lib: add monitor_cond_change API to C IDL lib
[cascardo/ovs.git] / datapath / conntrack.c
1 /*
2  * Copyright (c) 2015 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  */
13
14 #include <linux/kconfig.h>
15 #include <linux/version.h>
16
17 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
18
19 #include <linux/module.h>
20 #include <linux/openvswitch.h>
21 #include <linux/tcp.h>
22 #include <linux/udp.h>
23 #include <linux/sctp.h>
24 #include <net/ip.h>
25 #include <net/netfilter/nf_conntrack_core.h>
26 #include <net/netfilter/nf_conntrack_helper.h>
27 #include <net/netfilter/nf_conntrack_labels.h>
28 #include <net/netfilter/nf_conntrack_seqadj.h>
29 #include <net/netfilter/nf_conntrack_zones.h>
30 #include <net/netfilter/ipv6/nf_defrag_ipv6.h>
31
32 #ifdef CONFIG_NF_NAT_NEEDED
33 #include <linux/netfilter/nf_nat.h>
34 #include <net/netfilter/nf_nat_core.h>
35 #include <net/netfilter/nf_nat_l3proto.h>
36 #endif
37
38 #include "datapath.h"
39 #include "conntrack.h"
40 #include "flow.h"
41 #include "flow_netlink.h"
42 #include "gso.h"
43
44 struct ovs_ct_len_tbl {
45         int maxlen;
46         int minlen;
47 };
48
49 /* Metadata mark for masked write to conntrack mark */
50 struct md_mark {
51         u32 value;
52         u32 mask;
53 };
54
55 /* Metadata label for masked write to conntrack label. */
56 struct md_labels {
57         struct ovs_key_ct_labels value;
58         struct ovs_key_ct_labels mask;
59 };
60
61 enum ovs_ct_nat {
62         OVS_CT_NAT = 1 << 0,     /* NAT for committed connections only. */
63         OVS_CT_SRC_NAT = 1 << 1, /* Source NAT for NEW connections. */
64         OVS_CT_DST_NAT = 1 << 2, /* Destination NAT for NEW connections. */
65 };
66
67 /* Conntrack action context for execution. */
68 struct ovs_conntrack_info {
69         struct nf_conntrack_helper *helper;
70         struct nf_conntrack_zone zone;
71         struct nf_conn *ct;
72         u8 commit : 1;
73         u8 nat : 3;                 /* enum ovs_ct_nat */
74         u8 random_fully_compat : 1; /* bool */
75         u16 family;
76         struct md_mark mark;
77         struct md_labels labels;
78 #ifdef CONFIG_NF_NAT_NEEDED
79         struct nf_nat_range range;  /* Only present for SRC NAT and DST NAT. */
80 #endif
81 };
82
83 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info);
84
85 static u16 key_to_nfproto(const struct sw_flow_key *key)
86 {
87         switch (ntohs(key->eth.type)) {
88         case ETH_P_IP:
89                 return NFPROTO_IPV4;
90         case ETH_P_IPV6:
91                 return NFPROTO_IPV6;
92         default:
93                 return NFPROTO_UNSPEC;
94         }
95 }
96
97 /* Map SKB connection state into the values used by flow definition. */
98 static u8 ovs_ct_get_state(enum ip_conntrack_info ctinfo)
99 {
100         u8 ct_state = OVS_CS_F_TRACKED;
101
102         switch (ctinfo) {
103         case IP_CT_ESTABLISHED_REPLY:
104         case IP_CT_RELATED_REPLY:
105                 ct_state |= OVS_CS_F_REPLY_DIR;
106                 break;
107         default:
108                 break;
109         }
110
111         switch (ctinfo) {
112         case IP_CT_ESTABLISHED:
113         case IP_CT_ESTABLISHED_REPLY:
114                 ct_state |= OVS_CS_F_ESTABLISHED;
115                 break;
116         case IP_CT_RELATED:
117         case IP_CT_RELATED_REPLY:
118                 ct_state |= OVS_CS_F_RELATED;
119                 break;
120         case IP_CT_NEW:
121                 ct_state |= OVS_CS_F_NEW;
122                 break;
123         default:
124                 break;
125         }
126
127         return ct_state;
128 }
129
130 static u32 ovs_ct_get_mark(const struct nf_conn *ct)
131 {
132 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
133         return ct ? ct->mark : 0;
134 #else
135         return 0;
136 #endif
137 }
138
139 static void ovs_ct_get_labels(const struct nf_conn *ct,
140                               struct ovs_key_ct_labels *labels)
141 {
142         struct nf_conn_labels *cl = ct ? nf_ct_labels_find(ct) : NULL;
143
144         if (cl) {
145                 size_t len = cl->words * sizeof(long);
146
147                 if (len > OVS_CT_LABELS_LEN)
148                         len = OVS_CT_LABELS_LEN;
149                 else if (len < OVS_CT_LABELS_LEN)
150                         memset(labels, 0, OVS_CT_LABELS_LEN);
151                 memcpy(labels, cl->bits, len);
152         } else {
153                 memset(labels, 0, OVS_CT_LABELS_LEN);
154         }
155 }
156
157 static void __ovs_ct_update_key(struct sw_flow_key *key, u8 state,
158                                 const struct nf_conntrack_zone *zone,
159                                 const struct nf_conn *ct)
160 {
161         key->ct.state = state;
162         key->ct.zone = zone->id;
163         key->ct.mark = ovs_ct_get_mark(ct);
164         ovs_ct_get_labels(ct, &key->ct.labels);
165 }
166
167 /* Update 'key' based on skb->nfct.  If 'post_ct' is true, then OVS has
168  * previously sent the packet to conntrack via the ct action.  If
169  * 'keep_nat_flags' is true, the existing NAT flags retained, else they are
170  * initialized from the connection status.
171  */
172 static void ovs_ct_update_key(const struct sk_buff *skb,
173                               const struct ovs_conntrack_info *info,
174                               struct sw_flow_key *key, bool post_ct,
175                               bool keep_nat_flags)
176 {
177         const struct nf_conntrack_zone *zone = &nf_ct_zone_dflt;
178         enum ip_conntrack_info ctinfo;
179         struct nf_conn *ct;
180         u8 state = 0;
181
182         ct = nf_ct_get(skb, &ctinfo);
183         if (ct) {
184                 state = ovs_ct_get_state(ctinfo);
185                 /* All unconfirmed entries are NEW connections. */
186                 if (!nf_ct_is_confirmed(ct))
187                         state |= OVS_CS_F_NEW;
188                 /* OVS persists the related flag for the duration of the
189                  * connection.
190                  */
191                 if (ct->master)
192                         state |= OVS_CS_F_RELATED;
193                 if (keep_nat_flags) {
194                         state |= key->ct.state & OVS_CS_F_NAT_MASK;
195                 } else {
196                         if (ct->status & IPS_SRC_NAT)
197                                 state |= OVS_CS_F_SRC_NAT;
198                         if (ct->status & IPS_DST_NAT)
199                                 state |= OVS_CS_F_DST_NAT;
200                 }
201                 zone = nf_ct_zone(ct);
202         } else if (post_ct) {
203                 state = OVS_CS_F_TRACKED | OVS_CS_F_INVALID;
204                 if (info)
205                         zone = &info->zone;
206         }
207         __ovs_ct_update_key(key, state, zone, ct);
208 }
209
210 /* This is called to initialize CT key fields possibly coming in from the local
211  * stack.
212  */
213 void ovs_ct_fill_key(const struct sk_buff *skb, struct sw_flow_key *key)
214 {
215         ovs_ct_update_key(skb, NULL, key, false, false);
216 }
217
218 int ovs_ct_put_key(const struct sw_flow_key *key, struct sk_buff *skb)
219 {
220         if (nla_put_u32(skb, OVS_KEY_ATTR_CT_STATE, key->ct.state))
221                 return -EMSGSIZE;
222
223         if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
224             nla_put_u16(skb, OVS_KEY_ATTR_CT_ZONE, key->ct.zone))
225                 return -EMSGSIZE;
226
227         if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
228             nla_put_u32(skb, OVS_KEY_ATTR_CT_MARK, key->ct.mark))
229                 return -EMSGSIZE;
230
231         if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
232             nla_put(skb, OVS_KEY_ATTR_CT_LABELS, sizeof(key->ct.labels),
233                     &key->ct.labels))
234                 return -EMSGSIZE;
235
236         return 0;
237 }
238
239 static int ovs_ct_set_mark(struct sk_buff *skb, struct sw_flow_key *key,
240                            u32 ct_mark, u32 mask)
241 {
242 #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)
243         enum ip_conntrack_info ctinfo;
244         struct nf_conn *ct;
245         u32 new_mark;
246
247         /* The connection could be invalid, in which case set_mark is no-op. */
248         ct = nf_ct_get(skb, &ctinfo);
249         if (!ct)
250                 return 0;
251
252         new_mark = ct_mark | (ct->mark & ~(mask));
253         if (ct->mark != new_mark) {
254                 ct->mark = new_mark;
255                 nf_conntrack_event_cache(IPCT_MARK, ct);
256                 key->ct.mark = new_mark;
257         }
258
259         return 0;
260 #else
261         return -ENOTSUPP;
262 #endif
263 }
264
265 static int ovs_ct_set_labels(struct sk_buff *skb, struct sw_flow_key *key,
266                              const struct ovs_key_ct_labels *labels,
267                              const struct ovs_key_ct_labels *mask)
268 {
269         enum ip_conntrack_info ctinfo;
270         struct nf_conn_labels *cl;
271         struct nf_conn *ct;
272         int err;
273
274         /* The connection could be invalid, in which case set_label is no-op.*/
275         ct = nf_ct_get(skb, &ctinfo);
276         if (!ct)
277                 return 0;
278
279         cl = nf_ct_labels_find(ct);
280         if (!cl) {
281                 nf_ct_labels_ext_add(ct);
282                 cl = nf_ct_labels_find(ct);
283         }
284         if (!cl || cl->words * sizeof(long) < OVS_CT_LABELS_LEN)
285                 return -ENOSPC;
286
287         err = nf_connlabels_replace(ct, (u32 *)labels, (u32 *)mask,
288                                     OVS_CT_LABELS_LEN / sizeof(u32));
289         if (err)
290                 return err;
291
292         ovs_ct_get_labels(ct, &key->ct.labels);
293         return 0;
294 }
295
296 /* 'skb' should already be pulled to nh_ofs. */
297 static int ovs_ct_helper(struct sk_buff *skb, u16 proto)
298 {
299         const struct nf_conntrack_helper *helper;
300         const struct nf_conn_help *help;
301         enum ip_conntrack_info ctinfo;
302         unsigned int protoff;
303         struct nf_conn *ct;
304         u8 nexthdr;
305         int err;
306
307         ct = nf_ct_get(skb, &ctinfo);
308         if (!ct || ctinfo == IP_CT_RELATED_REPLY)
309                 return NF_ACCEPT;
310
311         help = nfct_help(ct);
312         if (!help)
313                 return NF_ACCEPT;
314
315         helper = rcu_dereference(help->helper);
316         if (!helper)
317                 return NF_ACCEPT;
318
319         switch (proto) {
320         case NFPROTO_IPV4:
321                 protoff = ip_hdrlen(skb);
322                 break;
323         case NFPROTO_IPV6: {
324                 __be16 frag_off;
325                 int ofs;
326
327                 nexthdr = ipv6_hdr(skb)->nexthdr;
328                 ofs = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr,
329                                        &frag_off);
330                 if (ofs < 0 || (frag_off & htons(~0x7)) != 0) {
331                         pr_debug("proto header not found\n");
332                         return NF_ACCEPT;
333                 }
334                 protoff = ofs;
335                 break;
336         }
337         default:
338                 WARN_ONCE(1, "helper invoked on non-IP family!");
339                 return NF_DROP;
340         }
341
342 #if LINUX_VERSION_CODE < KERNEL_VERSION(4,6,0)
343         /* Linux 4.5 and older depend on skb_dst being set when recalculating
344          * checksums after NAT helper has mangled TCP or UDP packet payload.
345          * This dependency is avoided when skb is CHECKSUM_PARTIAL or when UDP
346          * has no checksum.
347          *
348          * The dependency is not triggered when the main NAT code updates
349          * checksums after translating the IP header (address, port), so this
350          * fix only needs to be executed on packets that are both being NATted
351          * and that have a helper assigned.
352          */
353         if (ct->status & IPS_NAT_MASK && skb->ip_summed != CHECKSUM_PARTIAL) {
354                 u8 ipproto = (proto == NFPROTO_IPV4)
355                         ? ip_hdr(skb)->protocol : nexthdr;
356                 u16 offset = 0;
357
358                 switch (ipproto) {
359                 case IPPROTO_TCP:
360                         offset = offsetof(struct tcphdr, check);
361                         break;
362                 case IPPROTO_UDP:
363                         /* Skip if no csum. */
364                         if (udp_hdr(skb)->check)
365                                 offset = offsetof(struct udphdr, check);
366                         break;
367                 }
368                 if (offset) {
369                         if (unlikely(!pskb_may_pull(skb, protoff + offset + 2)))
370                                 return NF_DROP;
371
372                         skb->csum_start = skb_headroom(skb) + protoff;
373                         skb->csum_offset = offset;
374                         skb->ip_summed = CHECKSUM_PARTIAL;
375                 }
376         }
377 #endif
378         err = helper->help(skb, protoff, ct, ctinfo);
379         if (err != NF_ACCEPT)
380                 return err;
381
382         /* Adjust seqs after helper.  This is needed due to some helpers (e.g.,
383          * FTP with NAT) adusting the TCP payload size when mangling IP
384          * addresses and/or port numbers in the text-based control connection.
385          */
386         if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
387             !nf_ct_seq_adjust(skb, ct, ctinfo, protoff))
388                 return NF_DROP;
389         return NF_ACCEPT;
390 }
391
392 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
393  * value if 'skb' is freed.
394  */
395 static int handle_fragments(struct net *net, struct sw_flow_key *key,
396                             u16 zone, struct sk_buff *skb)
397 {
398         struct ovs_gso_cb ovs_cb = *OVS_GSO_CB(skb);
399         int err;
400
401         if (key->eth.type == htons(ETH_P_IP)) {
402                 enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone;
403
404                 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
405                 err = ip_defrag(net, skb, user);
406                 if (err)
407                         return err;
408
409                 ovs_cb.dp_cb.mru = IPCB(skb)->frag_max_size;
410 #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6)
411         } else if (key->eth.type == htons(ETH_P_IPV6)) {
412                 enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone;
413
414                 skb_orphan(skb);
415                 memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm));
416                 err = nf_ct_frag6_gather(net, skb, user);
417                 if (err)
418                         return err;
419
420                 key->ip.proto = ipv6_hdr(skb)->nexthdr;
421                 ovs_cb.dp_cb.mru = IP6CB(skb)->frag_max_size;
422 #endif /* IP frag support */
423         } else {
424                 kfree_skb(skb);
425                 return -EPFNOSUPPORT;
426         }
427
428         key->ip.frag = OVS_FRAG_TYPE_NONE;
429         skb_clear_hash(skb);
430         skb->ignore_df = 1;
431         *OVS_GSO_CB(skb) = ovs_cb;
432
433         return 0;
434 }
435
436 static struct nf_conntrack_expect *
437 ovs_ct_expect_find(struct net *net, const struct nf_conntrack_zone *zone,
438                    u16 proto, const struct sk_buff *skb)
439 {
440         struct nf_conntrack_tuple tuple;
441
442         if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb), proto, net, &tuple))
443                 return NULL;
444         return __nf_ct_expect_find(net, zone, &tuple);
445 }
446
447 /* This replicates logic from nf_conntrack_core.c that is not exported. */
448 static enum ip_conntrack_info
449 ovs_ct_get_info(const struct nf_conntrack_tuple_hash *h)
450 {
451         const struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
452
453         if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY)
454                 return IP_CT_ESTABLISHED_REPLY;
455         /* Once we've had two way comms, always ESTABLISHED. */
456         if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status))
457                 return IP_CT_ESTABLISHED;
458         if (test_bit(IPS_EXPECTED_BIT, &ct->status))
459                 return IP_CT_RELATED;
460         return IP_CT_NEW;
461 }
462
463 /* Find an existing connection which this packet belongs to without
464  * re-attributing statistics or modifying the connection state.  This allows an
465  * skb->nfct lost due to an upcall to be recovered during actions execution.
466  *
467  * Must be called with rcu_read_lock.
468  *
469  * On success, populates skb->nfct and skb->nfctinfo, and returns the
470  * connection.  Returns NULL if there is no existing entry.
471  */
472 static struct nf_conn *
473 ovs_ct_find_existing(struct net *net, const struct nf_conntrack_zone *zone,
474                      u8 l3num, struct sk_buff *skb)
475 {
476         struct nf_conntrack_l3proto *l3proto;
477         struct nf_conntrack_l4proto *l4proto;
478         struct nf_conntrack_tuple tuple;
479         struct nf_conntrack_tuple_hash *h;
480         enum ip_conntrack_info ctinfo;
481         struct nf_conn *ct;
482         unsigned int dataoff;
483         u8 protonum;
484
485         l3proto = __nf_ct_l3proto_find(l3num);
486         if (l3proto->get_l4proto(skb, skb_network_offset(skb), &dataoff,
487                                  &protonum) <= 0) {
488                 pr_debug("ovs_ct_find_existing: Can't get protonum\n");
489                 return NULL;
490         }
491         l4proto = __nf_ct_l4proto_find(l3num, protonum);
492         if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
493                              protonum, net, &tuple, l3proto, l4proto)) {
494                 pr_debug("ovs_ct_find_existing: Can't get tuple\n");
495                 return NULL;
496         }
497
498         /* look for tuple match */
499         h = nf_conntrack_find_get(net, zone, &tuple);
500         if (!h)
501                 return NULL;   /* Not found. */
502
503         ct = nf_ct_tuplehash_to_ctrack(h);
504
505         ctinfo = ovs_ct_get_info(h);
506         if (ctinfo == IP_CT_NEW) {
507                 /* This should not happen. */
508                 WARN_ONCE(1, "ovs_ct_find_existing: new packet for %p\n", ct);
509         }
510         skb->nfct = &ct->ct_general;
511         skb->nfctinfo = ctinfo;
512         return ct;
513 }
514
515 /* Determine whether skb->nfct is equal to the result of conntrack lookup. */
516 static bool skb_nfct_cached(struct net *net,
517                             const struct sw_flow_key *key,
518                             const struct ovs_conntrack_info *info,
519                             struct sk_buff *skb)
520 {
521         enum ip_conntrack_info ctinfo;
522         struct nf_conn *ct;
523
524         ct = nf_ct_get(skb, &ctinfo);
525         /* If no ct, check if we have evidence that an existing conntrack entry
526          * might be found for this skb.  This happens when we lose a skb->nfct
527          * due to an upcall.  If the connection was not confirmed, it is not
528          * cached and needs to be run through conntrack again.
529          */
530         if (!ct && key->ct.state & OVS_CS_F_TRACKED &&
531             !(key->ct.state & OVS_CS_F_INVALID) &&
532             key->ct.zone == info->zone.id)
533                 ct = ovs_ct_find_existing(net, &info->zone, info->family, skb);
534         if (!ct)
535                 return false;
536         if (!net_eq(net, read_pnet(&ct->ct_net)))
537                 return false;
538         if (!nf_ct_zone_equal_any(info->ct, nf_ct_zone(ct)))
539                 return false;
540         if (info->helper) {
541                 struct nf_conn_help *help;
542
543                 help = nf_ct_ext_find(ct, NF_CT_EXT_HELPER);
544                 if (help && rcu_access_pointer(help->helper) != info->helper)
545                         return false;
546         }
547
548         return true;
549 }
550
551 #ifdef CONFIG_NF_NAT_NEEDED
552 /* Modelled after nf_nat_ipv[46]_fn().
553  * range is only used for new, uninitialized NAT state.
554  * Returns either NF_ACCEPT or NF_DROP.
555  */
556 static int ovs_ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct,
557                               enum ip_conntrack_info ctinfo,
558                               const struct nf_nat_range *range,
559                               enum nf_nat_manip_type maniptype)
560 {
561         int hooknum, nh_off, err = NF_ACCEPT;
562
563         nh_off = skb_network_offset(skb);
564         skb_pull(skb, nh_off);
565
566         /* See HOOK2MANIP(). */
567         if (maniptype == NF_NAT_MANIP_SRC)
568                 hooknum = NF_INET_LOCAL_IN; /* Source NAT */
569         else
570                 hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */
571
572         switch (ctinfo) {
573         case IP_CT_RELATED:
574         case IP_CT_RELATED_REPLY:
575                 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
576                     skb->protocol == htons(ETH_P_IP) &&
577                     ip_hdr(skb)->protocol == IPPROTO_ICMP) {
578                         if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo,
579                                                            hooknum))
580                                 err = NF_DROP;
581                         goto push;
582                 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
583                            skb->protocol == htons(ETH_P_IPV6)) {
584                         __be16 frag_off;
585                         u8 nexthdr = ipv6_hdr(skb)->nexthdr;
586                         int hdrlen = ipv6_skip_exthdr(skb,
587                                                       sizeof(struct ipv6hdr),
588                                                       &nexthdr, &frag_off);
589
590                         if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) {
591                                 if (!nf_nat_icmpv6_reply_translation(skb, ct,
592                                                                      ctinfo,
593                                                                      hooknum,
594                                                                      hdrlen))
595                                         err = NF_DROP;
596                                 goto push;
597                         }
598                 }
599                 /* Non-ICMP, fall thru to initialize if needed. */
600         case IP_CT_NEW:
601                 /* Seen it before?  This can happen for loopback, retrans,
602                  * or local packets.
603                  */
604                 if (!nf_nat_initialized(ct, maniptype)) {
605                         /* Initialize according to the NAT action. */
606                         err = (range && range->flags & NF_NAT_RANGE_MAP_IPS)
607                                 /* Action is set up to establish a new
608                                  * mapping.
609                                  */
610                                 ? nf_nat_setup_info(ct, range, maniptype)
611                                 : nf_nat_alloc_null_binding(ct, hooknum);
612                         if (err != NF_ACCEPT)
613                                 goto push;
614                 }
615                 break;
616
617         case IP_CT_ESTABLISHED:
618         case IP_CT_ESTABLISHED_REPLY:
619                 break;
620
621         default:
622                 err = NF_DROP;
623                 goto push;
624         }
625
626         err = nf_nat_packet(ct, ctinfo, hooknum, skb);
627 push:
628         skb_push(skb, nh_off);
629
630         return err;
631 }
632
633 static void ovs_nat_update_key(struct sw_flow_key *key,
634                                const struct sk_buff *skb,
635                                enum nf_nat_manip_type maniptype)
636 {
637         if (maniptype == NF_NAT_MANIP_SRC) {
638                 __be16 src;
639
640                 key->ct.state |= OVS_CS_F_SRC_NAT;
641                 if (key->eth.type == htons(ETH_P_IP))
642                         key->ipv4.addr.src = ip_hdr(skb)->saddr;
643                 else if (key->eth.type == htons(ETH_P_IPV6))
644                         memcpy(&key->ipv6.addr.src, &ipv6_hdr(skb)->saddr,
645                                sizeof(key->ipv6.addr.src));
646                 else
647                         return;
648
649                 if (key->ip.proto == IPPROTO_UDP)
650                         src = udp_hdr(skb)->source;
651                 else if (key->ip.proto == IPPROTO_TCP)
652                         src = tcp_hdr(skb)->source;
653                 else if (key->ip.proto == IPPROTO_SCTP)
654                         src = sctp_hdr(skb)->source;
655                 else
656                         return;
657
658                 key->tp.src = src;
659         } else {
660                 __be16 dst;
661
662                 key->ct.state |= OVS_CS_F_DST_NAT;
663                 if (key->eth.type == htons(ETH_P_IP))
664                         key->ipv4.addr.dst = ip_hdr(skb)->daddr;
665                 else if (key->eth.type == htons(ETH_P_IPV6))
666                         memcpy(&key->ipv6.addr.dst, &ipv6_hdr(skb)->daddr,
667                                sizeof(key->ipv6.addr.dst));
668                 else
669                         return;
670
671                 if (key->ip.proto == IPPROTO_UDP)
672                         dst = udp_hdr(skb)->dest;
673                 else if (key->ip.proto == IPPROTO_TCP)
674                         dst = tcp_hdr(skb)->dest;
675                 else if (key->ip.proto == IPPROTO_SCTP)
676                         dst = sctp_hdr(skb)->dest;
677                 else
678                         return;
679
680                 key->tp.dst = dst;
681         }
682 }
683
684 /* Returns NF_DROP if the packet should be dropped, NF_ACCEPT otherwise. */
685 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
686                       const struct ovs_conntrack_info *info,
687                       struct sk_buff *skb, struct nf_conn *ct,
688                       enum ip_conntrack_info ctinfo)
689 {
690         enum nf_nat_manip_type maniptype;
691         int err;
692
693         if (nf_ct_is_untracked(ct)) {
694                 /* A NAT action may only be performed on tracked packets. */
695                 return NF_ACCEPT;
696         }
697
698         /* Add NAT extension if not confirmed yet. */
699         if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct))
700                 return NF_ACCEPT;   /* Can't NAT. */
701
702         /* Determine NAT type.
703          * Check if the NAT type can be deduced from the tracked connection.
704          * Make sure new expected connections (IP_CT_RELATED) are NATted only
705          * when committing.
706          */
707         if (info->nat & OVS_CT_NAT && ctinfo != IP_CT_NEW &&
708             ct->status & IPS_NAT_MASK &&
709             (ctinfo != IP_CT_RELATED || info->commit)) {
710                 /* NAT an established or related connection like before. */
711                 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY)
712                         /* This is the REPLY direction for a connection
713                          * for which NAT was applied in the forward
714                          * direction.  Do the reverse NAT.
715                          */
716                         maniptype = ct->status & IPS_SRC_NAT
717                                 ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC;
718                 else
719                         maniptype = ct->status & IPS_SRC_NAT
720                                 ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST;
721         } else if (info->nat & OVS_CT_SRC_NAT) {
722                 maniptype = NF_NAT_MANIP_SRC;
723         } else if (info->nat & OVS_CT_DST_NAT) {
724                 maniptype = NF_NAT_MANIP_DST;
725         } else {
726                 return NF_ACCEPT; /* Connection is not NATed. */
727         }
728         err = ovs_ct_nat_execute(skb, ct, ctinfo, &info->range, maniptype);
729
730         /* Mark NAT done if successful and update the flow key. */
731         if (err == NF_ACCEPT)
732                 ovs_nat_update_key(key, skb, maniptype);
733
734         return err;
735 }
736 #else /* !CONFIG_NF_NAT_NEEDED */
737 static int ovs_ct_nat(struct net *net, struct sw_flow_key *key,
738                       const struct ovs_conntrack_info *info,
739                       struct sk_buff *skb, struct nf_conn *ct,
740                       enum ip_conntrack_info ctinfo)
741 {
742         return NF_ACCEPT;
743 }
744 #endif
745
746 /* Pass 'skb' through conntrack in 'net', using zone configured in 'info', if
747  * not done already.  Update key with new CT state after passing the packet
748  * through conntrack.
749  * Note that if the packet is deemed invalid by conntrack, skb->nfct will be
750  * set to NULL and 0 will be returned.
751  */
752 static int __ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
753                            const struct ovs_conntrack_info *info,
754                            struct sk_buff *skb)
755 {
756         /* If we are recirculating packets to match on conntrack fields and
757          * committing with a separate conntrack action,  then we don't need to
758          * actually run the packet through conntrack twice unless it's for a
759          * different zone.
760          */
761         bool cached = skb_nfct_cached(net, key, info, skb);
762         enum ip_conntrack_info ctinfo;
763         struct nf_conn *ct;
764
765         if (!cached) {
766                 struct nf_conn *tmpl = info->ct;
767                 int err;
768
769                 /* Associate skb with specified zone. */
770                 if (tmpl) {
771                         if (skb->nfct)
772                                 nf_conntrack_put(skb->nfct);
773                         nf_conntrack_get(&tmpl->ct_general);
774                         skb->nfct = &tmpl->ct_general;
775                         skb->nfctinfo = IP_CT_NEW;
776                 }
777
778                 /* Repeat if requested, see nf_iterate(). */
779                 do {
780                         err = nf_conntrack_in(net, info->family,
781                                               NF_INET_FORWARD, skb);
782                 } while (err == NF_REPEAT);
783
784                 if (err != NF_ACCEPT)
785                         return -ENOENT;
786
787                 /* Clear CT state NAT flags to mark that we have not yet done
788                  * NAT after the nf_conntrack_in() call.  We can actually clear
789                  * the whole state, as it will be re-initialized below.
790                  */
791                 key->ct.state = 0;
792
793                 /* Update the key, but keep the NAT flags. */
794                 ovs_ct_update_key(skb, info, key, true, true);
795         }
796
797         ct = nf_ct_get(skb, &ctinfo);
798         if (ct) {
799                 /* Packets starting a new connection must be NATted before the
800                  * helper, so that the helper knows about the NAT.  We enforce
801                  * this by delaying both NAT and helper calls for unconfirmed
802                  * connections until the committing CT action.  For later
803                  * packets NAT and Helper may be called in either order.
804                  *
805                  * NAT will be done only if the CT action has NAT, and only
806                  * once per packet (per zone), as guarded by the NAT bits in
807                  * the key->ct.state.
808                  */
809                 if (info->nat && !(key->ct.state & OVS_CS_F_NAT_MASK) &&
810                     (nf_ct_is_confirmed(ct) || info->commit) &&
811                     ovs_ct_nat(net, key, info, skb, ct, ctinfo) != NF_ACCEPT) {
812                         return -EINVAL;
813                 }
814
815                 /* Userspace may decide to perform a ct lookup without a helper
816                  * specified followed by a (recirculate and) commit with one.
817                  * Therefore, for unconfirmed connections which we will commit,
818                  * we need to attach the helper here.
819                  */
820                 if (!nf_ct_is_confirmed(ct) && info->commit &&
821                     info->helper && !nfct_help(ct)) {
822                         int err = __nf_ct_try_assign_helper(ct, info->ct,
823                                                             GFP_ATOMIC);
824                         if (err)
825                                 return err;
826                 }
827
828                 /* Call the helper only if:
829                  * - nf_conntrack_in() was executed above ("!cached") for a
830                  *   confirmed connection, or
831                  * - When committing an unconfirmed connection.
832                  */
833                 if ((nf_ct_is_confirmed(ct) ? !cached : info->commit) &&
834                     ovs_ct_helper(skb, info->family) != NF_ACCEPT) {
835                         return -EINVAL;
836                 }
837         }
838
839         return 0;
840 }
841
842 /* Lookup connection and read fields into key. */
843 static int ovs_ct_lookup(struct net *net, struct sw_flow_key *key,
844                          const struct ovs_conntrack_info *info,
845                          struct sk_buff *skb)
846 {
847         struct nf_conntrack_expect *exp;
848
849         /* If we pass an expected packet through nf_conntrack_in() the
850          * expectation is typically removed, but the packet could still be
851          * lost in upcall processing.  To prevent this from happening we
852          * perform an explicit expectation lookup.  Expected connections are
853          * always new, and will be passed through conntrack only when they are
854          * committed, as it is OK to remove the expectation at that time.
855          */
856         exp = ovs_ct_expect_find(net, &info->zone, info->family, skb);
857         if (exp) {
858                 u8 state;
859
860                 /* NOTE: New connections are NATted and Helped only when
861                  * committed, so we are not calling into NAT here.
862                  */
863                 state = OVS_CS_F_TRACKED | OVS_CS_F_NEW | OVS_CS_F_RELATED;
864                 __ovs_ct_update_key(key, state, &info->zone, exp->master);
865         } else
866                 return __ovs_ct_lookup(net, key, info, skb);
867
868         return 0;
869 }
870
871 static bool labels_nonzero(const struct ovs_key_ct_labels *labels)
872 {
873         size_t i;
874
875         for (i = 0; i < sizeof(*labels); i++)
876                 if (labels->ct_labels[i])
877                         return true;
878
879         return false;
880 }
881
882 /* Lookup connection and confirm if unconfirmed. */
883 static int ovs_ct_commit(struct net *net, struct sw_flow_key *key,
884                          const struct ovs_conntrack_info *info,
885                          struct sk_buff *skb)
886 {
887         int err;
888
889         err = __ovs_ct_lookup(net, key, info, skb);
890         if (err)
891                 return err;
892
893         /* Apply changes before confirming the connection so that the initial
894          * conntrack NEW netlink event carries the values given in the CT
895          * action.
896          */
897         if (info->mark.mask) {
898                 err = ovs_ct_set_mark(skb, key, info->mark.value,
899                                       info->mark.mask);
900                 if (err)
901                         return err;
902         }
903         if (labels_nonzero(&info->labels.mask)) {
904                 err = ovs_ct_set_labels(skb, key, &info->labels.value,
905                                         &info->labels.mask);
906                 if (err)
907                         return err;
908         }
909         /* This will take care of sending queued events even if the connection
910          * is already confirmed.
911          */
912         if (nf_conntrack_confirm(skb) != NF_ACCEPT)
913                 return -EINVAL;
914
915         return 0;
916 }
917
918 /* Returns 0 on success, -EINPROGRESS if 'skb' is stolen, or other nonzero
919  * value if 'skb' is freed.
920  */
921 int ovs_ct_execute(struct net *net, struct sk_buff *skb,
922                    struct sw_flow_key *key,
923                    const struct ovs_conntrack_info *info)
924 {
925         int nh_ofs;
926         int err;
927
928         /* The conntrack module expects to be working at L3. */
929         nh_ofs = skb_network_offset(skb);
930         skb_pull(skb, nh_ofs);
931
932         if (key->ip.frag != OVS_FRAG_TYPE_NONE) {
933                 err = handle_fragments(net, key, info->zone.id, skb);
934                 if (err)
935                         return err;
936         }
937
938         if (info->commit)
939                 err = ovs_ct_commit(net, key, info, skb);
940         else
941                 err = ovs_ct_lookup(net, key, info, skb);
942
943         skb_push(skb, nh_ofs);
944         if (err)
945                 kfree_skb(skb);
946         return err;
947 }
948
949 static int ovs_ct_add_helper(struct ovs_conntrack_info *info, const char *name,
950                              const struct sw_flow_key *key, bool log)
951 {
952         struct nf_conntrack_helper *helper;
953         struct nf_conn_help *help;
954
955         helper = nf_conntrack_helper_try_module_get(name, info->family,
956                                                     key->ip.proto);
957         if (!helper) {
958                 OVS_NLERR(log, "Unknown helper \"%s\"", name);
959                 return -EINVAL;
960         }
961
962         help = nf_ct_helper_ext_add(info->ct, helper, GFP_KERNEL);
963         if (!help) {
964                 module_put(helper->me);
965                 return -ENOMEM;
966         }
967
968         rcu_assign_pointer(help->helper, helper);
969         info->helper = helper;
970         return 0;
971 }
972
973 #ifdef CONFIG_NF_NAT_NEEDED
974 static int parse_nat(const struct nlattr *attr,
975                      struct ovs_conntrack_info *info, bool log)
976 {
977         struct nlattr *a;
978         int rem;
979         bool have_ip_max = false;
980         bool have_proto_max = false;
981         bool ip_vers = (info->family == NFPROTO_IPV6);
982
983         nla_for_each_nested(a, attr, rem) {
984                 static const int ovs_nat_attr_lens[OVS_NAT_ATTR_MAX + 1][2] = {
985                         [OVS_NAT_ATTR_SRC] = {0, 0},
986                         [OVS_NAT_ATTR_DST] = {0, 0},
987                         [OVS_NAT_ATTR_IP_MIN] = {sizeof(struct in_addr),
988                                                  sizeof(struct in6_addr)},
989                         [OVS_NAT_ATTR_IP_MAX] = {sizeof(struct in_addr),
990                                                  sizeof(struct in6_addr)},
991                         [OVS_NAT_ATTR_PROTO_MIN] = {sizeof(u16), sizeof(u16)},
992                         [OVS_NAT_ATTR_PROTO_MAX] = {sizeof(u16), sizeof(u16)},
993                         [OVS_NAT_ATTR_PERSISTENT] = {0, 0},
994                         [OVS_NAT_ATTR_PROTO_HASH] = {0, 0},
995                         [OVS_NAT_ATTR_PROTO_RANDOM] = {0, 0},
996                 };
997                 int type = nla_type(a);
998
999                 if (type > OVS_NAT_ATTR_MAX) {
1000                         OVS_NLERR(log,
1001                                   "Unknown NAT attribute (type=%d, max=%d).\n",
1002                                   type, OVS_NAT_ATTR_MAX);
1003                         return -EINVAL;
1004                 }
1005
1006                 if (nla_len(a) != ovs_nat_attr_lens[type][ip_vers]) {
1007                         OVS_NLERR(log,
1008                                   "NAT attribute type %d has unexpected length (%d != %d).\n",
1009                                   type, nla_len(a),
1010                                   ovs_nat_attr_lens[type][ip_vers]);
1011                         return -EINVAL;
1012                 }
1013
1014                 switch (type) {
1015                 case OVS_NAT_ATTR_SRC:
1016                 case OVS_NAT_ATTR_DST:
1017                         if (info->nat) {
1018                                 OVS_NLERR(log,
1019                                           "Only one type of NAT may be specified.\n"
1020                                           );
1021                                 return -ERANGE;
1022                         }
1023                         info->nat |= OVS_CT_NAT;
1024                         info->nat |= ((type == OVS_NAT_ATTR_SRC)
1025                                         ? OVS_CT_SRC_NAT : OVS_CT_DST_NAT);
1026                         break;
1027
1028                 case OVS_NAT_ATTR_IP_MIN:
1029                         nla_memcpy(&info->range.min_addr, a,
1030                                    sizeof(info->range.min_addr));
1031                         info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1032                         break;
1033
1034                 case OVS_NAT_ATTR_IP_MAX:
1035                         have_ip_max = true;
1036                         nla_memcpy(&info->range.max_addr, a,
1037                                    sizeof(info->range.max_addr));
1038                         info->range.flags |= NF_NAT_RANGE_MAP_IPS;
1039                         break;
1040
1041                 case OVS_NAT_ATTR_PROTO_MIN:
1042                         info->range.min_proto.all = htons(nla_get_u16(a));
1043                         info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1044                         break;
1045
1046                 case OVS_NAT_ATTR_PROTO_MAX:
1047                         have_proto_max = true;
1048                         info->range.max_proto.all = htons(nla_get_u16(a));
1049                         info->range.flags |= NF_NAT_RANGE_PROTO_SPECIFIED;
1050                         break;
1051
1052                 case OVS_NAT_ATTR_PERSISTENT:
1053                         info->range.flags |= NF_NAT_RANGE_PERSISTENT;
1054                         break;
1055
1056                 case OVS_NAT_ATTR_PROTO_HASH:
1057                         info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1058                         break;
1059
1060                 case OVS_NAT_ATTR_PROTO_RANDOM:
1061 #ifdef NF_NAT_RANGE_PROTO_RANDOM_FULLY
1062                         info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM_FULLY;
1063 #else
1064                         info->range.flags |= NF_NAT_RANGE_PROTO_RANDOM;
1065                         info->random_fully_compat = true;
1066 #endif
1067                         break;
1068
1069                 default:
1070                         OVS_NLERR(log, "Unknown nat attribute (%d).\n", type);
1071                         return -EINVAL;
1072                 }
1073         }
1074
1075         if (rem > 0) {
1076                 OVS_NLERR(log, "NAT attribute has %d unknown bytes.\n", rem);
1077                 return -EINVAL;
1078         }
1079         if (!info->nat) {
1080                 /* Do not allow flags if no type is given. */
1081                 if (info->range.flags) {
1082                         OVS_NLERR(log,
1083                                   "NAT flags may be given only when NAT range (SRC or DST) is also specified.\n"
1084                                   );
1085                         return -EINVAL;
1086                 }
1087                 info->nat = OVS_CT_NAT;   /* NAT existing connections. */
1088         } else if (!info->commit) {
1089                 OVS_NLERR(log,
1090                           "NAT attributes may be specified only when CT COMMIT flag is also specified.\n"
1091                           );
1092                 return -EINVAL;
1093         }
1094         /* Allow missing IP_MAX. */
1095         if (info->range.flags & NF_NAT_RANGE_MAP_IPS && !have_ip_max) {
1096                 memcpy(&info->range.max_addr, &info->range.min_addr,
1097                        sizeof(info->range.max_addr));
1098         }
1099         /* Allow missing PROTO_MAX. */
1100         if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1101             !have_proto_max) {
1102                 info->range.max_proto.all = info->range.min_proto.all;
1103         }
1104         return 0;
1105 }
1106 #endif
1107
1108 static const struct ovs_ct_len_tbl ovs_ct_attr_lens[OVS_CT_ATTR_MAX + 1] = {
1109         [OVS_CT_ATTR_COMMIT]    = { .minlen = 0, .maxlen = 0 },
1110         [OVS_CT_ATTR_ZONE]      = { .minlen = sizeof(u16),
1111                                     .maxlen = sizeof(u16) },
1112         [OVS_CT_ATTR_MARK]      = { .minlen = sizeof(struct md_mark),
1113                                     .maxlen = sizeof(struct md_mark) },
1114         [OVS_CT_ATTR_LABELS]    = { .minlen = sizeof(struct md_labels),
1115                                     .maxlen = sizeof(struct md_labels) },
1116         [OVS_CT_ATTR_HELPER]    = { .minlen = 1,
1117                                     .maxlen = NF_CT_HELPER_NAME_LEN },
1118 #ifdef CONFIG_NF_NAT_NEEDED
1119         /* NAT length is checked when parsing the nested attributes. */
1120         [OVS_CT_ATTR_NAT]       = { .minlen = 0, .maxlen = INT_MAX },
1121 #endif
1122 };
1123
1124 static int parse_ct(const struct nlattr *attr, struct ovs_conntrack_info *info,
1125                     const char **helper, bool log)
1126 {
1127         struct nlattr *a;
1128         int rem;
1129
1130         nla_for_each_nested(a, attr, rem) {
1131                 int type = nla_type(a);
1132                 int maxlen = ovs_ct_attr_lens[type].maxlen;
1133                 int minlen = ovs_ct_attr_lens[type].minlen;
1134
1135                 if (type > OVS_CT_ATTR_MAX) {
1136                         OVS_NLERR(log,
1137                                   "Unknown conntrack attr (type=%d, max=%d)",
1138                                   type, OVS_CT_ATTR_MAX);
1139                         return -EINVAL;
1140                 }
1141                 if (nla_len(a) < minlen || nla_len(a) > maxlen) {
1142                         OVS_NLERR(log,
1143                                   "Conntrack attr type has unexpected length (type=%d, length=%d, expected=%d)",
1144                                   type, nla_len(a), maxlen);
1145                         return -EINVAL;
1146                 }
1147
1148                 switch (type) {
1149                 case OVS_CT_ATTR_COMMIT:
1150                         info->commit = true;
1151                         break;
1152 #ifdef CONFIG_NF_CONNTRACK_ZONES
1153                 case OVS_CT_ATTR_ZONE:
1154                         info->zone.id = nla_get_u16(a);
1155                         break;
1156 #endif
1157 #ifdef CONFIG_NF_CONNTRACK_MARK
1158                 case OVS_CT_ATTR_MARK: {
1159                         struct md_mark *mark = nla_data(a);
1160
1161                         if (!mark->mask) {
1162                                 OVS_NLERR(log, "ct_mark mask cannot be 0");
1163                                 return -EINVAL;
1164                         }
1165                         info->mark = *mark;
1166                         break;
1167                 }
1168 #endif
1169 #ifdef CONFIG_NF_CONNTRACK_LABELS
1170                 case OVS_CT_ATTR_LABELS: {
1171                         struct md_labels *labels = nla_data(a);
1172
1173                         if (!labels_nonzero(&labels->mask)) {
1174                                 OVS_NLERR(log, "ct_labels mask cannot be 0");
1175                                 return -EINVAL;
1176                         }
1177                         info->labels = *labels;
1178                         break;
1179                 }
1180 #endif
1181                 case OVS_CT_ATTR_HELPER:
1182                         *helper = nla_data(a);
1183                         if (!memchr(*helper, '\0', nla_len(a))) {
1184                                 OVS_NLERR(log, "Invalid conntrack helper");
1185                                 return -EINVAL;
1186                         }
1187                         break;
1188 #ifdef CONFIG_NF_NAT_NEEDED
1189                 case OVS_CT_ATTR_NAT: {
1190                         int err = parse_nat(a, info, log);
1191
1192                         if (err)
1193                                 return err;
1194                         break;
1195                 }
1196 #endif
1197                 default:
1198                         OVS_NLERR(log, "Unknown conntrack attr (%d)",
1199                                   type);
1200                         return -EINVAL;
1201                 }
1202         }
1203
1204 #ifdef CONFIG_NF_CONNTRACK_MARK
1205         if (!info->commit && info->mark.mask) {
1206                 OVS_NLERR(log,
1207                           "Setting conntrack mark requires 'commit' flag.");
1208                 return -EINVAL;
1209         }
1210 #endif
1211 #ifdef CONFIG_NF_CONNTRACK_LABELS
1212         if (!info->commit && labels_nonzero(&info->labels.mask)) {
1213                 OVS_NLERR(log,
1214                           "Setting conntrack labels requires 'commit' flag.");
1215                 return -EINVAL;
1216         }
1217 #endif
1218         if (rem > 0) {
1219                 OVS_NLERR(log, "Conntrack attr has %d unknown bytes", rem);
1220                 return -EINVAL;
1221         }
1222
1223         return 0;
1224 }
1225
1226 bool ovs_ct_verify(struct net *net, enum ovs_key_attr attr)
1227 {
1228         if (attr == OVS_KEY_ATTR_CT_STATE)
1229                 return true;
1230         if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1231             attr == OVS_KEY_ATTR_CT_ZONE)
1232                 return true;
1233         if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) &&
1234             attr == OVS_KEY_ATTR_CT_MARK)
1235                 return true;
1236         if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1237             attr == OVS_KEY_ATTR_CT_LABELS) {
1238                 struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1239
1240                 return ovs_net->xt_label;
1241         }
1242
1243         return false;
1244 }
1245
1246 int ovs_ct_copy_action(struct net *net, const struct nlattr *attr,
1247                        const struct sw_flow_key *key,
1248                        struct sw_flow_actions **sfa,  bool log)
1249 {
1250         struct ovs_conntrack_info ct_info;
1251         const char *helper = NULL;
1252         u16 family;
1253         int err;
1254
1255         family = key_to_nfproto(key);
1256         if (family == NFPROTO_UNSPEC) {
1257                 OVS_NLERR(log, "ct family unspecified");
1258                 return -EINVAL;
1259         }
1260
1261         memset(&ct_info, 0, sizeof(ct_info));
1262         ct_info.family = family;
1263
1264         nf_ct_zone_init(&ct_info.zone, NF_CT_DEFAULT_ZONE_ID,
1265                         NF_CT_DEFAULT_ZONE_DIR, 0);
1266
1267         err = parse_ct(attr, &ct_info, &helper, log);
1268         if (err)
1269                 return err;
1270
1271         /* Set up template for tracking connections in specific zones. */
1272         ct_info.ct = nf_ct_tmpl_alloc(net, &ct_info.zone, GFP_KERNEL);
1273         if (!ct_info.ct) {
1274                 OVS_NLERR(log, "Failed to allocate conntrack template");
1275                 return -ENOMEM;
1276         }
1277
1278         __set_bit(IPS_CONFIRMED_BIT, &ct_info.ct->status);
1279         nf_conntrack_get(&ct_info.ct->ct_general);
1280
1281         if (helper) {
1282                 err = ovs_ct_add_helper(&ct_info, helper, key, log);
1283                 if (err)
1284                         goto err_free_ct;
1285         }
1286
1287         err = ovs_nla_add_action(sfa, OVS_ACTION_ATTR_CT, &ct_info,
1288                                  sizeof(ct_info), log);
1289         if (err)
1290                 goto err_free_ct;
1291
1292         return 0;
1293 err_free_ct:
1294         __ovs_ct_free_action(&ct_info);
1295         return err;
1296 }
1297
1298 #ifdef CONFIG_NF_NAT_NEEDED
1299 static bool ovs_ct_nat_to_attr(const struct ovs_conntrack_info *info,
1300                                struct sk_buff *skb)
1301 {
1302         struct nlattr *start;
1303
1304         start = nla_nest_start(skb, OVS_CT_ATTR_NAT);
1305         if (!start)
1306                 return false;
1307
1308         if (info->nat & OVS_CT_SRC_NAT) {
1309                 if (nla_put_flag(skb, OVS_NAT_ATTR_SRC))
1310                         return false;
1311         } else if (info->nat & OVS_CT_DST_NAT) {
1312                 if (nla_put_flag(skb, OVS_NAT_ATTR_DST))
1313                         return false;
1314         } else {
1315                 goto out;
1316         }
1317
1318         if (info->range.flags & NF_NAT_RANGE_MAP_IPS) {
1319                 if (IS_ENABLED(CONFIG_NF_NAT_IPV4) &&
1320                     info->family == NFPROTO_IPV4) {
1321                         if (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MIN,
1322                                             info->range.min_addr.ip) ||
1323                             (info->range.max_addr.ip
1324                              != info->range.min_addr.ip &&
1325                              (nla_put_in_addr(skb, OVS_NAT_ATTR_IP_MAX,
1326                                               info->range.max_addr.ip))))
1327                                 return false;
1328                 } else if (IS_ENABLED(CONFIG_NF_NAT_IPV6) &&
1329                            info->family == NFPROTO_IPV6) {
1330                         if (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MIN,
1331                                              &info->range.min_addr.in6) ||
1332                             (memcmp(&info->range.max_addr.in6,
1333                                     &info->range.min_addr.in6,
1334                                     sizeof(info->range.max_addr.in6)) &&
1335                              (nla_put_in6_addr(skb, OVS_NAT_ATTR_IP_MAX,
1336                                                &info->range.max_addr.in6))))
1337                                 return false;
1338                 } else {
1339                         return false;
1340                 }
1341         }
1342         if (info->range.flags & NF_NAT_RANGE_PROTO_SPECIFIED &&
1343             (nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MIN,
1344                          ntohs(info->range.min_proto.all)) ||
1345              (info->range.max_proto.all != info->range.min_proto.all &&
1346               nla_put_u16(skb, OVS_NAT_ATTR_PROTO_MAX,
1347                           ntohs(info->range.max_proto.all)))))
1348                 return false;
1349
1350         if (info->range.flags & NF_NAT_RANGE_PERSISTENT &&
1351             nla_put_flag(skb, OVS_NAT_ATTR_PERSISTENT))
1352                 return false;
1353         if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM &&
1354             nla_put_flag(skb, info->random_fully_compat
1355                          ? OVS_NAT_ATTR_PROTO_RANDOM
1356                          : OVS_NAT_ATTR_PROTO_HASH))
1357                 return false;
1358 #ifdef NF_NAT_RANGE_PROTO_RANDOM_FULLY
1359         if (info->range.flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY &&
1360             nla_put_flag(skb, OVS_NAT_ATTR_PROTO_RANDOM))
1361                 return false;
1362 #endif
1363 out:
1364         nla_nest_end(skb, start);
1365
1366         return true;
1367 }
1368 #endif
1369
1370 int ovs_ct_action_to_attr(const struct ovs_conntrack_info *ct_info,
1371                           struct sk_buff *skb)
1372 {
1373         struct nlattr *start;
1374
1375         start = nla_nest_start(skb, OVS_ACTION_ATTR_CT);
1376         if (!start)
1377                 return -EMSGSIZE;
1378
1379         if (ct_info->commit && nla_put_flag(skb, OVS_CT_ATTR_COMMIT))
1380                 return -EMSGSIZE;
1381         if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) &&
1382             nla_put_u16(skb, OVS_CT_ATTR_ZONE, ct_info->zone.id))
1383                 return -EMSGSIZE;
1384         if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && ct_info->mark.mask &&
1385             nla_put(skb, OVS_CT_ATTR_MARK, sizeof(ct_info->mark),
1386                     &ct_info->mark))
1387                 return -EMSGSIZE;
1388         if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) &&
1389             labels_nonzero(&ct_info->labels.mask) &&
1390             nla_put(skb, OVS_CT_ATTR_LABELS, sizeof(ct_info->labels),
1391                     &ct_info->labels))
1392                 return -EMSGSIZE;
1393         if (ct_info->helper) {
1394                 if (nla_put_string(skb, OVS_CT_ATTR_HELPER,
1395                                    ct_info->helper->name))
1396                         return -EMSGSIZE;
1397         }
1398 #ifdef CONFIG_NF_NAT_NEEDED
1399         if (ct_info->nat && !ovs_ct_nat_to_attr(ct_info, skb))
1400                 return -EMSGSIZE;
1401 #endif
1402         nla_nest_end(skb, start);
1403
1404         return 0;
1405 }
1406
1407 void ovs_ct_free_action(const struct nlattr *a)
1408 {
1409         struct ovs_conntrack_info *ct_info = nla_data(a);
1410
1411         __ovs_ct_free_action(ct_info);
1412 }
1413
1414 static void __ovs_ct_free_action(struct ovs_conntrack_info *ct_info)
1415 {
1416         if (ct_info->helper)
1417                 module_put(ct_info->helper->me);
1418         if (ct_info->ct)
1419                 nf_ct_tmpl_free(ct_info->ct);
1420 }
1421
1422 void ovs_ct_init(struct net *net)
1423 {
1424         unsigned int n_bits = sizeof(struct ovs_key_ct_labels) * BITS_PER_BYTE;
1425         struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1426
1427         if (nf_connlabels_get(net, n_bits - 1)) {
1428                 ovs_net->xt_label = false;
1429                 OVS_NLERR(true, "Failed to set connlabel length");
1430         } else {
1431                 ovs_net->xt_label = true;
1432         }
1433 }
1434
1435 void ovs_ct_exit(struct net *net)
1436 {
1437         struct ovs_net *ovs_net = net_generic(net, ovs_net_id);
1438
1439         if (ovs_net->xt_label)
1440                 nf_connlabels_put(net);
1441 }
1442
1443 #endif /* CONFIG_NF_CONNTRACK */