datapath-windows: Avoid BSOD when no event queue found.
[cascardo/ovs.git] / datapath / actions.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
20
21 #include <linux/skbuff.h>
22 #include <linux/in.h>
23 #include <linux/ip.h>
24 #include <linux/openvswitch.h>
25 #include <linux/sctp.h>
26 #include <linux/tcp.h>
27 #include <linux/udp.h>
28 #include <linux/in6.h>
29 #include <linux/if_arp.h>
30 #include <linux/if_vlan.h>
31 #include <net/ip.h>
32 #include <net/ipv6.h>
33 #include <net/checksum.h>
34 #include <net/dsfield.h>
35 #include <net/sctp/checksum.h>
36
37 #include "datapath.h"
38 #include "gso.h"
39 #include "mpls.h"
40 #include "vlan.h"
41 #include "vport.h"
42
43 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
44                               struct sw_flow_key *key,
45                               const struct nlattr *attr, int len);
46
47 struct deferred_action {
48         struct sk_buff *skb;
49         const struct nlattr *actions;
50
51         /* Store pkt_key clone when creating deferred action. */
52         struct sw_flow_key pkt_key;
53 };
54
55 #define DEFERRED_ACTION_FIFO_SIZE 10
56 struct action_fifo {
57         int head;
58         int tail;
59         /* Deferred action fifo queue storage. */
60         struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
61 };
62
63 static struct action_fifo __percpu *action_fifos;
64 #define EXEC_ACTIONS_LEVEL_LIMIT 4   /* limit used to detect packet
65                                       * looping by the network stack
66                                       */
67 static DEFINE_PER_CPU(int, exec_actions_level);
68
69 static void action_fifo_init(struct action_fifo *fifo)
70 {
71         fifo->head = 0;
72         fifo->tail = 0;
73 }
74
75 static bool action_fifo_is_empty(const struct action_fifo *fifo)
76 {
77         return (fifo->head == fifo->tail);
78 }
79
80 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
81 {
82         if (action_fifo_is_empty(fifo))
83                 return NULL;
84
85         return &fifo->fifo[fifo->tail++];
86 }
87
88 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
89 {
90         if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
91                 return NULL;
92
93         return &fifo->fifo[fifo->head++];
94 }
95
96 /* Return queue entry if fifo is not full */
97 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
98                                                     const struct sw_flow_key *key,
99                                                     const struct nlattr *attr)
100 {
101         struct action_fifo *fifo;
102         struct deferred_action *da;
103
104         fifo = this_cpu_ptr(action_fifos);
105         da = action_fifo_put(fifo);
106         if (da) {
107                 da->skb = skb;
108                 da->actions = attr;
109                 da->pkt_key = *key;
110         }
111
112         return da;
113 }
114
115 static void invalidate_flow_key(struct sw_flow_key *key)
116 {
117         key->eth.type = htons(0);
118 }
119
120 static bool is_flow_key_valid(const struct sw_flow_key *key)
121 {
122         return !!key->eth.type;
123 }
124
125 static int make_writable(struct sk_buff *skb, int write_len)
126 {
127         if (!pskb_may_pull(skb, write_len))
128                 return -ENOMEM;
129
130         if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
131                 return 0;
132
133         return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
134 }
135
136 /* The end of the mac header.
137  *
138  * For non-MPLS skbs this will correspond to the network header.
139  * For MPLS skbs it will be before the network_header as the MPLS
140  * label stack lies between the end of the mac header and the network
141  * header. That is, for MPLS skbs the end of the mac header
142  * is the top of the MPLS label stack.
143  */
144 static unsigned char *mac_header_end(const struct sk_buff *skb)
145 {
146         return skb_mac_header(skb) + skb->mac_len;
147 }
148
149 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
150                      const struct ovs_action_push_mpls *mpls)
151 {
152         __be32 *new_mpls_lse;
153         struct ethhdr *hdr;
154
155         if (skb_cow_head(skb, MPLS_HLEN) < 0)
156                 return -ENOMEM;
157
158         skb_push(skb, MPLS_HLEN);
159         memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
160                 skb->mac_len);
161         skb_reset_mac_header(skb);
162
163         new_mpls_lse = (__be32 *)mac_header_end(skb);
164         *new_mpls_lse = mpls->mpls_lse;
165
166         if (skb->ip_summed == CHECKSUM_COMPLETE)
167                 skb->csum = csum_add(skb->csum, csum_partial(new_mpls_lse,
168                                                              MPLS_HLEN, 0));
169
170         hdr = eth_hdr(skb);
171         hdr->h_proto = mpls->mpls_ethertype;
172         if (!ovs_skb_get_inner_protocol(skb))
173                 ovs_skb_set_inner_protocol(skb, skb->protocol);
174         skb->protocol = mpls->mpls_ethertype;
175         invalidate_flow_key(key);
176         return 0;
177 }
178
179 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
180                     const __be16 ethertype)
181 {
182         struct ethhdr *hdr;
183         int err;
184
185         err = make_writable(skb, skb->mac_len + MPLS_HLEN);
186         if (unlikely(err))
187                 return err;
188
189         if (skb->ip_summed == CHECKSUM_COMPLETE)
190                 skb->csum = csum_sub(skb->csum,
191                                      csum_partial(mac_header_end(skb),
192                                                   MPLS_HLEN, 0));
193
194         memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
195                 skb->mac_len);
196
197         __skb_pull(skb, MPLS_HLEN);
198         skb_reset_mac_header(skb);
199
200         /* mac_header_end() is used to locate the ethertype
201          * field correctly in the presence of VLAN tags.
202          */
203         hdr = (struct ethhdr *)(mac_header_end(skb) - ETH_HLEN);
204         hdr->h_proto = ethertype;
205         if (eth_p_mpls(skb->protocol))
206                 skb->protocol = ethertype;
207         invalidate_flow_key(key);
208         return 0;
209 }
210
211 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *key,
212                     const __be32 *mpls_lse)
213 {
214         __be32 *stack = (__be32 *)mac_header_end(skb);
215         int err;
216
217         err = make_writable(skb, skb->mac_len + MPLS_HLEN);
218         if (unlikely(err))
219                 return err;
220
221         if (skb->ip_summed == CHECKSUM_COMPLETE) {
222                 __be32 diff[] = { ~(*stack), *mpls_lse };
223                 skb->csum = ~csum_partial((char *)diff, sizeof(diff),
224                                           ~skb->csum);
225         }
226
227         *stack = *mpls_lse;
228         key->mpls.top_lse = *mpls_lse;
229         return 0;
230 }
231
232 /* remove VLAN header from packet and update csum accordingly. */
233 static int __pop_vlan_tci(struct sk_buff *skb, __be16 *current_tci)
234 {
235         struct vlan_hdr *vhdr;
236         int err;
237
238         err = make_writable(skb, VLAN_ETH_HLEN);
239         if (unlikely(err))
240                 return err;
241
242         if (skb->ip_summed == CHECKSUM_COMPLETE)
243                 skb->csum = csum_sub(skb->csum, csum_partial(skb->data
244                                         + (2 * ETH_ALEN), VLAN_HLEN, 0));
245
246         vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
247         *current_tci = vhdr->h_vlan_TCI;
248
249         memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
250         __skb_pull(skb, VLAN_HLEN);
251
252         vlan_set_encap_proto(skb, vhdr);
253         skb->mac_header += VLAN_HLEN;
254         /* Update mac_len for subsequent MPLS actions */
255         skb->mac_len -= VLAN_HLEN;
256
257         return 0;
258 }
259
260 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
261 {
262         __be16 tci;
263         int err;
264
265         if (likely(vlan_tx_tag_present(skb))) {
266                 vlan_set_tci(skb, 0);
267         } else {
268                 if (unlikely(skb->protocol != htons(ETH_P_8021Q) ||
269                              skb->len < VLAN_ETH_HLEN))
270                         return 0;
271
272                 err = __pop_vlan_tci(skb, &tci);
273                 if (err)
274                         return err;
275         }
276         /* move next vlan tag to hw accel tag */
277         if (likely(skb->protocol != htons(ETH_P_8021Q) ||
278                    skb->len < VLAN_ETH_HLEN)) {
279                 key->eth.tci = 0;
280                 return 0;
281         }
282
283         invalidate_flow_key(key);
284         err = __pop_vlan_tci(skb, &tci);
285         if (unlikely(err))
286                 return err;
287
288         __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(tci));
289         return 0;
290 }
291
292 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
293                      const struct ovs_action_push_vlan *vlan)
294 {
295         if (unlikely(vlan_tx_tag_present(skb))) {
296                 u16 current_tag;
297
298                 /* push down current VLAN tag */
299                 current_tag = vlan_tx_tag_get(skb);
300
301                 if (!__vlan_put_tag(skb, skb->vlan_proto, current_tag))
302                         return -ENOMEM;
303
304                 /* Update mac_len for subsequent MPLS actions */
305                 skb->mac_len += VLAN_HLEN;
306
307                 if (skb->ip_summed == CHECKSUM_COMPLETE)
308                         skb->csum = csum_add(skb->csum, csum_partial(skb->data
309                                         + (2 * ETH_ALEN), VLAN_HLEN, 0));
310
311                 invalidate_flow_key(key);
312         } else {
313                 key->eth.tci = vlan->vlan_tci;
314         }
315         __vlan_hwaccel_put_tag(skb, vlan->vlan_tpid, ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
316         return 0;
317 }
318
319 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *key,
320                         const struct ovs_key_ethernet *eth_key)
321 {
322         int err;
323         err = make_writable(skb, ETH_HLEN);
324         if (unlikely(err))
325                 return err;
326
327         skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
328
329         ether_addr_copy(eth_hdr(skb)->h_source, eth_key->eth_src);
330         ether_addr_copy(eth_hdr(skb)->h_dest, eth_key->eth_dst);
331
332         ovs_skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
333
334         ether_addr_copy(key->eth.src, eth_key->eth_src);
335         ether_addr_copy(key->eth.dst, eth_key->eth_dst);
336         return 0;
337 }
338
339 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
340                         __be32 *addr, __be32 new_addr)
341 {
342         int transport_len = skb->len - skb_transport_offset(skb);
343
344         if (nh->protocol == IPPROTO_TCP) {
345                 if (likely(transport_len >= sizeof(struct tcphdr)))
346                         inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
347                                                  *addr, new_addr, 1);
348         } else if (nh->protocol == IPPROTO_UDP) {
349                 if (likely(transport_len >= sizeof(struct udphdr))) {
350                         struct udphdr *uh = udp_hdr(skb);
351
352                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
353                                 inet_proto_csum_replace4(&uh->check, skb,
354                                                          *addr, new_addr, 1);
355                                 if (!uh->check)
356                                         uh->check = CSUM_MANGLED_0;
357                         }
358                 }
359         }
360
361         csum_replace4(&nh->check, *addr, new_addr);
362         skb_clear_hash(skb);
363         *addr = new_addr;
364 }
365
366 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
367                                  __be32 addr[4], const __be32 new_addr[4])
368 {
369         int transport_len = skb->len - skb_transport_offset(skb);
370
371         if (l4_proto == NEXTHDR_TCP) {
372                 if (likely(transport_len >= sizeof(struct tcphdr)))
373                         inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
374                                                   addr, new_addr, 1);
375         } else if (l4_proto == NEXTHDR_UDP) {
376                 if (likely(transport_len >= sizeof(struct udphdr))) {
377                         struct udphdr *uh = udp_hdr(skb);
378
379                         if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
380                                 inet_proto_csum_replace16(&uh->check, skb,
381                                                           addr, new_addr, 1);
382                                 if (!uh->check)
383                                         uh->check = CSUM_MANGLED_0;
384                         }
385                 }
386         } else if (l4_proto == NEXTHDR_ICMP) {
387                 if (likely(transport_len >= sizeof(struct icmp6hdr)))
388                         inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
389                                                   skb, addr, new_addr, 1);
390         }
391 }
392
393 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
394                           __be32 addr[4], const __be32 new_addr[4],
395                           bool recalculate_csum)
396 {
397         if (likely(recalculate_csum))
398                 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
399
400         skb_clear_hash(skb);
401         memcpy(addr, new_addr, sizeof(__be32[4]));
402 }
403
404 static void set_ipv6_tc(struct ipv6hdr *nh, u8 tc)
405 {
406         nh->priority = tc >> 4;
407         nh->flow_lbl[0] = (nh->flow_lbl[0] & 0x0F) | ((tc & 0x0F) << 4);
408 }
409
410 static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl)
411 {
412         nh->flow_lbl[0] = (nh->flow_lbl[0] & 0xF0) | (fl & 0x000F0000) >> 16;
413         nh->flow_lbl[1] = (fl & 0x0000FF00) >> 8;
414         nh->flow_lbl[2] = fl & 0x000000FF;
415 }
416
417 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl)
418 {
419         csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
420         nh->ttl = new_ttl;
421 }
422
423 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *key,
424                     const struct ovs_key_ipv4 *ipv4_key)
425 {
426         struct iphdr *nh;
427         int err;
428
429         err = make_writable(skb, skb_network_offset(skb) +
430                                  sizeof(struct iphdr));
431         if (unlikely(err))
432                 return err;
433
434         nh = ip_hdr(skb);
435
436         if (ipv4_key->ipv4_src != nh->saddr) {
437                 set_ip_addr(skb, nh, &nh->saddr, ipv4_key->ipv4_src);
438                 key->ipv4.addr.src = ipv4_key->ipv4_src;
439         }
440
441         if (ipv4_key->ipv4_dst != nh->daddr) {
442                 set_ip_addr(skb, nh, &nh->daddr, ipv4_key->ipv4_dst);
443                 key->ipv4.addr.dst = ipv4_key->ipv4_dst;
444         }
445
446         if (ipv4_key->ipv4_tos != nh->tos) {
447                 ipv4_change_dsfield(nh, 0, ipv4_key->ipv4_tos);
448                 key->ip.tos = nh->tos;
449         }
450
451         if (ipv4_key->ipv4_ttl != nh->ttl) {
452                 set_ip_ttl(skb, nh, ipv4_key->ipv4_ttl);
453                 key->ip.ttl = ipv4_key->ipv4_ttl;
454         }
455
456         return 0;
457 }
458
459 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *key,
460                     const struct ovs_key_ipv6 *ipv6_key)
461 {
462         struct ipv6hdr *nh;
463         int err;
464         __be32 *saddr;
465         __be32 *daddr;
466
467         err = make_writable(skb, skb_network_offset(skb) +
468                             sizeof(struct ipv6hdr));
469         if (unlikely(err))
470                 return err;
471
472         nh = ipv6_hdr(skb);
473         saddr = (__be32 *)&nh->saddr;
474         daddr = (__be32 *)&nh->daddr;
475
476         if (memcmp(ipv6_key->ipv6_src, saddr, sizeof(ipv6_key->ipv6_src))) {
477                 set_ipv6_addr(skb, ipv6_key->ipv6_proto, saddr,
478                               ipv6_key->ipv6_src, true);
479                 memcpy(&key->ipv6.addr.src, ipv6_key->ipv6_src,
480                        sizeof(ipv6_key->ipv6_src));
481         }
482
483         if (memcmp(ipv6_key->ipv6_dst, daddr, sizeof(ipv6_key->ipv6_dst))) {
484                 unsigned int offset = 0;
485                 int flags = IP6_FH_F_SKIP_RH;
486                 bool recalc_csum = true;
487
488                 if (ipv6_ext_hdr(nh->nexthdr))
489                         recalc_csum = ipv6_find_hdr(skb, &offset,
490                                                     NEXTHDR_ROUTING, NULL,
491                                                     &flags) != NEXTHDR_ROUTING;
492
493                 set_ipv6_addr(skb, ipv6_key->ipv6_proto, daddr,
494                               ipv6_key->ipv6_dst, recalc_csum);
495                 memcpy(&key->ipv6.addr.dst, ipv6_key->ipv6_dst,
496                        sizeof(ipv6_key->ipv6_dst));
497         }
498
499         set_ipv6_tc(nh, ipv6_key->ipv6_tclass);
500         key->ip.tos = ipv6_get_dsfield(nh);
501
502         set_ipv6_fl(nh, ntohl(ipv6_key->ipv6_label));
503         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
504
505         nh->hop_limit = ipv6_key->ipv6_hlimit;
506         key->ip.ttl = ipv6_key->ipv6_hlimit;
507         return 0;
508 }
509
510 /* Must follow make_writable() since that can move the skb data. */
511 static void set_tp_port(struct sk_buff *skb, __be16 *port,
512                          __be16 new_port, __sum16 *check)
513 {
514         inet_proto_csum_replace2(check, skb, *port, new_port, 0);
515         *port = new_port;
516         skb_clear_hash(skb);
517 }
518
519 static void set_udp_port(struct sk_buff *skb, __be16 *port, __be16 new_port)
520 {
521         struct udphdr *uh = udp_hdr(skb);
522
523         if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
524                 set_tp_port(skb, port, new_port, &uh->check);
525
526                 if (!uh->check)
527                         uh->check = CSUM_MANGLED_0;
528         } else {
529                 *port = new_port;
530                 skb_clear_hash(skb);
531         }
532 }
533
534 static int set_udp(struct sk_buff *skb, struct sw_flow_key *key,
535                    const struct ovs_key_udp *udp_port_key)
536 {
537         struct udphdr *uh;
538         int err;
539
540         err = make_writable(skb, skb_transport_offset(skb) +
541                                  sizeof(struct udphdr));
542         if (unlikely(err))
543                 return err;
544
545         uh = udp_hdr(skb);
546         if (udp_port_key->udp_src != uh->source) {
547                 set_udp_port(skb, &uh->source, udp_port_key->udp_src);
548                 key->tp.src = udp_port_key->udp_src;
549         }
550
551         if (udp_port_key->udp_dst != uh->dest) {
552                 set_udp_port(skb, &uh->dest, udp_port_key->udp_dst);
553                 key->tp.dst = udp_port_key->udp_dst;
554         }
555
556         return 0;
557 }
558
559 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *key,
560                    const struct ovs_key_tcp *tcp_port_key)
561 {
562         struct tcphdr *th;
563         int err;
564
565         err = make_writable(skb, skb_transport_offset(skb) +
566                                  sizeof(struct tcphdr));
567         if (unlikely(err))
568                 return err;
569
570         th = tcp_hdr(skb);
571         if (tcp_port_key->tcp_src != th->source) {
572                 set_tp_port(skb, &th->source, tcp_port_key->tcp_src, &th->check);
573                 key->tp.src = tcp_port_key->tcp_src;
574         }
575
576         if (tcp_port_key->tcp_dst != th->dest) {
577                 set_tp_port(skb, &th->dest, tcp_port_key->tcp_dst, &th->check);
578                 key->tp.dst = tcp_port_key->tcp_dst;
579         }
580
581         return 0;
582 }
583
584 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *key,
585                     const struct ovs_key_sctp *sctp_port_key)
586 {
587         struct sctphdr *sh;
588         int err;
589         unsigned int sctphoff = skb_transport_offset(skb);
590
591         err = make_writable(skb, sctphoff + sizeof(struct sctphdr));
592         if (unlikely(err))
593                 return err;
594
595         sh = sctp_hdr(skb);
596         if (sctp_port_key->sctp_src != sh->source ||
597             sctp_port_key->sctp_dst != sh->dest) {
598                 __le32 old_correct_csum, new_csum, old_csum;
599
600                 old_csum = sh->checksum;
601                 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
602
603                 sh->source = sctp_port_key->sctp_src;
604                 sh->dest = sctp_port_key->sctp_dst;
605
606                 new_csum = sctp_compute_cksum(skb, sctphoff);
607
608                 /* Carry any checksum errors through. */
609                 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
610
611                 skb_clear_hash(skb);
612                 key->tp.src = sctp_port_key->sctp_src;
613                 key->tp.dst = sctp_port_key->sctp_dst;
614         }
615
616         return 0;
617 }
618
619 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port)
620 {
621         struct vport *vport = ovs_vport_rcu(dp, out_port);
622
623         if (likely(vport))
624                 ovs_vport_send(vport, skb);
625         else
626                 kfree_skb(skb);
627 }
628
629 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
630                             struct sw_flow_key *key, const struct nlattr *attr)
631 {
632         struct dp_upcall_info upcall;
633         const struct nlattr *a;
634         int rem;
635         struct ovs_tunnel_info info;
636
637         upcall.cmd = OVS_PACKET_CMD_ACTION;
638         upcall.userdata = NULL;
639         upcall.portid = 0;
640         upcall.egress_tun_info = NULL;
641
642         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
643                  a = nla_next(a, &rem)) {
644                 switch (nla_type(a)) {
645                 case OVS_USERSPACE_ATTR_USERDATA:
646                         upcall.userdata = a;
647                         break;
648
649                 case OVS_USERSPACE_ATTR_PID:
650                         upcall.portid = nla_get_u32(a);
651                         break;
652
653                 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
654                         /* Get out tunnel info. */
655                         struct vport *vport;
656
657                         vport = ovs_vport_rcu(dp, nla_get_u32(a));
658                         if (vport) {
659                                 int err;
660
661                                 err = ovs_vport_get_egress_tun_info(vport, skb,
662                                                                     &info);
663                                 if (!err)
664                                         upcall.egress_tun_info = &info;
665                         }
666                         break;
667                 }
668
669                 } /* End of switch. */
670         }
671
672         return ovs_dp_upcall(dp, skb, key, &upcall);
673 }
674
675 static bool last_action(const struct nlattr *a, int rem)
676 {
677         return a->nla_len == rem;
678 }
679
680 static int sample(struct datapath *dp, struct sk_buff *skb,
681                   struct sw_flow_key *key, const struct nlattr *attr)
682 {
683         const struct nlattr *acts_list = NULL;
684         const struct nlattr *a;
685         int rem;
686
687         for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
688                  a = nla_next(a, &rem)) {
689                 switch (nla_type(a)) {
690                 case OVS_SAMPLE_ATTR_PROBABILITY:
691                         if (prandom_u32() >= nla_get_u32(a))
692                                 return 0;
693                         break;
694
695                 case OVS_SAMPLE_ATTR_ACTIONS:
696                         acts_list = a;
697                         break;
698                 }
699         }
700
701         rem = nla_len(acts_list);
702         a = nla_data(acts_list);
703
704         /* Actions list is empty, do nothing */
705         if (unlikely(!rem))
706                 return 0;
707
708         /* The only known usage of sample action is having a single user-space
709          * action. Treat this usage as a special case.
710          * The output_userspace() should clone the skb to be sent to the
711          * user space. This skb will be consumed by its caller.
712          */
713         if (likely(nla_type(a) == OVS_ACTION_ATTR_USERSPACE &&
714                    last_action(a, rem)))
715                 return output_userspace(dp, skb, key, a);
716
717         skb = skb_clone(skb, GFP_ATOMIC);
718         if (!skb)
719                 /* Skip the sample action when out of memory. */
720                 return 0;
721
722         if (!add_deferred_actions(skb, key, a)) {
723                 if (net_ratelimit())
724                         pr_warn("%s: deferred actions limit reached, dropping sample action\n",
725                                 ovs_dp_name(dp));
726
727                 kfree_skb(skb);
728         }
729         return 0;
730 }
731
732 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
733                          const struct nlattr *attr)
734 {
735         struct ovs_action_hash *hash_act = nla_data(attr);
736         u32 hash = 0;
737
738         /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
739         hash = skb_get_hash(skb);
740         hash = jhash_1word(hash, hash_act->hash_basis);
741         if (!hash)
742                 hash = 0x1;
743
744         key->ovs_flow_hash = hash;
745 }
746
747 static int execute_set_action(struct sk_buff *skb, struct sw_flow_key *key,
748                               const struct nlattr *nested_attr)
749 {
750         int err = 0;
751
752         switch (nla_type(nested_attr)) {
753         case OVS_KEY_ATTR_PRIORITY:
754                 skb->priority = nla_get_u32(nested_attr);
755                 key->phy.priority = skb->priority;
756                 break;
757
758         case OVS_KEY_ATTR_SKB_MARK:
759                 skb->mark = nla_get_u32(nested_attr);
760                 key->phy.skb_mark = skb->mark;
761                 break;
762
763         case OVS_KEY_ATTR_TUNNEL_INFO:
764                 OVS_CB(skb)->egress_tun_info = nla_data(nested_attr);
765                 break;
766
767         case OVS_KEY_ATTR_ETHERNET:
768                 err = set_eth_addr(skb, key, nla_data(nested_attr));
769                 break;
770
771         case OVS_KEY_ATTR_IPV4:
772                 err = set_ipv4(skb, key, nla_data(nested_attr));
773                 break;
774
775         case OVS_KEY_ATTR_IPV6:
776                 err = set_ipv6(skb, key, nla_data(nested_attr));
777                 break;
778
779         case OVS_KEY_ATTR_TCP:
780                 err = set_tcp(skb, key, nla_data(nested_attr));
781                 break;
782
783         case OVS_KEY_ATTR_UDP:
784                 err = set_udp(skb, key, nla_data(nested_attr));
785                 break;
786
787         case OVS_KEY_ATTR_SCTP:
788                 err = set_sctp(skb, key, nla_data(nested_attr));
789                 break;
790
791         case OVS_KEY_ATTR_MPLS:
792                 err = set_mpls(skb, key, nla_data(nested_attr));
793                 break;
794         }
795
796         return err;
797 }
798
799 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
800                           struct sw_flow_key *key, const struct nlattr *a, int rem)
801 {
802         struct deferred_action *da;
803
804         if (!is_flow_key_valid(key)) {
805                 int err;
806
807                 err = ovs_flow_key_update(skb, key);
808                 if (err)
809                         return err;
810
811         }
812         BUG_ON(!is_flow_key_valid(key));
813
814         if (!last_action(a, rem)) {
815                 /* Recirc action is the not the last action
816                  * of the action list, need to clone the skb.
817                  */
818                 skb = skb_clone(skb, GFP_ATOMIC);
819
820                 /* Skip the recirc action when out of memory, but
821                  * continue on with the rest of the action list.
822                  */
823                 if (!skb)
824                         return 0;
825         }
826
827         da = add_deferred_actions(skb, key, NULL);
828         if (da) {
829                 da->pkt_key.recirc_id = nla_get_u32(a);
830         } else {
831                 kfree_skb(skb);
832
833                 if (net_ratelimit())
834                         pr_warn("%s: deferred action limit reached, drop recirc action\n",
835                                 ovs_dp_name(dp));
836         }
837
838         return 0;
839 }
840
841 /* Execute a list of actions against 'skb'. */
842 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
843                               struct sw_flow_key *key,
844                               const struct nlattr *attr, int len)
845 {
846         /* Every output action needs a separate clone of 'skb', but the common
847          * case is just a single output action, so that doing a clone and
848          * then freeing the original skbuff is wasteful.  So the following code
849          * is slightly obscure just to avoid that.
850          */
851         int prev_port = -1;
852         const struct nlattr *a;
853         int rem;
854
855         for (a = attr, rem = len; rem > 0;
856              a = nla_next(a, &rem)) {
857                 int err = 0;
858
859                 if (unlikely(prev_port != -1)) {
860                         struct sk_buff *out_skb = skb_clone(skb, GFP_ATOMIC);
861
862                         if (out_skb)
863                                 do_output(dp, out_skb, prev_port);
864
865                         prev_port = -1;
866                 }
867
868                 switch (nla_type(a)) {
869                 case OVS_ACTION_ATTR_OUTPUT:
870                         prev_port = nla_get_u32(a);
871                         break;
872
873                 case OVS_ACTION_ATTR_USERSPACE:
874                         output_userspace(dp, skb, key, a);
875                         break;
876
877                 case OVS_ACTION_ATTR_HASH:
878                         execute_hash(skb, key, a);
879                         break;
880
881                 case OVS_ACTION_ATTR_PUSH_MPLS:
882                         err = push_mpls(skb, key, nla_data(a));
883                         break;
884
885                 case OVS_ACTION_ATTR_POP_MPLS:
886                         err = pop_mpls(skb, key, nla_get_be16(a));
887                         break;
888
889                 case OVS_ACTION_ATTR_PUSH_VLAN:
890                         err = push_vlan(skb, key, nla_data(a));
891                         if (unlikely(err)) /* skb already freed. */
892                                 return err;
893                         break;
894
895                 case OVS_ACTION_ATTR_POP_VLAN:
896                         err = pop_vlan(skb, key);
897                         break;
898
899                 case OVS_ACTION_ATTR_RECIRC:
900                         err = execute_recirc(dp, skb, key, a, rem);
901                         if (last_action(a, rem)) {
902                                 /* If this is the last action, the skb has
903                                  * been consumed or freed.
904                                  * Return immediately.
905                                  */
906                                 return err;
907                         }
908                         break;
909
910                 case OVS_ACTION_ATTR_SET:
911                         err = execute_set_action(skb, key, nla_data(a));
912                         break;
913
914                 case OVS_ACTION_ATTR_SAMPLE:
915                         err = sample(dp, skb, key, a);
916                         break;
917                 }
918
919                 if (unlikely(err)) {
920                         kfree_skb(skb);
921                         return err;
922                 }
923         }
924
925         if (prev_port != -1)
926                 do_output(dp, skb, prev_port);
927         else
928                 consume_skb(skb);
929
930         return 0;
931 }
932
933 static void process_deferred_actions(struct datapath *dp)
934 {
935         struct action_fifo *fifo = this_cpu_ptr(action_fifos);
936
937         /* Do not touch the FIFO in case there is no deferred actions. */
938         if (action_fifo_is_empty(fifo))
939                 return;
940
941         /* Finishing executing all deferred actions. */
942         do {
943                 struct deferred_action *da = action_fifo_get(fifo);
944                 struct sk_buff *skb = da->skb;
945                 const struct nlattr *actions = da->actions;
946
947                 if (actions)
948                         do_execute_actions(dp, skb, &da->pkt_key, actions,
949                                            nla_len(actions));
950                 else
951                         ovs_dp_process_packet(skb, &da->pkt_key);
952         } while (!action_fifo_is_empty(fifo));
953
954         /* Reset FIFO for the next packet.  */
955         action_fifo_init(fifo);
956 }
957
958 /* Execute a list of actions against 'skb'. */
959 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
960                         struct sw_flow_key *key,
961                         const struct sw_flow_actions *acts)
962 {
963         int level = this_cpu_read(exec_actions_level);
964         int err;
965
966         if (unlikely(level >= EXEC_ACTIONS_LEVEL_LIMIT)) {
967                 if (net_ratelimit())
968                         pr_warn("%s: packet loop detected, dropping.\n",
969                                 ovs_dp_name(dp));
970
971                 kfree_skb(skb);
972                 return -ELOOP;
973         }
974
975         this_cpu_inc(exec_actions_level);
976
977         err = do_execute_actions(dp, skb, key, acts->actions, acts->actions_len);
978
979         if (!level)
980                 process_deferred_actions(dp);
981
982         this_cpu_dec(exec_actions_level);
983
984         /* This return status currently does not reflect the errors
985          * encounted during deferred actions execution. Probably needs to
986          * be fixed in the future.
987          */
988         return err;
989 }
990
991 int action_fifos_init(void)
992 {
993         action_fifos = alloc_percpu(struct action_fifo);
994         if (!action_fifos)
995                 return -ENOMEM;
996
997         return 0;
998 }
999
1000 void action_fifos_exit(void)
1001 {
1002         free_percpu(action_fifos);
1003 }