e057aa8fafb022b9c10d88dcd3b1bba7fb997df6
[cascardo/linux.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
25  */
26 #define pr_fmt(fmt) "ACPI: " fmt
27
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h>       /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/syscore_ops.h>
35 #include <acpi/processor.h>
36
37 /*
38  * Include the apic definitions for x86 to have the APIC timer related defines
39  * available also for UP (on SMP it gets magically included via linux/smp.h).
40  * asm/acpi.h is not an option, as it would require more include magic. Also
41  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
42  */
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
46
47 #define ACPI_PROCESSOR_CLASS            "processor"
48 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
50
51 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
52 module_param(max_cstate, uint, 0000);
53 static unsigned int nocst __read_mostly;
54 module_param(nocst, uint, 0000);
55 static int bm_check_disable __read_mostly;
56 module_param(bm_check_disable, uint, 0000);
57
58 static unsigned int latency_factor __read_mostly = 2;
59 module_param(latency_factor, uint, 0644);
60
61 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
62
63 static DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX],
64                                                                 acpi_cstate);
65
66 static int disabled_by_idle_boot_param(void)
67 {
68         return boot_option_idle_override == IDLE_POLL ||
69                 boot_option_idle_override == IDLE_HALT;
70 }
71
72 /*
73  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
74  * For now disable this. Probably a bug somewhere else.
75  *
76  * To skip this limit, boot/load with a large max_cstate limit.
77  */
78 static int set_max_cstate(const struct dmi_system_id *id)
79 {
80         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
81                 return 0;
82
83         pr_notice("%s detected - limiting to C%ld max_cstate."
84                   " Override with \"processor.max_cstate=%d\"\n", id->ident,
85                   (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
86
87         max_cstate = (long)id->driver_data;
88
89         return 0;
90 }
91
92 static const struct dmi_system_id processor_power_dmi_table[] = {
93         { set_max_cstate, "Clevo 5600D", {
94           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
95           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
96          (void *)2},
97         { set_max_cstate, "Pavilion zv5000", {
98           DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
99           DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
100          (void *)1},
101         { set_max_cstate, "Asus L8400B", {
102           DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
103           DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
104          (void *)1},
105         {},
106 };
107
108
109 /*
110  * Callers should disable interrupts before the call and enable
111  * interrupts after return.
112  */
113 static void acpi_safe_halt(void)
114 {
115         if (!tif_need_resched()) {
116                 safe_halt();
117                 local_irq_disable();
118         }
119 }
120
121 #ifdef ARCH_APICTIMER_STOPS_ON_C3
122
123 /*
124  * Some BIOS implementations switch to C3 in the published C2 state.
125  * This seems to be a common problem on AMD boxen, but other vendors
126  * are affected too. We pick the most conservative approach: we assume
127  * that the local APIC stops in both C2 and C3.
128  */
129 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
130                                    struct acpi_processor_cx *cx)
131 {
132         struct acpi_processor_power *pwr = &pr->power;
133         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
134
135         if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
136                 return;
137
138         if (amd_e400_c1e_detected)
139                 type = ACPI_STATE_C1;
140
141         /*
142          * Check, if one of the previous states already marked the lapic
143          * unstable
144          */
145         if (pwr->timer_broadcast_on_state < state)
146                 return;
147
148         if (cx->type >= type)
149                 pr->power.timer_broadcast_on_state = state;
150 }
151
152 static void __lapic_timer_propagate_broadcast(void *arg)
153 {
154         struct acpi_processor *pr = (struct acpi_processor *) arg;
155
156         if (pr->power.timer_broadcast_on_state < INT_MAX)
157                 tick_broadcast_enable();
158         else
159                 tick_broadcast_disable();
160 }
161
162 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
163 {
164         smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
165                                  (void *)pr, 1);
166 }
167
168 /* Power(C) State timer broadcast control */
169 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
170                                        struct acpi_processor_cx *cx,
171                                        int broadcast)
172 {
173         int state = cx - pr->power.states;
174
175         if (state >= pr->power.timer_broadcast_on_state) {
176                 if (broadcast)
177                         tick_broadcast_enter();
178                 else
179                         tick_broadcast_exit();
180         }
181 }
182
183 #else
184
185 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
186                                    struct acpi_processor_cx *cstate) { }
187 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
188 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
189                                        struct acpi_processor_cx *cx,
190                                        int broadcast)
191 {
192 }
193
194 #endif
195
196 #ifdef CONFIG_PM_SLEEP
197 static u32 saved_bm_rld;
198
199 static int acpi_processor_suspend(void)
200 {
201         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &saved_bm_rld);
202         return 0;
203 }
204
205 static void acpi_processor_resume(void)
206 {
207         u32 resumed_bm_rld = 0;
208
209         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_RLD, &resumed_bm_rld);
210         if (resumed_bm_rld == saved_bm_rld)
211                 return;
212
213         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, saved_bm_rld);
214 }
215
216 static struct syscore_ops acpi_processor_syscore_ops = {
217         .suspend = acpi_processor_suspend,
218         .resume = acpi_processor_resume,
219 };
220
221 void acpi_processor_syscore_init(void)
222 {
223         register_syscore_ops(&acpi_processor_syscore_ops);
224 }
225
226 void acpi_processor_syscore_exit(void)
227 {
228         unregister_syscore_ops(&acpi_processor_syscore_ops);
229 }
230 #endif /* CONFIG_PM_SLEEP */
231
232 #if defined(CONFIG_X86)
233 static void tsc_check_state(int state)
234 {
235         switch (boot_cpu_data.x86_vendor) {
236         case X86_VENDOR_AMD:
237         case X86_VENDOR_INTEL:
238                 /*
239                  * AMD Fam10h TSC will tick in all
240                  * C/P/S0/S1 states when this bit is set.
241                  */
242                 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
243                         return;
244
245                 /*FALL THROUGH*/
246         default:
247                 /* TSC could halt in idle, so notify users */
248                 if (state > ACPI_STATE_C1)
249                         mark_tsc_unstable("TSC halts in idle");
250         }
251 }
252 #else
253 static void tsc_check_state(int state) { return; }
254 #endif
255
256 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
257 {
258
259         if (!pr->pblk)
260                 return -ENODEV;
261
262         /* if info is obtained from pblk/fadt, type equals state */
263         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
264         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
265
266 #ifndef CONFIG_HOTPLUG_CPU
267         /*
268          * Check for P_LVL2_UP flag before entering C2 and above on
269          * an SMP system.
270          */
271         if ((num_online_cpus() > 1) &&
272             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
273                 return -ENODEV;
274 #endif
275
276         /* determine C2 and C3 address from pblk */
277         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
278         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
279
280         /* determine latencies from FADT */
281         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
282         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
283
284         /*
285          * FADT specified C2 latency must be less than or equal to
286          * 100 microseconds.
287          */
288         if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
289                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
290                         "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
291                 /* invalidate C2 */
292                 pr->power.states[ACPI_STATE_C2].address = 0;
293         }
294
295         /*
296          * FADT supplied C3 latency must be less than or equal to
297          * 1000 microseconds.
298          */
299         if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
300                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
301                         "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
302                 /* invalidate C3 */
303                 pr->power.states[ACPI_STATE_C3].address = 0;
304         }
305
306         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
307                           "lvl2[0x%08x] lvl3[0x%08x]\n",
308                           pr->power.states[ACPI_STATE_C2].address,
309                           pr->power.states[ACPI_STATE_C3].address));
310
311         return 0;
312 }
313
314 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
315 {
316         if (!pr->power.states[ACPI_STATE_C1].valid) {
317                 /* set the first C-State to C1 */
318                 /* all processors need to support C1 */
319                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
320                 pr->power.states[ACPI_STATE_C1].valid = 1;
321                 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
322         }
323         /* the C0 state only exists as a filler in our array */
324         pr->power.states[ACPI_STATE_C0].valid = 1;
325         return 0;
326 }
327
328 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
329 {
330         acpi_status status;
331         u64 count;
332         int current_count;
333         int i, ret = 0;
334         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
335         union acpi_object *cst;
336
337
338         if (nocst)
339                 return -ENODEV;
340
341         current_count = 0;
342
343         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
344         if (ACPI_FAILURE(status)) {
345                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
346                 return -ENODEV;
347         }
348
349         cst = buffer.pointer;
350
351         /* There must be at least 2 elements */
352         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
353                 pr_err("not enough elements in _CST\n");
354                 ret = -EFAULT;
355                 goto end;
356         }
357
358         count = cst->package.elements[0].integer.value;
359
360         /* Validate number of power states. */
361         if (count < 1 || count != cst->package.count - 1) {
362                 pr_err("count given by _CST is not valid\n");
363                 ret = -EFAULT;
364                 goto end;
365         }
366
367         /* Tell driver that at least _CST is supported. */
368         pr->flags.has_cst = 1;
369
370         for (i = 1; i <= count; i++) {
371                 union acpi_object *element;
372                 union acpi_object *obj;
373                 struct acpi_power_register *reg;
374                 struct acpi_processor_cx cx;
375
376                 memset(&cx, 0, sizeof(cx));
377
378                 element = &(cst->package.elements[i]);
379                 if (element->type != ACPI_TYPE_PACKAGE)
380                         continue;
381
382                 if (element->package.count != 4)
383                         continue;
384
385                 obj = &(element->package.elements[0]);
386
387                 if (obj->type != ACPI_TYPE_BUFFER)
388                         continue;
389
390                 reg = (struct acpi_power_register *)obj->buffer.pointer;
391
392                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
393                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
394                         continue;
395
396                 /* There should be an easy way to extract an integer... */
397                 obj = &(element->package.elements[1]);
398                 if (obj->type != ACPI_TYPE_INTEGER)
399                         continue;
400
401                 cx.type = obj->integer.value;
402                 /*
403                  * Some buggy BIOSes won't list C1 in _CST -
404                  * Let acpi_processor_get_power_info_default() handle them later
405                  */
406                 if (i == 1 && cx.type != ACPI_STATE_C1)
407                         current_count++;
408
409                 cx.address = reg->address;
410                 cx.index = current_count + 1;
411
412                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
413                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
414                         if (acpi_processor_ffh_cstate_probe
415                                         (pr->id, &cx, reg) == 0) {
416                                 cx.entry_method = ACPI_CSTATE_FFH;
417                         } else if (cx.type == ACPI_STATE_C1) {
418                                 /*
419                                  * C1 is a special case where FIXED_HARDWARE
420                                  * can be handled in non-MWAIT way as well.
421                                  * In that case, save this _CST entry info.
422                                  * Otherwise, ignore this info and continue.
423                                  */
424                                 cx.entry_method = ACPI_CSTATE_HALT;
425                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
426                         } else {
427                                 continue;
428                         }
429                         if (cx.type == ACPI_STATE_C1 &&
430                             (boot_option_idle_override == IDLE_NOMWAIT)) {
431                                 /*
432                                  * In most cases the C1 space_id obtained from
433                                  * _CST object is FIXED_HARDWARE access mode.
434                                  * But when the option of idle=halt is added,
435                                  * the entry_method type should be changed from
436                                  * CSTATE_FFH to CSTATE_HALT.
437                                  * When the option of idle=nomwait is added,
438                                  * the C1 entry_method type should be
439                                  * CSTATE_HALT.
440                                  */
441                                 cx.entry_method = ACPI_CSTATE_HALT;
442                                 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
443                         }
444                 } else {
445                         snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
446                                  cx.address);
447                 }
448
449                 if (cx.type == ACPI_STATE_C1) {
450                         cx.valid = 1;
451                 }
452
453                 obj = &(element->package.elements[2]);
454                 if (obj->type != ACPI_TYPE_INTEGER)
455                         continue;
456
457                 cx.latency = obj->integer.value;
458
459                 obj = &(element->package.elements[3]);
460                 if (obj->type != ACPI_TYPE_INTEGER)
461                         continue;
462
463                 current_count++;
464                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
465
466                 /*
467                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
468                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
469                  */
470                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
471                         pr_warn("Limiting number of power states to max (%d)\n",
472                                 ACPI_PROCESSOR_MAX_POWER);
473                         pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
474                         break;
475                 }
476         }
477
478         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
479                           current_count));
480
481         /* Validate number of power states discovered */
482         if (current_count < 2)
483                 ret = -EFAULT;
484
485       end:
486         kfree(buffer.pointer);
487
488         return ret;
489 }
490
491 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
492                                            struct acpi_processor_cx *cx)
493 {
494         static int bm_check_flag = -1;
495         static int bm_control_flag = -1;
496
497
498         if (!cx->address)
499                 return;
500
501         /*
502          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
503          * DMA transfers are used by any ISA device to avoid livelock.
504          * Note that we could disable Type-F DMA (as recommended by
505          * the erratum), but this is known to disrupt certain ISA
506          * devices thus we take the conservative approach.
507          */
508         else if (errata.piix4.fdma) {
509                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
510                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
511                 return;
512         }
513
514         /* All the logic here assumes flags.bm_check is same across all CPUs */
515         if (bm_check_flag == -1) {
516                 /* Determine whether bm_check is needed based on CPU  */
517                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
518                 bm_check_flag = pr->flags.bm_check;
519                 bm_control_flag = pr->flags.bm_control;
520         } else {
521                 pr->flags.bm_check = bm_check_flag;
522                 pr->flags.bm_control = bm_control_flag;
523         }
524
525         if (pr->flags.bm_check) {
526                 if (!pr->flags.bm_control) {
527                         if (pr->flags.has_cst != 1) {
528                                 /* bus mastering control is necessary */
529                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
530                                         "C3 support requires BM control\n"));
531                                 return;
532                         } else {
533                                 /* Here we enter C3 without bus mastering */
534                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
535                                         "C3 support without BM control\n"));
536                         }
537                 }
538         } else {
539                 /*
540                  * WBINVD should be set in fadt, for C3 state to be
541                  * supported on when bm_check is not required.
542                  */
543                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
544                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
545                                           "Cache invalidation should work properly"
546                                           " for C3 to be enabled on SMP systems\n"));
547                         return;
548                 }
549         }
550
551         /*
552          * Otherwise we've met all of our C3 requirements.
553          * Normalize the C3 latency to expidite policy.  Enable
554          * checking of bus mastering status (bm_check) so we can
555          * use this in our C3 policy
556          */
557         cx->valid = 1;
558
559         /*
560          * On older chipsets, BM_RLD needs to be set
561          * in order for Bus Master activity to wake the
562          * system from C3.  Newer chipsets handle DMA
563          * during C3 automatically and BM_RLD is a NOP.
564          * In either case, the proper way to
565          * handle BM_RLD is to set it and leave it set.
566          */
567         acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
568
569         return;
570 }
571
572 static int acpi_processor_power_verify(struct acpi_processor *pr)
573 {
574         unsigned int i;
575         unsigned int working = 0;
576
577         pr->power.timer_broadcast_on_state = INT_MAX;
578
579         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
580                 struct acpi_processor_cx *cx = &pr->power.states[i];
581
582                 switch (cx->type) {
583                 case ACPI_STATE_C1:
584                         cx->valid = 1;
585                         break;
586
587                 case ACPI_STATE_C2:
588                         if (!cx->address)
589                                 break;
590                         cx->valid = 1;
591                         break;
592
593                 case ACPI_STATE_C3:
594                         acpi_processor_power_verify_c3(pr, cx);
595                         break;
596                 }
597                 if (!cx->valid)
598                         continue;
599
600                 lapic_timer_check_state(i, pr, cx);
601                 tsc_check_state(cx->type);
602                 working++;
603         }
604
605         lapic_timer_propagate_broadcast(pr);
606
607         return (working);
608 }
609
610 static int acpi_processor_get_power_info(struct acpi_processor *pr)
611 {
612         unsigned int i;
613         int result;
614
615
616         /* NOTE: the idle thread may not be running while calling
617          * this function */
618
619         /* Zero initialize all the C-states info. */
620         memset(pr->power.states, 0, sizeof(pr->power.states));
621
622         result = acpi_processor_get_power_info_cst(pr);
623         if (result == -ENODEV)
624                 result = acpi_processor_get_power_info_fadt(pr);
625
626         if (result)
627                 return result;
628
629         acpi_processor_get_power_info_default(pr);
630
631         pr->power.count = acpi_processor_power_verify(pr);
632
633         /*
634          * if one state of type C2 or C3 is available, mark this
635          * CPU as being "idle manageable"
636          */
637         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
638                 if (pr->power.states[i].valid) {
639                         pr->power.count = i;
640                         if (pr->power.states[i].type >= ACPI_STATE_C2)
641                                 pr->flags.power = 1;
642                 }
643         }
644
645         return 0;
646 }
647
648 /**
649  * acpi_idle_bm_check - checks if bus master activity was detected
650  */
651 static int acpi_idle_bm_check(void)
652 {
653         u32 bm_status = 0;
654
655         if (bm_check_disable)
656                 return 0;
657
658         acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
659         if (bm_status)
660                 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
661         /*
662          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
663          * the true state of bus mastering activity; forcing us to
664          * manually check the BMIDEA bit of each IDE channel.
665          */
666         else if (errata.piix4.bmisx) {
667                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
668                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
669                         bm_status = 1;
670         }
671         return bm_status;
672 }
673
674 /**
675  * acpi_idle_do_entry - enter idle state using the appropriate method
676  * @cx: cstate data
677  *
678  * Caller disables interrupt before call and enables interrupt after return.
679  */
680 static void acpi_idle_do_entry(struct acpi_processor_cx *cx)
681 {
682         if (cx->entry_method == ACPI_CSTATE_FFH) {
683                 /* Call into architectural FFH based C-state */
684                 acpi_processor_ffh_cstate_enter(cx);
685         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
686                 acpi_safe_halt();
687         } else {
688                 /* IO port based C-state */
689                 inb(cx->address);
690                 /* Dummy wait op - must do something useless after P_LVL2 read
691                    because chipsets cannot guarantee that STPCLK# signal
692                    gets asserted in time to freeze execution properly. */
693                 inl(acpi_gbl_FADT.xpm_timer_block.address);
694         }
695 }
696
697 /**
698  * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
699  * @dev: the target CPU
700  * @index: the index of suggested state
701  */
702 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
703 {
704         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
705
706         ACPI_FLUSH_CPU_CACHE();
707
708         while (1) {
709
710                 if (cx->entry_method == ACPI_CSTATE_HALT)
711                         safe_halt();
712                 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
713                         inb(cx->address);
714                         /* See comment in acpi_idle_do_entry() */
715                         inl(acpi_gbl_FADT.xpm_timer_block.address);
716                 } else
717                         return -ENODEV;
718         }
719
720         /* Never reached */
721         return 0;
722 }
723
724 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
725 {
726         return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
727                 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
728 }
729
730 static int c3_cpu_count;
731 static DEFINE_RAW_SPINLOCK(c3_lock);
732
733 /**
734  * acpi_idle_enter_bm - enters C3 with proper BM handling
735  * @pr: Target processor
736  * @cx: Target state context
737  * @timer_bc: Whether or not to change timer mode to broadcast
738  */
739 static void acpi_idle_enter_bm(struct acpi_processor *pr,
740                                struct acpi_processor_cx *cx, bool timer_bc)
741 {
742         acpi_unlazy_tlb(smp_processor_id());
743
744         /*
745          * Must be done before busmaster disable as we might need to
746          * access HPET !
747          */
748         if (timer_bc)
749                 lapic_timer_state_broadcast(pr, cx, 1);
750
751         /*
752          * disable bus master
753          * bm_check implies we need ARB_DIS
754          * bm_control implies whether we can do ARB_DIS
755          *
756          * That leaves a case where bm_check is set and bm_control is
757          * not set. In that case we cannot do much, we enter C3
758          * without doing anything.
759          */
760         if (pr->flags.bm_control) {
761                 raw_spin_lock(&c3_lock);
762                 c3_cpu_count++;
763                 /* Disable bus master arbitration when all CPUs are in C3 */
764                 if (c3_cpu_count == num_online_cpus())
765                         acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
766                 raw_spin_unlock(&c3_lock);
767         }
768
769         acpi_idle_do_entry(cx);
770
771         /* Re-enable bus master arbitration */
772         if (pr->flags.bm_control) {
773                 raw_spin_lock(&c3_lock);
774                 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
775                 c3_cpu_count--;
776                 raw_spin_unlock(&c3_lock);
777         }
778
779         if (timer_bc)
780                 lapic_timer_state_broadcast(pr, cx, 0);
781 }
782
783 static int acpi_idle_enter(struct cpuidle_device *dev,
784                            struct cpuidle_driver *drv, int index)
785 {
786         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
787         struct acpi_processor *pr;
788
789         pr = __this_cpu_read(processors);
790         if (unlikely(!pr))
791                 return -EINVAL;
792
793         if (cx->type != ACPI_STATE_C1) {
794                 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
795                         index = CPUIDLE_DRIVER_STATE_START;
796                         cx = per_cpu(acpi_cstate[index], dev->cpu);
797                 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
798                         if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
799                                 acpi_idle_enter_bm(pr, cx, true);
800                                 return index;
801                         } else if (drv->safe_state_index >= 0) {
802                                 index = drv->safe_state_index;
803                                 cx = per_cpu(acpi_cstate[index], dev->cpu);
804                         } else {
805                                 acpi_safe_halt();
806                                 return -EBUSY;
807                         }
808                 }
809         }
810
811         lapic_timer_state_broadcast(pr, cx, 1);
812
813         if (cx->type == ACPI_STATE_C3)
814                 ACPI_FLUSH_CPU_CACHE();
815
816         acpi_idle_do_entry(cx);
817
818         lapic_timer_state_broadcast(pr, cx, 0);
819
820         return index;
821 }
822
823 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
824                                    struct cpuidle_driver *drv, int index)
825 {
826         struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
827
828         if (cx->type == ACPI_STATE_C3) {
829                 struct acpi_processor *pr = __this_cpu_read(processors);
830
831                 if (unlikely(!pr))
832                         return;
833
834                 if (pr->flags.bm_check) {
835                         acpi_idle_enter_bm(pr, cx, false);
836                         return;
837                 } else {
838                         ACPI_FLUSH_CPU_CACHE();
839                 }
840         }
841         acpi_idle_do_entry(cx);
842 }
843
844 struct cpuidle_driver acpi_idle_driver = {
845         .name =         "acpi_idle",
846         .owner =        THIS_MODULE,
847 };
848
849 /**
850  * acpi_processor_setup_cpuidle_cx - prepares and configures CPUIDLE
851  * device i.e. per-cpu data
852  *
853  * @pr: the ACPI processor
854  * @dev : the cpuidle device
855  */
856 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
857                                            struct cpuidle_device *dev)
858 {
859         int i, count = CPUIDLE_DRIVER_STATE_START;
860         struct acpi_processor_cx *cx;
861
862         if (!pr->flags.power_setup_done)
863                 return -EINVAL;
864
865         if (pr->flags.power == 0) {
866                 return -EINVAL;
867         }
868
869         if (!dev)
870                 return -EINVAL;
871
872         dev->cpu = pr->id;
873
874         if (max_cstate == 0)
875                 max_cstate = 1;
876
877         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
878                 cx = &pr->power.states[i];
879
880                 if (!cx->valid)
881                         continue;
882
883                 per_cpu(acpi_cstate[count], dev->cpu) = cx;
884
885                 count++;
886                 if (count == CPUIDLE_STATE_MAX)
887                         break;
888         }
889
890         if (!count)
891                 return -EINVAL;
892
893         return 0;
894 }
895
896 /**
897  * acpi_processor_setup_cpuidle states- prepares and configures cpuidle
898  * global state data i.e. idle routines
899  *
900  * @pr: the ACPI processor
901  */
902 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
903 {
904         int i, count = CPUIDLE_DRIVER_STATE_START;
905         struct acpi_processor_cx *cx;
906         struct cpuidle_state *state;
907         struct cpuidle_driver *drv = &acpi_idle_driver;
908
909         if (!pr->flags.power_setup_done)
910                 return -EINVAL;
911
912         if (pr->flags.power == 0)
913                 return -EINVAL;
914
915         drv->safe_state_index = -1;
916         for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
917                 drv->states[i].name[0] = '\0';
918                 drv->states[i].desc[0] = '\0';
919         }
920
921         if (max_cstate == 0)
922                 max_cstate = 1;
923
924         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
925                 cx = &pr->power.states[i];
926
927                 if (!cx->valid)
928                         continue;
929
930                 state = &drv->states[count];
931                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
932                 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
933                 state->exit_latency = cx->latency;
934                 state->target_residency = cx->latency * latency_factor;
935                 state->enter = acpi_idle_enter;
936
937                 state->flags = 0;
938                 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
939                         state->enter_dead = acpi_idle_play_dead;
940                         drv->safe_state_index = count;
941                 }
942                 /*
943                  * Halt-induced C1 is not good for ->enter_freeze, because it
944                  * re-enables interrupts on exit.  Moreover, C1 is generally not
945                  * particularly interesting from the suspend-to-idle angle, so
946                  * avoid C1 and the situations in which we may need to fall back
947                  * to it altogether.
948                  */
949                 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
950                         state->enter_freeze = acpi_idle_enter_freeze;
951
952                 count++;
953                 if (count == CPUIDLE_STATE_MAX)
954                         break;
955         }
956
957         drv->state_count = count;
958
959         if (!count)
960                 return -EINVAL;
961
962         return 0;
963 }
964
965 int acpi_processor_hotplug(struct acpi_processor *pr)
966 {
967         int ret = 0;
968         struct cpuidle_device *dev;
969
970         if (disabled_by_idle_boot_param())
971                 return 0;
972
973         if (nocst)
974                 return -ENODEV;
975
976         if (!pr->flags.power_setup_done)
977                 return -ENODEV;
978
979         dev = per_cpu(acpi_cpuidle_device, pr->id);
980         cpuidle_pause_and_lock();
981         cpuidle_disable_device(dev);
982         acpi_processor_get_power_info(pr);
983         if (pr->flags.power) {
984                 acpi_processor_setup_cpuidle_cx(pr, dev);
985                 ret = cpuidle_enable_device(dev);
986         }
987         cpuidle_resume_and_unlock();
988
989         return ret;
990 }
991
992 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
993 {
994         int cpu;
995         struct acpi_processor *_pr;
996         struct cpuidle_device *dev;
997
998         if (disabled_by_idle_boot_param())
999                 return 0;
1000
1001         if (nocst)
1002                 return -ENODEV;
1003
1004         if (!pr->flags.power_setup_done)
1005                 return -ENODEV;
1006
1007         /*
1008          * FIXME:  Design the ACPI notification to make it once per
1009          * system instead of once per-cpu.  This condition is a hack
1010          * to make the code that updates C-States be called once.
1011          */
1012
1013         if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1014
1015                 /* Protect against cpu-hotplug */
1016                 get_online_cpus();
1017                 cpuidle_pause_and_lock();
1018
1019                 /* Disable all cpuidle devices */
1020                 for_each_online_cpu(cpu) {
1021                         _pr = per_cpu(processors, cpu);
1022                         if (!_pr || !_pr->flags.power_setup_done)
1023                                 continue;
1024                         dev = per_cpu(acpi_cpuidle_device, cpu);
1025                         cpuidle_disable_device(dev);
1026                 }
1027
1028                 /* Populate Updated C-state information */
1029                 acpi_processor_get_power_info(pr);
1030                 acpi_processor_setup_cpuidle_states(pr);
1031
1032                 /* Enable all cpuidle devices */
1033                 for_each_online_cpu(cpu) {
1034                         _pr = per_cpu(processors, cpu);
1035                         if (!_pr || !_pr->flags.power_setup_done)
1036                                 continue;
1037                         acpi_processor_get_power_info(_pr);
1038                         if (_pr->flags.power) {
1039                                 dev = per_cpu(acpi_cpuidle_device, cpu);
1040                                 acpi_processor_setup_cpuidle_cx(_pr, dev);
1041                                 cpuidle_enable_device(dev);
1042                         }
1043                 }
1044                 cpuidle_resume_and_unlock();
1045                 put_online_cpus();
1046         }
1047
1048         return 0;
1049 }
1050
1051 static int acpi_processor_registered;
1052
1053 int acpi_processor_power_init(struct acpi_processor *pr)
1054 {
1055         acpi_status status;
1056         int retval;
1057         struct cpuidle_device *dev;
1058         static int first_run;
1059
1060         if (disabled_by_idle_boot_param())
1061                 return 0;
1062
1063         if (!first_run) {
1064                 dmi_check_system(processor_power_dmi_table);
1065                 max_cstate = acpi_processor_cstate_check(max_cstate);
1066                 if (max_cstate < ACPI_C_STATES_MAX)
1067                         printk(KERN_NOTICE
1068                                "ACPI: processor limited to max C-state %d\n",
1069                                max_cstate);
1070                 first_run++;
1071         }
1072
1073         if (acpi_gbl_FADT.cst_control && !nocst) {
1074                 status =
1075                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1076                 if (ACPI_FAILURE(status)) {
1077                         ACPI_EXCEPTION((AE_INFO, status,
1078                                         "Notifying BIOS of _CST ability failed"));
1079                 }
1080         }
1081
1082         acpi_processor_get_power_info(pr);
1083         pr->flags.power_setup_done = 1;
1084
1085         /*
1086          * Install the idle handler if processor power management is supported.
1087          * Note that we use previously set idle handler will be used on
1088          * platforms that only support C1.
1089          */
1090         if (pr->flags.power) {
1091                 /* Register acpi_idle_driver if not already registered */
1092                 if (!acpi_processor_registered) {
1093                         acpi_processor_setup_cpuidle_states(pr);
1094                         retval = cpuidle_register_driver(&acpi_idle_driver);
1095                         if (retval)
1096                                 return retval;
1097                         pr_debug("%s registered with cpuidle\n",
1098                                  acpi_idle_driver.name);
1099                 }
1100
1101                 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1102                 if (!dev)
1103                         return -ENOMEM;
1104                 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1105
1106                 acpi_processor_setup_cpuidle_cx(pr, dev);
1107
1108                 /* Register per-cpu cpuidle_device. Cpuidle driver
1109                  * must already be registered before registering device
1110                  */
1111                 retval = cpuidle_register_device(dev);
1112                 if (retval) {
1113                         if (acpi_processor_registered == 0)
1114                                 cpuidle_unregister_driver(&acpi_idle_driver);
1115                         return retval;
1116                 }
1117                 acpi_processor_registered++;
1118         }
1119         return 0;
1120 }
1121
1122 int acpi_processor_power_exit(struct acpi_processor *pr)
1123 {
1124         struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1125
1126         if (disabled_by_idle_boot_param())
1127                 return 0;
1128
1129         if (pr->flags.power) {
1130                 cpuidle_unregister_device(dev);
1131                 acpi_processor_registered--;
1132                 if (acpi_processor_registered == 0)
1133                         cpuidle_unregister_driver(&acpi_idle_driver);
1134         }
1135
1136         pr->flags.power_setup_done = 0;
1137         return 0;
1138 }