715fe8001d591df54fc759b42428bead17a44632
[cascardo/linux.git] / drivers / acpi / cppc_acpi.c
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37
38 #define pr_fmt(fmt)     "ACPI CPPC: " fmt
39
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/ktime.h>
43 #include <linux/rwsem.h>
44 #include <linux/wait.h>
45
46 #include <acpi/cppc_acpi.h>
47
48 struct cppc_pcc_data {
49         struct mbox_chan *pcc_channel;
50         void __iomem *pcc_comm_addr;
51         int pcc_subspace_idx;
52         bool pcc_channel_acquired;
53         ktime_t deadline;
54         unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55
56         bool pending_pcc_write_cmd;     /* Any pending/batched PCC write cmds? */
57         bool platform_owns_pcc;         /* Ownership of PCC subspace */
58         unsigned int pcc_write_cnt;     /* Running count of PCC write commands */
59
60         /*
61          * Lock to provide controlled access to the PCC channel.
62          *
63          * For performance critical usecases(currently cppc_set_perf)
64          *      We need to take read_lock and check if channel belongs to OSPM
65          * before reading or writing to PCC subspace
66          *      We need to take write_lock before transferring the channel
67          * ownership to the platform via a Doorbell
68          *      This allows us to batch a number of CPPC requests if they happen
69          * to originate in about the same time
70          *
71          * For non-performance critical usecases(init)
72          *      Take write_lock for all purposes which gives exclusive access
73          */
74         struct rw_semaphore pcc_lock;
75
76         /* Wait queue for CPUs whose requests were batched */
77         wait_queue_head_t pcc_write_wait_q;
78 };
79
80 /* Structure to represent the single PCC channel */
81 static struct cppc_pcc_data pcc_data = {
82         .pcc_subspace_idx = -1,
83         .platform_owns_pcc = true,
84 };
85
86 /*
87  * The cpc_desc structure contains the ACPI register details
88  * as described in the per CPU _CPC tables. The details
89  * include the type of register (e.g. PCC, System IO, FFH etc.)
90  * and destination addresses which lets us READ/WRITE CPU performance
91  * information using the appropriate I/O methods.
92  */
93 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
94
95 /* pcc mapped address + header size + offset within PCC subspace */
96 #define GET_PCC_VADDR(offs) (pcc_data.pcc_comm_addr + 0x8 + (offs))
97
98 /* Check if a CPC regsiter is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&             \
100                                 (cpc)->cpc_entry.reg.space_id ==        \
101                                 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evalutes to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105                                 (reg)->address == 0 &&                  \
106                                 (reg)->bit_width == 0 &&                \
107                                 (reg)->bit_offset == 0 &&               \
108                                 (reg)->access_width == 0)
109
110 /* Evalutes to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?          \
112                                 !!(cpc)->cpc_entry.int_value :          \
113                                 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115  * Arbitrary Retries in case the remote processor is slow to respond
116  * to PCC commands. Keeping it high enough to cover emulators where
117  * the processors run painfully slow.
118  */
119 #define NUM_RETRIES 500
120
121 struct cppc_attr {
122         struct attribute attr;
123         ssize_t (*show)(struct kobject *kobj,
124                         struct attribute *attr, char *buf);
125         ssize_t (*store)(struct kobject *kobj,
126                         struct attribute *attr, const char *c, ssize_t count);
127 };
128
129 #define define_one_cppc_ro(_name)               \
130 static struct cppc_attr _name =                 \
131 __ATTR(_name, 0444, show_##_name, NULL)
132
133 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
134
135 static ssize_t show_feedback_ctrs(struct kobject *kobj,
136                 struct attribute *attr, char *buf)
137 {
138         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
139         struct cppc_perf_fb_ctrs fb_ctrs = {0};
140
141         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
142
143         return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
144                         fb_ctrs.reference, fb_ctrs.delivered);
145 }
146 define_one_cppc_ro(feedback_ctrs);
147
148 static ssize_t show_reference_perf(struct kobject *kobj,
149                 struct attribute *attr, char *buf)
150 {
151         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
152         struct cppc_perf_fb_ctrs fb_ctrs = {0};
153
154         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
155
156         return scnprintf(buf, PAGE_SIZE, "%llu\n",
157                         fb_ctrs.reference_perf);
158 }
159 define_one_cppc_ro(reference_perf);
160
161 static ssize_t show_wraparound_time(struct kobject *kobj,
162                                 struct attribute *attr, char *buf)
163 {
164         struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
165         struct cppc_perf_fb_ctrs fb_ctrs = {0};
166
167         cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
168
169         return scnprintf(buf, PAGE_SIZE, "%llu\n", fb_ctrs.ctr_wrap_time);
170
171 }
172 define_one_cppc_ro(wraparound_time);
173
174 static struct attribute *cppc_attrs[] = {
175         &feedback_ctrs.attr,
176         &reference_perf.attr,
177         &wraparound_time.attr,
178         NULL
179 };
180
181 static struct kobj_type cppc_ktype = {
182         .sysfs_ops = &kobj_sysfs_ops,
183         .default_attrs = cppc_attrs,
184 };
185
186 static int check_pcc_chan(bool chk_err_bit)
187 {
188         int ret = -EIO, status = 0;
189         struct acpi_pcct_shared_memory __iomem *generic_comm_base = pcc_data.pcc_comm_addr;
190         ktime_t next_deadline = ktime_add(ktime_get(), pcc_data.deadline);
191
192         if (!pcc_data.platform_owns_pcc)
193                 return 0;
194
195         /* Retry in case the remote processor was too slow to catch up. */
196         while (!ktime_after(ktime_get(), next_deadline)) {
197                 /*
198                  * Per spec, prior to boot the PCC space wil be initialized by
199                  * platform and should have set the command completion bit when
200                  * PCC can be used by OSPM
201                  */
202                 status = readw_relaxed(&generic_comm_base->status);
203                 if (status & PCC_CMD_COMPLETE_MASK) {
204                         ret = 0;
205                         if (chk_err_bit && (status & PCC_ERROR_MASK))
206                                 ret = -EIO;
207                         break;
208                 }
209                 /*
210                  * Reducing the bus traffic in case this loop takes longer than
211                  * a few retries.
212                  */
213                 udelay(3);
214         }
215
216         if (likely(!ret))
217                 pcc_data.platform_owns_pcc = false;
218         else
219                 pr_err("PCC check channel failed. Status=%x\n", status);
220
221         return ret;
222 }
223
224 /*
225  * This function transfers the ownership of the PCC to the platform
226  * So it must be called while holding write_lock(pcc_lock)
227  */
228 static int send_pcc_cmd(u16 cmd)
229 {
230         int ret = -EIO, i;
231         struct acpi_pcct_shared_memory *generic_comm_base =
232                 (struct acpi_pcct_shared_memory *) pcc_data.pcc_comm_addr;
233         static ktime_t last_cmd_cmpl_time, last_mpar_reset;
234         static int mpar_count;
235         unsigned int time_delta;
236
237         /*
238          * For CMD_WRITE we know for a fact the caller should have checked
239          * the channel before writing to PCC space
240          */
241         if (cmd == CMD_READ) {
242                 /*
243                  * If there are pending cpc_writes, then we stole the channel
244                  * before write completion, so first send a WRITE command to
245                  * platform
246                  */
247                 if (pcc_data.pending_pcc_write_cmd)
248                         send_pcc_cmd(CMD_WRITE);
249
250                 ret = check_pcc_chan(false);
251                 if (ret)
252                         goto end;
253         } else /* CMD_WRITE */
254                 pcc_data.pending_pcc_write_cmd = FALSE;
255
256         /*
257          * Handle the Minimum Request Turnaround Time(MRTT)
258          * "The minimum amount of time that OSPM must wait after the completion
259          * of a command before issuing the next command, in microseconds"
260          */
261         if (pcc_data.pcc_mrtt) {
262                 time_delta = ktime_us_delta(ktime_get(), last_cmd_cmpl_time);
263                 if (pcc_data.pcc_mrtt > time_delta)
264                         udelay(pcc_data.pcc_mrtt - time_delta);
265         }
266
267         /*
268          * Handle the non-zero Maximum Periodic Access Rate(MPAR)
269          * "The maximum number of periodic requests that the subspace channel can
270          * support, reported in commands per minute. 0 indicates no limitation."
271          *
272          * This parameter should be ideally zero or large enough so that it can
273          * handle maximum number of requests that all the cores in the system can
274          * collectively generate. If it is not, we will follow the spec and just
275          * not send the request to the platform after hitting the MPAR limit in
276          * any 60s window
277          */
278         if (pcc_data.pcc_mpar) {
279                 if (mpar_count == 0) {
280                         time_delta = ktime_ms_delta(ktime_get(), last_mpar_reset);
281                         if (time_delta < 60 * MSEC_PER_SEC) {
282                                 pr_debug("PCC cmd not sent due to MPAR limit");
283                                 ret = -EIO;
284                                 goto end;
285                         }
286                         last_mpar_reset = ktime_get();
287                         mpar_count = pcc_data.pcc_mpar;
288                 }
289                 mpar_count--;
290         }
291
292         /* Write to the shared comm region. */
293         writew_relaxed(cmd, &generic_comm_base->command);
294
295         /* Flip CMD COMPLETE bit */
296         writew_relaxed(0, &generic_comm_base->status);
297
298         pcc_data.platform_owns_pcc = true;
299
300         /* Ring doorbell */
301         ret = mbox_send_message(pcc_data.pcc_channel, &cmd);
302         if (ret < 0) {
303                 pr_err("Err sending PCC mbox message. cmd:%d, ret:%d\n",
304                                 cmd, ret);
305                 goto end;
306         }
307
308         /* wait for completion and check for PCC errro bit */
309         ret = check_pcc_chan(true);
310
311         if (pcc_data.pcc_mrtt)
312                 last_cmd_cmpl_time = ktime_get();
313
314         mbox_client_txdone(pcc_data.pcc_channel, ret);
315
316 end:
317         if (cmd == CMD_WRITE) {
318                 if (unlikely(ret)) {
319                         for_each_possible_cpu(i) {
320                                 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
321                                 if (!desc)
322                                         continue;
323
324                                 if (desc->write_cmd_id == pcc_data.pcc_write_cnt)
325                                         desc->write_cmd_status = ret;
326                         }
327                 }
328                 pcc_data.pcc_write_cnt++;
329                 wake_up_all(&pcc_data.pcc_write_wait_q);
330         }
331
332         return ret;
333 }
334
335 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
336 {
337         if (ret < 0)
338                 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
339                                 *(u16 *)msg, ret);
340         else
341                 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
342                                 *(u16 *)msg, ret);
343 }
344
345 struct mbox_client cppc_mbox_cl = {
346         .tx_done = cppc_chan_tx_done,
347         .knows_txdone = true,
348 };
349
350 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
351 {
352         int result = -EFAULT;
353         acpi_status status = AE_OK;
354         struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
355         struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
356         struct acpi_buffer state = {0, NULL};
357         union acpi_object  *psd = NULL;
358         struct acpi_psd_package *pdomain;
359
360         status = acpi_evaluate_object_typed(handle, "_PSD", NULL, &buffer,
361                         ACPI_TYPE_PACKAGE);
362         if (ACPI_FAILURE(status))
363                 return -ENODEV;
364
365         psd = buffer.pointer;
366         if (!psd || psd->package.count != 1) {
367                 pr_debug("Invalid _PSD data\n");
368                 goto end;
369         }
370
371         pdomain = &(cpc_ptr->domain_info);
372
373         state.length = sizeof(struct acpi_psd_package);
374         state.pointer = pdomain;
375
376         status = acpi_extract_package(&(psd->package.elements[0]),
377                 &format, &state);
378         if (ACPI_FAILURE(status)) {
379                 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
380                 goto end;
381         }
382
383         if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
384                 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
385                 goto end;
386         }
387
388         if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
389                 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
390                 goto end;
391         }
392
393         if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
394             pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
395             pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
396                 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
397                 goto end;
398         }
399
400         result = 0;
401 end:
402         kfree(buffer.pointer);
403         return result;
404 }
405
406 /**
407  * acpi_get_psd_map - Map the CPUs in a common freq domain.
408  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
409  *
410  *      Return: 0 for success or negative value for err.
411  */
412 int acpi_get_psd_map(struct cpudata **all_cpu_data)
413 {
414         int count_target;
415         int retval = 0;
416         unsigned int i, j;
417         cpumask_var_t covered_cpus;
418         struct cpudata *pr, *match_pr;
419         struct acpi_psd_package *pdomain;
420         struct acpi_psd_package *match_pdomain;
421         struct cpc_desc *cpc_ptr, *match_cpc_ptr;
422
423         if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
424                 return -ENOMEM;
425
426         /*
427          * Now that we have _PSD data from all CPUs, lets setup P-state
428          * domain info.
429          */
430         for_each_possible_cpu(i) {
431                 pr = all_cpu_data[i];
432                 if (!pr)
433                         continue;
434
435                 if (cpumask_test_cpu(i, covered_cpus))
436                         continue;
437
438                 cpc_ptr = per_cpu(cpc_desc_ptr, i);
439                 if (!cpc_ptr) {
440                         retval = -EFAULT;
441                         goto err_ret;
442                 }
443
444                 pdomain = &(cpc_ptr->domain_info);
445                 cpumask_set_cpu(i, pr->shared_cpu_map);
446                 cpumask_set_cpu(i, covered_cpus);
447                 if (pdomain->num_processors <= 1)
448                         continue;
449
450                 /* Validate the Domain info */
451                 count_target = pdomain->num_processors;
452                 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
453                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
454                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
455                         pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
456                 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
457                         pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
458
459                 for_each_possible_cpu(j) {
460                         if (i == j)
461                                 continue;
462
463                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
464                         if (!match_cpc_ptr) {
465                                 retval = -EFAULT;
466                                 goto err_ret;
467                         }
468
469                         match_pdomain = &(match_cpc_ptr->domain_info);
470                         if (match_pdomain->domain != pdomain->domain)
471                                 continue;
472
473                         /* Here i and j are in the same domain */
474                         if (match_pdomain->num_processors != count_target) {
475                                 retval = -EFAULT;
476                                 goto err_ret;
477                         }
478
479                         if (pdomain->coord_type != match_pdomain->coord_type) {
480                                 retval = -EFAULT;
481                                 goto err_ret;
482                         }
483
484                         cpumask_set_cpu(j, covered_cpus);
485                         cpumask_set_cpu(j, pr->shared_cpu_map);
486                 }
487
488                 for_each_possible_cpu(j) {
489                         if (i == j)
490                                 continue;
491
492                         match_pr = all_cpu_data[j];
493                         if (!match_pr)
494                                 continue;
495
496                         match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
497                         if (!match_cpc_ptr) {
498                                 retval = -EFAULT;
499                                 goto err_ret;
500                         }
501
502                         match_pdomain = &(match_cpc_ptr->domain_info);
503                         if (match_pdomain->domain != pdomain->domain)
504                                 continue;
505
506                         match_pr->shared_type = pr->shared_type;
507                         cpumask_copy(match_pr->shared_cpu_map,
508                                      pr->shared_cpu_map);
509                 }
510         }
511
512 err_ret:
513         for_each_possible_cpu(i) {
514                 pr = all_cpu_data[i];
515                 if (!pr)
516                         continue;
517
518                 /* Assume no coordination on any error parsing domain info */
519                 if (retval) {
520                         cpumask_clear(pr->shared_cpu_map);
521                         cpumask_set_cpu(i, pr->shared_cpu_map);
522                         pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
523                 }
524         }
525
526         free_cpumask_var(covered_cpus);
527         return retval;
528 }
529 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
530
531 static int register_pcc_channel(int pcc_subspace_idx)
532 {
533         struct acpi_pcct_hw_reduced *cppc_ss;
534         u64 usecs_lat;
535
536         if (pcc_subspace_idx >= 0) {
537                 pcc_data.pcc_channel = pcc_mbox_request_channel(&cppc_mbox_cl,
538                                 pcc_subspace_idx);
539
540                 if (IS_ERR(pcc_data.pcc_channel)) {
541                         pr_err("Failed to find PCC communication channel\n");
542                         return -ENODEV;
543                 }
544
545                 /*
546                  * The PCC mailbox controller driver should
547                  * have parsed the PCCT (global table of all
548                  * PCC channels) and stored pointers to the
549                  * subspace communication region in con_priv.
550                  */
551                 cppc_ss = (pcc_data.pcc_channel)->con_priv;
552
553                 if (!cppc_ss) {
554                         pr_err("No PCC subspace found for CPPC\n");
555                         return -ENODEV;
556                 }
557
558                 /*
559                  * cppc_ss->latency is just a Nominal value. In reality
560                  * the remote processor could be much slower to reply.
561                  * So add an arbitrary amount of wait on top of Nominal.
562                  */
563                 usecs_lat = NUM_RETRIES * cppc_ss->latency;
564                 pcc_data.deadline = ns_to_ktime(usecs_lat * NSEC_PER_USEC);
565                 pcc_data.pcc_mrtt = cppc_ss->min_turnaround_time;
566                 pcc_data.pcc_mpar = cppc_ss->max_access_rate;
567                 pcc_data.pcc_nominal = cppc_ss->latency;
568
569                 pcc_data.pcc_comm_addr = acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
570                 if (!pcc_data.pcc_comm_addr) {
571                         pr_err("Failed to ioremap PCC comm region mem\n");
572                         return -ENOMEM;
573                 }
574
575                 /* Set flag so that we dont come here for each CPU. */
576                 pcc_data.pcc_channel_acquired = true;
577         }
578
579         return 0;
580 }
581
582 /**
583  * cpc_ffh_supported() - check if FFH reading supported
584  *
585  * Check if the architecture has support for functional fixed hardware
586  * read/write capability.
587  *
588  * Return: true for supported, false for not supported
589  */
590 bool __weak cpc_ffh_supported(void)
591 {
592         return false;
593 }
594
595 /*
596  * An example CPC table looks like the following.
597  *
598  *      Name(_CPC, Package()
599  *                      {
600  *                      17,
601  *                      NumEntries
602  *                      1,
603  *                      // Revision
604  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
605  *                      // Highest Performance
606  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
607  *                      // Nominal Performance
608  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
609  *                      // Lowest Nonlinear Performance
610  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
611  *                      // Lowest Performance
612  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
613  *                      // Guaranteed Performance Register
614  *                      ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
615  *                      // Desired Performance Register
616  *                      ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
617  *                      ..
618  *                      ..
619  *                      ..
620  *
621  *              }
622  * Each Register() encodes how to access that specific register.
623  * e.g. a sample PCC entry has the following encoding:
624  *
625  *      Register (
626  *              PCC,
627  *              AddressSpaceKeyword
628  *              8,
629  *              //RegisterBitWidth
630  *              8,
631  *              //RegisterBitOffset
632  *              0x30,
633  *              //RegisterAddress
634  *              9
635  *              //AccessSize (subspace ID)
636  *              0
637  *              )
638  *      }
639  */
640
641 /**
642  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
643  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
644  *
645  *      Return: 0 for success or negative value for err.
646  */
647 int acpi_cppc_processor_probe(struct acpi_processor *pr)
648 {
649         struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
650         union acpi_object *out_obj, *cpc_obj;
651         struct cpc_desc *cpc_ptr;
652         struct cpc_reg *gas_t;
653         struct device *cpu_dev;
654         acpi_handle handle = pr->handle;
655         unsigned int num_ent, i, cpc_rev;
656         acpi_status status;
657         int ret = -EFAULT;
658
659         /* Parse the ACPI _CPC table for this cpu. */
660         status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
661                         ACPI_TYPE_PACKAGE);
662         if (ACPI_FAILURE(status)) {
663                 ret = -ENODEV;
664                 goto out_buf_free;
665         }
666
667         out_obj = (union acpi_object *) output.pointer;
668
669         cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
670         if (!cpc_ptr) {
671                 ret = -ENOMEM;
672                 goto out_buf_free;
673         }
674
675         /* First entry is NumEntries. */
676         cpc_obj = &out_obj->package.elements[0];
677         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
678                 num_ent = cpc_obj->integer.value;
679         } else {
680                 pr_debug("Unexpected entry type(%d) for NumEntries\n",
681                                 cpc_obj->type);
682                 goto out_free;
683         }
684
685         /* Only support CPPCv2. Bail otherwise. */
686         if (num_ent != CPPC_NUM_ENT) {
687                 pr_debug("Firmware exports %d entries. Expected: %d\n",
688                                 num_ent, CPPC_NUM_ENT);
689                 goto out_free;
690         }
691
692         cpc_ptr->num_entries = num_ent;
693
694         /* Second entry should be revision. */
695         cpc_obj = &out_obj->package.elements[1];
696         if (cpc_obj->type == ACPI_TYPE_INTEGER) {
697                 cpc_rev = cpc_obj->integer.value;
698         } else {
699                 pr_debug("Unexpected entry type(%d) for Revision\n",
700                                 cpc_obj->type);
701                 goto out_free;
702         }
703
704         if (cpc_rev != CPPC_REV) {
705                 pr_debug("Firmware exports revision:%d. Expected:%d\n",
706                                 cpc_rev, CPPC_REV);
707                 goto out_free;
708         }
709
710         /* Iterate through remaining entries in _CPC */
711         for (i = 2; i < num_ent; i++) {
712                 cpc_obj = &out_obj->package.elements[i];
713
714                 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
715                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
716                         cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
717                 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
718                         gas_t = (struct cpc_reg *)
719                                 cpc_obj->buffer.pointer;
720
721                         /*
722                          * The PCC Subspace index is encoded inside
723                          * the CPC table entries. The same PCC index
724                          * will be used for all the PCC entries,
725                          * so extract it only once.
726                          */
727                         if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
728                                 if (pcc_data.pcc_subspace_idx < 0)
729                                         pcc_data.pcc_subspace_idx = gas_t->access_width;
730                                 else if (pcc_data.pcc_subspace_idx != gas_t->access_width) {
731                                         pr_debug("Mismatched PCC ids.\n");
732                                         goto out_free;
733                                 }
734                         } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
735                                 if (gas_t->address) {
736                                         void __iomem *addr;
737
738                                         addr = ioremap(gas_t->address, gas_t->bit_width/8);
739                                         if (!addr)
740                                                 goto out_free;
741                                         cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
742                                 }
743                         } else {
744                                 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
745                                         /* Support only PCC ,SYS MEM and FFH type regs */
746                                         pr_debug("Unsupported register type: %d\n", gas_t->space_id);
747                                         goto out_free;
748                                 }
749                         }
750
751                         cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
752                         memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
753                 } else {
754                         pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
755                         goto out_free;
756                 }
757         }
758         /* Store CPU Logical ID */
759         cpc_ptr->cpu_id = pr->id;
760
761         /* Parse PSD data for this CPU */
762         ret = acpi_get_psd(cpc_ptr, handle);
763         if (ret)
764                 goto out_free;
765
766         /* Register PCC channel once for all CPUs. */
767         if (!pcc_data.pcc_channel_acquired) {
768                 ret = register_pcc_channel(pcc_data.pcc_subspace_idx);
769                 if (ret)
770                         goto out_free;
771
772                 init_rwsem(&pcc_data.pcc_lock);
773                 init_waitqueue_head(&pcc_data.pcc_write_wait_q);
774         }
775
776         /* Plug PSD data into this CPUs CPC descriptor. */
777         per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
778
779         /* Everything looks okay */
780         pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
781
782         /* Add per logical CPU nodes for reading its feedback counters. */
783         cpu_dev = get_cpu_device(pr->id);
784         if (!cpu_dev)
785                 goto out_free;
786
787         ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
788                         "acpi_cppc");
789         if (ret)
790                 goto out_free;
791
792         kfree(output.pointer);
793         return 0;
794
795 out_free:
796         /* Free all the mapped sys mem areas for this CPU */
797         for (i = 2; i < cpc_ptr->num_entries; i++) {
798                 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
799
800                 if (addr)
801                         iounmap(addr);
802         }
803         kfree(cpc_ptr);
804
805 out_buf_free:
806         kfree(output.pointer);
807         return ret;
808 }
809 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
810
811 /**
812  * acpi_cppc_processor_exit - Cleanup CPC structs.
813  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
814  *
815  * Return: Void
816  */
817 void acpi_cppc_processor_exit(struct acpi_processor *pr)
818 {
819         struct cpc_desc *cpc_ptr;
820         unsigned int i;
821         void __iomem *addr;
822
823         cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
824
825         /* Free all the mapped sys mem areas for this CPU */
826         for (i = 2; i < cpc_ptr->num_entries; i++) {
827                 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
828                 if (addr)
829                         iounmap(addr);
830         }
831
832         kobject_put(&cpc_ptr->kobj);
833         kfree(cpc_ptr);
834 }
835 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
836
837 /**
838  * cpc_read_ffh() - Read FFH register
839  * @cpunum:     cpu number to read
840  * @reg:        cppc register information
841  * @val:        place holder for return value
842  *
843  * Read bit_width bits from a specified address and bit_offset
844  *
845  * Return: 0 for success and error code
846  */
847 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
848 {
849         return -ENOTSUPP;
850 }
851
852 /**
853  * cpc_write_ffh() - Write FFH register
854  * @cpunum:     cpu number to write
855  * @reg:        cppc register information
856  * @val:        value to write
857  *
858  * Write value of bit_width bits to a specified address and bit_offset
859  *
860  * Return: 0 for success and error code
861  */
862 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
863 {
864         return -ENOTSUPP;
865 }
866
867 /*
868  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
869  * as fast as possible. We have already mapped the PCC subspace during init, so
870  * we can directly write to it.
871  */
872
873 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
874 {
875         int ret_val = 0;
876         void __iomem *vaddr = 0;
877         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
878
879         if (reg_res->type == ACPI_TYPE_INTEGER) {
880                 *val = reg_res->cpc_entry.int_value;
881                 return ret_val;
882         }
883
884         *val = 0;
885         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
886                 vaddr = GET_PCC_VADDR(reg->address);
887         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
888                 vaddr = reg_res->sys_mem_vaddr;
889         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
890                 return cpc_read_ffh(cpu, reg, val);
891         else
892                 return acpi_os_read_memory((acpi_physical_address)reg->address,
893                                 val, reg->bit_width);
894
895         switch (reg->bit_width) {
896                 case 8:
897                         *val = readb_relaxed(vaddr);
898                         break;
899                 case 16:
900                         *val = readw_relaxed(vaddr);
901                         break;
902                 case 32:
903                         *val = readl_relaxed(vaddr);
904                         break;
905                 case 64:
906                         *val = readq_relaxed(vaddr);
907                         break;
908                 default:
909                         pr_debug("Error: Cannot read %u bit width from PCC\n",
910                                         reg->bit_width);
911                         ret_val = -EFAULT;
912         }
913
914         return ret_val;
915 }
916
917 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
918 {
919         int ret_val = 0;
920         void __iomem *vaddr = 0;
921         struct cpc_reg *reg = &reg_res->cpc_entry.reg;
922
923         if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM)
924                 vaddr = GET_PCC_VADDR(reg->address);
925         else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
926                 vaddr = reg_res->sys_mem_vaddr;
927         else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
928                 return cpc_write_ffh(cpu, reg, val);
929         else
930                 return acpi_os_write_memory((acpi_physical_address)reg->address,
931                                 val, reg->bit_width);
932
933         switch (reg->bit_width) {
934                 case 8:
935                         writeb_relaxed(val, vaddr);
936                         break;
937                 case 16:
938                         writew_relaxed(val, vaddr);
939                         break;
940                 case 32:
941                         writel_relaxed(val, vaddr);
942                         break;
943                 case 64:
944                         writeq_relaxed(val, vaddr);
945                         break;
946                 default:
947                         pr_debug("Error: Cannot write %u bit width to PCC\n",
948                                         reg->bit_width);
949                         ret_val = -EFAULT;
950                         break;
951         }
952
953         return ret_val;
954 }
955
956 /**
957  * cppc_get_perf_caps - Get a CPUs performance capabilities.
958  * @cpunum: CPU from which to get capabilities info.
959  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
960  *
961  * Return: 0 for success with perf_caps populated else -ERRNO.
962  */
963 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
964 {
965         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
966         struct cpc_register_resource *highest_reg, *lowest_reg, *ref_perf,
967                                                                  *nom_perf;
968         u64 high, low, nom;
969         int ret = 0, regs_in_pcc = 0;
970
971         if (!cpc_desc) {
972                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
973                 return -ENODEV;
974         }
975
976         highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
977         lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
978         ref_perf = &cpc_desc->cpc_regs[REFERENCE_PERF];
979         nom_perf = &cpc_desc->cpc_regs[NOMINAL_PERF];
980
981         /* Are any of the regs PCC ?*/
982         if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
983                 CPC_IN_PCC(ref_perf) || CPC_IN_PCC(nom_perf)) {
984                 regs_in_pcc = 1;
985                 down_write(&pcc_data.pcc_lock);
986                 /* Ring doorbell once to update PCC subspace */
987                 if (send_pcc_cmd(CMD_READ) < 0) {
988                         ret = -EIO;
989                         goto out_err;
990                 }
991         }
992
993         cpc_read(cpunum, highest_reg, &high);
994         perf_caps->highest_perf = high;
995
996         cpc_read(cpunum, lowest_reg, &low);
997         perf_caps->lowest_perf = low;
998
999         cpc_read(cpunum, nom_perf, &nom);
1000         perf_caps->nominal_perf = nom;
1001
1002         if (!high || !low || !nom)
1003                 ret = -EFAULT;
1004
1005 out_err:
1006         if (regs_in_pcc)
1007                 up_write(&pcc_data.pcc_lock);
1008         return ret;
1009 }
1010 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1011
1012 /**
1013  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1014  * @cpunum: CPU from which to read counters.
1015  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1016  *
1017  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1018  */
1019 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1020 {
1021         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1022         struct cpc_register_resource *delivered_reg, *reference_reg,
1023                 *ref_perf_reg, *ctr_wrap_reg;
1024         u64 delivered, reference, ref_perf, ctr_wrap_time;
1025         int ret = 0, regs_in_pcc = 0;
1026
1027         if (!cpc_desc) {
1028                 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1029                 return -ENODEV;
1030         }
1031
1032         delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1033         reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1034         ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1035         ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1036
1037         /*
1038          * If refernce perf register is not supported then we should
1039          * use the nominal perf value
1040          */
1041         if (!CPC_SUPPORTED(ref_perf_reg))
1042                 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1043
1044         /* Are any of the regs PCC ?*/
1045         if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1046                 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1047                 down_write(&pcc_data.pcc_lock);
1048                 regs_in_pcc = 1;
1049                 /* Ring doorbell once to update PCC subspace */
1050                 if (send_pcc_cmd(CMD_READ) < 0) {
1051                         ret = -EIO;
1052                         goto out_err;
1053                 }
1054         }
1055
1056         cpc_read(cpunum, delivered_reg, &delivered);
1057         cpc_read(cpunum, reference_reg, &reference);
1058         cpc_read(cpunum, ref_perf_reg, &ref_perf);
1059
1060         /*
1061          * Per spec, if ctr_wrap_time optional register is unsupported, then the
1062          * performance counters are assumed to never wrap during the lifetime of
1063          * platform
1064          */
1065         ctr_wrap_time = (u64)(~((u64)0));
1066         if (CPC_SUPPORTED(ctr_wrap_reg))
1067                 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1068
1069         if (!delivered || !reference || !ref_perf) {
1070                 ret = -EFAULT;
1071                 goto out_err;
1072         }
1073
1074         perf_fb_ctrs->delivered = delivered;
1075         perf_fb_ctrs->reference = reference;
1076         perf_fb_ctrs->reference_perf = ref_perf;
1077         perf_fb_ctrs->ctr_wrap_time = ctr_wrap_time;
1078 out_err:
1079         if (regs_in_pcc)
1080                 up_write(&pcc_data.pcc_lock);
1081         return ret;
1082 }
1083 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1084
1085 /**
1086  * cppc_set_perf - Set a CPUs performance controls.
1087  * @cpu: CPU for which to set performance controls.
1088  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1089  *
1090  * Return: 0 for success, -ERRNO otherwise.
1091  */
1092 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1093 {
1094         struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1095         struct cpc_register_resource *desired_reg;
1096         int ret = 0;
1097
1098         if (!cpc_desc) {
1099                 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1100                 return -ENODEV;
1101         }
1102
1103         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1104
1105         /*
1106          * This is Phase-I where we want to write to CPC registers
1107          * -> We want all CPUs to be able to execute this phase in parallel
1108          *
1109          * Since read_lock can be acquired by multiple CPUs simultaneously we
1110          * achieve that goal here
1111          */
1112         if (CPC_IN_PCC(desired_reg)) {
1113                 down_read(&pcc_data.pcc_lock);  /* BEGIN Phase-I */
1114                 if (pcc_data.platform_owns_pcc) {
1115                         ret = check_pcc_chan(false);
1116                         if (ret) {
1117                                 up_read(&pcc_data.pcc_lock);
1118                                 return ret;
1119                         }
1120                 }
1121                 /*
1122                  * Update the pending_write to make sure a PCC CMD_READ will not
1123                  * arrive and steal the channel during the switch to write lock
1124                  */
1125                 pcc_data.pending_pcc_write_cmd = true;
1126                 cpc_desc->write_cmd_id = pcc_data.pcc_write_cnt;
1127                 cpc_desc->write_cmd_status = 0;
1128         }
1129
1130         /*
1131          * Skip writing MIN/MAX until Linux knows how to come up with
1132          * useful values.
1133          */
1134         cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1135
1136         if (CPC_IN_PCC(desired_reg))
1137                 up_read(&pcc_data.pcc_lock);    /* END Phase-I */
1138         /*
1139          * This is Phase-II where we transfer the ownership of PCC to Platform
1140          *
1141          * Short Summary: Basically if we think of a group of cppc_set_perf
1142          * requests that happened in short overlapping interval. The last CPU to
1143          * come out of Phase-I will enter Phase-II and ring the doorbell.
1144          *
1145          * We have the following requirements for Phase-II:
1146          *     1. We want to execute Phase-II only when there are no CPUs
1147          * currently executing in Phase-I
1148          *     2. Once we start Phase-II we want to avoid all other CPUs from
1149          * entering Phase-I.
1150          *     3. We want only one CPU among all those who went through Phase-I
1151          * to run phase-II
1152          *
1153          * If write_trylock fails to get the lock and doesn't transfer the
1154          * PCC ownership to the platform, then one of the following will be TRUE
1155          *     1. There is at-least one CPU in Phase-I which will later execute
1156          * write_trylock, so the CPUs in Phase-I will be responsible for
1157          * executing the Phase-II.
1158          *     2. Some other CPU has beaten this CPU to successfully execute the
1159          * write_trylock and has already acquired the write_lock. We know for a
1160          * fact it(other CPU acquiring the write_lock) couldn't have happened
1161          * before this CPU's Phase-I as we held the read_lock.
1162          *     3. Some other CPU executing pcc CMD_READ has stolen the
1163          * down_write, in which case, send_pcc_cmd will check for pending
1164          * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1165          * So this CPU can be certain that its request will be delivered
1166          *    So in all cases, this CPU knows that its request will be delivered
1167          * by another CPU and can return
1168          *
1169          * After getting the down_write we still need to check for
1170          * pending_pcc_write_cmd to take care of the following scenario
1171          *    The thread running this code could be scheduled out between
1172          * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1173          * could have delivered the request to Platform by triggering the
1174          * doorbell and transferred the ownership of PCC to platform. So this
1175          * avoids triggering an unnecessary doorbell and more importantly before
1176          * triggering the doorbell it makes sure that the PCC channel ownership
1177          * is still with OSPM.
1178          *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1179          * there was a pcc CMD_READ waiting on down_write and it steals the lock
1180          * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1181          * case during a CMD_READ and if there are pending writes it delivers
1182          * the write command before servicing the read command
1183          */
1184         if (CPC_IN_PCC(desired_reg)) {
1185                 if (down_write_trylock(&pcc_data.pcc_lock)) {   /* BEGIN Phase-II */
1186                         /* Update only if there are pending write commands */
1187                         if (pcc_data.pending_pcc_write_cmd)
1188                                 send_pcc_cmd(CMD_WRITE);
1189                         up_write(&pcc_data.pcc_lock);           /* END Phase-II */
1190                 } else
1191                         /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1192                         wait_event(pcc_data.pcc_write_wait_q,
1193                                 cpc_desc->write_cmd_id != pcc_data.pcc_write_cnt);
1194
1195                 /* send_pcc_cmd updates the status in case of failure */
1196                 ret = cpc_desc->write_cmd_status;
1197         }
1198         return ret;
1199 }
1200 EXPORT_SYMBOL_GPL(cppc_set_perf);
1201
1202 /**
1203  * cppc_get_transition_latency - returns frequency transition latency in ns
1204  *
1205  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1206  * transition latency for perfromance change requests. The closest we have
1207  * is the timing information from the PCCT tables which provides the info
1208  * on the number and frequency of PCC commands the platform can handle.
1209  */
1210 unsigned int cppc_get_transition_latency(int cpu_num)
1211 {
1212         /*
1213          * Expected transition latency is based on the PCCT timing values
1214          * Below are definition from ACPI spec:
1215          * pcc_nominal- Expected latency to process a command, in microseconds
1216          * pcc_mpar   - The maximum number of periodic requests that the subspace
1217          *              channel can support, reported in commands per minute. 0
1218          *              indicates no limitation.
1219          * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1220          *              completion of a command before issuing the next command,
1221          *              in microseconds.
1222          */
1223         unsigned int latency_ns = 0;
1224         struct cpc_desc *cpc_desc;
1225         struct cpc_register_resource *desired_reg;
1226
1227         cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1228         if (!cpc_desc)
1229                 return CPUFREQ_ETERNAL;
1230
1231         desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1232         if (!CPC_IN_PCC(desired_reg))
1233                 return CPUFREQ_ETERNAL;
1234
1235         if (pcc_data.pcc_mpar)
1236                 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_data.pcc_mpar);
1237
1238         latency_ns = max(latency_ns, pcc_data.pcc_nominal * 1000);
1239         latency_ns = max(latency_ns, pcc_data.pcc_mrtt * 1000);
1240
1241         return latency_ns;
1242 }
1243 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);