a0565bb20fd556c42e610732c07c49d2a3f84ce8
[cascardo/linux.git] / block / blk-mq.c
1 /*
2  * Block multiqueue core code
3  *
4  * Copyright (C) 2013-2014 Jens Axboe
5  * Copyright (C) 2013-2014 Christoph Hellwig
6  */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23
24 #include <trace/events/block.h>
25
26 #include <linux/blk-mq.h>
27 #include "blk.h"
28 #include "blk-mq.h"
29 #include "blk-mq-tag.h"
30
31 static DEFINE_MUTEX(all_q_mutex);
32 static LIST_HEAD(all_q_list);
33
34 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
36 /*
37  * Check if any of the ctx's have pending work in this hardware queue
38  */
39 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40 {
41         unsigned int i;
42
43         for (i = 0; i < hctx->ctx_map.map_size; i++)
44                 if (hctx->ctx_map.map[i].word)
45                         return true;
46
47         return false;
48 }
49
50 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51                                               struct blk_mq_ctx *ctx)
52 {
53         return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54 }
55
56 #define CTX_TO_BIT(hctx, ctx)   \
57         ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
59 /*
60  * Mark this ctx as having pending work in this hardware queue
61  */
62 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63                                      struct blk_mq_ctx *ctx)
64 {
65         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67         if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68                 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69 }
70
71 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72                                       struct blk_mq_ctx *ctx)
73 {
74         struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76         clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
77 }
78
79 static int blk_mq_queue_enter(struct request_queue *q)
80 {
81         while (true) {
82                 int ret;
83
84                 if (percpu_ref_tryget_live(&q->mq_usage_counter))
85                         return 0;
86
87                 ret = wait_event_interruptible(q->mq_freeze_wq,
88                                 !q->mq_freeze_depth || blk_queue_dying(q));
89                 if (blk_queue_dying(q))
90                         return -ENODEV;
91                 if (ret)
92                         return ret;
93         }
94 }
95
96 static void blk_mq_queue_exit(struct request_queue *q)
97 {
98         percpu_ref_put(&q->mq_usage_counter);
99 }
100
101 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
102 {
103         struct request_queue *q =
104                 container_of(ref, struct request_queue, mq_usage_counter);
105
106         wake_up_all(&q->mq_freeze_wq);
107 }
108
109 /*
110  * Guarantee no request is in use, so we can change any data structure of
111  * the queue afterward.
112  */
113 void blk_mq_freeze_queue(struct request_queue *q)
114 {
115         spin_lock_irq(q->queue_lock);
116         q->mq_freeze_depth++;
117         spin_unlock_irq(q->queue_lock);
118
119         percpu_ref_kill(&q->mq_usage_counter);
120         blk_mq_run_queues(q, false);
121         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
122 }
123
124 static void blk_mq_unfreeze_queue(struct request_queue *q)
125 {
126         bool wake = false;
127
128         spin_lock_irq(q->queue_lock);
129         wake = !--q->mq_freeze_depth;
130         WARN_ON_ONCE(q->mq_freeze_depth < 0);
131         spin_unlock_irq(q->queue_lock);
132         if (wake) {
133                 percpu_ref_reinit(&q->mq_usage_counter);
134                 wake_up_all(&q->mq_freeze_wq);
135         }
136 }
137
138 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
139 {
140         return blk_mq_has_free_tags(hctx->tags);
141 }
142 EXPORT_SYMBOL(blk_mq_can_queue);
143
144 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
145                                struct request *rq, unsigned int rw_flags)
146 {
147         if (blk_queue_io_stat(q))
148                 rw_flags |= REQ_IO_STAT;
149
150         INIT_LIST_HEAD(&rq->queuelist);
151         /* csd/requeue_work/fifo_time is initialized before use */
152         rq->q = q;
153         rq->mq_ctx = ctx;
154         rq->cmd_flags |= rw_flags;
155         /* do not touch atomic flags, it needs atomic ops against the timer */
156         rq->cpu = -1;
157         INIT_HLIST_NODE(&rq->hash);
158         RB_CLEAR_NODE(&rq->rb_node);
159         rq->rq_disk = NULL;
160         rq->part = NULL;
161         rq->start_time = jiffies;
162 #ifdef CONFIG_BLK_CGROUP
163         rq->rl = NULL;
164         set_start_time_ns(rq);
165         rq->io_start_time_ns = 0;
166 #endif
167         rq->nr_phys_segments = 0;
168 #if defined(CONFIG_BLK_DEV_INTEGRITY)
169         rq->nr_integrity_segments = 0;
170 #endif
171         rq->special = NULL;
172         /* tag was already set */
173         rq->errors = 0;
174
175         rq->extra_len = 0;
176         rq->sense_len = 0;
177         rq->resid_len = 0;
178         rq->sense = NULL;
179
180         INIT_LIST_HEAD(&rq->timeout_list);
181         rq->timeout = 0;
182
183         rq->end_io = NULL;
184         rq->end_io_data = NULL;
185         rq->next_rq = NULL;
186
187         ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
188 }
189
190 static struct request *
191 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
192 {
193         struct request *rq;
194         unsigned int tag;
195
196         tag = blk_mq_get_tag(data);
197         if (tag != BLK_MQ_TAG_FAIL) {
198                 rq = data->hctx->tags->rqs[tag];
199
200                 rq->cmd_flags = 0;
201                 if (blk_mq_tag_busy(data->hctx)) {
202                         rq->cmd_flags = REQ_MQ_INFLIGHT;
203                         atomic_inc(&data->hctx->nr_active);
204                 }
205
206                 rq->tag = tag;
207                 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
208                 return rq;
209         }
210
211         return NULL;
212 }
213
214 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
215                 bool reserved)
216 {
217         struct blk_mq_ctx *ctx;
218         struct blk_mq_hw_ctx *hctx;
219         struct request *rq;
220         struct blk_mq_alloc_data alloc_data;
221
222         if (blk_mq_queue_enter(q))
223                 return NULL;
224
225         ctx = blk_mq_get_ctx(q);
226         hctx = q->mq_ops->map_queue(q, ctx->cpu);
227         blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
228                         reserved, ctx, hctx);
229
230         rq = __blk_mq_alloc_request(&alloc_data, rw);
231         if (!rq && (gfp & __GFP_WAIT)) {
232                 __blk_mq_run_hw_queue(hctx);
233                 blk_mq_put_ctx(ctx);
234
235                 ctx = blk_mq_get_ctx(q);
236                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
237                 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
238                                 hctx);
239                 rq =  __blk_mq_alloc_request(&alloc_data, rw);
240                 ctx = alloc_data.ctx;
241         }
242         blk_mq_put_ctx(ctx);
243         return rq;
244 }
245 EXPORT_SYMBOL(blk_mq_alloc_request);
246
247 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
248                                   struct blk_mq_ctx *ctx, struct request *rq)
249 {
250         const int tag = rq->tag;
251         struct request_queue *q = rq->q;
252
253         if (rq->cmd_flags & REQ_MQ_INFLIGHT)
254                 atomic_dec(&hctx->nr_active);
255
256         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
257         blk_mq_put_tag(hctx, tag, &ctx->last_tag);
258         blk_mq_queue_exit(q);
259 }
260
261 void blk_mq_free_request(struct request *rq)
262 {
263         struct blk_mq_ctx *ctx = rq->mq_ctx;
264         struct blk_mq_hw_ctx *hctx;
265         struct request_queue *q = rq->q;
266
267         ctx->rq_completed[rq_is_sync(rq)]++;
268
269         hctx = q->mq_ops->map_queue(q, ctx->cpu);
270         __blk_mq_free_request(hctx, ctx, rq);
271 }
272
273 /*
274  * Clone all relevant state from a request that has been put on hold in
275  * the flush state machine into the preallocated flush request that hangs
276  * off the request queue.
277  *
278  * For a driver the flush request should be invisible, that's why we are
279  * impersonating the original request here.
280  */
281 void blk_mq_clone_flush_request(struct request *flush_rq,
282                 struct request *orig_rq)
283 {
284         struct blk_mq_hw_ctx *hctx =
285                 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
286
287         flush_rq->mq_ctx = orig_rq->mq_ctx;
288         flush_rq->tag = orig_rq->tag;
289         memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
290                 hctx->cmd_size);
291 }
292
293 inline void __blk_mq_end_io(struct request *rq, int error)
294 {
295         blk_account_io_done(rq);
296
297         if (rq->end_io) {
298                 rq->end_io(rq, error);
299         } else {
300                 if (unlikely(blk_bidi_rq(rq)))
301                         blk_mq_free_request(rq->next_rq);
302                 blk_mq_free_request(rq);
303         }
304 }
305 EXPORT_SYMBOL(__blk_mq_end_io);
306
307 void blk_mq_end_io(struct request *rq, int error)
308 {
309         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
310                 BUG();
311         __blk_mq_end_io(rq, error);
312 }
313 EXPORT_SYMBOL(blk_mq_end_io);
314
315 static void __blk_mq_complete_request_remote(void *data)
316 {
317         struct request *rq = data;
318
319         rq->q->softirq_done_fn(rq);
320 }
321
322 static void blk_mq_ipi_complete_request(struct request *rq)
323 {
324         struct blk_mq_ctx *ctx = rq->mq_ctx;
325         bool shared = false;
326         int cpu;
327
328         if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
329                 rq->q->softirq_done_fn(rq);
330                 return;
331         }
332
333         cpu = get_cpu();
334         if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
335                 shared = cpus_share_cache(cpu, ctx->cpu);
336
337         if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
338                 rq->csd.func = __blk_mq_complete_request_remote;
339                 rq->csd.info = rq;
340                 rq->csd.flags = 0;
341                 smp_call_function_single_async(ctx->cpu, &rq->csd);
342         } else {
343                 rq->q->softirq_done_fn(rq);
344         }
345         put_cpu();
346 }
347
348 void __blk_mq_complete_request(struct request *rq)
349 {
350         struct request_queue *q = rq->q;
351
352         if (!q->softirq_done_fn)
353                 blk_mq_end_io(rq, rq->errors);
354         else
355                 blk_mq_ipi_complete_request(rq);
356 }
357
358 /**
359  * blk_mq_complete_request - end I/O on a request
360  * @rq:         the request being processed
361  *
362  * Description:
363  *      Ends all I/O on a request. It does not handle partial completions.
364  *      The actual completion happens out-of-order, through a IPI handler.
365  **/
366 void blk_mq_complete_request(struct request *rq)
367 {
368         struct request_queue *q = rq->q;
369
370         if (unlikely(blk_should_fake_timeout(q)))
371                 return;
372         if (!blk_mark_rq_complete(rq))
373                 __blk_mq_complete_request(rq);
374 }
375 EXPORT_SYMBOL(blk_mq_complete_request);
376
377 static void blk_mq_start_request(struct request *rq, bool last)
378 {
379         struct request_queue *q = rq->q;
380
381         trace_block_rq_issue(q, rq);
382
383         rq->resid_len = blk_rq_bytes(rq);
384         if (unlikely(blk_bidi_rq(rq)))
385                 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
386
387         blk_add_timer(rq);
388
389         /*
390          * Mark us as started and clear complete. Complete might have been
391          * set if requeue raced with timeout, which then marked it as
392          * complete. So be sure to clear complete again when we start
393          * the request, otherwise we'll ignore the completion event.
394          */
395         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
396                 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
397         if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
398                 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
399
400         if (q->dma_drain_size && blk_rq_bytes(rq)) {
401                 /*
402                  * Make sure space for the drain appears.  We know we can do
403                  * this because max_hw_segments has been adjusted to be one
404                  * fewer than the device can handle.
405                  */
406                 rq->nr_phys_segments++;
407         }
408
409         /*
410          * Flag the last request in the series so that drivers know when IO
411          * should be kicked off, if they don't do it on a per-request basis.
412          *
413          * Note: the flag isn't the only condition drivers should do kick off.
414          * If drive is busy, the last request might not have the bit set.
415          */
416         if (last)
417                 rq->cmd_flags |= REQ_END;
418 }
419
420 static void __blk_mq_requeue_request(struct request *rq)
421 {
422         struct request_queue *q = rq->q;
423
424         trace_block_rq_requeue(q, rq);
425         clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
426
427         rq->cmd_flags &= ~REQ_END;
428
429         if (q->dma_drain_size && blk_rq_bytes(rq))
430                 rq->nr_phys_segments--;
431 }
432
433 void blk_mq_requeue_request(struct request *rq)
434 {
435         __blk_mq_requeue_request(rq);
436         blk_clear_rq_complete(rq);
437
438         BUG_ON(blk_queued_rq(rq));
439         blk_mq_add_to_requeue_list(rq, true);
440 }
441 EXPORT_SYMBOL(blk_mq_requeue_request);
442
443 static void blk_mq_requeue_work(struct work_struct *work)
444 {
445         struct request_queue *q =
446                 container_of(work, struct request_queue, requeue_work);
447         LIST_HEAD(rq_list);
448         struct request *rq, *next;
449         unsigned long flags;
450
451         spin_lock_irqsave(&q->requeue_lock, flags);
452         list_splice_init(&q->requeue_list, &rq_list);
453         spin_unlock_irqrestore(&q->requeue_lock, flags);
454
455         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
456                 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
457                         continue;
458
459                 rq->cmd_flags &= ~REQ_SOFTBARRIER;
460                 list_del_init(&rq->queuelist);
461                 blk_mq_insert_request(rq, true, false, false);
462         }
463
464         while (!list_empty(&rq_list)) {
465                 rq = list_entry(rq_list.next, struct request, queuelist);
466                 list_del_init(&rq->queuelist);
467                 blk_mq_insert_request(rq, false, false, false);
468         }
469
470         blk_mq_run_queues(q, false);
471 }
472
473 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
474 {
475         struct request_queue *q = rq->q;
476         unsigned long flags;
477
478         /*
479          * We abuse this flag that is otherwise used by the I/O scheduler to
480          * request head insertation from the workqueue.
481          */
482         BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
483
484         spin_lock_irqsave(&q->requeue_lock, flags);
485         if (at_head) {
486                 rq->cmd_flags |= REQ_SOFTBARRIER;
487                 list_add(&rq->queuelist, &q->requeue_list);
488         } else {
489                 list_add_tail(&rq->queuelist, &q->requeue_list);
490         }
491         spin_unlock_irqrestore(&q->requeue_lock, flags);
492 }
493 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
494
495 void blk_mq_kick_requeue_list(struct request_queue *q)
496 {
497         kblockd_schedule_work(&q->requeue_work);
498 }
499 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
500
501 static inline bool is_flush_request(struct request *rq, unsigned int tag)
502 {
503         return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
504                         rq->q->flush_rq->tag == tag);
505 }
506
507 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
508 {
509         struct request *rq = tags->rqs[tag];
510
511         if (!is_flush_request(rq, tag))
512                 return rq;
513
514         return rq->q->flush_rq;
515 }
516 EXPORT_SYMBOL(blk_mq_tag_to_rq);
517
518 struct blk_mq_timeout_data {
519         struct blk_mq_hw_ctx *hctx;
520         unsigned long *next;
521         unsigned int *next_set;
522 };
523
524 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
525 {
526         struct blk_mq_timeout_data *data = __data;
527         struct blk_mq_hw_ctx *hctx = data->hctx;
528         unsigned int tag;
529
530          /* It may not be in flight yet (this is where
531          * the REQ_ATOMIC_STARTED flag comes in). The requests are
532          * statically allocated, so we know it's always safe to access the
533          * memory associated with a bit offset into ->rqs[].
534          */
535         tag = 0;
536         do {
537                 struct request *rq;
538
539                 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
540                 if (tag >= hctx->tags->nr_tags)
541                         break;
542
543                 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
544                 if (rq->q != hctx->queue)
545                         continue;
546                 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
547                         continue;
548
549                 blk_rq_check_expired(rq, data->next, data->next_set);
550         } while (1);
551 }
552
553 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
554                                         unsigned long *next,
555                                         unsigned int *next_set)
556 {
557         struct blk_mq_timeout_data data = {
558                 .hctx           = hctx,
559                 .next           = next,
560                 .next_set       = next_set,
561         };
562
563         /*
564          * Ask the tagging code to iterate busy requests, so we can
565          * check them for timeout.
566          */
567         blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
568 }
569
570 static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
571 {
572         struct request_queue *q = rq->q;
573
574         /*
575          * We know that complete is set at this point. If STARTED isn't set
576          * anymore, then the request isn't active and the "timeout" should
577          * just be ignored. This can happen due to the bitflag ordering.
578          * Timeout first checks if STARTED is set, and if it is, assumes
579          * the request is active. But if we race with completion, then
580          * we both flags will get cleared. So check here again, and ignore
581          * a timeout event with a request that isn't active.
582          */
583         if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
584                 return BLK_EH_NOT_HANDLED;
585
586         if (!q->mq_ops->timeout)
587                 return BLK_EH_RESET_TIMER;
588
589         return q->mq_ops->timeout(rq);
590 }
591
592 static void blk_mq_rq_timer(unsigned long data)
593 {
594         struct request_queue *q = (struct request_queue *) data;
595         struct blk_mq_hw_ctx *hctx;
596         unsigned long next = 0;
597         int i, next_set = 0;
598
599         queue_for_each_hw_ctx(q, hctx, i) {
600                 /*
601                  * If not software queues are currently mapped to this
602                  * hardware queue, there's nothing to check
603                  */
604                 if (!hctx->nr_ctx || !hctx->tags)
605                         continue;
606
607                 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
608         }
609
610         if (next_set) {
611                 next = blk_rq_timeout(round_jiffies_up(next));
612                 mod_timer(&q->timeout, next);
613         } else {
614                 queue_for_each_hw_ctx(q, hctx, i)
615                         blk_mq_tag_idle(hctx);
616         }
617 }
618
619 /*
620  * Reverse check our software queue for entries that we could potentially
621  * merge with. Currently includes a hand-wavy stop count of 8, to not spend
622  * too much time checking for merges.
623  */
624 static bool blk_mq_attempt_merge(struct request_queue *q,
625                                  struct blk_mq_ctx *ctx, struct bio *bio)
626 {
627         struct request *rq;
628         int checked = 8;
629
630         list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
631                 int el_ret;
632
633                 if (!checked--)
634                         break;
635
636                 if (!blk_rq_merge_ok(rq, bio))
637                         continue;
638
639                 el_ret = blk_try_merge(rq, bio);
640                 if (el_ret == ELEVATOR_BACK_MERGE) {
641                         if (bio_attempt_back_merge(q, rq, bio)) {
642                                 ctx->rq_merged++;
643                                 return true;
644                         }
645                         break;
646                 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
647                         if (bio_attempt_front_merge(q, rq, bio)) {
648                                 ctx->rq_merged++;
649                                 return true;
650                         }
651                         break;
652                 }
653         }
654
655         return false;
656 }
657
658 /*
659  * Process software queues that have been marked busy, splicing them
660  * to the for-dispatch
661  */
662 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
663 {
664         struct blk_mq_ctx *ctx;
665         int i;
666
667         for (i = 0; i < hctx->ctx_map.map_size; i++) {
668                 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
669                 unsigned int off, bit;
670
671                 if (!bm->word)
672                         continue;
673
674                 bit = 0;
675                 off = i * hctx->ctx_map.bits_per_word;
676                 do {
677                         bit = find_next_bit(&bm->word, bm->depth, bit);
678                         if (bit >= bm->depth)
679                                 break;
680
681                         ctx = hctx->ctxs[bit + off];
682                         clear_bit(bit, &bm->word);
683                         spin_lock(&ctx->lock);
684                         list_splice_tail_init(&ctx->rq_list, list);
685                         spin_unlock(&ctx->lock);
686
687                         bit++;
688                 } while (1);
689         }
690 }
691
692 /*
693  * Run this hardware queue, pulling any software queues mapped to it in.
694  * Note that this function currently has various problems around ordering
695  * of IO. In particular, we'd like FIFO behaviour on handling existing
696  * items on the hctx->dispatch list. Ignore that for now.
697  */
698 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
699 {
700         struct request_queue *q = hctx->queue;
701         struct request *rq;
702         LIST_HEAD(rq_list);
703         int queued;
704
705         WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
706
707         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
708                 return;
709
710         hctx->run++;
711
712         /*
713          * Touch any software queue that has pending entries.
714          */
715         flush_busy_ctxs(hctx, &rq_list);
716
717         /*
718          * If we have previous entries on our dispatch list, grab them
719          * and stuff them at the front for more fair dispatch.
720          */
721         if (!list_empty_careful(&hctx->dispatch)) {
722                 spin_lock(&hctx->lock);
723                 if (!list_empty(&hctx->dispatch))
724                         list_splice_init(&hctx->dispatch, &rq_list);
725                 spin_unlock(&hctx->lock);
726         }
727
728         /*
729          * Now process all the entries, sending them to the driver.
730          */
731         queued = 0;
732         while (!list_empty(&rq_list)) {
733                 int ret;
734
735                 rq = list_first_entry(&rq_list, struct request, queuelist);
736                 list_del_init(&rq->queuelist);
737
738                 blk_mq_start_request(rq, list_empty(&rq_list));
739
740                 ret = q->mq_ops->queue_rq(hctx, rq);
741                 switch (ret) {
742                 case BLK_MQ_RQ_QUEUE_OK:
743                         queued++;
744                         continue;
745                 case BLK_MQ_RQ_QUEUE_BUSY:
746                         list_add(&rq->queuelist, &rq_list);
747                         __blk_mq_requeue_request(rq);
748                         break;
749                 default:
750                         pr_err("blk-mq: bad return on queue: %d\n", ret);
751                 case BLK_MQ_RQ_QUEUE_ERROR:
752                         rq->errors = -EIO;
753                         blk_mq_end_io(rq, rq->errors);
754                         break;
755                 }
756
757                 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
758                         break;
759         }
760
761         if (!queued)
762                 hctx->dispatched[0]++;
763         else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
764                 hctx->dispatched[ilog2(queued) + 1]++;
765
766         /*
767          * Any items that need requeuing? Stuff them into hctx->dispatch,
768          * that is where we will continue on next queue run.
769          */
770         if (!list_empty(&rq_list)) {
771                 spin_lock(&hctx->lock);
772                 list_splice(&rq_list, &hctx->dispatch);
773                 spin_unlock(&hctx->lock);
774         }
775 }
776
777 /*
778  * It'd be great if the workqueue API had a way to pass
779  * in a mask and had some smarts for more clever placement.
780  * For now we just round-robin here, switching for every
781  * BLK_MQ_CPU_WORK_BATCH queued items.
782  */
783 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
784 {
785         int cpu = hctx->next_cpu;
786
787         if (--hctx->next_cpu_batch <= 0) {
788                 int next_cpu;
789
790                 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
791                 if (next_cpu >= nr_cpu_ids)
792                         next_cpu = cpumask_first(hctx->cpumask);
793
794                 hctx->next_cpu = next_cpu;
795                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
796         }
797
798         return cpu;
799 }
800
801 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
802 {
803         if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
804                 return;
805
806         if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
807                 __blk_mq_run_hw_queue(hctx);
808         else if (hctx->queue->nr_hw_queues == 1)
809                 kblockd_schedule_delayed_work(&hctx->run_work, 0);
810         else {
811                 unsigned int cpu;
812
813                 cpu = blk_mq_hctx_next_cpu(hctx);
814                 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
815         }
816 }
817
818 void blk_mq_run_queues(struct request_queue *q, bool async)
819 {
820         struct blk_mq_hw_ctx *hctx;
821         int i;
822
823         queue_for_each_hw_ctx(q, hctx, i) {
824                 if ((!blk_mq_hctx_has_pending(hctx) &&
825                     list_empty_careful(&hctx->dispatch)) ||
826                     test_bit(BLK_MQ_S_STOPPED, &hctx->state))
827                         continue;
828
829                 preempt_disable();
830                 blk_mq_run_hw_queue(hctx, async);
831                 preempt_enable();
832         }
833 }
834 EXPORT_SYMBOL(blk_mq_run_queues);
835
836 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
837 {
838         cancel_delayed_work(&hctx->run_work);
839         cancel_delayed_work(&hctx->delay_work);
840         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
841 }
842 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
843
844 void blk_mq_stop_hw_queues(struct request_queue *q)
845 {
846         struct blk_mq_hw_ctx *hctx;
847         int i;
848
849         queue_for_each_hw_ctx(q, hctx, i)
850                 blk_mq_stop_hw_queue(hctx);
851 }
852 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
853
854 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
855 {
856         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
857
858         preempt_disable();
859         blk_mq_run_hw_queue(hctx, false);
860         preempt_enable();
861 }
862 EXPORT_SYMBOL(blk_mq_start_hw_queue);
863
864 void blk_mq_start_hw_queues(struct request_queue *q)
865 {
866         struct blk_mq_hw_ctx *hctx;
867         int i;
868
869         queue_for_each_hw_ctx(q, hctx, i)
870                 blk_mq_start_hw_queue(hctx);
871 }
872 EXPORT_SYMBOL(blk_mq_start_hw_queues);
873
874
875 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
876 {
877         struct blk_mq_hw_ctx *hctx;
878         int i;
879
880         queue_for_each_hw_ctx(q, hctx, i) {
881                 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
882                         continue;
883
884                 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
885                 preempt_disable();
886                 blk_mq_run_hw_queue(hctx, async);
887                 preempt_enable();
888         }
889 }
890 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
891
892 static void blk_mq_run_work_fn(struct work_struct *work)
893 {
894         struct blk_mq_hw_ctx *hctx;
895
896         hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
897
898         __blk_mq_run_hw_queue(hctx);
899 }
900
901 static void blk_mq_delay_work_fn(struct work_struct *work)
902 {
903         struct blk_mq_hw_ctx *hctx;
904
905         hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
906
907         if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
908                 __blk_mq_run_hw_queue(hctx);
909 }
910
911 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
912 {
913         unsigned long tmo = msecs_to_jiffies(msecs);
914
915         if (hctx->queue->nr_hw_queues == 1)
916                 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
917         else {
918                 unsigned int cpu;
919
920                 cpu = blk_mq_hctx_next_cpu(hctx);
921                 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
922         }
923 }
924 EXPORT_SYMBOL(blk_mq_delay_queue);
925
926 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
927                                     struct request *rq, bool at_head)
928 {
929         struct blk_mq_ctx *ctx = rq->mq_ctx;
930
931         trace_block_rq_insert(hctx->queue, rq);
932
933         if (at_head)
934                 list_add(&rq->queuelist, &ctx->rq_list);
935         else
936                 list_add_tail(&rq->queuelist, &ctx->rq_list);
937
938         blk_mq_hctx_mark_pending(hctx, ctx);
939 }
940
941 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
942                 bool async)
943 {
944         struct request_queue *q = rq->q;
945         struct blk_mq_hw_ctx *hctx;
946         struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
947
948         current_ctx = blk_mq_get_ctx(q);
949         if (!cpu_online(ctx->cpu))
950                 rq->mq_ctx = ctx = current_ctx;
951
952         hctx = q->mq_ops->map_queue(q, ctx->cpu);
953
954         if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
955             !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
956                 blk_insert_flush(rq);
957         } else {
958                 spin_lock(&ctx->lock);
959                 __blk_mq_insert_request(hctx, rq, at_head);
960                 spin_unlock(&ctx->lock);
961         }
962
963         if (run_queue)
964                 blk_mq_run_hw_queue(hctx, async);
965
966         blk_mq_put_ctx(current_ctx);
967 }
968
969 static void blk_mq_insert_requests(struct request_queue *q,
970                                      struct blk_mq_ctx *ctx,
971                                      struct list_head *list,
972                                      int depth,
973                                      bool from_schedule)
974
975 {
976         struct blk_mq_hw_ctx *hctx;
977         struct blk_mq_ctx *current_ctx;
978
979         trace_block_unplug(q, depth, !from_schedule);
980
981         current_ctx = blk_mq_get_ctx(q);
982
983         if (!cpu_online(ctx->cpu))
984                 ctx = current_ctx;
985         hctx = q->mq_ops->map_queue(q, ctx->cpu);
986
987         /*
988          * preemption doesn't flush plug list, so it's possible ctx->cpu is
989          * offline now
990          */
991         spin_lock(&ctx->lock);
992         while (!list_empty(list)) {
993                 struct request *rq;
994
995                 rq = list_first_entry(list, struct request, queuelist);
996                 list_del_init(&rq->queuelist);
997                 rq->mq_ctx = ctx;
998                 __blk_mq_insert_request(hctx, rq, false);
999         }
1000         spin_unlock(&ctx->lock);
1001
1002         blk_mq_run_hw_queue(hctx, from_schedule);
1003         blk_mq_put_ctx(current_ctx);
1004 }
1005
1006 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1007 {
1008         struct request *rqa = container_of(a, struct request, queuelist);
1009         struct request *rqb = container_of(b, struct request, queuelist);
1010
1011         return !(rqa->mq_ctx < rqb->mq_ctx ||
1012                  (rqa->mq_ctx == rqb->mq_ctx &&
1013                   blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1014 }
1015
1016 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1017 {
1018         struct blk_mq_ctx *this_ctx;
1019         struct request_queue *this_q;
1020         struct request *rq;
1021         LIST_HEAD(list);
1022         LIST_HEAD(ctx_list);
1023         unsigned int depth;
1024
1025         list_splice_init(&plug->mq_list, &list);
1026
1027         list_sort(NULL, &list, plug_ctx_cmp);
1028
1029         this_q = NULL;
1030         this_ctx = NULL;
1031         depth = 0;
1032
1033         while (!list_empty(&list)) {
1034                 rq = list_entry_rq(list.next);
1035                 list_del_init(&rq->queuelist);
1036                 BUG_ON(!rq->q);
1037                 if (rq->mq_ctx != this_ctx) {
1038                         if (this_ctx) {
1039                                 blk_mq_insert_requests(this_q, this_ctx,
1040                                                         &ctx_list, depth,
1041                                                         from_schedule);
1042                         }
1043
1044                         this_ctx = rq->mq_ctx;
1045                         this_q = rq->q;
1046                         depth = 0;
1047                 }
1048
1049                 depth++;
1050                 list_add_tail(&rq->queuelist, &ctx_list);
1051         }
1052
1053         /*
1054          * If 'this_ctx' is set, we know we have entries to complete
1055          * on 'ctx_list'. Do those.
1056          */
1057         if (this_ctx) {
1058                 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1059                                        from_schedule);
1060         }
1061 }
1062
1063 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1064 {
1065         init_request_from_bio(rq, bio);
1066
1067         if (blk_do_io_stat(rq))
1068                 blk_account_io_start(rq, 1);
1069 }
1070
1071 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1072 {
1073         return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1074                 !blk_queue_nomerges(hctx->queue);
1075 }
1076
1077 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1078                                          struct blk_mq_ctx *ctx,
1079                                          struct request *rq, struct bio *bio)
1080 {
1081         if (!hctx_allow_merges(hctx)) {
1082                 blk_mq_bio_to_request(rq, bio);
1083                 spin_lock(&ctx->lock);
1084 insert_rq:
1085                 __blk_mq_insert_request(hctx, rq, false);
1086                 spin_unlock(&ctx->lock);
1087                 return false;
1088         } else {
1089                 struct request_queue *q = hctx->queue;
1090
1091                 spin_lock(&ctx->lock);
1092                 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1093                         blk_mq_bio_to_request(rq, bio);
1094                         goto insert_rq;
1095                 }
1096
1097                 spin_unlock(&ctx->lock);
1098                 __blk_mq_free_request(hctx, ctx, rq);
1099                 return true;
1100         }
1101 }
1102
1103 struct blk_map_ctx {
1104         struct blk_mq_hw_ctx *hctx;
1105         struct blk_mq_ctx *ctx;
1106 };
1107
1108 static struct request *blk_mq_map_request(struct request_queue *q,
1109                                           struct bio *bio,
1110                                           struct blk_map_ctx *data)
1111 {
1112         struct blk_mq_hw_ctx *hctx;
1113         struct blk_mq_ctx *ctx;
1114         struct request *rq;
1115         int rw = bio_data_dir(bio);
1116         struct blk_mq_alloc_data alloc_data;
1117
1118         if (unlikely(blk_mq_queue_enter(q))) {
1119                 bio_endio(bio, -EIO);
1120                 return NULL;
1121         }
1122
1123         ctx = blk_mq_get_ctx(q);
1124         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1125
1126         if (rw_is_sync(bio->bi_rw))
1127                 rw |= REQ_SYNC;
1128
1129         trace_block_getrq(q, bio, rw);
1130         blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1131                         hctx);
1132         rq = __blk_mq_alloc_request(&alloc_data, rw);
1133         if (unlikely(!rq)) {
1134                 __blk_mq_run_hw_queue(hctx);
1135                 blk_mq_put_ctx(ctx);
1136                 trace_block_sleeprq(q, bio, rw);
1137
1138                 ctx = blk_mq_get_ctx(q);
1139                 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1140                 blk_mq_set_alloc_data(&alloc_data, q,
1141                                 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1142                 rq = __blk_mq_alloc_request(&alloc_data, rw);
1143                 ctx = alloc_data.ctx;
1144                 hctx = alloc_data.hctx;
1145         }
1146
1147         hctx->queued++;
1148         data->hctx = hctx;
1149         data->ctx = ctx;
1150         return rq;
1151 }
1152
1153 /*
1154  * Multiple hardware queue variant. This will not use per-process plugs,
1155  * but will attempt to bypass the hctx queueing if we can go straight to
1156  * hardware for SYNC IO.
1157  */
1158 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1159 {
1160         const int is_sync = rw_is_sync(bio->bi_rw);
1161         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1162         struct blk_map_ctx data;
1163         struct request *rq;
1164
1165         blk_queue_bounce(q, &bio);
1166
1167         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1168                 bio_endio(bio, -EIO);
1169                 return;
1170         }
1171
1172         rq = blk_mq_map_request(q, bio, &data);
1173         if (unlikely(!rq))
1174                 return;
1175
1176         if (unlikely(is_flush_fua)) {
1177                 blk_mq_bio_to_request(rq, bio);
1178                 blk_insert_flush(rq);
1179                 goto run_queue;
1180         }
1181
1182         if (is_sync) {
1183                 int ret;
1184
1185                 blk_mq_bio_to_request(rq, bio);
1186                 blk_mq_start_request(rq, true);
1187
1188                 /*
1189                  * For OK queue, we are done. For error, kill it. Any other
1190                  * error (busy), just add it to our list as we previously
1191                  * would have done
1192                  */
1193                 ret = q->mq_ops->queue_rq(data.hctx, rq);
1194                 if (ret == BLK_MQ_RQ_QUEUE_OK)
1195                         goto done;
1196                 else {
1197                         __blk_mq_requeue_request(rq);
1198
1199                         if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1200                                 rq->errors = -EIO;
1201                                 blk_mq_end_io(rq, rq->errors);
1202                                 goto done;
1203                         }
1204                 }
1205         }
1206
1207         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1208                 /*
1209                  * For a SYNC request, send it to the hardware immediately. For
1210                  * an ASYNC request, just ensure that we run it later on. The
1211                  * latter allows for merging opportunities and more efficient
1212                  * dispatching.
1213                  */
1214 run_queue:
1215                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1216         }
1217 done:
1218         blk_mq_put_ctx(data.ctx);
1219 }
1220
1221 /*
1222  * Single hardware queue variant. This will attempt to use any per-process
1223  * plug for merging and IO deferral.
1224  */
1225 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1226 {
1227         const int is_sync = rw_is_sync(bio->bi_rw);
1228         const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1229         unsigned int use_plug, request_count = 0;
1230         struct blk_map_ctx data;
1231         struct request *rq;
1232
1233         /*
1234          * If we have multiple hardware queues, just go directly to
1235          * one of those for sync IO.
1236          */
1237         use_plug = !is_flush_fua && !is_sync;
1238
1239         blk_queue_bounce(q, &bio);
1240
1241         if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1242                 bio_endio(bio, -EIO);
1243                 return;
1244         }
1245
1246         if (use_plug && !blk_queue_nomerges(q) &&
1247             blk_attempt_plug_merge(q, bio, &request_count))
1248                 return;
1249
1250         rq = blk_mq_map_request(q, bio, &data);
1251         if (unlikely(!rq))
1252                 return;
1253
1254         if (unlikely(is_flush_fua)) {
1255                 blk_mq_bio_to_request(rq, bio);
1256                 blk_insert_flush(rq);
1257                 goto run_queue;
1258         }
1259
1260         /*
1261          * A task plug currently exists. Since this is completely lockless,
1262          * utilize that to temporarily store requests until the task is
1263          * either done or scheduled away.
1264          */
1265         if (use_plug) {
1266                 struct blk_plug *plug = current->plug;
1267
1268                 if (plug) {
1269                         blk_mq_bio_to_request(rq, bio);
1270                         if (list_empty(&plug->mq_list))
1271                                 trace_block_plug(q);
1272                         else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1273                                 blk_flush_plug_list(plug, false);
1274                                 trace_block_plug(q);
1275                         }
1276                         list_add_tail(&rq->queuelist, &plug->mq_list);
1277                         blk_mq_put_ctx(data.ctx);
1278                         return;
1279                 }
1280         }
1281
1282         if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1283                 /*
1284                  * For a SYNC request, send it to the hardware immediately. For
1285                  * an ASYNC request, just ensure that we run it later on. The
1286                  * latter allows for merging opportunities and more efficient
1287                  * dispatching.
1288                  */
1289 run_queue:
1290                 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1291         }
1292
1293         blk_mq_put_ctx(data.ctx);
1294 }
1295
1296 /*
1297  * Default mapping to a software queue, since we use one per CPU.
1298  */
1299 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1300 {
1301         return q->queue_hw_ctx[q->mq_map[cpu]];
1302 }
1303 EXPORT_SYMBOL(blk_mq_map_queue);
1304
1305 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1306                 struct blk_mq_tags *tags, unsigned int hctx_idx)
1307 {
1308         struct page *page;
1309
1310         if (tags->rqs && set->ops->exit_request) {
1311                 int i;
1312
1313                 for (i = 0; i < tags->nr_tags; i++) {
1314                         if (!tags->rqs[i])
1315                                 continue;
1316                         set->ops->exit_request(set->driver_data, tags->rqs[i],
1317                                                 hctx_idx, i);
1318                 }
1319         }
1320
1321         while (!list_empty(&tags->page_list)) {
1322                 page = list_first_entry(&tags->page_list, struct page, lru);
1323                 list_del_init(&page->lru);
1324                 __free_pages(page, page->private);
1325         }
1326
1327         kfree(tags->rqs);
1328
1329         blk_mq_free_tags(tags);
1330 }
1331
1332 static size_t order_to_size(unsigned int order)
1333 {
1334         return (size_t)PAGE_SIZE << order;
1335 }
1336
1337 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1338                 unsigned int hctx_idx)
1339 {
1340         struct blk_mq_tags *tags;
1341         unsigned int i, j, entries_per_page, max_order = 4;
1342         size_t rq_size, left;
1343
1344         tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1345                                 set->numa_node);
1346         if (!tags)
1347                 return NULL;
1348
1349         INIT_LIST_HEAD(&tags->page_list);
1350
1351         tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1352                                         GFP_KERNEL, set->numa_node);
1353         if (!tags->rqs) {
1354                 blk_mq_free_tags(tags);
1355                 return NULL;
1356         }
1357
1358         /*
1359          * rq_size is the size of the request plus driver payload, rounded
1360          * to the cacheline size
1361          */
1362         rq_size = round_up(sizeof(struct request) + set->cmd_size,
1363                                 cache_line_size());
1364         left = rq_size * set->queue_depth;
1365
1366         for (i = 0; i < set->queue_depth; ) {
1367                 int this_order = max_order;
1368                 struct page *page;
1369                 int to_do;
1370                 void *p;
1371
1372                 while (left < order_to_size(this_order - 1) && this_order)
1373                         this_order--;
1374
1375                 do {
1376                         page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1377                                                 this_order);
1378                         if (page)
1379                                 break;
1380                         if (!this_order--)
1381                                 break;
1382                         if (order_to_size(this_order) < rq_size)
1383                                 break;
1384                 } while (1);
1385
1386                 if (!page)
1387                         goto fail;
1388
1389                 page->private = this_order;
1390                 list_add_tail(&page->lru, &tags->page_list);
1391
1392                 p = page_address(page);
1393                 entries_per_page = order_to_size(this_order) / rq_size;
1394                 to_do = min(entries_per_page, set->queue_depth - i);
1395                 left -= to_do * rq_size;
1396                 for (j = 0; j < to_do; j++) {
1397                         tags->rqs[i] = p;
1398                         if (set->ops->init_request) {
1399                                 if (set->ops->init_request(set->driver_data,
1400                                                 tags->rqs[i], hctx_idx, i,
1401                                                 set->numa_node))
1402                                         goto fail;
1403                         }
1404
1405                         p += rq_size;
1406                         i++;
1407                 }
1408         }
1409
1410         return tags;
1411
1412 fail:
1413         pr_warn("%s: failed to allocate requests\n", __func__);
1414         blk_mq_free_rq_map(set, tags, hctx_idx);
1415         return NULL;
1416 }
1417
1418 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1419 {
1420         kfree(bitmap->map);
1421 }
1422
1423 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1424 {
1425         unsigned int bpw = 8, total, num_maps, i;
1426
1427         bitmap->bits_per_word = bpw;
1428
1429         num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1430         bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1431                                         GFP_KERNEL, node);
1432         if (!bitmap->map)
1433                 return -ENOMEM;
1434
1435         bitmap->map_size = num_maps;
1436
1437         total = nr_cpu_ids;
1438         for (i = 0; i < num_maps; i++) {
1439                 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1440                 total -= bitmap->map[i].depth;
1441         }
1442
1443         return 0;
1444 }
1445
1446 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1447 {
1448         struct request_queue *q = hctx->queue;
1449         struct blk_mq_ctx *ctx;
1450         LIST_HEAD(tmp);
1451
1452         /*
1453          * Move ctx entries to new CPU, if this one is going away.
1454          */
1455         ctx = __blk_mq_get_ctx(q, cpu);
1456
1457         spin_lock(&ctx->lock);
1458         if (!list_empty(&ctx->rq_list)) {
1459                 list_splice_init(&ctx->rq_list, &tmp);
1460                 blk_mq_hctx_clear_pending(hctx, ctx);
1461         }
1462         spin_unlock(&ctx->lock);
1463
1464         if (list_empty(&tmp))
1465                 return NOTIFY_OK;
1466
1467         ctx = blk_mq_get_ctx(q);
1468         spin_lock(&ctx->lock);
1469
1470         while (!list_empty(&tmp)) {
1471                 struct request *rq;
1472
1473                 rq = list_first_entry(&tmp, struct request, queuelist);
1474                 rq->mq_ctx = ctx;
1475                 list_move_tail(&rq->queuelist, &ctx->rq_list);
1476         }
1477
1478         hctx = q->mq_ops->map_queue(q, ctx->cpu);
1479         blk_mq_hctx_mark_pending(hctx, ctx);
1480
1481         spin_unlock(&ctx->lock);
1482
1483         blk_mq_run_hw_queue(hctx, true);
1484         blk_mq_put_ctx(ctx);
1485         return NOTIFY_OK;
1486 }
1487
1488 static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1489 {
1490         struct request_queue *q = hctx->queue;
1491         struct blk_mq_tag_set *set = q->tag_set;
1492
1493         if (set->tags[hctx->queue_num])
1494                 return NOTIFY_OK;
1495
1496         set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1497         if (!set->tags[hctx->queue_num])
1498                 return NOTIFY_STOP;
1499
1500         hctx->tags = set->tags[hctx->queue_num];
1501         return NOTIFY_OK;
1502 }
1503
1504 static int blk_mq_hctx_notify(void *data, unsigned long action,
1505                               unsigned int cpu)
1506 {
1507         struct blk_mq_hw_ctx *hctx = data;
1508
1509         if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1510                 return blk_mq_hctx_cpu_offline(hctx, cpu);
1511         else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1512                 return blk_mq_hctx_cpu_online(hctx, cpu);
1513
1514         return NOTIFY_OK;
1515 }
1516
1517 static void blk_mq_exit_hw_queues(struct request_queue *q,
1518                 struct blk_mq_tag_set *set, int nr_queue)
1519 {
1520         struct blk_mq_hw_ctx *hctx;
1521         unsigned int i;
1522
1523         queue_for_each_hw_ctx(q, hctx, i) {
1524                 if (i == nr_queue)
1525                         break;
1526
1527                 blk_mq_tag_idle(hctx);
1528
1529                 if (set->ops->exit_hctx)
1530                         set->ops->exit_hctx(hctx, i);
1531
1532                 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1533                 kfree(hctx->ctxs);
1534                 blk_mq_free_bitmap(&hctx->ctx_map);
1535         }
1536
1537 }
1538
1539 static void blk_mq_free_hw_queues(struct request_queue *q,
1540                 struct blk_mq_tag_set *set)
1541 {
1542         struct blk_mq_hw_ctx *hctx;
1543         unsigned int i;
1544
1545         queue_for_each_hw_ctx(q, hctx, i) {
1546                 free_cpumask_var(hctx->cpumask);
1547                 kfree(hctx);
1548         }
1549 }
1550
1551 static int blk_mq_init_hw_queues(struct request_queue *q,
1552                 struct blk_mq_tag_set *set)
1553 {
1554         struct blk_mq_hw_ctx *hctx;
1555         unsigned int i;
1556
1557         /*
1558          * Initialize hardware queues
1559          */
1560         queue_for_each_hw_ctx(q, hctx, i) {
1561                 int node;
1562
1563                 node = hctx->numa_node;
1564                 if (node == NUMA_NO_NODE)
1565                         node = hctx->numa_node = set->numa_node;
1566
1567                 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1568                 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1569                 spin_lock_init(&hctx->lock);
1570                 INIT_LIST_HEAD(&hctx->dispatch);
1571                 hctx->queue = q;
1572                 hctx->queue_num = i;
1573                 hctx->flags = set->flags;
1574                 hctx->cmd_size = set->cmd_size;
1575
1576                 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1577                                                 blk_mq_hctx_notify, hctx);
1578                 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1579
1580                 hctx->tags = set->tags[i];
1581
1582                 /*
1583                  * Allocate space for all possible cpus to avoid allocation at
1584                  * runtime
1585                  */
1586                 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1587                                                 GFP_KERNEL, node);
1588                 if (!hctx->ctxs)
1589                         break;
1590
1591                 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1592                         break;
1593
1594                 hctx->nr_ctx = 0;
1595
1596                 if (set->ops->init_hctx &&
1597                     set->ops->init_hctx(hctx, set->driver_data, i))
1598                         break;
1599         }
1600
1601         if (i == q->nr_hw_queues)
1602                 return 0;
1603
1604         /*
1605          * Init failed
1606          */
1607         blk_mq_exit_hw_queues(q, set, i);
1608
1609         return 1;
1610 }
1611
1612 static void blk_mq_init_cpu_queues(struct request_queue *q,
1613                                    unsigned int nr_hw_queues)
1614 {
1615         unsigned int i;
1616
1617         for_each_possible_cpu(i) {
1618                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1619                 struct blk_mq_hw_ctx *hctx;
1620
1621                 memset(__ctx, 0, sizeof(*__ctx));
1622                 __ctx->cpu = i;
1623                 spin_lock_init(&__ctx->lock);
1624                 INIT_LIST_HEAD(&__ctx->rq_list);
1625                 __ctx->queue = q;
1626
1627                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1628                 if (!cpu_online(i))
1629                         continue;
1630
1631                 hctx = q->mq_ops->map_queue(q, i);
1632                 cpumask_set_cpu(i, hctx->cpumask);
1633                 hctx->nr_ctx++;
1634
1635                 /*
1636                  * Set local node, IFF we have more than one hw queue. If
1637                  * not, we remain on the home node of the device
1638                  */
1639                 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1640                         hctx->numa_node = cpu_to_node(i);
1641         }
1642 }
1643
1644 static void blk_mq_map_swqueue(struct request_queue *q)
1645 {
1646         unsigned int i;
1647         struct blk_mq_hw_ctx *hctx;
1648         struct blk_mq_ctx *ctx;
1649
1650         queue_for_each_hw_ctx(q, hctx, i) {
1651                 cpumask_clear(hctx->cpumask);
1652                 hctx->nr_ctx = 0;
1653         }
1654
1655         /*
1656          * Map software to hardware queues
1657          */
1658         queue_for_each_ctx(q, ctx, i) {
1659                 /* If the cpu isn't online, the cpu is mapped to first hctx */
1660                 if (!cpu_online(i))
1661                         continue;
1662
1663                 hctx = q->mq_ops->map_queue(q, i);
1664                 cpumask_set_cpu(i, hctx->cpumask);
1665                 ctx->index_hw = hctx->nr_ctx;
1666                 hctx->ctxs[hctx->nr_ctx++] = ctx;
1667         }
1668
1669         queue_for_each_hw_ctx(q, hctx, i) {
1670                 /*
1671                  * If no software queues are mapped to this hardware queue,
1672                  * disable it and free the request entries.
1673                  */
1674                 if (!hctx->nr_ctx) {
1675                         struct blk_mq_tag_set *set = q->tag_set;
1676
1677                         if (set->tags[i]) {
1678                                 blk_mq_free_rq_map(set, set->tags[i], i);
1679                                 set->tags[i] = NULL;
1680                                 hctx->tags = NULL;
1681                         }
1682                         continue;
1683                 }
1684
1685                 /*
1686                  * Initialize batch roundrobin counts
1687                  */
1688                 hctx->next_cpu = cpumask_first(hctx->cpumask);
1689                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1690         }
1691 }
1692
1693 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1694 {
1695         struct blk_mq_hw_ctx *hctx;
1696         struct request_queue *q;
1697         bool shared;
1698         int i;
1699
1700         if (set->tag_list.next == set->tag_list.prev)
1701                 shared = false;
1702         else
1703                 shared = true;
1704
1705         list_for_each_entry(q, &set->tag_list, tag_set_list) {
1706                 blk_mq_freeze_queue(q);
1707
1708                 queue_for_each_hw_ctx(q, hctx, i) {
1709                         if (shared)
1710                                 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1711                         else
1712                                 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1713                 }
1714                 blk_mq_unfreeze_queue(q);
1715         }
1716 }
1717
1718 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1719 {
1720         struct blk_mq_tag_set *set = q->tag_set;
1721
1722         mutex_lock(&set->tag_list_lock);
1723         list_del_init(&q->tag_set_list);
1724         blk_mq_update_tag_set_depth(set);
1725         mutex_unlock(&set->tag_list_lock);
1726 }
1727
1728 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1729                                      struct request_queue *q)
1730 {
1731         q->tag_set = set;
1732
1733         mutex_lock(&set->tag_list_lock);
1734         list_add_tail(&q->tag_set_list, &set->tag_list);
1735         blk_mq_update_tag_set_depth(set);
1736         mutex_unlock(&set->tag_list_lock);
1737 }
1738
1739 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1740 {
1741         struct blk_mq_hw_ctx **hctxs;
1742         struct blk_mq_ctx __percpu *ctx;
1743         struct request_queue *q;
1744         unsigned int *map;
1745         int i;
1746
1747         ctx = alloc_percpu(struct blk_mq_ctx);
1748         if (!ctx)
1749                 return ERR_PTR(-ENOMEM);
1750
1751         hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1752                         set->numa_node);
1753
1754         if (!hctxs)
1755                 goto err_percpu;
1756
1757         map = blk_mq_make_queue_map(set);
1758         if (!map)
1759                 goto err_map;
1760
1761         for (i = 0; i < set->nr_hw_queues; i++) {
1762                 int node = blk_mq_hw_queue_to_node(map, i);
1763
1764                 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1765                                         GFP_KERNEL, node);
1766                 if (!hctxs[i])
1767                         goto err_hctxs;
1768
1769                 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1770                         goto err_hctxs;
1771
1772                 atomic_set(&hctxs[i]->nr_active, 0);
1773                 hctxs[i]->numa_node = node;
1774                 hctxs[i]->queue_num = i;
1775         }
1776
1777         q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1778         if (!q)
1779                 goto err_hctxs;
1780
1781         if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release))
1782                 goto err_map;
1783
1784         setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1785         blk_queue_rq_timeout(q, 30000);
1786
1787         q->nr_queues = nr_cpu_ids;
1788         q->nr_hw_queues = set->nr_hw_queues;
1789         q->mq_map = map;
1790
1791         q->queue_ctx = ctx;
1792         q->queue_hw_ctx = hctxs;
1793
1794         q->mq_ops = set->ops;
1795         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1796
1797         if (!(set->flags & BLK_MQ_F_SG_MERGE))
1798                 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1799
1800         q->sg_reserved_size = INT_MAX;
1801
1802         INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1803         INIT_LIST_HEAD(&q->requeue_list);
1804         spin_lock_init(&q->requeue_lock);
1805
1806         if (q->nr_hw_queues > 1)
1807                 blk_queue_make_request(q, blk_mq_make_request);
1808         else
1809                 blk_queue_make_request(q, blk_sq_make_request);
1810
1811         blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
1812         if (set->timeout)
1813                 blk_queue_rq_timeout(q, set->timeout);
1814
1815         /*
1816          * Do this after blk_queue_make_request() overrides it...
1817          */
1818         q->nr_requests = set->queue_depth;
1819
1820         if (set->ops->complete)
1821                 blk_queue_softirq_done(q, set->ops->complete);
1822
1823         blk_mq_init_flush(q);
1824         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1825
1826         q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1827                                 set->cmd_size, cache_line_size()),
1828                                 GFP_KERNEL);
1829         if (!q->flush_rq)
1830                 goto err_hw;
1831
1832         if (blk_mq_init_hw_queues(q, set))
1833                 goto err_flush_rq;
1834
1835         mutex_lock(&all_q_mutex);
1836         list_add_tail(&q->all_q_node, &all_q_list);
1837         mutex_unlock(&all_q_mutex);
1838
1839         blk_mq_add_queue_tag_set(set, q);
1840
1841         blk_mq_map_swqueue(q);
1842
1843         return q;
1844
1845 err_flush_rq:
1846         kfree(q->flush_rq);
1847 err_hw:
1848         blk_cleanup_queue(q);
1849 err_hctxs:
1850         kfree(map);
1851         for (i = 0; i < set->nr_hw_queues; i++) {
1852                 if (!hctxs[i])
1853                         break;
1854                 free_cpumask_var(hctxs[i]->cpumask);
1855                 kfree(hctxs[i]);
1856         }
1857 err_map:
1858         kfree(hctxs);
1859 err_percpu:
1860         free_percpu(ctx);
1861         return ERR_PTR(-ENOMEM);
1862 }
1863 EXPORT_SYMBOL(blk_mq_init_queue);
1864
1865 void blk_mq_free_queue(struct request_queue *q)
1866 {
1867         struct blk_mq_tag_set   *set = q->tag_set;
1868
1869         blk_mq_del_queue_tag_set(q);
1870
1871         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1872         blk_mq_free_hw_queues(q, set);
1873
1874         percpu_ref_exit(&q->mq_usage_counter);
1875
1876         free_percpu(q->queue_ctx);
1877         kfree(q->queue_hw_ctx);
1878         kfree(q->mq_map);
1879
1880         q->queue_ctx = NULL;
1881         q->queue_hw_ctx = NULL;
1882         q->mq_map = NULL;
1883
1884         mutex_lock(&all_q_mutex);
1885         list_del_init(&q->all_q_node);
1886         mutex_unlock(&all_q_mutex);
1887 }
1888
1889 /* Basically redo blk_mq_init_queue with queue frozen */
1890 static void blk_mq_queue_reinit(struct request_queue *q)
1891 {
1892         blk_mq_freeze_queue(q);
1893
1894         blk_mq_sysfs_unregister(q);
1895
1896         blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1897
1898         /*
1899          * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1900          * we should change hctx numa_node according to new topology (this
1901          * involves free and re-allocate memory, worthy doing?)
1902          */
1903
1904         blk_mq_map_swqueue(q);
1905
1906         blk_mq_sysfs_register(q);
1907
1908         blk_mq_unfreeze_queue(q);
1909 }
1910
1911 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1912                                       unsigned long action, void *hcpu)
1913 {
1914         struct request_queue *q;
1915
1916         /*
1917          * Before new mappings are established, hotadded cpu might already
1918          * start handling requests. This doesn't break anything as we map
1919          * offline CPUs to first hardware queue. We will re-init the queue
1920          * below to get optimal settings.
1921          */
1922         if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1923             action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1924                 return NOTIFY_OK;
1925
1926         mutex_lock(&all_q_mutex);
1927         list_for_each_entry(q, &all_q_list, all_q_node)
1928                 blk_mq_queue_reinit(q);
1929         mutex_unlock(&all_q_mutex);
1930         return NOTIFY_OK;
1931 }
1932
1933 /*
1934  * Alloc a tag set to be associated with one or more request queues.
1935  * May fail with EINVAL for various error conditions. May adjust the
1936  * requested depth down, if if it too large. In that case, the set
1937  * value will be stored in set->queue_depth.
1938  */
1939 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1940 {
1941         int i;
1942
1943         if (!set->nr_hw_queues)
1944                 return -EINVAL;
1945         if (!set->queue_depth)
1946                 return -EINVAL;
1947         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1948                 return -EINVAL;
1949
1950         if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
1951                 return -EINVAL;
1952
1953         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1954                 pr_info("blk-mq: reduced tag depth to %u\n",
1955                         BLK_MQ_MAX_DEPTH);
1956                 set->queue_depth = BLK_MQ_MAX_DEPTH;
1957         }
1958
1959         set->tags = kmalloc_node(set->nr_hw_queues *
1960                                  sizeof(struct blk_mq_tags *),
1961                                  GFP_KERNEL, set->numa_node);
1962         if (!set->tags)
1963                 goto out;
1964
1965         for (i = 0; i < set->nr_hw_queues; i++) {
1966                 set->tags[i] = blk_mq_init_rq_map(set, i);
1967                 if (!set->tags[i])
1968                         goto out_unwind;
1969         }
1970
1971         mutex_init(&set->tag_list_lock);
1972         INIT_LIST_HEAD(&set->tag_list);
1973
1974         return 0;
1975
1976 out_unwind:
1977         while (--i >= 0)
1978                 blk_mq_free_rq_map(set, set->tags[i], i);
1979 out:
1980         return -ENOMEM;
1981 }
1982 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1983
1984 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1985 {
1986         int i;
1987
1988         for (i = 0; i < set->nr_hw_queues; i++) {
1989                 if (set->tags[i])
1990                         blk_mq_free_rq_map(set, set->tags[i], i);
1991         }
1992
1993         kfree(set->tags);
1994 }
1995 EXPORT_SYMBOL(blk_mq_free_tag_set);
1996
1997 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
1998 {
1999         struct blk_mq_tag_set *set = q->tag_set;
2000         struct blk_mq_hw_ctx *hctx;
2001         int i, ret;
2002
2003         if (!set || nr > set->queue_depth)
2004                 return -EINVAL;
2005
2006         ret = 0;
2007         queue_for_each_hw_ctx(q, hctx, i) {
2008                 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2009                 if (ret)
2010                         break;
2011         }
2012
2013         if (!ret)
2014                 q->nr_requests = nr;
2015
2016         return ret;
2017 }
2018
2019 void blk_mq_disable_hotplug(void)
2020 {
2021         mutex_lock(&all_q_mutex);
2022 }
2023
2024 void blk_mq_enable_hotplug(void)
2025 {
2026         mutex_unlock(&all_q_mutex);
2027 }
2028
2029 static int __init blk_mq_init(void)
2030 {
2031         blk_mq_cpu_init();
2032
2033         hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2034
2035         return 0;
2036 }
2037 subsys_initcall(blk_mq_init);