block: make generic_make_request handle arbitrarily sized bios
[cascardo/linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
24
25 #include <trace/events/block.h>
26
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
31
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
34
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
37 /*
38  * Check if any of the ctx's have pending work in this hardware queue
39  */
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41 {
42         unsigned int i;
43
44         for (i = 0; i < hctx->ctx_map.size; i++)
45                 if (hctx->ctx_map.map[i].word)
46                         return true;
47
48         return false;
49 }
50
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52                                               struct blk_mq_ctx *ctx)
53 {
54         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55 }
56
57 #define CTX_TO_BIT(hctx, ctx)   \
58         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
60 /*
61  * Mark this ctx as having pending work in this hardware queue
62  */
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64                                      struct blk_mq_ctx *ctx)
65 {
66         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70 }
71
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73                                       struct blk_mq_ctx *ctx)
74 {
75         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
78 }
79
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
81 {
82         while (true) {
83                 int ret;
84
85                 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86                         return 0;
87
88                 if (!(gfp & __GFP_WAIT))
89                         return -EBUSY;
90
91                 ret = wait_event_interruptible(q->mq_freeze_wq,
92                                 !atomic_read(&q->mq_freeze_depth) ||
93                                 blk_queue_dying(q));
94                 if (blk_queue_dying(q))
95                         return -ENODEV;
96                 if (ret)
97                         return ret;
98         }
99 }
100
101 static void blk_mq_queue_exit(struct request_queue *q)
102 {
103         percpu_ref_put(&q->mq_usage_counter);
104 }
105
106 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
107 {
108         struct request_queue *q =
109                 container_of(ref, struct request_queue, mq_usage_counter);
110
111         wake_up_all(&q->mq_freeze_wq);
112 }
113
114 void blk_mq_freeze_queue_start(struct request_queue *q)
115 {
116         int freeze_depth;
117
118         freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119         if (freeze_depth == 1) {
120                 percpu_ref_kill(&q->mq_usage_counter);
121                 blk_mq_run_hw_queues(q, false);
122         }
123 }
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
125
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
127 {
128         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
129 }
130
131 /*
132  * Guarantee no request is in use, so we can change any data structure of
133  * the queue afterward.
134  */
135 void blk_mq_freeze_queue(struct request_queue *q)
136 {
137         blk_mq_freeze_queue_start(q);
138         blk_mq_freeze_queue_wait(q);
139 }
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
141
142 void blk_mq_unfreeze_queue(struct request_queue *q)
143 {
144         int freeze_depth;
145
146         freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147         WARN_ON_ONCE(freeze_depth < 0);
148         if (!freeze_depth) {
149                 percpu_ref_reinit(&q->mq_usage_counter);
150                 wake_up_all(&q->mq_freeze_wq);
151         }
152 }
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
154
155 void blk_mq_wake_waiters(struct request_queue *q)
156 {
157         struct blk_mq_hw_ctx *hctx;
158         unsigned int i;
159
160         queue_for_each_hw_ctx(q, hctx, i)
161                 if (blk_mq_hw_queue_mapped(hctx))
162                         blk_mq_tag_wakeup_all(hctx->tags, true);
163
164         /*
165          * If we are called because the queue has now been marked as
166          * dying, we need to ensure that processes currently waiting on
167          * the queue are notified as well.
168          */
169         wake_up_all(&q->mq_freeze_wq);
170 }
171
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173 {
174         return blk_mq_has_free_tags(hctx->tags);
175 }
176 EXPORT_SYMBOL(blk_mq_can_queue);
177
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179                                struct request *rq, unsigned int rw_flags)
180 {
181         if (blk_queue_io_stat(q))
182                 rw_flags |= REQ_IO_STAT;
183
184         INIT_LIST_HEAD(&rq->queuelist);
185         /* csd/requeue_work/fifo_time is initialized before use */
186         rq->q = q;
187         rq->mq_ctx = ctx;
188         rq->cmd_flags |= rw_flags;
189         /* do not touch atomic flags, it needs atomic ops against the timer */
190         rq->cpu = -1;
191         INIT_HLIST_NODE(&rq->hash);
192         RB_CLEAR_NODE(&rq->rb_node);
193         rq->rq_disk = NULL;
194         rq->part = NULL;
195         rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197         rq->rl = NULL;
198         set_start_time_ns(rq);
199         rq->io_start_time_ns = 0;
200 #endif
201         rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203         rq->nr_integrity_segments = 0;
204 #endif
205         rq->special = NULL;
206         /* tag was already set */
207         rq->errors = 0;
208
209         rq->cmd = rq->__cmd;
210
211         rq->extra_len = 0;
212         rq->sense_len = 0;
213         rq->resid_len = 0;
214         rq->sense = NULL;
215
216         INIT_LIST_HEAD(&rq->timeout_list);
217         rq->timeout = 0;
218
219         rq->end_io = NULL;
220         rq->end_io_data = NULL;
221         rq->next_rq = NULL;
222
223         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224 }
225
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
228 {
229         struct request *rq;
230         unsigned int tag;
231
232         tag = blk_mq_get_tag(data);
233         if (tag != BLK_MQ_TAG_FAIL) {
234                 rq = data->hctx->tags->rqs[tag];
235
236                 if (blk_mq_tag_busy(data->hctx)) {
237                         rq->cmd_flags = REQ_MQ_INFLIGHT;
238                         atomic_inc(&data->hctx->nr_active);
239                 }
240
241                 rq->tag = tag;
242                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243                 return rq;
244         }
245
246         return NULL;
247 }
248
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250                 bool reserved)
251 {
252         struct blk_mq_ctx *ctx;
253         struct blk_mq_hw_ctx *hctx;
254         struct request *rq;
255         struct blk_mq_alloc_data alloc_data;
256         int ret;
257
258         ret = blk_mq_queue_enter(q, gfp);
259         if (ret)
260                 return ERR_PTR(ret);
261
262         ctx = blk_mq_get_ctx(q);
263         hctx = q->mq_ops->map_queue(q, ctx->cpu);
264         blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265                         reserved, ctx, hctx);
266
267         rq = __blk_mq_alloc_request(&alloc_data, rw);
268         if (!rq && (gfp & __GFP_WAIT)) {
269                 __blk_mq_run_hw_queue(hctx);
270                 blk_mq_put_ctx(ctx);
271
272                 ctx = blk_mq_get_ctx(q);
273                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274                 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275                                 hctx);
276                 rq =  __blk_mq_alloc_request(&alloc_data, rw);
277                 ctx = alloc_data.ctx;
278         }
279         blk_mq_put_ctx(ctx);
280         if (!rq) {
281                 blk_mq_queue_exit(q);
282                 return ERR_PTR(-EWOULDBLOCK);
283         }
284         return rq;
285 }
286 EXPORT_SYMBOL(blk_mq_alloc_request);
287
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289                                   struct blk_mq_ctx *ctx, struct request *rq)
290 {
291         const int tag = rq->tag;
292         struct request_queue *q = rq->q;
293
294         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295                 atomic_dec(&hctx->nr_active);
296         rq->cmd_flags = 0;
297
298         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300         blk_mq_queue_exit(q);
301 }
302
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
304 {
305         struct blk_mq_ctx *ctx = rq->mq_ctx;
306
307         ctx->rq_completed[rq_is_sync(rq)]++;
308         __blk_mq_free_request(hctx, ctx, rq);
309
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313 void blk_mq_free_request(struct request *rq)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         struct request_queue *q = rq->q;
317
318         hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319         blk_mq_free_hctx_request(hctx, rq);
320 }
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
322
323 inline void __blk_mq_end_request(struct request *rq, int error)
324 {
325         blk_account_io_done(rq);
326
327         if (rq->end_io) {
328                 rq->end_io(rq, error);
329         } else {
330                 if (unlikely(blk_bidi_rq(rq)))
331                         blk_mq_free_request(rq->next_rq);
332                 blk_mq_free_request(rq);
333         }
334 }
335 EXPORT_SYMBOL(__blk_mq_end_request);
336
337 void blk_mq_end_request(struct request *rq, int error)
338 {
339         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340                 BUG();
341         __blk_mq_end_request(rq, error);
342 }
343 EXPORT_SYMBOL(blk_mq_end_request);
344
345 static void __blk_mq_complete_request_remote(void *data)
346 {
347         struct request *rq = data;
348
349         rq->q->softirq_done_fn(rq);
350 }
351
352 static void blk_mq_ipi_complete_request(struct request *rq)
353 {
354         struct blk_mq_ctx *ctx = rq->mq_ctx;
355         bool shared = false;
356         int cpu;
357
358         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359                 rq->q->softirq_done_fn(rq);
360                 return;
361         }
362
363         cpu = get_cpu();
364         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365                 shared = cpus_share_cache(cpu, ctx->cpu);
366
367         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368                 rq->csd.func = __blk_mq_complete_request_remote;
369                 rq->csd.info = rq;
370                 rq->csd.flags = 0;
371                 smp_call_function_single_async(ctx->cpu, &rq->csd);
372         } else {
373                 rq->q->softirq_done_fn(rq);
374         }
375         put_cpu();
376 }
377
378 void __blk_mq_complete_request(struct request *rq)
379 {
380         struct request_queue *q = rq->q;
381
382         if (!q->softirq_done_fn)
383                 blk_mq_end_request(rq, rq->errors);
384         else
385                 blk_mq_ipi_complete_request(rq);
386 }
387
388 /**
389  * blk_mq_complete_request - end I/O on a request
390  * @rq:         the request being processed
391  *
392  * Description:
393  *      Ends all I/O on a request. It does not handle partial completions.
394  *      The actual completion happens out-of-order, through a IPI handler.
395  **/
396 void blk_mq_complete_request(struct request *rq)
397 {
398         struct request_queue *q = rq->q;
399
400         if (unlikely(blk_should_fake_timeout(q)))
401                 return;
402         if (!blk_mark_rq_complete(rq))
403                 __blk_mq_complete_request(rq);
404 }
405 EXPORT_SYMBOL(blk_mq_complete_request);
406
407 int blk_mq_request_started(struct request *rq)
408 {
409         return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410 }
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
412
413 void blk_mq_start_request(struct request *rq)
414 {
415         struct request_queue *q = rq->q;
416
417         trace_block_rq_issue(q, rq);
418
419         rq->resid_len = blk_rq_bytes(rq);
420         if (unlikely(blk_bidi_rq(rq)))
421                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
422
423         blk_add_timer(rq);
424
425         /*
426          * Ensure that ->deadline is visible before set the started
427          * flag and clear the completed flag.
428          */
429         smp_mb__before_atomic();
430
431         /*
432          * Mark us as started and clear complete. Complete might have been
433          * set if requeue raced with timeout, which then marked it as
434          * complete. So be sure to clear complete again when we start
435          * the request, otherwise we'll ignore the completion event.
436          */
437         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
441
442         if (q->dma_drain_size && blk_rq_bytes(rq)) {
443                 /*
444                  * Make sure space for the drain appears.  We know we can do
445                  * this because max_hw_segments has been adjusted to be one
446                  * fewer than the device can handle.
447                  */
448                 rq->nr_phys_segments++;
449         }
450 }
451 EXPORT_SYMBOL(blk_mq_start_request);
452
453 static void __blk_mq_requeue_request(struct request *rq)
454 {
455         struct request_queue *q = rq->q;
456
457         trace_block_rq_requeue(q, rq);
458
459         if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460                 if (q->dma_drain_size && blk_rq_bytes(rq))
461                         rq->nr_phys_segments--;
462         }
463 }
464
465 void blk_mq_requeue_request(struct request *rq)
466 {
467         __blk_mq_requeue_request(rq);
468
469         BUG_ON(blk_queued_rq(rq));
470         blk_mq_add_to_requeue_list(rq, true);
471 }
472 EXPORT_SYMBOL(blk_mq_requeue_request);
473
474 static void blk_mq_requeue_work(struct work_struct *work)
475 {
476         struct request_queue *q =
477                 container_of(work, struct request_queue, requeue_work);
478         LIST_HEAD(rq_list);
479         struct request *rq, *next;
480         unsigned long flags;
481
482         spin_lock_irqsave(&q->requeue_lock, flags);
483         list_splice_init(&q->requeue_list, &rq_list);
484         spin_unlock_irqrestore(&q->requeue_lock, flags);
485
486         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488                         continue;
489
490                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491                 list_del_init(&rq->queuelist);
492                 blk_mq_insert_request(rq, true, false, false);
493         }
494
495         while (!list_empty(&rq_list)) {
496                 rq = list_entry(rq_list.next, struct request, queuelist);
497                 list_del_init(&rq->queuelist);
498                 blk_mq_insert_request(rq, false, false, false);
499         }
500
501         /*
502          * Use the start variant of queue running here, so that running
503          * the requeue work will kick stopped queues.
504          */
505         blk_mq_start_hw_queues(q);
506 }
507
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509 {
510         struct request_queue *q = rq->q;
511         unsigned long flags;
512
513         /*
514          * We abuse this flag that is otherwise used by the I/O scheduler to
515          * request head insertation from the workqueue.
516          */
517         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518
519         spin_lock_irqsave(&q->requeue_lock, flags);
520         if (at_head) {
521                 rq->cmd_flags |= REQ_SOFTBARRIER;
522                 list_add(&rq->queuelist, &q->requeue_list);
523         } else {
524                 list_add_tail(&rq->queuelist, &q->requeue_list);
525         }
526         spin_unlock_irqrestore(&q->requeue_lock, flags);
527 }
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
531 {
532         cancel_work_sync(&q->requeue_work);
533 }
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
535
536 void blk_mq_kick_requeue_list(struct request_queue *q)
537 {
538         kblockd_schedule_work(&q->requeue_work);
539 }
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
541
542 void blk_mq_abort_requeue_list(struct request_queue *q)
543 {
544         unsigned long flags;
545         LIST_HEAD(rq_list);
546
547         spin_lock_irqsave(&q->requeue_lock, flags);
548         list_splice_init(&q->requeue_list, &rq_list);
549         spin_unlock_irqrestore(&q->requeue_lock, flags);
550
551         while (!list_empty(&rq_list)) {
552                 struct request *rq;
553
554                 rq = list_first_entry(&rq_list, struct request, queuelist);
555                 list_del_init(&rq->queuelist);
556                 rq->errors = -EIO;
557                 blk_mq_end_request(rq, rq->errors);
558         }
559 }
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
561
562 static inline bool is_flush_request(struct request *rq,
563                 struct blk_flush_queue *fq, unsigned int tag)
564 {
565         return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566                         fq->flush_rq->tag == tag);
567 }
568
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
570 {
571         struct request *rq = tags->rqs[tag];
572         /* mq_ctx of flush rq is always cloned from the corresponding req */
573         struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
574
575         if (!is_flush_request(rq, fq, tag))
576                 return rq;
577
578         return fq->flush_rq;
579 }
580 EXPORT_SYMBOL(blk_mq_tag_to_rq);
581
582 struct blk_mq_timeout_data {
583         unsigned long next;
584         unsigned int next_set;
585 };
586
587 void blk_mq_rq_timed_out(struct request *req, bool reserved)
588 {
589         struct blk_mq_ops *ops = req->q->mq_ops;
590         enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
591
592         /*
593          * We know that complete is set at this point. If STARTED isn't set
594          * anymore, then the request isn't active and the "timeout" should
595          * just be ignored. This can happen due to the bitflag ordering.
596          * Timeout first checks if STARTED is set, and if it is, assumes
597          * the request is active. But if we race with completion, then
598          * we both flags will get cleared. So check here again, and ignore
599          * a timeout event with a request that isn't active.
600          */
601         if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602                 return;
603
604         if (ops->timeout)
605                 ret = ops->timeout(req, reserved);
606
607         switch (ret) {
608         case BLK_EH_HANDLED:
609                 __blk_mq_complete_request(req);
610                 break;
611         case BLK_EH_RESET_TIMER:
612                 blk_add_timer(req);
613                 blk_clear_rq_complete(req);
614                 break;
615         case BLK_EH_NOT_HANDLED:
616                 break;
617         default:
618                 printk(KERN_ERR "block: bad eh return: %d\n", ret);
619                 break;
620         }
621 }
622
623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624                 struct request *rq, void *priv, bool reserved)
625 {
626         struct blk_mq_timeout_data *data = priv;
627
628         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
629                 /*
630                  * If a request wasn't started before the queue was
631                  * marked dying, kill it here or it'll go unnoticed.
632                  */
633                 if (unlikely(blk_queue_dying(rq->q))) {
634                         rq->errors = -EIO;
635                         blk_mq_complete_request(rq);
636                 }
637                 return;
638         }
639         if (rq->cmd_flags & REQ_NO_TIMEOUT)
640                 return;
641
642         if (time_after_eq(jiffies, rq->deadline)) {
643                 if (!blk_mark_rq_complete(rq))
644                         blk_mq_rq_timed_out(rq, reserved);
645         } else if (!data->next_set || time_after(data->next, rq->deadline)) {
646                 data->next = rq->deadline;
647                 data->next_set = 1;
648         }
649 }
650
651 static void blk_mq_rq_timer(unsigned long priv)
652 {
653         struct request_queue *q = (struct request_queue *)priv;
654         struct blk_mq_timeout_data data = {
655                 .next           = 0,
656                 .next_set       = 0,
657         };
658         struct blk_mq_hw_ctx *hctx;
659         int i;
660
661         queue_for_each_hw_ctx(q, hctx, i) {
662                 /*
663                  * If not software queues are currently mapped to this
664                  * hardware queue, there's nothing to check
665                  */
666                 if (!blk_mq_hw_queue_mapped(hctx))
667                         continue;
668
669                 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
670         }
671
672         if (data.next_set) {
673                 data.next = blk_rq_timeout(round_jiffies_up(data.next));
674                 mod_timer(&q->timeout, data.next);
675         } else {
676                 queue_for_each_hw_ctx(q, hctx, i) {
677                         /* the hctx may be unmapped, so check it here */
678                         if (blk_mq_hw_queue_mapped(hctx))
679                                 blk_mq_tag_idle(hctx);
680                 }
681         }
682 }
683
684 /*
685  * Reverse check our software queue for entries that we could potentially
686  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
687  * too much time checking for merges.
688  */
689 static bool blk_mq_attempt_merge(struct request_queue *q,
690                                  struct blk_mq_ctx *ctx, struct bio *bio)
691 {
692         struct request *rq;
693         int checked = 8;
694
695         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
696                 int el_ret;
697
698                 if (!checked--)
699                         break;
700
701                 if (!blk_rq_merge_ok(rq, bio))
702                         continue;
703
704                 el_ret = blk_try_merge(rq, bio);
705                 if (el_ret == ELEVATOR_BACK_MERGE) {
706                         if (bio_attempt_back_merge(q, rq, bio)) {
707                                 ctx->rq_merged++;
708                                 return true;
709                         }
710                         break;
711                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
712                         if (bio_attempt_front_merge(q, rq, bio)) {
713                                 ctx->rq_merged++;
714                                 return true;
715                         }
716                         break;
717                 }
718         }
719
720         return false;
721 }
722
723 /*
724  * Process software queues that have been marked busy, splicing them
725  * to the for-dispatch
726  */
727 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
728 {
729         struct blk_mq_ctx *ctx;
730         int i;
731
732         for (i = 0; i < hctx->ctx_map.size; i++) {
733                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
734                 unsigned int off, bit;
735
736                 if (!bm->word)
737                         continue;
738
739                 bit = 0;
740                 off = i * hctx->ctx_map.bits_per_word;
741                 do {
742                         bit = find_next_bit(&bm->word, bm->depth, bit);
743                         if (bit >= bm->depth)
744                                 break;
745
746                         ctx = hctx->ctxs[bit + off];
747                         clear_bit(bit, &bm->word);
748                         spin_lock(&ctx->lock);
749                         list_splice_tail_init(&ctx->rq_list, list);
750                         spin_unlock(&ctx->lock);
751
752                         bit++;
753                 } while (1);
754         }
755 }
756
757 /*
758  * Run this hardware queue, pulling any software queues mapped to it in.
759  * Note that this function currently has various problems around ordering
760  * of IO. In particular, we'd like FIFO behaviour on handling existing
761  * items on the hctx->dispatch list. Ignore that for now.
762  */
763 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
764 {
765         struct request_queue *q = hctx->queue;
766         struct request *rq;
767         LIST_HEAD(rq_list);
768         LIST_HEAD(driver_list);
769         struct list_head *dptr;
770         int queued;
771
772         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
773
774         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
775                 return;
776
777         hctx->run++;
778
779         /*
780          * Touch any software queue that has pending entries.
781          */
782         flush_busy_ctxs(hctx, &rq_list);
783
784         /*
785          * If we have previous entries on our dispatch list, grab them
786          * and stuff them at the front for more fair dispatch.
787          */
788         if (!list_empty_careful(&hctx->dispatch)) {
789                 spin_lock(&hctx->lock);
790                 if (!list_empty(&hctx->dispatch))
791                         list_splice_init(&hctx->dispatch, &rq_list);
792                 spin_unlock(&hctx->lock);
793         }
794
795         /*
796          * Start off with dptr being NULL, so we start the first request
797          * immediately, even if we have more pending.
798          */
799         dptr = NULL;
800
801         /*
802          * Now process all the entries, sending them to the driver.
803          */
804         queued = 0;
805         while (!list_empty(&rq_list)) {
806                 struct blk_mq_queue_data bd;
807                 int ret;
808
809                 rq = list_first_entry(&rq_list, struct request, queuelist);
810                 list_del_init(&rq->queuelist);
811
812                 bd.rq = rq;
813                 bd.list = dptr;
814                 bd.last = list_empty(&rq_list);
815
816                 ret = q->mq_ops->queue_rq(hctx, &bd);
817                 switch (ret) {
818                 case BLK_MQ_RQ_QUEUE_OK:
819                         queued++;
820                         continue;
821                 case BLK_MQ_RQ_QUEUE_BUSY:
822                         list_add(&rq->queuelist, &rq_list);
823                         __blk_mq_requeue_request(rq);
824                         break;
825                 default:
826                         pr_err("blk-mq: bad return on queue: %d\n", ret);
827                 case BLK_MQ_RQ_QUEUE_ERROR:
828                         rq->errors = -EIO;
829                         blk_mq_end_request(rq, rq->errors);
830                         break;
831                 }
832
833                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
834                         break;
835
836                 /*
837                  * We've done the first request. If we have more than 1
838                  * left in the list, set dptr to defer issue.
839                  */
840                 if (!dptr && rq_list.next != rq_list.prev)
841                         dptr = &driver_list;
842         }
843
844         if (!queued)
845                 hctx->dispatched[0]++;
846         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
847                 hctx->dispatched[ilog2(queued) + 1]++;
848
849         /*
850          * Any items that need requeuing? Stuff them into hctx->dispatch,
851          * that is where we will continue on next queue run.
852          */
853         if (!list_empty(&rq_list)) {
854                 spin_lock(&hctx->lock);
855                 list_splice(&rq_list, &hctx->dispatch);
856                 spin_unlock(&hctx->lock);
857                 /*
858                  * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
859                  * it's possible the queue is stopped and restarted again
860                  * before this. Queue restart will dispatch requests. And since
861                  * requests in rq_list aren't added into hctx->dispatch yet,
862                  * the requests in rq_list might get lost.
863                  *
864                  * blk_mq_run_hw_queue() already checks the STOPPED bit
865                  **/
866                 blk_mq_run_hw_queue(hctx, true);
867         }
868 }
869
870 /*
871  * It'd be great if the workqueue API had a way to pass
872  * in a mask and had some smarts for more clever placement.
873  * For now we just round-robin here, switching for every
874  * BLK_MQ_CPU_WORK_BATCH queued items.
875  */
876 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
877 {
878         if (hctx->queue->nr_hw_queues == 1)
879                 return WORK_CPU_UNBOUND;
880
881         if (--hctx->next_cpu_batch <= 0) {
882                 int cpu = hctx->next_cpu, next_cpu;
883
884                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
885                 if (next_cpu >= nr_cpu_ids)
886                         next_cpu = cpumask_first(hctx->cpumask);
887
888                 hctx->next_cpu = next_cpu;
889                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
890
891                 return cpu;
892         }
893
894         return hctx->next_cpu;
895 }
896
897 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
898 {
899         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
900             !blk_mq_hw_queue_mapped(hctx)))
901                 return;
902
903         if (!async) {
904                 int cpu = get_cpu();
905                 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
906                         __blk_mq_run_hw_queue(hctx);
907                         put_cpu();
908                         return;
909                 }
910
911                 put_cpu();
912         }
913
914         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
915                         &hctx->run_work, 0);
916 }
917
918 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
919 {
920         struct blk_mq_hw_ctx *hctx;
921         int i;
922
923         queue_for_each_hw_ctx(q, hctx, i) {
924                 if ((!blk_mq_hctx_has_pending(hctx) &&
925                     list_empty_careful(&hctx->dispatch)) ||
926                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
927                         continue;
928
929                 blk_mq_run_hw_queue(hctx, async);
930         }
931 }
932 EXPORT_SYMBOL(blk_mq_run_hw_queues);
933
934 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
935 {
936         cancel_delayed_work(&hctx->run_work);
937         cancel_delayed_work(&hctx->delay_work);
938         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
939 }
940 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
941
942 void blk_mq_stop_hw_queues(struct request_queue *q)
943 {
944         struct blk_mq_hw_ctx *hctx;
945         int i;
946
947         queue_for_each_hw_ctx(q, hctx, i)
948                 blk_mq_stop_hw_queue(hctx);
949 }
950 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
951
952 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
953 {
954         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
955
956         blk_mq_run_hw_queue(hctx, false);
957 }
958 EXPORT_SYMBOL(blk_mq_start_hw_queue);
959
960 void blk_mq_start_hw_queues(struct request_queue *q)
961 {
962         struct blk_mq_hw_ctx *hctx;
963         int i;
964
965         queue_for_each_hw_ctx(q, hctx, i)
966                 blk_mq_start_hw_queue(hctx);
967 }
968 EXPORT_SYMBOL(blk_mq_start_hw_queues);
969
970 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
971 {
972         struct blk_mq_hw_ctx *hctx;
973         int i;
974
975         queue_for_each_hw_ctx(q, hctx, i) {
976                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
977                         continue;
978
979                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
980                 blk_mq_run_hw_queue(hctx, async);
981         }
982 }
983 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
984
985 static void blk_mq_run_work_fn(struct work_struct *work)
986 {
987         struct blk_mq_hw_ctx *hctx;
988
989         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
990
991         __blk_mq_run_hw_queue(hctx);
992 }
993
994 static void blk_mq_delay_work_fn(struct work_struct *work)
995 {
996         struct blk_mq_hw_ctx *hctx;
997
998         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
999
1000         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1001                 __blk_mq_run_hw_queue(hctx);
1002 }
1003
1004 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1005 {
1006         if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1007                 return;
1008
1009         kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1010                         &hctx->delay_work, msecs_to_jiffies(msecs));
1011 }
1012 EXPORT_SYMBOL(blk_mq_delay_queue);
1013
1014 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1015                                     struct request *rq, bool at_head)
1016 {
1017         struct blk_mq_ctx *ctx = rq->mq_ctx;
1018
1019         trace_block_rq_insert(hctx->queue, rq);
1020
1021         if (at_head)
1022                 list_add(&rq->queuelist, &ctx->rq_list);
1023         else
1024                 list_add_tail(&rq->queuelist, &ctx->rq_list);
1025
1026         blk_mq_hctx_mark_pending(hctx, ctx);
1027 }
1028
1029 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1030                 bool async)
1031 {
1032         struct request_queue *q = rq->q;
1033         struct blk_mq_hw_ctx *hctx;
1034         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1035
1036         current_ctx = blk_mq_get_ctx(q);
1037         if (!cpu_online(ctx->cpu))
1038                 rq->mq_ctx = ctx = current_ctx;
1039
1040         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1041
1042         spin_lock(&ctx->lock);
1043         __blk_mq_insert_request(hctx, rq, at_head);
1044         spin_unlock(&ctx->lock);
1045
1046         if (run_queue)
1047                 blk_mq_run_hw_queue(hctx, async);
1048
1049         blk_mq_put_ctx(current_ctx);
1050 }
1051
1052 static void blk_mq_insert_requests(struct request_queue *q,
1053                                      struct blk_mq_ctx *ctx,
1054                                      struct list_head *list,
1055                                      int depth,
1056                                      bool from_schedule)
1057
1058 {
1059         struct blk_mq_hw_ctx *hctx;
1060         struct blk_mq_ctx *current_ctx;
1061
1062         trace_block_unplug(q, depth, !from_schedule);
1063
1064         current_ctx = blk_mq_get_ctx(q);
1065
1066         if (!cpu_online(ctx->cpu))
1067                 ctx = current_ctx;
1068         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1069
1070         /*
1071          * preemption doesn't flush plug list, so it's possible ctx->cpu is
1072          * offline now
1073          */
1074         spin_lock(&ctx->lock);
1075         while (!list_empty(list)) {
1076                 struct request *rq;
1077
1078                 rq = list_first_entry(list, struct request, queuelist);
1079                 list_del_init(&rq->queuelist);
1080                 rq->mq_ctx = ctx;
1081                 __blk_mq_insert_request(hctx, rq, false);
1082         }
1083         spin_unlock(&ctx->lock);
1084
1085         blk_mq_run_hw_queue(hctx, from_schedule);
1086         blk_mq_put_ctx(current_ctx);
1087 }
1088
1089 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1090 {
1091         struct request *rqa = container_of(a, struct request, queuelist);
1092         struct request *rqb = container_of(b, struct request, queuelist);
1093
1094         return !(rqa->mq_ctx < rqb->mq_ctx ||
1095                  (rqa->mq_ctx == rqb->mq_ctx &&
1096                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1097 }
1098
1099 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1100 {
1101         struct blk_mq_ctx *this_ctx;
1102         struct request_queue *this_q;
1103         struct request *rq;
1104         LIST_HEAD(list);
1105         LIST_HEAD(ctx_list);
1106         unsigned int depth;
1107
1108         list_splice_init(&plug->mq_list, &list);
1109
1110         list_sort(NULL, &list, plug_ctx_cmp);
1111
1112         this_q = NULL;
1113         this_ctx = NULL;
1114         depth = 0;
1115
1116         while (!list_empty(&list)) {
1117                 rq = list_entry_rq(list.next);
1118                 list_del_init(&rq->queuelist);
1119                 BUG_ON(!rq->q);
1120                 if (rq->mq_ctx != this_ctx) {
1121                         if (this_ctx) {
1122                                 blk_mq_insert_requests(this_q, this_ctx,
1123                                                         &ctx_list, depth,
1124                                                         from_schedule);
1125                         }
1126
1127                         this_ctx = rq->mq_ctx;
1128                         this_q = rq->q;
1129                         depth = 0;
1130                 }
1131
1132                 depth++;
1133                 list_add_tail(&rq->queuelist, &ctx_list);
1134         }
1135
1136         /*
1137          * If 'this_ctx' is set, we know we have entries to complete
1138          * on 'ctx_list'. Do those.
1139          */
1140         if (this_ctx) {
1141                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1142                                        from_schedule);
1143         }
1144 }
1145
1146 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1147 {
1148         init_request_from_bio(rq, bio);
1149
1150         if (blk_do_io_stat(rq))
1151                 blk_account_io_start(rq, 1);
1152 }
1153
1154 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1155 {
1156         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1157                 !blk_queue_nomerges(hctx->queue);
1158 }
1159
1160 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1161                                          struct blk_mq_ctx *ctx,
1162                                          struct request *rq, struct bio *bio)
1163 {
1164         if (!hctx_allow_merges(hctx)) {
1165                 blk_mq_bio_to_request(rq, bio);
1166                 spin_lock(&ctx->lock);
1167 insert_rq:
1168                 __blk_mq_insert_request(hctx, rq, false);
1169                 spin_unlock(&ctx->lock);
1170                 return false;
1171         } else {
1172                 struct request_queue *q = hctx->queue;
1173
1174                 spin_lock(&ctx->lock);
1175                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1176                         blk_mq_bio_to_request(rq, bio);
1177                         goto insert_rq;
1178                 }
1179
1180                 spin_unlock(&ctx->lock);
1181                 __blk_mq_free_request(hctx, ctx, rq);
1182                 return true;
1183         }
1184 }
1185
1186 struct blk_map_ctx {
1187         struct blk_mq_hw_ctx *hctx;
1188         struct blk_mq_ctx *ctx;
1189 };
1190
1191 static struct request *blk_mq_map_request(struct request_queue *q,
1192                                           struct bio *bio,
1193                                           struct blk_map_ctx *data)
1194 {
1195         struct blk_mq_hw_ctx *hctx;
1196         struct blk_mq_ctx *ctx;
1197         struct request *rq;
1198         int rw = bio_data_dir(bio);
1199         struct blk_mq_alloc_data alloc_data;
1200
1201         if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1202                 bio_io_error(bio);
1203                 return NULL;
1204         }
1205
1206         ctx = blk_mq_get_ctx(q);
1207         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1208
1209         if (rw_is_sync(bio->bi_rw))
1210                 rw |= REQ_SYNC;
1211
1212         trace_block_getrq(q, bio, rw);
1213         blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1214                         hctx);
1215         rq = __blk_mq_alloc_request(&alloc_data, rw);
1216         if (unlikely(!rq)) {
1217                 __blk_mq_run_hw_queue(hctx);
1218                 blk_mq_put_ctx(ctx);
1219                 trace_block_sleeprq(q, bio, rw);
1220
1221                 ctx = blk_mq_get_ctx(q);
1222                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1223                 blk_mq_set_alloc_data(&alloc_data, q,
1224                                 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1225                 rq = __blk_mq_alloc_request(&alloc_data, rw);
1226                 ctx = alloc_data.ctx;
1227                 hctx = alloc_data.hctx;
1228         }
1229
1230         hctx->queued++;
1231         data->hctx = hctx;
1232         data->ctx = ctx;
1233         return rq;
1234 }
1235
1236 static int blk_mq_direct_issue_request(struct request *rq)
1237 {
1238         int ret;
1239         struct request_queue *q = rq->q;
1240         struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1241                         rq->mq_ctx->cpu);
1242         struct blk_mq_queue_data bd = {
1243                 .rq = rq,
1244                 .list = NULL,
1245                 .last = 1
1246         };
1247
1248         /*
1249          * For OK queue, we are done. For error, kill it. Any other
1250          * error (busy), just add it to our list as we previously
1251          * would have done
1252          */
1253         ret = q->mq_ops->queue_rq(hctx, &bd);
1254         if (ret == BLK_MQ_RQ_QUEUE_OK)
1255                 return 0;
1256         else {
1257                 __blk_mq_requeue_request(rq);
1258
1259                 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1260                         rq->errors = -EIO;
1261                         blk_mq_end_request(rq, rq->errors);
1262                         return 0;
1263                 }
1264                 return -1;
1265         }
1266 }
1267
1268 /*
1269  * Multiple hardware queue variant. This will not use per-process plugs,
1270  * but will attempt to bypass the hctx queueing if we can go straight to
1271  * hardware for SYNC IO.
1272  */
1273 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1274 {
1275         const int is_sync = rw_is_sync(bio->bi_rw);
1276         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1277         struct blk_map_ctx data;
1278         struct request *rq;
1279         unsigned int request_count = 0;
1280         struct blk_plug *plug;
1281         struct request *same_queue_rq = NULL;
1282
1283         blk_queue_bounce(q, &bio);
1284
1285         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1286                 bio_io_error(bio);
1287                 return;
1288         }
1289
1290         blk_queue_split(q, &bio, q->bio_split);
1291
1292         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1293             blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1294                 return;
1295
1296         rq = blk_mq_map_request(q, bio, &data);
1297         if (unlikely(!rq))
1298                 return;
1299
1300         if (unlikely(is_flush_fua)) {
1301                 blk_mq_bio_to_request(rq, bio);
1302                 blk_insert_flush(rq);
1303                 goto run_queue;
1304         }
1305
1306         plug = current->plug;
1307         /*
1308          * If the driver supports defer issued based on 'last', then
1309          * queue it up like normal since we can potentially save some
1310          * CPU this way.
1311          */
1312         if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1313             !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1314                 struct request *old_rq = NULL;
1315
1316                 blk_mq_bio_to_request(rq, bio);
1317
1318                 /*
1319                  * we do limited pluging. If bio can be merged, do merge.
1320                  * Otherwise the existing request in the plug list will be
1321                  * issued. So the plug list will have one request at most
1322                  */
1323                 if (plug) {
1324                         /*
1325                          * The plug list might get flushed before this. If that
1326                          * happens, same_queue_rq is invalid and plug list is empty
1327                          **/
1328                         if (same_queue_rq && !list_empty(&plug->mq_list)) {
1329                                 old_rq = same_queue_rq;
1330                                 list_del_init(&old_rq->queuelist);
1331                         }
1332                         list_add_tail(&rq->queuelist, &plug->mq_list);
1333                 } else /* is_sync */
1334                         old_rq = rq;
1335                 blk_mq_put_ctx(data.ctx);
1336                 if (!old_rq)
1337                         return;
1338                 if (!blk_mq_direct_issue_request(old_rq))
1339                         return;
1340                 blk_mq_insert_request(old_rq, false, true, true);
1341                 return;
1342         }
1343
1344         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1345                 /*
1346                  * For a SYNC request, send it to the hardware immediately. For
1347                  * an ASYNC request, just ensure that we run it later on. The
1348                  * latter allows for merging opportunities and more efficient
1349                  * dispatching.
1350                  */
1351 run_queue:
1352                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1353         }
1354         blk_mq_put_ctx(data.ctx);
1355 }
1356
1357 /*
1358  * Single hardware queue variant. This will attempt to use any per-process
1359  * plug for merging and IO deferral.
1360  */
1361 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1362 {
1363         const int is_sync = rw_is_sync(bio->bi_rw);
1364         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1365         struct blk_plug *plug;
1366         unsigned int request_count = 0;
1367         struct blk_map_ctx data;
1368         struct request *rq;
1369
1370         blk_queue_bounce(q, &bio);
1371
1372         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1373                 bio_io_error(bio);
1374                 return;
1375         }
1376
1377         blk_queue_split(q, &bio, q->bio_split);
1378
1379         if (!is_flush_fua && !blk_queue_nomerges(q) &&
1380             blk_attempt_plug_merge(q, bio, &request_count, NULL))
1381                 return;
1382
1383         rq = blk_mq_map_request(q, bio, &data);
1384         if (unlikely(!rq))
1385                 return;
1386
1387         if (unlikely(is_flush_fua)) {
1388                 blk_mq_bio_to_request(rq, bio);
1389                 blk_insert_flush(rq);
1390                 goto run_queue;
1391         }
1392
1393         /*
1394          * A task plug currently exists. Since this is completely lockless,
1395          * utilize that to temporarily store requests until the task is
1396          * either done or scheduled away.
1397          */
1398         plug = current->plug;
1399         if (plug) {
1400                 blk_mq_bio_to_request(rq, bio);
1401                 if (list_empty(&plug->mq_list))
1402                         trace_block_plug(q);
1403                 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1404                         blk_flush_plug_list(plug, false);
1405                         trace_block_plug(q);
1406                 }
1407                 list_add_tail(&rq->queuelist, &plug->mq_list);
1408                 blk_mq_put_ctx(data.ctx);
1409                 return;
1410         }
1411
1412         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1413                 /*
1414                  * For a SYNC request, send it to the hardware immediately. For
1415                  * an ASYNC request, just ensure that we run it later on. The
1416                  * latter allows for merging opportunities and more efficient
1417                  * dispatching.
1418                  */
1419 run_queue:
1420                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1421         }
1422
1423         blk_mq_put_ctx(data.ctx);
1424 }
1425
1426 /*
1427  * Default mapping to a software queue, since we use one per CPU.
1428  */
1429 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1430 {
1431         return q->queue_hw_ctx[q->mq_map[cpu]];
1432 }
1433 EXPORT_SYMBOL(blk_mq_map_queue);
1434
1435 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1436                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1437 {
1438         struct page *page;
1439
1440         if (tags->rqs && set->ops->exit_request) {
1441                 int i;
1442
1443                 for (i = 0; i < tags->nr_tags; i++) {
1444                         if (!tags->rqs[i])
1445                                 continue;
1446                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1447                                                 hctx_idx, i);
1448                         tags->rqs[i] = NULL;
1449                 }
1450         }
1451
1452         while (!list_empty(&tags->page_list)) {
1453                 page = list_first_entry(&tags->page_list, struct page, lru);
1454                 list_del_init(&page->lru);
1455                 __free_pages(page, page->private);
1456         }
1457
1458         kfree(tags->rqs);
1459
1460         blk_mq_free_tags(tags);
1461 }
1462
1463 static size_t order_to_size(unsigned int order)
1464 {
1465         return (size_t)PAGE_SIZE << order;
1466 }
1467
1468 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1469                 unsigned int hctx_idx)
1470 {
1471         struct blk_mq_tags *tags;
1472         unsigned int i, j, entries_per_page, max_order = 4;
1473         size_t rq_size, left;
1474
1475         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1476                                 set->numa_node,
1477                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1478         if (!tags)
1479                 return NULL;
1480
1481         INIT_LIST_HEAD(&tags->page_list);
1482
1483         tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1484                                  GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1485                                  set->numa_node);
1486         if (!tags->rqs) {
1487                 blk_mq_free_tags(tags);
1488                 return NULL;
1489         }
1490
1491         /*
1492          * rq_size is the size of the request plus driver payload, rounded
1493          * to the cacheline size
1494          */
1495         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1496                                 cache_line_size());
1497         left = rq_size * set->queue_depth;
1498
1499         for (i = 0; i < set->queue_depth; ) {
1500                 int this_order = max_order;
1501                 struct page *page;
1502                 int to_do;
1503                 void *p;
1504
1505                 while (left < order_to_size(this_order - 1) && this_order)
1506                         this_order--;
1507
1508                 do {
1509                         page = alloc_pages_node(set->numa_node,
1510                                 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1511                                 this_order);
1512                         if (page)
1513                                 break;
1514                         if (!this_order--)
1515                                 break;
1516                         if (order_to_size(this_order) < rq_size)
1517                                 break;
1518                 } while (1);
1519
1520                 if (!page)
1521                         goto fail;
1522
1523                 page->private = this_order;
1524                 list_add_tail(&page->lru, &tags->page_list);
1525
1526                 p = page_address(page);
1527                 entries_per_page = order_to_size(this_order) / rq_size;
1528                 to_do = min(entries_per_page, set->queue_depth - i);
1529                 left -= to_do * rq_size;
1530                 for (j = 0; j < to_do; j++) {
1531                         tags->rqs[i] = p;
1532                         if (set->ops->init_request) {
1533                                 if (set->ops->init_request(set->driver_data,
1534                                                 tags->rqs[i], hctx_idx, i,
1535                                                 set->numa_node)) {
1536                                         tags->rqs[i] = NULL;
1537                                         goto fail;
1538                                 }
1539                         }
1540
1541                         p += rq_size;
1542                         i++;
1543                 }
1544         }
1545         return tags;
1546
1547 fail:
1548         blk_mq_free_rq_map(set, tags, hctx_idx);
1549         return NULL;
1550 }
1551
1552 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1553 {
1554         kfree(bitmap->map);
1555 }
1556
1557 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1558 {
1559         unsigned int bpw = 8, total, num_maps, i;
1560
1561         bitmap->bits_per_word = bpw;
1562
1563         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1564         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1565                                         GFP_KERNEL, node);
1566         if (!bitmap->map)
1567                 return -ENOMEM;
1568
1569         total = nr_cpu_ids;
1570         for (i = 0; i < num_maps; i++) {
1571                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1572                 total -= bitmap->map[i].depth;
1573         }
1574
1575         return 0;
1576 }
1577
1578 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1579 {
1580         struct request_queue *q = hctx->queue;
1581         struct blk_mq_ctx *ctx;
1582         LIST_HEAD(tmp);
1583
1584         /*
1585          * Move ctx entries to new CPU, if this one is going away.
1586          */
1587         ctx = __blk_mq_get_ctx(q, cpu);
1588
1589         spin_lock(&ctx->lock);
1590         if (!list_empty(&ctx->rq_list)) {
1591                 list_splice_init(&ctx->rq_list, &tmp);
1592                 blk_mq_hctx_clear_pending(hctx, ctx);
1593         }
1594         spin_unlock(&ctx->lock);
1595
1596         if (list_empty(&tmp))
1597                 return NOTIFY_OK;
1598
1599         ctx = blk_mq_get_ctx(q);
1600         spin_lock(&ctx->lock);
1601
1602         while (!list_empty(&tmp)) {
1603                 struct request *rq;
1604
1605                 rq = list_first_entry(&tmp, struct request, queuelist);
1606                 rq->mq_ctx = ctx;
1607                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1608         }
1609
1610         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1611         blk_mq_hctx_mark_pending(hctx, ctx);
1612
1613         spin_unlock(&ctx->lock);
1614
1615         blk_mq_run_hw_queue(hctx, true);
1616         blk_mq_put_ctx(ctx);
1617         return NOTIFY_OK;
1618 }
1619
1620 static int blk_mq_hctx_notify(void *data, unsigned long action,
1621                               unsigned int cpu)
1622 {
1623         struct blk_mq_hw_ctx *hctx = data;
1624
1625         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1626                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1627
1628         /*
1629          * In case of CPU online, tags may be reallocated
1630          * in blk_mq_map_swqueue() after mapping is updated.
1631          */
1632
1633         return NOTIFY_OK;
1634 }
1635
1636 /* hctx->ctxs will be freed in queue's release handler */
1637 static void blk_mq_exit_hctx(struct request_queue *q,
1638                 struct blk_mq_tag_set *set,
1639                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1640 {
1641         unsigned flush_start_tag = set->queue_depth;
1642
1643         blk_mq_tag_idle(hctx);
1644
1645         if (set->ops->exit_request)
1646                 set->ops->exit_request(set->driver_data,
1647                                        hctx->fq->flush_rq, hctx_idx,
1648                                        flush_start_tag + hctx_idx);
1649
1650         if (set->ops->exit_hctx)
1651                 set->ops->exit_hctx(hctx, hctx_idx);
1652
1653         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1654         blk_free_flush_queue(hctx->fq);
1655         blk_mq_free_bitmap(&hctx->ctx_map);
1656 }
1657
1658 static void blk_mq_exit_hw_queues(struct request_queue *q,
1659                 struct blk_mq_tag_set *set, int nr_queue)
1660 {
1661         struct blk_mq_hw_ctx *hctx;
1662         unsigned int i;
1663
1664         queue_for_each_hw_ctx(q, hctx, i) {
1665                 if (i == nr_queue)
1666                         break;
1667                 blk_mq_exit_hctx(q, set, hctx, i);
1668         }
1669 }
1670
1671 static void blk_mq_free_hw_queues(struct request_queue *q,
1672                 struct blk_mq_tag_set *set)
1673 {
1674         struct blk_mq_hw_ctx *hctx;
1675         unsigned int i;
1676
1677         queue_for_each_hw_ctx(q, hctx, i)
1678                 free_cpumask_var(hctx->cpumask);
1679 }
1680
1681 static int blk_mq_init_hctx(struct request_queue *q,
1682                 struct blk_mq_tag_set *set,
1683                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1684 {
1685         int node;
1686         unsigned flush_start_tag = set->queue_depth;
1687
1688         node = hctx->numa_node;
1689         if (node == NUMA_NO_NODE)
1690                 node = hctx->numa_node = set->numa_node;
1691
1692         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1693         INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1694         spin_lock_init(&hctx->lock);
1695         INIT_LIST_HEAD(&hctx->dispatch);
1696         hctx->queue = q;
1697         hctx->queue_num = hctx_idx;
1698         hctx->flags = set->flags;
1699
1700         blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1701                                         blk_mq_hctx_notify, hctx);
1702         blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1703
1704         hctx->tags = set->tags[hctx_idx];
1705
1706         /*
1707          * Allocate space for all possible cpus to avoid allocation at
1708          * runtime
1709          */
1710         hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1711                                         GFP_KERNEL, node);
1712         if (!hctx->ctxs)
1713                 goto unregister_cpu_notifier;
1714
1715         if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1716                 goto free_ctxs;
1717
1718         hctx->nr_ctx = 0;
1719
1720         if (set->ops->init_hctx &&
1721             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1722                 goto free_bitmap;
1723
1724         hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1725         if (!hctx->fq)
1726                 goto exit_hctx;
1727
1728         if (set->ops->init_request &&
1729             set->ops->init_request(set->driver_data,
1730                                    hctx->fq->flush_rq, hctx_idx,
1731                                    flush_start_tag + hctx_idx, node))
1732                 goto free_fq;
1733
1734         return 0;
1735
1736  free_fq:
1737         kfree(hctx->fq);
1738  exit_hctx:
1739         if (set->ops->exit_hctx)
1740                 set->ops->exit_hctx(hctx, hctx_idx);
1741  free_bitmap:
1742         blk_mq_free_bitmap(&hctx->ctx_map);
1743  free_ctxs:
1744         kfree(hctx->ctxs);
1745  unregister_cpu_notifier:
1746         blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1747
1748         return -1;
1749 }
1750
1751 static int blk_mq_init_hw_queues(struct request_queue *q,
1752                 struct blk_mq_tag_set *set)
1753 {
1754         struct blk_mq_hw_ctx *hctx;
1755         unsigned int i;
1756
1757         /*
1758          * Initialize hardware queues
1759          */
1760         queue_for_each_hw_ctx(q, hctx, i) {
1761                 if (blk_mq_init_hctx(q, set, hctx, i))
1762                         break;
1763         }
1764
1765         if (i == q->nr_hw_queues)
1766                 return 0;
1767
1768         /*
1769          * Init failed
1770          */
1771         blk_mq_exit_hw_queues(q, set, i);
1772
1773         return 1;
1774 }
1775
1776 static void blk_mq_init_cpu_queues(struct request_queue *q,
1777                                    unsigned int nr_hw_queues)
1778 {
1779         unsigned int i;
1780
1781         for_each_possible_cpu(i) {
1782                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1783                 struct blk_mq_hw_ctx *hctx;
1784
1785                 memset(__ctx, 0, sizeof(*__ctx));
1786                 __ctx->cpu = i;
1787                 spin_lock_init(&__ctx->lock);
1788                 INIT_LIST_HEAD(&__ctx->rq_list);
1789                 __ctx->queue = q;
1790
1791                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1792                 if (!cpu_online(i))
1793                         continue;
1794
1795                 hctx = q->mq_ops->map_queue(q, i);
1796
1797                 /*
1798                  * Set local node, IFF we have more than one hw queue. If
1799                  * not, we remain on the home node of the device
1800                  */
1801                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1802                         hctx->numa_node = cpu_to_node(i);
1803         }
1804 }
1805
1806 static void blk_mq_map_swqueue(struct request_queue *q)
1807 {
1808         unsigned int i;
1809         struct blk_mq_hw_ctx *hctx;
1810         struct blk_mq_ctx *ctx;
1811         struct blk_mq_tag_set *set = q->tag_set;
1812
1813         queue_for_each_hw_ctx(q, hctx, i) {
1814                 cpumask_clear(hctx->cpumask);
1815                 hctx->nr_ctx = 0;
1816         }
1817
1818         /*
1819          * Map software to hardware queues
1820          */
1821         queue_for_each_ctx(q, ctx, i) {
1822                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1823                 if (!cpu_online(i))
1824                         continue;
1825
1826                 hctx = q->mq_ops->map_queue(q, i);
1827                 cpumask_set_cpu(i, hctx->cpumask);
1828                 cpumask_set_cpu(i, hctx->tags->cpumask);
1829                 ctx->index_hw = hctx->nr_ctx;
1830                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1831         }
1832
1833         queue_for_each_hw_ctx(q, hctx, i) {
1834                 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1835
1836                 /*
1837                  * If no software queues are mapped to this hardware queue,
1838                  * disable it and free the request entries.
1839                  */
1840                 if (!hctx->nr_ctx) {
1841                         if (set->tags[i]) {
1842                                 blk_mq_free_rq_map(set, set->tags[i], i);
1843                                 set->tags[i] = NULL;
1844                         }
1845                         hctx->tags = NULL;
1846                         continue;
1847                 }
1848
1849                 /* unmapped hw queue can be remapped after CPU topo changed */
1850                 if (!set->tags[i])
1851                         set->tags[i] = blk_mq_init_rq_map(set, i);
1852                 hctx->tags = set->tags[i];
1853                 WARN_ON(!hctx->tags);
1854
1855                 /*
1856                  * Set the map size to the number of mapped software queues.
1857                  * This is more accurate and more efficient than looping
1858                  * over all possibly mapped software queues.
1859                  */
1860                 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1861
1862                 /*
1863                  * Initialize batch roundrobin counts
1864                  */
1865                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1866                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1867         }
1868 }
1869
1870 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1871 {
1872         struct blk_mq_hw_ctx *hctx;
1873         struct request_queue *q;
1874         bool shared;
1875         int i;
1876
1877         if (set->tag_list.next == set->tag_list.prev)
1878                 shared = false;
1879         else
1880                 shared = true;
1881
1882         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1883                 blk_mq_freeze_queue(q);
1884
1885                 queue_for_each_hw_ctx(q, hctx, i) {
1886                         if (shared)
1887                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1888                         else
1889                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1890                 }
1891                 blk_mq_unfreeze_queue(q);
1892         }
1893 }
1894
1895 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1896 {
1897         struct blk_mq_tag_set *set = q->tag_set;
1898
1899         mutex_lock(&set->tag_list_lock);
1900         list_del_init(&q->tag_set_list);
1901         blk_mq_update_tag_set_depth(set);
1902         mutex_unlock(&set->tag_list_lock);
1903 }
1904
1905 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1906                                      struct request_queue *q)
1907 {
1908         q->tag_set = set;
1909
1910         mutex_lock(&set->tag_list_lock);
1911         list_add_tail(&q->tag_set_list, &set->tag_list);
1912         blk_mq_update_tag_set_depth(set);
1913         mutex_unlock(&set->tag_list_lock);
1914 }
1915
1916 /*
1917  * It is the actual release handler for mq, but we do it from
1918  * request queue's release handler for avoiding use-after-free
1919  * and headache because q->mq_kobj shouldn't have been introduced,
1920  * but we can't group ctx/kctx kobj without it.
1921  */
1922 void blk_mq_release(struct request_queue *q)
1923 {
1924         struct blk_mq_hw_ctx *hctx;
1925         unsigned int i;
1926
1927         /* hctx kobj stays in hctx */
1928         queue_for_each_hw_ctx(q, hctx, i) {
1929                 if (!hctx)
1930                         continue;
1931                 kfree(hctx->ctxs);
1932                 kfree(hctx);
1933         }
1934
1935         kfree(q->queue_hw_ctx);
1936
1937         /* ctx kobj stays in queue_ctx */
1938         free_percpu(q->queue_ctx);
1939 }
1940
1941 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1942 {
1943         struct request_queue *uninit_q, *q;
1944
1945         uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1946         if (!uninit_q)
1947                 return ERR_PTR(-ENOMEM);
1948
1949         q = blk_mq_init_allocated_queue(set, uninit_q);
1950         if (IS_ERR(q))
1951                 blk_cleanup_queue(uninit_q);
1952
1953         return q;
1954 }
1955 EXPORT_SYMBOL(blk_mq_init_queue);
1956
1957 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1958                                                   struct request_queue *q)
1959 {
1960         struct blk_mq_hw_ctx **hctxs;
1961         struct blk_mq_ctx __percpu *ctx;
1962         unsigned int *map;
1963         int i;
1964
1965         ctx = alloc_percpu(struct blk_mq_ctx);
1966         if (!ctx)
1967                 return ERR_PTR(-ENOMEM);
1968
1969         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1970                         set->numa_node);
1971
1972         if (!hctxs)
1973                 goto err_percpu;
1974
1975         map = blk_mq_make_queue_map(set);
1976         if (!map)
1977                 goto err_map;
1978
1979         for (i = 0; i < set->nr_hw_queues; i++) {
1980                 int node = blk_mq_hw_queue_to_node(map, i);
1981
1982                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1983                                         GFP_KERNEL, node);
1984                 if (!hctxs[i])
1985                         goto err_hctxs;
1986
1987                 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1988                                                 node))
1989                         goto err_hctxs;
1990
1991                 atomic_set(&hctxs[i]->nr_active, 0);
1992                 hctxs[i]->numa_node = node;
1993                 hctxs[i]->queue_num = i;
1994         }
1995
1996         /*
1997          * Init percpu_ref in atomic mode so that it's faster to shutdown.
1998          * See blk_register_queue() for details.
1999          */
2000         if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
2001                             PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
2002                 goto err_hctxs;
2003
2004         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2005         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2006
2007         q->nr_queues = nr_cpu_ids;
2008         q->nr_hw_queues = set->nr_hw_queues;
2009         q->mq_map = map;
2010
2011         q->queue_ctx = ctx;
2012         q->queue_hw_ctx = hctxs;
2013
2014         q->mq_ops = set->ops;
2015         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2016
2017         if (!(set->flags & BLK_MQ_F_SG_MERGE))
2018                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2019
2020         q->sg_reserved_size = INT_MAX;
2021
2022         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2023         INIT_LIST_HEAD(&q->requeue_list);
2024         spin_lock_init(&q->requeue_lock);
2025
2026         if (q->nr_hw_queues > 1)
2027                 blk_queue_make_request(q, blk_mq_make_request);
2028         else
2029                 blk_queue_make_request(q, blk_sq_make_request);
2030
2031         /*
2032          * Do this after blk_queue_make_request() overrides it...
2033          */
2034         q->nr_requests = set->queue_depth;
2035
2036         if (set->ops->complete)
2037                 blk_queue_softirq_done(q, set->ops->complete);
2038
2039         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2040
2041         if (blk_mq_init_hw_queues(q, set))
2042                 goto err_hctxs;
2043
2044         mutex_lock(&all_q_mutex);
2045         list_add_tail(&q->all_q_node, &all_q_list);
2046         mutex_unlock(&all_q_mutex);
2047
2048         blk_mq_add_queue_tag_set(set, q);
2049
2050         blk_mq_map_swqueue(q);
2051
2052         return q;
2053
2054 err_hctxs:
2055         kfree(map);
2056         for (i = 0; i < set->nr_hw_queues; i++) {
2057                 if (!hctxs[i])
2058                         break;
2059                 free_cpumask_var(hctxs[i]->cpumask);
2060                 kfree(hctxs[i]);
2061         }
2062 err_map:
2063         kfree(hctxs);
2064 err_percpu:
2065         free_percpu(ctx);
2066         return ERR_PTR(-ENOMEM);
2067 }
2068 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2069
2070 void blk_mq_free_queue(struct request_queue *q)
2071 {
2072         struct blk_mq_tag_set   *set = q->tag_set;
2073
2074         blk_mq_del_queue_tag_set(q);
2075
2076         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2077         blk_mq_free_hw_queues(q, set);
2078
2079         percpu_ref_exit(&q->mq_usage_counter);
2080
2081         kfree(q->mq_map);
2082
2083         q->mq_map = NULL;
2084
2085         mutex_lock(&all_q_mutex);
2086         list_del_init(&q->all_q_node);
2087         mutex_unlock(&all_q_mutex);
2088 }
2089
2090 /* Basically redo blk_mq_init_queue with queue frozen */
2091 static void blk_mq_queue_reinit(struct request_queue *q)
2092 {
2093         WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2094
2095         blk_mq_sysfs_unregister(q);
2096
2097         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2098
2099         /*
2100          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2101          * we should change hctx numa_node according to new topology (this
2102          * involves free and re-allocate memory, worthy doing?)
2103          */
2104
2105         blk_mq_map_swqueue(q);
2106
2107         blk_mq_sysfs_register(q);
2108 }
2109
2110 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2111                                       unsigned long action, void *hcpu)
2112 {
2113         struct request_queue *q;
2114
2115         /*
2116          * Before new mappings are established, hotadded cpu might already
2117          * start handling requests. This doesn't break anything as we map
2118          * offline CPUs to first hardware queue. We will re-init the queue
2119          * below to get optimal settings.
2120          */
2121         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2122             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2123                 return NOTIFY_OK;
2124
2125         mutex_lock(&all_q_mutex);
2126
2127         /*
2128          * We need to freeze and reinit all existing queues.  Freezing
2129          * involves synchronous wait for an RCU grace period and doing it
2130          * one by one may take a long time.  Start freezing all queues in
2131          * one swoop and then wait for the completions so that freezing can
2132          * take place in parallel.
2133          */
2134         list_for_each_entry(q, &all_q_list, all_q_node)
2135                 blk_mq_freeze_queue_start(q);
2136         list_for_each_entry(q, &all_q_list, all_q_node) {
2137                 blk_mq_freeze_queue_wait(q);
2138
2139                 /*
2140                  * timeout handler can't touch hw queue during the
2141                  * reinitialization
2142                  */
2143                 del_timer_sync(&q->timeout);
2144         }
2145
2146         list_for_each_entry(q, &all_q_list, all_q_node)
2147                 blk_mq_queue_reinit(q);
2148
2149         list_for_each_entry(q, &all_q_list, all_q_node)
2150                 blk_mq_unfreeze_queue(q);
2151
2152         mutex_unlock(&all_q_mutex);
2153         return NOTIFY_OK;
2154 }
2155
2156 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2157 {
2158         int i;
2159
2160         for (i = 0; i < set->nr_hw_queues; i++) {
2161                 set->tags[i] = blk_mq_init_rq_map(set, i);
2162                 if (!set->tags[i])
2163                         goto out_unwind;
2164         }
2165
2166         return 0;
2167
2168 out_unwind:
2169         while (--i >= 0)
2170                 blk_mq_free_rq_map(set, set->tags[i], i);
2171
2172         return -ENOMEM;
2173 }
2174
2175 /*
2176  * Allocate the request maps associated with this tag_set. Note that this
2177  * may reduce the depth asked for, if memory is tight. set->queue_depth
2178  * will be updated to reflect the allocated depth.
2179  */
2180 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2181 {
2182         unsigned int depth;
2183         int err;
2184
2185         depth = set->queue_depth;
2186         do {
2187                 err = __blk_mq_alloc_rq_maps(set);
2188                 if (!err)
2189                         break;
2190
2191                 set->queue_depth >>= 1;
2192                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2193                         err = -ENOMEM;
2194                         break;
2195                 }
2196         } while (set->queue_depth);
2197
2198         if (!set->queue_depth || err) {
2199                 pr_err("blk-mq: failed to allocate request map\n");
2200                 return -ENOMEM;
2201         }
2202
2203         if (depth != set->queue_depth)
2204                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2205                                                 depth, set->queue_depth);
2206
2207         return 0;
2208 }
2209
2210 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2211 {
2212         return tags->cpumask;
2213 }
2214 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2215
2216 /*
2217  * Alloc a tag set to be associated with one or more request queues.
2218  * May fail with EINVAL for various error conditions. May adjust the
2219  * requested depth down, if if it too large. In that case, the set
2220  * value will be stored in set->queue_depth.
2221  */
2222 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2223 {
2224         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2225
2226         if (!set->nr_hw_queues)
2227                 return -EINVAL;
2228         if (!set->queue_depth)
2229                 return -EINVAL;
2230         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2231                 return -EINVAL;
2232
2233         if (!set->ops->queue_rq || !set->ops->map_queue)
2234                 return -EINVAL;
2235
2236         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2237                 pr_info("blk-mq: reduced tag depth to %u\n",
2238                         BLK_MQ_MAX_DEPTH);
2239                 set->queue_depth = BLK_MQ_MAX_DEPTH;
2240         }
2241
2242         /*
2243          * If a crashdump is active, then we are potentially in a very
2244          * memory constrained environment. Limit us to 1 queue and
2245          * 64 tags to prevent using too much memory.
2246          */
2247         if (is_kdump_kernel()) {
2248                 set->nr_hw_queues = 1;
2249                 set->queue_depth = min(64U, set->queue_depth);
2250         }
2251
2252         set->tags = kmalloc_node(set->nr_hw_queues *
2253                                  sizeof(struct blk_mq_tags *),
2254                                  GFP_KERNEL, set->numa_node);
2255         if (!set->tags)
2256                 return -ENOMEM;
2257
2258         if (blk_mq_alloc_rq_maps(set))
2259                 goto enomem;
2260
2261         mutex_init(&set->tag_list_lock);
2262         INIT_LIST_HEAD(&set->tag_list);
2263
2264         return 0;
2265 enomem:
2266         kfree(set->tags);
2267         set->tags = NULL;
2268         return -ENOMEM;
2269 }
2270 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2271
2272 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2273 {
2274         int i;
2275
2276         for (i = 0; i < set->nr_hw_queues; i++) {
2277                 if (set->tags[i]) {
2278                         blk_mq_free_rq_map(set, set->tags[i], i);
2279                         free_cpumask_var(set->tags[i]->cpumask);
2280                 }
2281         }
2282
2283         kfree(set->tags);
2284         set->tags = NULL;
2285 }
2286 EXPORT_SYMBOL(blk_mq_free_tag_set);
2287
2288 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2289 {
2290         struct blk_mq_tag_set *set = q->tag_set;
2291         struct blk_mq_hw_ctx *hctx;
2292         int i, ret;
2293
2294         if (!set || nr > set->queue_depth)
2295                 return -EINVAL;
2296
2297         ret = 0;
2298         queue_for_each_hw_ctx(q, hctx, i) {
2299                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2300                 if (ret)
2301                         break;
2302         }
2303
2304         if (!ret)
2305                 q->nr_requests = nr;
2306
2307         return ret;
2308 }
2309
2310 void blk_mq_disable_hotplug(void)
2311 {
2312         mutex_lock(&all_q_mutex);
2313 }
2314
2315 void blk_mq_enable_hotplug(void)
2316 {
2317         mutex_unlock(&all_q_mutex);
2318 }
2319
2320 static int __init blk_mq_init(void)
2321 {
2322         blk_mq_cpu_init();
2323
2324         hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2325
2326         return 0;
2327 }
2328 subsys_initcall(blk_mq_init);