 static void xen_restart(char *msg)
1301 {
1302         xen_reboot(SHUTDOWN_reboot);
1303 }
1304
1305 static void xen_emergency_restart(void)
1306 {
1307         xen_reboot(SHUTDOWN_reboot);
1308 }
1309
1310 static void xen_machine_halt(void)
1311 {
1312         xen_reboot(SHUTDOWN_poweroff);
1313 }
1314
1315 static void xen_machine_power_off(void)
1316 {
1317         if (pm_power_off)
1318                 pm_power_off();
1319         xen_reboot(SHUTDOWN_poweroff);
1320 }
1321
1322 static void xen_crash_shutdown(struct pt_regs *regs)
1323 {
1324         xen_reboot(SHUTDOWN_crash);
1325 }
1326
1327 static int
1328 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1329 {
1330         xen_reboot(SHUTDOWN_crash);
1331         return NOTIFY_DONE;
1332 }
1333
1334 static struct notifier_block xen_panic_block = {
1335         .notifier_call= xen_panic_event,
1336         .priority = INT_MIN
1337 };
1338
1339 int xen_panic_handler_init(void)
1340 {
1341         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1342         return 0;
1343 }
1344
1345 static const struct machine_ops xen_machine_ops __initconst = {
1346         .restart = xen_restart,
1347         .halt = xen_machine_halt,
1348         .power_off = xen_machine_power_off,
1349         .shutdown = xen_machine_halt,
1350         .crash_shutdown = xen_crash_shutdown,
1351         .emergency_restart = xen_emergency_restart,
1352 };
1353
1354 static unsigned char xen_get_nmi_reason(void)
1355 {
1356         unsigned char reason = 0;
1357
1358         /* Construct a value which looks like it came from port 0x61. */
1359         if (test_bit(_XEN_NMIREASON_io_error,
1360                      &HYPERVISOR_shared_info->arch.nmi_reason))
1361                 reason |= NMI_REASON_IOCHK;
1362         if (test_bit(_XEN_NMIREASON_pci_serr,
1363                      &HYPERVISOR_shared_info->arch.nmi_reason))
1364                 reason |= NMI_REASON_SERR;
1365
1366         return reason;
1367 }
1368
1369 static void __init xen_boot_params_init_edd(void)
1370 {
1371 #if IS_ENABLED(CONFIG_EDD)
1372         struct xen_platform_op op;
1373         struct edd_info *edd_info;
1374         u32 *mbr_signature;
1375         unsigned nr;
1376         int ret;
1377
1378         edd_info = boot_params.eddbuf;
1379         mbr_signature = boot_params.edd_mbr_sig_buffer;
1380
1381         op.cmd = XENPF_firmware_info;
1382
1383         op.u.firmware_info.type = XEN_FW_DISK_INFO;
1384         for (nr = 0; nr < EDDMAXNR; nr++) {
1385                 struct edd_info *info = edd_info + nr;
1386
1387                 op.u.firmware_info.index = nr;
1388                 info->params.length = sizeof(info->params);
1389                 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1390                                      &info->params);
1391                 ret = HYPERVISOR_platform_op(&op);
1392                 if (ret)
1393                         break;
1394
1395 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1396                 C(device);
1397                 C(version);
1398                 C(interface_support);
1399                 C(legacy_max_cylinder);
1400                 C(legacy_max_head);
1401                 C(legacy_sectors_per_track);
1402 #undef C
1403         }
1404         boot_params.eddbuf_entries = nr;
1405
1406         op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1407         for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1408                 op.u.firmware_info.index = nr;
1409                 ret = HYPERVISOR_platform_op(&op);
1410                 if (ret)
1411                         break;
1412                 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1413         }
1414         boot_params.edd_mbr_sig_buf_entries = nr;
1415 #endif
1416 }
1417
1418 /*
1419  * Set up the GDT and segment registers for -fstack-protector.  Until
1420  * we do this, we have to be careful not to call any stack-protected
1421  * function, which is most of the kernel.
1422  *
1423  * Note, that it is __ref because the only caller of this after init
1424  * is PVH which is not going to use xen_load_gdt_boot or other
1425  * __init functions.
1426  */
1427 static void __ref xen_setup_gdt(int cpu)
1428 {
1429         if (xen_feature(XENFEAT_auto_translated_physmap)) {
1430 #ifdef CONFIG_X86_64
1431                 unsigned long dummy;
1432
1433                 load_percpu_segment(cpu); /* We need to access per-cpu area */
1434                 switch_to_new_gdt(cpu); /* GDT and GS set */
1435
1436                 /* We are switching of the Xen provided GDT to our HVM mode
1437                  * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1438                  * and we are jumping to reload it.
1439                  */
1440                 asm volatile ("pushq %0\n"
1441                               "leaq 1f(%%rip),%0\n"
1442                               "pushq %0\n"
1443                               "lretq\n"
1444                               "1:\n"
1445                               : "=&r" (dummy) : "0" (__KERNEL_CS));
1446
1447                 /*
1448                  * While not needed, we also set the %es, %ds, and %fs
1449                  * to zero. We don't care about %ss as it is NULL.
1450                  * Strictly speaking this is not needed as Xen zeros those
1451                  * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1452                  *
1453                  * Linux zeros them in cpu_init() and in secondary_startup_64
1454                  * (for BSP).
1455                  */
1456                 loadsegment(es, 0);
1457                 loadsegment(ds, 0);
1458                 loadsegment(fs, 0);
1459 #else
1460                 /* PVH: TODO Implement. */
1461                 BUG();
1462 #endif
1463                 return; /* PVH does not need any PV GDT ops. */
1464         }
1465         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1466         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1467
1468         setup_stack_canary_segment(0);
1469         switch_to_new_gdt(0);
1470
1471         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1472         pv_cpu_ops.load_gdt = xen_load_gdt;
1473 }
1474
1475 #ifdef CONFIG_XEN_PVH
1476 /*
1477  * A PV guest starts with default flags that are not set for PVH, set them
1478  * here asap.
1479  */
1480 static void xen_pvh_set_cr_flags(int cpu)
1481 {
1482
1483         /* Some of these are setup in 'secondary_startup_64'. The others:
1484          * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1485          * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1486         write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1487
1488         if (!cpu)
1489                 return;
1490         /*
1491          * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1492          * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1493         */
1494         if (boot_cpu_has(X86_FEATURE_PSE))
1495                 cr4_set_bits_and_update_boot(X86_CR4_PSE);
1496
1497         if (boot_cpu_has(X86_FEATURE_PGE))
1498                 cr4_set_bits_and_update_boot(X86_CR4_PGE);
1499 }
1500
1501 /*
1502  * Note, that it is ref - because the only caller of this after init
1503  * is PVH which is not going to use xen_load_gdt_boot or other
1504  * __init functions.
1505  */
1506 void __ref xen_pvh_secondary_vcpu_init(int cpu)
1507 {
1508         xen_setup_gdt(cpu);
1509         xen_pvh_set_cr_flags(cpu);
1510 }
1511
1512 static void __init xen_pvh_early_guest_init(void)
1513 {
1514         if (!xen_feature(XENFEAT_auto_translated_physmap))
1515                 return;
1516
1517         if (!xen_feature(XENFEAT_hvm_callback_vector))
1518                 return;
1519
1520         xen_have_vector_callback = 1;
1521
1522         xen_pvh_early_cpu_init(0, false);
1523         xen_pvh_set_cr_flags(0);
1524
1525 #ifdef CONFIG_X86_32
1526         BUG(); /* PVH: Implement proper support. */
1527 #endif
1528 }
1529 #endif    /* CONFIG_XEN_PVH */
1530
1531 /* First C function to be called on Xen boot */
1532 asmlinkage __visible void __init xen_start_kernel(void)
1533 {
1534         struct physdev_set_iopl set_iopl;
1535         unsigned long initrd_start = 0;
1536         int rc;
1537
1538         if (!xen_start_info)
1539                 return;
1540
1541         xen_domain_type = XEN_PV_DOMAIN;
1542
1543         xen_setup_features();
1544 #ifdef CONFIG_XEN_PVH
1545         xen_pvh_early_guest_init();
1546 #endif
1547         xen_setup_machphys_mapping();
1548
1549         /* Install Xen paravirt ops */
1550         pv_info = xen_info;
1551         if (xen_initial_domain())
1552                 pv_info.features |= PV_SUPPORTED_RTC;
1553         pv_init_ops = xen_init_ops;
1554         if (!xen_pvh_domain()) {
1555                 pv_cpu_ops = xen_cpu_ops;
1556
1557                 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1558         }
1559
1560         if (xen_feature(XENFEAT_auto_translated_physmap))
1561                 x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1562         else
1563                 x86_init.resources.memory_setup = xen_memory_setup;
1564         x86_init.oem.arch_setup = xen_arch_setup;
1565         x86_init.oem.banner = xen_banner;
1566
1567         xen_init_time_ops();
1568
1569         /*
1570          * Set up some pagetable state before starting to set any ptes.
1571          */
1572
1573         xen_init_mmu_ops();
1574
1575         /* Prevent unwanted bits from being set in PTEs. */
1576         __supported_pte_mask &= ~_PAGE_GLOBAL;
1577
1578         /*
1579          * Prevent page tables from being allocated in highmem, even
1580          * if CONFIG_HIGHPTE is enabled.
1581          */
1582         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1583
1584         /* Work out if we support NX */
1585         x86_configure_nx();
1586
1587         /* Get mfn list */
1588         xen_build_dynamic_phys_to_machine();
1589
1590         /*
1591          * Set up kernel GDT and segment registers, mainly so that
1592          * -fstack-protector code can be executed.
1593          */
1594         xen_setup_gdt(0);
1595
1596         xen_init_irq_ops();
1597         xen_init_cpuid_mask();
1598
1599 #ifdef CONFIG_X86_LOCAL_APIC
1600         /*
1601          * set up the basic apic ops.
1602          */
1603         xen_init_apic();
1604 #endif
1605
1606         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1607                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1608                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1609         }
1610
1611         machine_ops = xen_machine_ops;
1612
1613         /*
1614          * The only reliable way to retain the initial address of the
1615          * percpu gdt_page is to remember it here, so we can go and
1616          * mark it RW later, when the initial percpu area is freed.
1617          */
1618         xen_initial_gdt = &per_cpu(gdt_page, 0);
1619
1620         xen_smp_init();
1621
1622 #ifdef CONFIG_ACPI_NUMA
1623         /*
1624          * The pages we from Xen are not related to machine pages, so
1625          * any NUMA information the kernel tries to get from ACPI will
1626          * be meaningless.  Prevent it from trying.
1627          */
1628         acpi_numa = -1;
1629 #endif
1630         /* Don't do the full vcpu_info placement stuff until we have a
1631            possible map and a non-dummy shared_info. */
1632         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1633
1634         local_irq_disable();
1635         early_boot_irqs_disabled = true;
1636
1637         xen_raw_console_write("mapping kernel into physical memory\n");
1638         xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1639                                    xen_start_info->nr_pages);
1640         xen_reserve_special_pages();
1641
1642         /* keep using Xen gdt for now; no urgent need to change it */
1643
1644 #ifdef CONFIG_X86_32
1645         pv_info.kernel_rpl = 1;
1646         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1647                 pv_info.kernel_rpl = 0;
1648 #else
1649         pv_info.kernel_rpl = 0;
1650 #endif
1651         /* set the limit of our address space */
1652         xen_reserve_top();
1653
1654         /* PVH: runs at default kernel iopl of 0 */
1655         if (!xen_pvh_domain()) {
1656                 /*
1657                  * We used to do this in xen_arch_setup, but that is too late
1658                  * on AMD were early_cpu_init (run before ->arch_setup()) calls
1659                  * early_amd_init which pokes 0xcf8 port.
1660                  */
1661                 set_iopl.iopl = 1;
1662                 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1663                 if (rc != 0)
1664                         xen_raw_printk("physdev_op failed %d\n", rc);
1665         }
1666
1667 #ifdef CONFIG_X86_32
1668         /* set up basic CPUID stuff */
1669         cpu_detect(&new_cpu_data);
1670         set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1671         new_cpu_data.wp_works_ok = 1;
1672         new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1673 #endif
1674
1675         if (xen_start_info->mod_start) {
1676             if (xen_start_info->flags & SIF_MOD_START_PFN)
1677                 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1678             else
1679                 initrd_start = __pa(xen_start_info->mod_start);
1680         }
1681
1682         /* Poke various useful things into boot_params */
1683         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1684         boot_params.hdr.ramdisk_image = initrd_start;
1685         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1686         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1687
1688         if (!xen_initial_domain()) {
1689                 add_preferred_console("xenboot", 0, NULL);
1690                 add_preferred_console("tty", 0, NULL);
1691                 add_preferred_console("hvc", 0, NULL);
1692                 if (pci_xen)
1693                         x86_init.pci.arch_init = pci_xen_init;
1694         } else {
1695                 const struct dom0_vga_console_info *info =
1696                         (void *)((char *)xen_start_info +
1697                                  xen_start_info->console.dom0.info_off);
1698                 struct xen_platform_op op = {
1699                         .cmd = XENPF_firmware_info,
1700                         .interface_version = XENPF_INTERFACE_VERSION,
1701                         .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1702                 };
1703
1704                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1705                 xen_start_info->console.domU.mfn = 0;
1706                 xen_start_info->console.domU.evtchn = 0;
1707
1708                 if (HYPERVISOR_platform_op(&op) == 0)
1709                         boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1710
1711                 /* Make sure ACS will be enabled */
1712                 pci_request_acs();
1713
1714                 xen_acpi_sleep_register();
1715
1716                 /* Avoid searching for BIOS MP tables */
1717                 x86_init.mpparse.find_smp_config = x86_init_noop;
1718                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1719
1720                 xen_boot_params_init_edd();
1721         }
1722 #ifdef CONFIG_PCI
1723         /* PCI BIOS service won't work from a PV guest. */
1724         pci_probe &= ~PCI_PROBE_BIOS;
1725 #endif
1726         xen_raw_console_write("about to get started...\n");
1727
1728         xen_setup_runstate_info(0);
1729
1730         xen_efi_init();
1731
1732         /* Start the world */
1733 #ifdef CONFIG_X86_32
1734         i386_start_kernel();
1735 #else
1736         cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1737         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1738 #endif
1739 }
1740
1741 void __ref xen_hvm_init_shared_info(void)
1742 {
1743         int cpu;
1744         struct xen_add_to_physmap xatp;
1745         static struct shared_info *shared_info_page = 0;
1746
1747         if (!shared_info_page)
1748                 shared_info_page = (struct shared_info *)
1749                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1750         xatp.domid = DOMID_SELF;
1751         xatp.idx = 0;
1752         xatp.space = XENMAPSPACE_shared_info;
1753         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1754         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1755                 BUG();
1756
1757         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1758
1759         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1760          * page, we use it in the event channel upcall and in some pvclock
1761          * related functions. We don't need the vcpu_info placement
1762          * optimizations because we don't use any pv_mmu or pv_irq op on
1763          * HVM.
1764          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1765          * online but xen_hvm_init_shared_info is run at resume time too and
1766          * in that case multiple vcpus might be online. */
1767         for_each_online_cpu(cpu) {
1768                 /* Leave it to be NULL. */
1769                 if (cpu >= MAX_VIRT_CPUS)
1770                         continue;
1771                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1772         }
1773 }
1774
1775 #ifdef CONFIG_XEN_PVHVM
1776 static void __init init_hvm_pv_info(void)
1777 {
1778         int major, minor;
1779         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1780         u64 pfn;
1781
1782         base = xen_cpuid_base();
1783         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1784
1785         major = eax >> 16;
1786         minor = eax & 0xffff;
1787         printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1788
1789         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1790
1791         pfn = __pa(hypercall_page);
1792         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1793
1794         xen_setup_features();
1795
1796         pv_info.name = "Xen HVM";
1797
1798         xen_domain_type = XEN_HVM_DOMAIN;
1799 }
1800
1801 static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1802                               void *hcpu)
1803 {
1804         int cpu = (long)hcpu;
1805         switch (action) {
1806         case CPU_UP_PREPARE:
1807                 xen_vcpu_setup(cpu);
1808                 if (xen_have_vector_callback) {
1809                         if (xen_feature(XENFEAT_hvm_safe_pvclock))
1810                                 xen_setup_timer(cpu);
1811                 }
1812                 break;
1813         default:
1814                 break;
1815         }
1816         return NOTIFY_OK;
1817 }
1818
1819 static struct notifier_block xen_hvm_cpu_notifier = {
1820         .notifier_call  = xen_hvm_cpu_notify,
1821 };
1822
1823 #ifdef CONFIG_KEXEC_CORE
1824 static void xen_hvm_shutdown(void)
1825 {
1826         native_machine_shutdown();
1827         if (kexec_in_progress)
1828                 xen_reboot(SHUTDOWN_soft_reset);
1829 }
1830
1831 static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1832 {
1833         native_machine_crash_shutdown(regs);
1834         xen_reboot(SHUTDOWN_soft_reset);
1835 }
1836 #endif
1837
1838 static void __init xen_hvm_guest_init(void)
1839 {
1840         if (xen_pv_domain())
1841                 return;
1842
1843         init_hvm_pv_info();
1844
1845         xen_hvm_init_shared_info();
1846
1847         xen_panic_handler_init();
1848
1849         if (xen_feature(XENFEAT_hvm_callback_vector))
1850                 xen_have_vector_callback = 1;
1851         xen_hvm_smp_init();
1852         register_cpu_notifier(&xen_hvm_cpu_notifier);
1853         xen_unplug_emulated_devices();
1854         x86_init.irqs.intr_init = xen_init_IRQ;
1855         xen_hvm_init_time_ops();
1856         xen_hvm_init_mmu_ops();
1857 #ifdef CONFIG_KEXEC_CORE
1858         machine_ops.shutdown = xen_hvm_shutdown;
1859         machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1860 #endif
1861 }
1862 #endif
1863
1864 static bool xen_nopv = false;
1865 static __init int xen_parse_nopv(char *arg)
1866 {
1867        xen_nopv = true;
1868        return 0;
1869 }
1870 early_param("xen_nopv", xen_parse_nopv);
1871
1872 static uint32_t __init xen_platform(void)
1873 {
1874         if (xen_nopv)
1875                 return 0;
1876
1877         return xen_cpuid_base();
1878 }
1879
1880 bool xen_hvm_need_lapic(void)
1881 {
1882         if (xen_nopv)
1883                 return false;
1884         if (xen_pv_domain())
1885                 return false;
1886         if (!xen_hvm_domain())
1887                 return false;
1888         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1889                 return false;
1890         return true;
1891 }
1892 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1893
1894 static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1895 {
1896         if (xen_pv_domain()) {
1897                 clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1898                 set_cpu_cap(c, X86_FEATURE_XENPV);
1899         }
1900 }
1901
1902 const struct hypervisor_x86 x86_hyper_xen = {
1903         .name                   = "Xen",
1904         .detect                 = xen_platform,
1905 #ifdef CONFIG_XEN_PVHVM
1906         .init_platform          = xen_hvm_guest_init,
1907 #endif
1908         .x2apic_available       = xen_x2apic_para_available,
1909         .set_cpu_features       = xen_set_cpu_features,
1910 };
1911 EXPORT_SYMBOL(x86_hyper_xen);
1912
1913 #ifdef CONFIG_HOTPLUG_CPU
1914 void xen_arch_register_cpu(int num)
1915 {
1916         arch_register_cpu(num);
1917 }
1918 EXPORT_SYMBOL(xen_arch_register_cpu);
1919
1920 void xen_arch_unregister_cpu(int num)
1921 {
1922         arch_unregister_cpu(num);
1923 }
1924 EXPORT_SYMBOL(xen_arch_unregister_cpu);
1925 #endif