PM / OPP: Don't support OPP if it provides supported-hw but platform does not
[cascardo/linux.git] / drivers / base / regmap / regmap.c
1 /*
2  * Register map access API
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/of.h>
19 #include <linux/rbtree.h>
20 #include <linux/sched.h>
21 #include <linux/delay.h>
22 #include <linux/log2.h>
23
24 #define CREATE_TRACE_POINTS
25 #include "trace.h"
26
27 #include "internal.h"
28
29 /*
30  * Sometimes for failures during very early init the trace
31  * infrastructure isn't available early enough to be used.  For this
32  * sort of problem defining LOG_DEVICE will add printks for basic
33  * register I/O on a specific device.
34  */
35 #undef LOG_DEVICE
36
37 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
38                                unsigned int mask, unsigned int val,
39                                bool *change, bool force_write);
40
41 static int _regmap_bus_reg_read(void *context, unsigned int reg,
42                                 unsigned int *val);
43 static int _regmap_bus_read(void *context, unsigned int reg,
44                             unsigned int *val);
45 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
46                                        unsigned int val);
47 static int _regmap_bus_reg_write(void *context, unsigned int reg,
48                                  unsigned int val);
49 static int _regmap_bus_raw_write(void *context, unsigned int reg,
50                                  unsigned int val);
51
52 bool regmap_reg_in_ranges(unsigned int reg,
53                           const struct regmap_range *ranges,
54                           unsigned int nranges)
55 {
56         const struct regmap_range *r;
57         int i;
58
59         for (i = 0, r = ranges; i < nranges; i++, r++)
60                 if (regmap_reg_in_range(reg, r))
61                         return true;
62         return false;
63 }
64 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
65
66 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
67                               const struct regmap_access_table *table)
68 {
69         /* Check "no ranges" first */
70         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
71                 return false;
72
73         /* In case zero "yes ranges" are supplied, any reg is OK */
74         if (!table->n_yes_ranges)
75                 return true;
76
77         return regmap_reg_in_ranges(reg, table->yes_ranges,
78                                     table->n_yes_ranges);
79 }
80 EXPORT_SYMBOL_GPL(regmap_check_range_table);
81
82 bool regmap_writeable(struct regmap *map, unsigned int reg)
83 {
84         if (map->max_register && reg > map->max_register)
85                 return false;
86
87         if (map->writeable_reg)
88                 return map->writeable_reg(map->dev, reg);
89
90         if (map->wr_table)
91                 return regmap_check_range_table(map, reg, map->wr_table);
92
93         return true;
94 }
95
96 bool regmap_readable(struct regmap *map, unsigned int reg)
97 {
98         if (!map->reg_read)
99                 return false;
100
101         if (map->max_register && reg > map->max_register)
102                 return false;
103
104         if (map->format.format_write)
105                 return false;
106
107         if (map->readable_reg)
108                 return map->readable_reg(map->dev, reg);
109
110         if (map->rd_table)
111                 return regmap_check_range_table(map, reg, map->rd_table);
112
113         return true;
114 }
115
116 bool regmap_volatile(struct regmap *map, unsigned int reg)
117 {
118         if (!map->format.format_write && !regmap_readable(map, reg))
119                 return false;
120
121         if (map->volatile_reg)
122                 return map->volatile_reg(map->dev, reg);
123
124         if (map->volatile_table)
125                 return regmap_check_range_table(map, reg, map->volatile_table);
126
127         if (map->cache_ops)
128                 return false;
129         else
130                 return true;
131 }
132
133 bool regmap_precious(struct regmap *map, unsigned int reg)
134 {
135         if (!regmap_readable(map, reg))
136                 return false;
137
138         if (map->precious_reg)
139                 return map->precious_reg(map->dev, reg);
140
141         if (map->precious_table)
142                 return regmap_check_range_table(map, reg, map->precious_table);
143
144         return false;
145 }
146
147 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
148         size_t num)
149 {
150         unsigned int i;
151
152         for (i = 0; i < num; i++)
153                 if (!regmap_volatile(map, reg + i))
154                         return false;
155
156         return true;
157 }
158
159 static void regmap_format_2_6_write(struct regmap *map,
160                                      unsigned int reg, unsigned int val)
161 {
162         u8 *out = map->work_buf;
163
164         *out = (reg << 6) | val;
165 }
166
167 static void regmap_format_4_12_write(struct regmap *map,
168                                      unsigned int reg, unsigned int val)
169 {
170         __be16 *out = map->work_buf;
171         *out = cpu_to_be16((reg << 12) | val);
172 }
173
174 static void regmap_format_7_9_write(struct regmap *map,
175                                     unsigned int reg, unsigned int val)
176 {
177         __be16 *out = map->work_buf;
178         *out = cpu_to_be16((reg << 9) | val);
179 }
180
181 static void regmap_format_10_14_write(struct regmap *map,
182                                     unsigned int reg, unsigned int val)
183 {
184         u8 *out = map->work_buf;
185
186         out[2] = val;
187         out[1] = (val >> 8) | (reg << 6);
188         out[0] = reg >> 2;
189 }
190
191 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
192 {
193         u8 *b = buf;
194
195         b[0] = val << shift;
196 }
197
198 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
199 {
200         __be16 *b = buf;
201
202         b[0] = cpu_to_be16(val << shift);
203 }
204
205 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
206 {
207         __le16 *b = buf;
208
209         b[0] = cpu_to_le16(val << shift);
210 }
211
212 static void regmap_format_16_native(void *buf, unsigned int val,
213                                     unsigned int shift)
214 {
215         *(u16 *)buf = val << shift;
216 }
217
218 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
219 {
220         u8 *b = buf;
221
222         val <<= shift;
223
224         b[0] = val >> 16;
225         b[1] = val >> 8;
226         b[2] = val;
227 }
228
229 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
230 {
231         __be32 *b = buf;
232
233         b[0] = cpu_to_be32(val << shift);
234 }
235
236 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
237 {
238         __le32 *b = buf;
239
240         b[0] = cpu_to_le32(val << shift);
241 }
242
243 static void regmap_format_32_native(void *buf, unsigned int val,
244                                     unsigned int shift)
245 {
246         *(u32 *)buf = val << shift;
247 }
248
249 #ifdef CONFIG_64BIT
250 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
251 {
252         __be64 *b = buf;
253
254         b[0] = cpu_to_be64((u64)val << shift);
255 }
256
257 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
258 {
259         __le64 *b = buf;
260
261         b[0] = cpu_to_le64((u64)val << shift);
262 }
263
264 static void regmap_format_64_native(void *buf, unsigned int val,
265                                     unsigned int shift)
266 {
267         *(u64 *)buf = (u64)val << shift;
268 }
269 #endif
270
271 static void regmap_parse_inplace_noop(void *buf)
272 {
273 }
274
275 static unsigned int regmap_parse_8(const void *buf)
276 {
277         const u8 *b = buf;
278
279         return b[0];
280 }
281
282 static unsigned int regmap_parse_16_be(const void *buf)
283 {
284         const __be16 *b = buf;
285
286         return be16_to_cpu(b[0]);
287 }
288
289 static unsigned int regmap_parse_16_le(const void *buf)
290 {
291         const __le16 *b = buf;
292
293         return le16_to_cpu(b[0]);
294 }
295
296 static void regmap_parse_16_be_inplace(void *buf)
297 {
298         __be16 *b = buf;
299
300         b[0] = be16_to_cpu(b[0]);
301 }
302
303 static void regmap_parse_16_le_inplace(void *buf)
304 {
305         __le16 *b = buf;
306
307         b[0] = le16_to_cpu(b[0]);
308 }
309
310 static unsigned int regmap_parse_16_native(const void *buf)
311 {
312         return *(u16 *)buf;
313 }
314
315 static unsigned int regmap_parse_24(const void *buf)
316 {
317         const u8 *b = buf;
318         unsigned int ret = b[2];
319         ret |= ((unsigned int)b[1]) << 8;
320         ret |= ((unsigned int)b[0]) << 16;
321
322         return ret;
323 }
324
325 static unsigned int regmap_parse_32_be(const void *buf)
326 {
327         const __be32 *b = buf;
328
329         return be32_to_cpu(b[0]);
330 }
331
332 static unsigned int regmap_parse_32_le(const void *buf)
333 {
334         const __le32 *b = buf;
335
336         return le32_to_cpu(b[0]);
337 }
338
339 static void regmap_parse_32_be_inplace(void *buf)
340 {
341         __be32 *b = buf;
342
343         b[0] = be32_to_cpu(b[0]);
344 }
345
346 static void regmap_parse_32_le_inplace(void *buf)
347 {
348         __le32 *b = buf;
349
350         b[0] = le32_to_cpu(b[0]);
351 }
352
353 static unsigned int regmap_parse_32_native(const void *buf)
354 {
355         return *(u32 *)buf;
356 }
357
358 #ifdef CONFIG_64BIT
359 static unsigned int regmap_parse_64_be(const void *buf)
360 {
361         const __be64 *b = buf;
362
363         return be64_to_cpu(b[0]);
364 }
365
366 static unsigned int regmap_parse_64_le(const void *buf)
367 {
368         const __le64 *b = buf;
369
370         return le64_to_cpu(b[0]);
371 }
372
373 static void regmap_parse_64_be_inplace(void *buf)
374 {
375         __be64 *b = buf;
376
377         b[0] = be64_to_cpu(b[0]);
378 }
379
380 static void regmap_parse_64_le_inplace(void *buf)
381 {
382         __le64 *b = buf;
383
384         b[0] = le64_to_cpu(b[0]);
385 }
386
387 static unsigned int regmap_parse_64_native(const void *buf)
388 {
389         return *(u64 *)buf;
390 }
391 #endif
392
393 static void regmap_lock_mutex(void *__map)
394 {
395         struct regmap *map = __map;
396         mutex_lock(&map->mutex);
397 }
398
399 static void regmap_unlock_mutex(void *__map)
400 {
401         struct regmap *map = __map;
402         mutex_unlock(&map->mutex);
403 }
404
405 static void regmap_lock_spinlock(void *__map)
406 __acquires(&map->spinlock)
407 {
408         struct regmap *map = __map;
409         unsigned long flags;
410
411         spin_lock_irqsave(&map->spinlock, flags);
412         map->spinlock_flags = flags;
413 }
414
415 static void regmap_unlock_spinlock(void *__map)
416 __releases(&map->spinlock)
417 {
418         struct regmap *map = __map;
419         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
420 }
421
422 static void dev_get_regmap_release(struct device *dev, void *res)
423 {
424         /*
425          * We don't actually have anything to do here; the goal here
426          * is not to manage the regmap but to provide a simple way to
427          * get the regmap back given a struct device.
428          */
429 }
430
431 static bool _regmap_range_add(struct regmap *map,
432                               struct regmap_range_node *data)
433 {
434         struct rb_root *root = &map->range_tree;
435         struct rb_node **new = &(root->rb_node), *parent = NULL;
436
437         while (*new) {
438                 struct regmap_range_node *this =
439                         container_of(*new, struct regmap_range_node, node);
440
441                 parent = *new;
442                 if (data->range_max < this->range_min)
443                         new = &((*new)->rb_left);
444                 else if (data->range_min > this->range_max)
445                         new = &((*new)->rb_right);
446                 else
447                         return false;
448         }
449
450         rb_link_node(&data->node, parent, new);
451         rb_insert_color(&data->node, root);
452
453         return true;
454 }
455
456 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
457                                                       unsigned int reg)
458 {
459         struct rb_node *node = map->range_tree.rb_node;
460
461         while (node) {
462                 struct regmap_range_node *this =
463                         container_of(node, struct regmap_range_node, node);
464
465                 if (reg < this->range_min)
466                         node = node->rb_left;
467                 else if (reg > this->range_max)
468                         node = node->rb_right;
469                 else
470                         return this;
471         }
472
473         return NULL;
474 }
475
476 static void regmap_range_exit(struct regmap *map)
477 {
478         struct rb_node *next;
479         struct regmap_range_node *range_node;
480
481         next = rb_first(&map->range_tree);
482         while (next) {
483                 range_node = rb_entry(next, struct regmap_range_node, node);
484                 next = rb_next(&range_node->node);
485                 rb_erase(&range_node->node, &map->range_tree);
486                 kfree(range_node);
487         }
488
489         kfree(map->selector_work_buf);
490 }
491
492 int regmap_attach_dev(struct device *dev, struct regmap *map,
493                       const struct regmap_config *config)
494 {
495         struct regmap **m;
496
497         map->dev = dev;
498
499         regmap_debugfs_init(map, config->name);
500
501         /* Add a devres resource for dev_get_regmap() */
502         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
503         if (!m) {
504                 regmap_debugfs_exit(map);
505                 return -ENOMEM;
506         }
507         *m = map;
508         devres_add(dev, m);
509
510         return 0;
511 }
512 EXPORT_SYMBOL_GPL(regmap_attach_dev);
513
514 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
515                                         const struct regmap_config *config)
516 {
517         enum regmap_endian endian;
518
519         /* Retrieve the endianness specification from the regmap config */
520         endian = config->reg_format_endian;
521
522         /* If the regmap config specified a non-default value, use that */
523         if (endian != REGMAP_ENDIAN_DEFAULT)
524                 return endian;
525
526         /* Retrieve the endianness specification from the bus config */
527         if (bus && bus->reg_format_endian_default)
528                 endian = bus->reg_format_endian_default;
529
530         /* If the bus specified a non-default value, use that */
531         if (endian != REGMAP_ENDIAN_DEFAULT)
532                 return endian;
533
534         /* Use this if no other value was found */
535         return REGMAP_ENDIAN_BIG;
536 }
537
538 enum regmap_endian regmap_get_val_endian(struct device *dev,
539                                          const struct regmap_bus *bus,
540                                          const struct regmap_config *config)
541 {
542         struct device_node *np;
543         enum regmap_endian endian;
544
545         /* Retrieve the endianness specification from the regmap config */
546         endian = config->val_format_endian;
547
548         /* If the regmap config specified a non-default value, use that */
549         if (endian != REGMAP_ENDIAN_DEFAULT)
550                 return endian;
551
552         /* If the dev and dev->of_node exist try to get endianness from DT */
553         if (dev && dev->of_node) {
554                 np = dev->of_node;
555
556                 /* Parse the device's DT node for an endianness specification */
557                 if (of_property_read_bool(np, "big-endian"))
558                         endian = REGMAP_ENDIAN_BIG;
559                 else if (of_property_read_bool(np, "little-endian"))
560                         endian = REGMAP_ENDIAN_LITTLE;
561                 else if (of_property_read_bool(np, "native-endian"))
562                         endian = REGMAP_ENDIAN_NATIVE;
563
564                 /* If the endianness was specified in DT, use that */
565                 if (endian != REGMAP_ENDIAN_DEFAULT)
566                         return endian;
567         }
568
569         /* Retrieve the endianness specification from the bus config */
570         if (bus && bus->val_format_endian_default)
571                 endian = bus->val_format_endian_default;
572
573         /* If the bus specified a non-default value, use that */
574         if (endian != REGMAP_ENDIAN_DEFAULT)
575                 return endian;
576
577         /* Use this if no other value was found */
578         return REGMAP_ENDIAN_BIG;
579 }
580 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
581
582 struct regmap *__regmap_init(struct device *dev,
583                              const struct regmap_bus *bus,
584                              void *bus_context,
585                              const struct regmap_config *config,
586                              struct lock_class_key *lock_key,
587                              const char *lock_name)
588 {
589         struct regmap *map;
590         int ret = -EINVAL;
591         enum regmap_endian reg_endian, val_endian;
592         int i, j;
593
594         if (!config)
595                 goto err;
596
597         map = kzalloc(sizeof(*map), GFP_KERNEL);
598         if (map == NULL) {
599                 ret = -ENOMEM;
600                 goto err;
601         }
602
603         if (config->lock && config->unlock) {
604                 map->lock = config->lock;
605                 map->unlock = config->unlock;
606                 map->lock_arg = config->lock_arg;
607         } else {
608                 if ((bus && bus->fast_io) ||
609                     config->fast_io) {
610                         spin_lock_init(&map->spinlock);
611                         map->lock = regmap_lock_spinlock;
612                         map->unlock = regmap_unlock_spinlock;
613                         lockdep_set_class_and_name(&map->spinlock,
614                                                    lock_key, lock_name);
615                 } else {
616                         mutex_init(&map->mutex);
617                         map->lock = regmap_lock_mutex;
618                         map->unlock = regmap_unlock_mutex;
619                         lockdep_set_class_and_name(&map->mutex,
620                                                    lock_key, lock_name);
621                 }
622                 map->lock_arg = map;
623         }
624
625         /*
626          * When we write in fast-paths with regmap_bulk_write() don't allocate
627          * scratch buffers with sleeping allocations.
628          */
629         if ((bus && bus->fast_io) || config->fast_io)
630                 map->alloc_flags = GFP_ATOMIC;
631         else
632                 map->alloc_flags = GFP_KERNEL;
633
634         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
635         map->format.pad_bytes = config->pad_bits / 8;
636         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
637         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
638                         config->val_bits + config->pad_bits, 8);
639         map->reg_shift = config->pad_bits % 8;
640         if (config->reg_stride)
641                 map->reg_stride = config->reg_stride;
642         else
643                 map->reg_stride = 1;
644         if (is_power_of_2(map->reg_stride))
645                 map->reg_stride_order = ilog2(map->reg_stride);
646         else
647                 map->reg_stride_order = -1;
648         map->use_single_read = config->use_single_rw || !bus || !bus->read;
649         map->use_single_write = config->use_single_rw || !bus || !bus->write;
650         map->can_multi_write = config->can_multi_write && bus && bus->write;
651         if (bus) {
652                 map->max_raw_read = bus->max_raw_read;
653                 map->max_raw_write = bus->max_raw_write;
654         }
655         map->dev = dev;
656         map->bus = bus;
657         map->bus_context = bus_context;
658         map->max_register = config->max_register;
659         map->wr_table = config->wr_table;
660         map->rd_table = config->rd_table;
661         map->volatile_table = config->volatile_table;
662         map->precious_table = config->precious_table;
663         map->writeable_reg = config->writeable_reg;
664         map->readable_reg = config->readable_reg;
665         map->volatile_reg = config->volatile_reg;
666         map->precious_reg = config->precious_reg;
667         map->cache_type = config->cache_type;
668         map->name = config->name;
669
670         spin_lock_init(&map->async_lock);
671         INIT_LIST_HEAD(&map->async_list);
672         INIT_LIST_HEAD(&map->async_free);
673         init_waitqueue_head(&map->async_waitq);
674
675         if (config->read_flag_mask || config->write_flag_mask) {
676                 map->read_flag_mask = config->read_flag_mask;
677                 map->write_flag_mask = config->write_flag_mask;
678         } else if (bus) {
679                 map->read_flag_mask = bus->read_flag_mask;
680         }
681
682         if (!bus) {
683                 map->reg_read  = config->reg_read;
684                 map->reg_write = config->reg_write;
685
686                 map->defer_caching = false;
687                 goto skip_format_initialization;
688         } else if (!bus->read || !bus->write) {
689                 map->reg_read = _regmap_bus_reg_read;
690                 map->reg_write = _regmap_bus_reg_write;
691
692                 map->defer_caching = false;
693                 goto skip_format_initialization;
694         } else {
695                 map->reg_read  = _regmap_bus_read;
696                 map->reg_update_bits = bus->reg_update_bits;
697         }
698
699         reg_endian = regmap_get_reg_endian(bus, config);
700         val_endian = regmap_get_val_endian(dev, bus, config);
701
702         switch (config->reg_bits + map->reg_shift) {
703         case 2:
704                 switch (config->val_bits) {
705                 case 6:
706                         map->format.format_write = regmap_format_2_6_write;
707                         break;
708                 default:
709                         goto err_map;
710                 }
711                 break;
712
713         case 4:
714                 switch (config->val_bits) {
715                 case 12:
716                         map->format.format_write = regmap_format_4_12_write;
717                         break;
718                 default:
719                         goto err_map;
720                 }
721                 break;
722
723         case 7:
724                 switch (config->val_bits) {
725                 case 9:
726                         map->format.format_write = regmap_format_7_9_write;
727                         break;
728                 default:
729                         goto err_map;
730                 }
731                 break;
732
733         case 10:
734                 switch (config->val_bits) {
735                 case 14:
736                         map->format.format_write = regmap_format_10_14_write;
737                         break;
738                 default:
739                         goto err_map;
740                 }
741                 break;
742
743         case 8:
744                 map->format.format_reg = regmap_format_8;
745                 break;
746
747         case 16:
748                 switch (reg_endian) {
749                 case REGMAP_ENDIAN_BIG:
750                         map->format.format_reg = regmap_format_16_be;
751                         break;
752                 case REGMAP_ENDIAN_NATIVE:
753                         map->format.format_reg = regmap_format_16_native;
754                         break;
755                 default:
756                         goto err_map;
757                 }
758                 break;
759
760         case 24:
761                 if (reg_endian != REGMAP_ENDIAN_BIG)
762                         goto err_map;
763                 map->format.format_reg = regmap_format_24;
764                 break;
765
766         case 32:
767                 switch (reg_endian) {
768                 case REGMAP_ENDIAN_BIG:
769                         map->format.format_reg = regmap_format_32_be;
770                         break;
771                 case REGMAP_ENDIAN_NATIVE:
772                         map->format.format_reg = regmap_format_32_native;
773                         break;
774                 default:
775                         goto err_map;
776                 }
777                 break;
778
779 #ifdef CONFIG_64BIT
780         case 64:
781                 switch (reg_endian) {
782                 case REGMAP_ENDIAN_BIG:
783                         map->format.format_reg = regmap_format_64_be;
784                         break;
785                 case REGMAP_ENDIAN_NATIVE:
786                         map->format.format_reg = regmap_format_64_native;
787                         break;
788                 default:
789                         goto err_map;
790                 }
791                 break;
792 #endif
793
794         default:
795                 goto err_map;
796         }
797
798         if (val_endian == REGMAP_ENDIAN_NATIVE)
799                 map->format.parse_inplace = regmap_parse_inplace_noop;
800
801         switch (config->val_bits) {
802         case 8:
803                 map->format.format_val = regmap_format_8;
804                 map->format.parse_val = regmap_parse_8;
805                 map->format.parse_inplace = regmap_parse_inplace_noop;
806                 break;
807         case 16:
808                 switch (val_endian) {
809                 case REGMAP_ENDIAN_BIG:
810                         map->format.format_val = regmap_format_16_be;
811                         map->format.parse_val = regmap_parse_16_be;
812                         map->format.parse_inplace = regmap_parse_16_be_inplace;
813                         break;
814                 case REGMAP_ENDIAN_LITTLE:
815                         map->format.format_val = regmap_format_16_le;
816                         map->format.parse_val = regmap_parse_16_le;
817                         map->format.parse_inplace = regmap_parse_16_le_inplace;
818                         break;
819                 case REGMAP_ENDIAN_NATIVE:
820                         map->format.format_val = regmap_format_16_native;
821                         map->format.parse_val = regmap_parse_16_native;
822                         break;
823                 default:
824                         goto err_map;
825                 }
826                 break;
827         case 24:
828                 if (val_endian != REGMAP_ENDIAN_BIG)
829                         goto err_map;
830                 map->format.format_val = regmap_format_24;
831                 map->format.parse_val = regmap_parse_24;
832                 break;
833         case 32:
834                 switch (val_endian) {
835                 case REGMAP_ENDIAN_BIG:
836                         map->format.format_val = regmap_format_32_be;
837                         map->format.parse_val = regmap_parse_32_be;
838                         map->format.parse_inplace = regmap_parse_32_be_inplace;
839                         break;
840                 case REGMAP_ENDIAN_LITTLE:
841                         map->format.format_val = regmap_format_32_le;
842                         map->format.parse_val = regmap_parse_32_le;
843                         map->format.parse_inplace = regmap_parse_32_le_inplace;
844                         break;
845                 case REGMAP_ENDIAN_NATIVE:
846                         map->format.format_val = regmap_format_32_native;
847                         map->format.parse_val = regmap_parse_32_native;
848                         break;
849                 default:
850                         goto err_map;
851                 }
852                 break;
853 #ifdef CONFIG_64BIT
854         case 64:
855                 switch (val_endian) {
856                 case REGMAP_ENDIAN_BIG:
857                         map->format.format_val = regmap_format_64_be;
858                         map->format.parse_val = regmap_parse_64_be;
859                         map->format.parse_inplace = regmap_parse_64_be_inplace;
860                         break;
861                 case REGMAP_ENDIAN_LITTLE:
862                         map->format.format_val = regmap_format_64_le;
863                         map->format.parse_val = regmap_parse_64_le;
864                         map->format.parse_inplace = regmap_parse_64_le_inplace;
865                         break;
866                 case REGMAP_ENDIAN_NATIVE:
867                         map->format.format_val = regmap_format_64_native;
868                         map->format.parse_val = regmap_parse_64_native;
869                         break;
870                 default:
871                         goto err_map;
872                 }
873                 break;
874 #endif
875         }
876
877         if (map->format.format_write) {
878                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
879                     (val_endian != REGMAP_ENDIAN_BIG))
880                         goto err_map;
881                 map->use_single_write = true;
882         }
883
884         if (!map->format.format_write &&
885             !(map->format.format_reg && map->format.format_val))
886                 goto err_map;
887
888         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
889         if (map->work_buf == NULL) {
890                 ret = -ENOMEM;
891                 goto err_map;
892         }
893
894         if (map->format.format_write) {
895                 map->defer_caching = false;
896                 map->reg_write = _regmap_bus_formatted_write;
897         } else if (map->format.format_val) {
898                 map->defer_caching = true;
899                 map->reg_write = _regmap_bus_raw_write;
900         }
901
902 skip_format_initialization:
903
904         map->range_tree = RB_ROOT;
905         for (i = 0; i < config->num_ranges; i++) {
906                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
907                 struct regmap_range_node *new;
908
909                 /* Sanity check */
910                 if (range_cfg->range_max < range_cfg->range_min) {
911                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
912                                 range_cfg->range_max, range_cfg->range_min);
913                         goto err_range;
914                 }
915
916                 if (range_cfg->range_max > map->max_register) {
917                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
918                                 range_cfg->range_max, map->max_register);
919                         goto err_range;
920                 }
921
922                 if (range_cfg->selector_reg > map->max_register) {
923                         dev_err(map->dev,
924                                 "Invalid range %d: selector out of map\n", i);
925                         goto err_range;
926                 }
927
928                 if (range_cfg->window_len == 0) {
929                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
930                                 i);
931                         goto err_range;
932                 }
933
934                 /* Make sure, that this register range has no selector
935                    or data window within its boundary */
936                 for (j = 0; j < config->num_ranges; j++) {
937                         unsigned sel_reg = config->ranges[j].selector_reg;
938                         unsigned win_min = config->ranges[j].window_start;
939                         unsigned win_max = win_min +
940                                            config->ranges[j].window_len - 1;
941
942                         /* Allow data window inside its own virtual range */
943                         if (j == i)
944                                 continue;
945
946                         if (range_cfg->range_min <= sel_reg &&
947                             sel_reg <= range_cfg->range_max) {
948                                 dev_err(map->dev,
949                                         "Range %d: selector for %d in window\n",
950                                         i, j);
951                                 goto err_range;
952                         }
953
954                         if (!(win_max < range_cfg->range_min ||
955                               win_min > range_cfg->range_max)) {
956                                 dev_err(map->dev,
957                                         "Range %d: window for %d in window\n",
958                                         i, j);
959                                 goto err_range;
960                         }
961                 }
962
963                 new = kzalloc(sizeof(*new), GFP_KERNEL);
964                 if (new == NULL) {
965                         ret = -ENOMEM;
966                         goto err_range;
967                 }
968
969                 new->map = map;
970                 new->name = range_cfg->name;
971                 new->range_min = range_cfg->range_min;
972                 new->range_max = range_cfg->range_max;
973                 new->selector_reg = range_cfg->selector_reg;
974                 new->selector_mask = range_cfg->selector_mask;
975                 new->selector_shift = range_cfg->selector_shift;
976                 new->window_start = range_cfg->window_start;
977                 new->window_len = range_cfg->window_len;
978
979                 if (!_regmap_range_add(map, new)) {
980                         dev_err(map->dev, "Failed to add range %d\n", i);
981                         kfree(new);
982                         goto err_range;
983                 }
984
985                 if (map->selector_work_buf == NULL) {
986                         map->selector_work_buf =
987                                 kzalloc(map->format.buf_size, GFP_KERNEL);
988                         if (map->selector_work_buf == NULL) {
989                                 ret = -ENOMEM;
990                                 goto err_range;
991                         }
992                 }
993         }
994
995         ret = regcache_init(map, config);
996         if (ret != 0)
997                 goto err_range;
998
999         if (dev) {
1000                 ret = regmap_attach_dev(dev, map, config);
1001                 if (ret != 0)
1002                         goto err_regcache;
1003         }
1004
1005         return map;
1006
1007 err_regcache:
1008         regcache_exit(map);
1009 err_range:
1010         regmap_range_exit(map);
1011         kfree(map->work_buf);
1012 err_map:
1013         kfree(map);
1014 err:
1015         return ERR_PTR(ret);
1016 }
1017 EXPORT_SYMBOL_GPL(__regmap_init);
1018
1019 static void devm_regmap_release(struct device *dev, void *res)
1020 {
1021         regmap_exit(*(struct regmap **)res);
1022 }
1023
1024 struct regmap *__devm_regmap_init(struct device *dev,
1025                                   const struct regmap_bus *bus,
1026                                   void *bus_context,
1027                                   const struct regmap_config *config,
1028                                   struct lock_class_key *lock_key,
1029                                   const char *lock_name)
1030 {
1031         struct regmap **ptr, *regmap;
1032
1033         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1034         if (!ptr)
1035                 return ERR_PTR(-ENOMEM);
1036
1037         regmap = __regmap_init(dev, bus, bus_context, config,
1038                                lock_key, lock_name);
1039         if (!IS_ERR(regmap)) {
1040                 *ptr = regmap;
1041                 devres_add(dev, ptr);
1042         } else {
1043                 devres_free(ptr);
1044         }
1045
1046         return regmap;
1047 }
1048 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1049
1050 static void regmap_field_init(struct regmap_field *rm_field,
1051         struct regmap *regmap, struct reg_field reg_field)
1052 {
1053         rm_field->regmap = regmap;
1054         rm_field->reg = reg_field.reg;
1055         rm_field->shift = reg_field.lsb;
1056         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1057         rm_field->id_size = reg_field.id_size;
1058         rm_field->id_offset = reg_field.id_offset;
1059 }
1060
1061 /**
1062  * devm_regmap_field_alloc(): Allocate and initialise a register field
1063  * in a register map.
1064  *
1065  * @dev: Device that will be interacted with
1066  * @regmap: regmap bank in which this register field is located.
1067  * @reg_field: Register field with in the bank.
1068  *
1069  * The return value will be an ERR_PTR() on error or a valid pointer
1070  * to a struct regmap_field. The regmap_field will be automatically freed
1071  * by the device management code.
1072  */
1073 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1074                 struct regmap *regmap, struct reg_field reg_field)
1075 {
1076         struct regmap_field *rm_field = devm_kzalloc(dev,
1077                                         sizeof(*rm_field), GFP_KERNEL);
1078         if (!rm_field)
1079                 return ERR_PTR(-ENOMEM);
1080
1081         regmap_field_init(rm_field, regmap, reg_field);
1082
1083         return rm_field;
1084
1085 }
1086 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1087
1088 /**
1089  * devm_regmap_field_free(): Free register field allocated using
1090  * devm_regmap_field_alloc. Usally drivers need not call this function,
1091  * as the memory allocated via devm will be freed as per device-driver
1092  * life-cyle.
1093  *
1094  * @dev: Device that will be interacted with
1095  * @field: regmap field which should be freed.
1096  */
1097 void devm_regmap_field_free(struct device *dev,
1098         struct regmap_field *field)
1099 {
1100         devm_kfree(dev, field);
1101 }
1102 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1103
1104 /**
1105  * regmap_field_alloc(): Allocate and initialise a register field
1106  * in a register map.
1107  *
1108  * @regmap: regmap bank in which this register field is located.
1109  * @reg_field: Register field with in the bank.
1110  *
1111  * The return value will be an ERR_PTR() on error or a valid pointer
1112  * to a struct regmap_field. The regmap_field should be freed by the
1113  * user once its finished working with it using regmap_field_free().
1114  */
1115 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1116                 struct reg_field reg_field)
1117 {
1118         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1119
1120         if (!rm_field)
1121                 return ERR_PTR(-ENOMEM);
1122
1123         regmap_field_init(rm_field, regmap, reg_field);
1124
1125         return rm_field;
1126 }
1127 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1128
1129 /**
1130  * regmap_field_free(): Free register field allocated using regmap_field_alloc
1131  *
1132  * @field: regmap field which should be freed.
1133  */
1134 void regmap_field_free(struct regmap_field *field)
1135 {
1136         kfree(field);
1137 }
1138 EXPORT_SYMBOL_GPL(regmap_field_free);
1139
1140 /**
1141  * regmap_reinit_cache(): Reinitialise the current register cache
1142  *
1143  * @map: Register map to operate on.
1144  * @config: New configuration.  Only the cache data will be used.
1145  *
1146  * Discard any existing register cache for the map and initialize a
1147  * new cache.  This can be used to restore the cache to defaults or to
1148  * update the cache configuration to reflect runtime discovery of the
1149  * hardware.
1150  *
1151  * No explicit locking is done here, the user needs to ensure that
1152  * this function will not race with other calls to regmap.
1153  */
1154 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1155 {
1156         regcache_exit(map);
1157         regmap_debugfs_exit(map);
1158
1159         map->max_register = config->max_register;
1160         map->writeable_reg = config->writeable_reg;
1161         map->readable_reg = config->readable_reg;
1162         map->volatile_reg = config->volatile_reg;
1163         map->precious_reg = config->precious_reg;
1164         map->cache_type = config->cache_type;
1165
1166         regmap_debugfs_init(map, config->name);
1167
1168         map->cache_bypass = false;
1169         map->cache_only = false;
1170
1171         return regcache_init(map, config);
1172 }
1173 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1174
1175 /**
1176  * regmap_exit(): Free a previously allocated register map
1177  */
1178 void regmap_exit(struct regmap *map)
1179 {
1180         struct regmap_async *async;
1181
1182         regcache_exit(map);
1183         regmap_debugfs_exit(map);
1184         regmap_range_exit(map);
1185         if (map->bus && map->bus->free_context)
1186                 map->bus->free_context(map->bus_context);
1187         kfree(map->work_buf);
1188         while (!list_empty(&map->async_free)) {
1189                 async = list_first_entry_or_null(&map->async_free,
1190                                                  struct regmap_async,
1191                                                  list);
1192                 list_del(&async->list);
1193                 kfree(async->work_buf);
1194                 kfree(async);
1195         }
1196         kfree(map);
1197 }
1198 EXPORT_SYMBOL_GPL(regmap_exit);
1199
1200 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1201 {
1202         struct regmap **r = res;
1203         if (!r || !*r) {
1204                 WARN_ON(!r || !*r);
1205                 return 0;
1206         }
1207
1208         /* If the user didn't specify a name match any */
1209         if (data)
1210                 return (*r)->name == data;
1211         else
1212                 return 1;
1213 }
1214
1215 /**
1216  * dev_get_regmap(): Obtain the regmap (if any) for a device
1217  *
1218  * @dev: Device to retrieve the map for
1219  * @name: Optional name for the register map, usually NULL.
1220  *
1221  * Returns the regmap for the device if one is present, or NULL.  If
1222  * name is specified then it must match the name specified when
1223  * registering the device, if it is NULL then the first regmap found
1224  * will be used.  Devices with multiple register maps are very rare,
1225  * generic code should normally not need to specify a name.
1226  */
1227 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1228 {
1229         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1230                                         dev_get_regmap_match, (void *)name);
1231
1232         if (!r)
1233                 return NULL;
1234         return *r;
1235 }
1236 EXPORT_SYMBOL_GPL(dev_get_regmap);
1237
1238 /**
1239  * regmap_get_device(): Obtain the device from a regmap
1240  *
1241  * @map: Register map to operate on.
1242  *
1243  * Returns the underlying device that the regmap has been created for.
1244  */
1245 struct device *regmap_get_device(struct regmap *map)
1246 {
1247         return map->dev;
1248 }
1249 EXPORT_SYMBOL_GPL(regmap_get_device);
1250
1251 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1252                                struct regmap_range_node *range,
1253                                unsigned int val_num)
1254 {
1255         void *orig_work_buf;
1256         unsigned int win_offset;
1257         unsigned int win_page;
1258         bool page_chg;
1259         int ret;
1260
1261         win_offset = (*reg - range->range_min) % range->window_len;
1262         win_page = (*reg - range->range_min) / range->window_len;
1263
1264         if (val_num > 1) {
1265                 /* Bulk write shouldn't cross range boundary */
1266                 if (*reg + val_num - 1 > range->range_max)
1267                         return -EINVAL;
1268
1269                 /* ... or single page boundary */
1270                 if (val_num > range->window_len - win_offset)
1271                         return -EINVAL;
1272         }
1273
1274         /* It is possible to have selector register inside data window.
1275            In that case, selector register is located on every page and
1276            it needs no page switching, when accessed alone. */
1277         if (val_num > 1 ||
1278             range->window_start + win_offset != range->selector_reg) {
1279                 /* Use separate work_buf during page switching */
1280                 orig_work_buf = map->work_buf;
1281                 map->work_buf = map->selector_work_buf;
1282
1283                 ret = _regmap_update_bits(map, range->selector_reg,
1284                                           range->selector_mask,
1285                                           win_page << range->selector_shift,
1286                                           &page_chg, false);
1287
1288                 map->work_buf = orig_work_buf;
1289
1290                 if (ret != 0)
1291                         return ret;
1292         }
1293
1294         *reg = range->window_start + win_offset;
1295
1296         return 0;
1297 }
1298
1299 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1300                       const void *val, size_t val_len)
1301 {
1302         struct regmap_range_node *range;
1303         unsigned long flags;
1304         u8 *u8 = map->work_buf;
1305         void *work_val = map->work_buf + map->format.reg_bytes +
1306                 map->format.pad_bytes;
1307         void *buf;
1308         int ret = -ENOTSUPP;
1309         size_t len;
1310         int i;
1311
1312         WARN_ON(!map->bus);
1313
1314         /* Check for unwritable registers before we start */
1315         if (map->writeable_reg)
1316                 for (i = 0; i < val_len / map->format.val_bytes; i++)
1317                         if (!map->writeable_reg(map->dev,
1318                                                reg + regmap_get_offset(map, i)))
1319                                 return -EINVAL;
1320
1321         if (!map->cache_bypass && map->format.parse_val) {
1322                 unsigned int ival;
1323                 int val_bytes = map->format.val_bytes;
1324                 for (i = 0; i < val_len / val_bytes; i++) {
1325                         ival = map->format.parse_val(val + (i * val_bytes));
1326                         ret = regcache_write(map,
1327                                              reg + regmap_get_offset(map, i),
1328                                              ival);
1329                         if (ret) {
1330                                 dev_err(map->dev,
1331                                         "Error in caching of register: %x ret: %d\n",
1332                                         reg + i, ret);
1333                                 return ret;
1334                         }
1335                 }
1336                 if (map->cache_only) {
1337                         map->cache_dirty = true;
1338                         return 0;
1339                 }
1340         }
1341
1342         range = _regmap_range_lookup(map, reg);
1343         if (range) {
1344                 int val_num = val_len / map->format.val_bytes;
1345                 int win_offset = (reg - range->range_min) % range->window_len;
1346                 int win_residue = range->window_len - win_offset;
1347
1348                 /* If the write goes beyond the end of the window split it */
1349                 while (val_num > win_residue) {
1350                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1351                                 win_residue, val_len / map->format.val_bytes);
1352                         ret = _regmap_raw_write(map, reg, val, win_residue *
1353                                                 map->format.val_bytes);
1354                         if (ret != 0)
1355                                 return ret;
1356
1357                         reg += win_residue;
1358                         val_num -= win_residue;
1359                         val += win_residue * map->format.val_bytes;
1360                         val_len -= win_residue * map->format.val_bytes;
1361
1362                         win_offset = (reg - range->range_min) %
1363                                 range->window_len;
1364                         win_residue = range->window_len - win_offset;
1365                 }
1366
1367                 ret = _regmap_select_page(map, &reg, range, val_num);
1368                 if (ret != 0)
1369                         return ret;
1370         }
1371
1372         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1373
1374         u8[0] |= map->write_flag_mask;
1375
1376         /*
1377          * Essentially all I/O mechanisms will be faster with a single
1378          * buffer to write.  Since register syncs often generate raw
1379          * writes of single registers optimise that case.
1380          */
1381         if (val != work_val && val_len == map->format.val_bytes) {
1382                 memcpy(work_val, val, map->format.val_bytes);
1383                 val = work_val;
1384         }
1385
1386         if (map->async && map->bus->async_write) {
1387                 struct regmap_async *async;
1388
1389                 trace_regmap_async_write_start(map, reg, val_len);
1390
1391                 spin_lock_irqsave(&map->async_lock, flags);
1392                 async = list_first_entry_or_null(&map->async_free,
1393                                                  struct regmap_async,
1394                                                  list);
1395                 if (async)
1396                         list_del(&async->list);
1397                 spin_unlock_irqrestore(&map->async_lock, flags);
1398
1399                 if (!async) {
1400                         async = map->bus->async_alloc();
1401                         if (!async)
1402                                 return -ENOMEM;
1403
1404                         async->work_buf = kzalloc(map->format.buf_size,
1405                                                   GFP_KERNEL | GFP_DMA);
1406                         if (!async->work_buf) {
1407                                 kfree(async);
1408                                 return -ENOMEM;
1409                         }
1410                 }
1411
1412                 async->map = map;
1413
1414                 /* If the caller supplied the value we can use it safely. */
1415                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1416                        map->format.reg_bytes + map->format.val_bytes);
1417
1418                 spin_lock_irqsave(&map->async_lock, flags);
1419                 list_add_tail(&async->list, &map->async_list);
1420                 spin_unlock_irqrestore(&map->async_lock, flags);
1421
1422                 if (val != work_val)
1423                         ret = map->bus->async_write(map->bus_context,
1424                                                     async->work_buf,
1425                                                     map->format.reg_bytes +
1426                                                     map->format.pad_bytes,
1427                                                     val, val_len, async);
1428                 else
1429                         ret = map->bus->async_write(map->bus_context,
1430                                                     async->work_buf,
1431                                                     map->format.reg_bytes +
1432                                                     map->format.pad_bytes +
1433                                                     val_len, NULL, 0, async);
1434
1435                 if (ret != 0) {
1436                         dev_err(map->dev, "Failed to schedule write: %d\n",
1437                                 ret);
1438
1439                         spin_lock_irqsave(&map->async_lock, flags);
1440                         list_move(&async->list, &map->async_free);
1441                         spin_unlock_irqrestore(&map->async_lock, flags);
1442                 }
1443
1444                 return ret;
1445         }
1446
1447         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1448
1449         /* If we're doing a single register write we can probably just
1450          * send the work_buf directly, otherwise try to do a gather
1451          * write.
1452          */
1453         if (val == work_val)
1454                 ret = map->bus->write(map->bus_context, map->work_buf,
1455                                       map->format.reg_bytes +
1456                                       map->format.pad_bytes +
1457                                       val_len);
1458         else if (map->bus->gather_write)
1459                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1460                                              map->format.reg_bytes +
1461                                              map->format.pad_bytes,
1462                                              val, val_len);
1463
1464         /* If that didn't work fall back on linearising by hand. */
1465         if (ret == -ENOTSUPP) {
1466                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1467                 buf = kzalloc(len, GFP_KERNEL);
1468                 if (!buf)
1469                         return -ENOMEM;
1470
1471                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1472                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1473                        val, val_len);
1474                 ret = map->bus->write(map->bus_context, buf, len);
1475
1476                 kfree(buf);
1477         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1478                 regcache_drop_region(map, reg, reg + 1);
1479         }
1480
1481         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1482
1483         return ret;
1484 }
1485
1486 /**
1487  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1488  *
1489  * @map: Map to check.
1490  */
1491 bool regmap_can_raw_write(struct regmap *map)
1492 {
1493         return map->bus && map->bus->write && map->format.format_val &&
1494                 map->format.format_reg;
1495 }
1496 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1497
1498 /**
1499  * regmap_get_raw_read_max - Get the maximum size we can read
1500  *
1501  * @map: Map to check.
1502  */
1503 size_t regmap_get_raw_read_max(struct regmap *map)
1504 {
1505         return map->max_raw_read;
1506 }
1507 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1508
1509 /**
1510  * regmap_get_raw_write_max - Get the maximum size we can read
1511  *
1512  * @map: Map to check.
1513  */
1514 size_t regmap_get_raw_write_max(struct regmap *map)
1515 {
1516         return map->max_raw_write;
1517 }
1518 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1519
1520 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1521                                        unsigned int val)
1522 {
1523         int ret;
1524         struct regmap_range_node *range;
1525         struct regmap *map = context;
1526
1527         WARN_ON(!map->bus || !map->format.format_write);
1528
1529         range = _regmap_range_lookup(map, reg);
1530         if (range) {
1531                 ret = _regmap_select_page(map, &reg, range, 1);
1532                 if (ret != 0)
1533                         return ret;
1534         }
1535
1536         map->format.format_write(map, reg, val);
1537
1538         trace_regmap_hw_write_start(map, reg, 1);
1539
1540         ret = map->bus->write(map->bus_context, map->work_buf,
1541                               map->format.buf_size);
1542
1543         trace_regmap_hw_write_done(map, reg, 1);
1544
1545         return ret;
1546 }
1547
1548 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1549                                  unsigned int val)
1550 {
1551         struct regmap *map = context;
1552
1553         return map->bus->reg_write(map->bus_context, reg, val);
1554 }
1555
1556 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1557                                  unsigned int val)
1558 {
1559         struct regmap *map = context;
1560
1561         WARN_ON(!map->bus || !map->format.format_val);
1562
1563         map->format.format_val(map->work_buf + map->format.reg_bytes
1564                                + map->format.pad_bytes, val, 0);
1565         return _regmap_raw_write(map, reg,
1566                                  map->work_buf +
1567                                  map->format.reg_bytes +
1568                                  map->format.pad_bytes,
1569                                  map->format.val_bytes);
1570 }
1571
1572 static inline void *_regmap_map_get_context(struct regmap *map)
1573 {
1574         return (map->bus) ? map : map->bus_context;
1575 }
1576
1577 int _regmap_write(struct regmap *map, unsigned int reg,
1578                   unsigned int val)
1579 {
1580         int ret;
1581         void *context = _regmap_map_get_context(map);
1582
1583         if (!regmap_writeable(map, reg))
1584                 return -EIO;
1585
1586         if (!map->cache_bypass && !map->defer_caching) {
1587                 ret = regcache_write(map, reg, val);
1588                 if (ret != 0)
1589                         return ret;
1590                 if (map->cache_only) {
1591                         map->cache_dirty = true;
1592                         return 0;
1593                 }
1594         }
1595
1596 #ifdef LOG_DEVICE
1597         if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1598                 dev_info(map->dev, "%x <= %x\n", reg, val);
1599 #endif
1600
1601         trace_regmap_reg_write(map, reg, val);
1602
1603         return map->reg_write(context, reg, val);
1604 }
1605
1606 /**
1607  * regmap_write(): Write a value to a single register
1608  *
1609  * @map: Register map to write to
1610  * @reg: Register to write to
1611  * @val: Value to be written
1612  *
1613  * A value of zero will be returned on success, a negative errno will
1614  * be returned in error cases.
1615  */
1616 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1617 {
1618         int ret;
1619
1620         if (!IS_ALIGNED(reg, map->reg_stride))
1621                 return -EINVAL;
1622
1623         map->lock(map->lock_arg);
1624
1625         ret = _regmap_write(map, reg, val);
1626
1627         map->unlock(map->lock_arg);
1628
1629         return ret;
1630 }
1631 EXPORT_SYMBOL_GPL(regmap_write);
1632
1633 /**
1634  * regmap_write_async(): Write a value to a single register asynchronously
1635  *
1636  * @map: Register map to write to
1637  * @reg: Register to write to
1638  * @val: Value to be written
1639  *
1640  * A value of zero will be returned on success, a negative errno will
1641  * be returned in error cases.
1642  */
1643 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1644 {
1645         int ret;
1646
1647         if (!IS_ALIGNED(reg, map->reg_stride))
1648                 return -EINVAL;
1649
1650         map->lock(map->lock_arg);
1651
1652         map->async = true;
1653
1654         ret = _regmap_write(map, reg, val);
1655
1656         map->async = false;
1657
1658         map->unlock(map->lock_arg);
1659
1660         return ret;
1661 }
1662 EXPORT_SYMBOL_GPL(regmap_write_async);
1663
1664 /**
1665  * regmap_raw_write(): Write raw values to one or more registers
1666  *
1667  * @map: Register map to write to
1668  * @reg: Initial register to write to
1669  * @val: Block of data to be written, laid out for direct transmission to the
1670  *       device
1671  * @val_len: Length of data pointed to by val.
1672  *
1673  * This function is intended to be used for things like firmware
1674  * download where a large block of data needs to be transferred to the
1675  * device.  No formatting will be done on the data provided.
1676  *
1677  * A value of zero will be returned on success, a negative errno will
1678  * be returned in error cases.
1679  */
1680 int regmap_raw_write(struct regmap *map, unsigned int reg,
1681                      const void *val, size_t val_len)
1682 {
1683         int ret;
1684
1685         if (!regmap_can_raw_write(map))
1686                 return -EINVAL;
1687         if (val_len % map->format.val_bytes)
1688                 return -EINVAL;
1689         if (map->max_raw_write && map->max_raw_write > val_len)
1690                 return -E2BIG;
1691
1692         map->lock(map->lock_arg);
1693
1694         ret = _regmap_raw_write(map, reg, val, val_len);
1695
1696         map->unlock(map->lock_arg);
1697
1698         return ret;
1699 }
1700 EXPORT_SYMBOL_GPL(regmap_raw_write);
1701
1702 /**
1703  * regmap_field_update_bits_base():
1704  *      Perform a read/modify/write cycle on the register field
1705  *      with change, async, force option
1706  *
1707  * @field: Register field to write to
1708  * @mask: Bitmask to change
1709  * @val: Value to be written
1710  * @change: Boolean indicating if a write was done
1711  * @async: Boolean indicating asynchronously
1712  * @force: Boolean indicating use force update
1713  *
1714  * A value of zero will be returned on success, a negative errno will
1715  * be returned in error cases.
1716  */
1717 int regmap_field_update_bits_base(struct regmap_field *field,
1718                                   unsigned int mask, unsigned int val,
1719                                   bool *change, bool async, bool force)
1720 {
1721         mask = (mask << field->shift) & field->mask;
1722
1723         return regmap_update_bits_base(field->regmap, field->reg,
1724                                        mask, val << field->shift,
1725                                        change, async, force);
1726 }
1727 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1728
1729 /**
1730  * regmap_fields_update_bits_base():
1731  *      Perform a read/modify/write cycle on the register field
1732  *      with change, async, force option
1733  *
1734  * @field: Register field to write to
1735  * @id: port ID
1736  * @mask: Bitmask to change
1737  * @val: Value to be written
1738  * @change: Boolean indicating if a write was done
1739  * @async: Boolean indicating asynchronously
1740  * @force: Boolean indicating use force update
1741  *
1742  * A value of zero will be returned on success, a negative errno will
1743  * be returned in error cases.
1744  */
1745 int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1746                                    unsigned int mask, unsigned int val,
1747                                    bool *change, bool async, bool force)
1748 {
1749         if (id >= field->id_size)
1750                 return -EINVAL;
1751
1752         mask = (mask << field->shift) & field->mask;
1753
1754         return regmap_update_bits_base(field->regmap,
1755                                        field->reg + (field->id_offset * id),
1756                                        mask, val << field->shift,
1757                                        change, async, force);
1758 }
1759 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1760
1761 /*
1762  * regmap_bulk_write(): Write multiple registers to the device
1763  *
1764  * @map: Register map to write to
1765  * @reg: First register to be write from
1766  * @val: Block of data to be written, in native register size for device
1767  * @val_count: Number of registers to write
1768  *
1769  * This function is intended to be used for writing a large block of
1770  * data to the device either in single transfer or multiple transfer.
1771  *
1772  * A value of zero will be returned on success, a negative errno will
1773  * be returned in error cases.
1774  */
1775 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1776                      size_t val_count)
1777 {
1778         int ret = 0, i;
1779         size_t val_bytes = map->format.val_bytes;
1780         size_t total_size = val_bytes * val_count;
1781
1782         if (!IS_ALIGNED(reg, map->reg_stride))
1783                 return -EINVAL;
1784
1785         /*
1786          * Some devices don't support bulk write, for
1787          * them we have a series of single write operations in the first two if
1788          * blocks.
1789          *
1790          * The first if block is used for memory mapped io. It does not allow
1791          * val_bytes of 3 for example.
1792          * The second one is for busses that do not provide raw I/O.
1793          * The third one is used for busses which do not have these limitations
1794          * and can write arbitrary value lengths.
1795          */
1796         if (!map->bus) {
1797                 map->lock(map->lock_arg);
1798                 for (i = 0; i < val_count; i++) {
1799                         unsigned int ival;
1800
1801                         switch (val_bytes) {
1802                         case 1:
1803                                 ival = *(u8 *)(val + (i * val_bytes));
1804                                 break;
1805                         case 2:
1806                                 ival = *(u16 *)(val + (i * val_bytes));
1807                                 break;
1808                         case 4:
1809                                 ival = *(u32 *)(val + (i * val_bytes));
1810                                 break;
1811 #ifdef CONFIG_64BIT
1812                         case 8:
1813                                 ival = *(u64 *)(val + (i * val_bytes));
1814                                 break;
1815 #endif
1816                         default:
1817                                 ret = -EINVAL;
1818                                 goto out;
1819                         }
1820
1821                         ret = _regmap_write(map,
1822                                             reg + regmap_get_offset(map, i),
1823                                             ival);
1824                         if (ret != 0)
1825                                 goto out;
1826                 }
1827 out:
1828                 map->unlock(map->lock_arg);
1829         } else if (map->bus && !map->format.parse_inplace) {
1830                 const u8 *u8 = val;
1831                 const u16 *u16 = val;
1832                 const u32 *u32 = val;
1833                 unsigned int ival;
1834
1835                 for (i = 0; i < val_count; i++) {
1836                         switch (map->format.val_bytes) {
1837                         case 4:
1838                                 ival = u32[i];
1839                                 break;
1840                         case 2:
1841                                 ival = u16[i];
1842                                 break;
1843                         case 1:
1844                                 ival = u8[i];
1845                                 break;
1846                         default:
1847                                 return -EINVAL;
1848                         }
1849
1850                         ret = regmap_write(map, reg + (i * map->reg_stride),
1851                                            ival);
1852                         if (ret)
1853                                 return ret;
1854                 }
1855         } else if (map->use_single_write ||
1856                    (map->max_raw_write && map->max_raw_write < total_size)) {
1857                 int chunk_stride = map->reg_stride;
1858                 size_t chunk_size = val_bytes;
1859                 size_t chunk_count = val_count;
1860
1861                 if (!map->use_single_write) {
1862                         chunk_size = map->max_raw_write;
1863                         if (chunk_size % val_bytes)
1864                                 chunk_size -= chunk_size % val_bytes;
1865                         chunk_count = total_size / chunk_size;
1866                         chunk_stride *= chunk_size / val_bytes;
1867                 }
1868
1869                 map->lock(map->lock_arg);
1870                 /* Write as many bytes as possible with chunk_size */
1871                 for (i = 0; i < chunk_count; i++) {
1872                         ret = _regmap_raw_write(map,
1873                                                 reg + (i * chunk_stride),
1874                                                 val + (i * chunk_size),
1875                                                 chunk_size);
1876                         if (ret)
1877                                 break;
1878                 }
1879
1880                 /* Write remaining bytes */
1881                 if (!ret && chunk_size * i < total_size) {
1882                         ret = _regmap_raw_write(map, reg + (i * chunk_stride),
1883                                                 val + (i * chunk_size),
1884                                                 total_size - i * chunk_size);
1885                 }
1886                 map->unlock(map->lock_arg);
1887         } else {
1888                 void *wval;
1889
1890                 if (!val_count)
1891                         return -EINVAL;
1892
1893                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
1894                 if (!wval) {
1895                         dev_err(map->dev, "Error in memory allocation\n");
1896                         return -ENOMEM;
1897                 }
1898                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
1899                         map->format.parse_inplace(wval + i);
1900
1901                 map->lock(map->lock_arg);
1902                 ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1903                 map->unlock(map->lock_arg);
1904
1905                 kfree(wval);
1906         }
1907         return ret;
1908 }
1909 EXPORT_SYMBOL_GPL(regmap_bulk_write);
1910
1911 /*
1912  * _regmap_raw_multi_reg_write()
1913  *
1914  * the (register,newvalue) pairs in regs have not been formatted, but
1915  * they are all in the same page and have been changed to being page
1916  * relative. The page register has been written if that was necessary.
1917  */
1918 static int _regmap_raw_multi_reg_write(struct regmap *map,
1919                                        const struct reg_sequence *regs,
1920                                        size_t num_regs)
1921 {
1922         int ret;
1923         void *buf;
1924         int i;
1925         u8 *u8;
1926         size_t val_bytes = map->format.val_bytes;
1927         size_t reg_bytes = map->format.reg_bytes;
1928         size_t pad_bytes = map->format.pad_bytes;
1929         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1930         size_t len = pair_size * num_regs;
1931
1932         if (!len)
1933                 return -EINVAL;
1934
1935         buf = kzalloc(len, GFP_KERNEL);
1936         if (!buf)
1937                 return -ENOMEM;
1938
1939         /* We have to linearise by hand. */
1940
1941         u8 = buf;
1942
1943         for (i = 0; i < num_regs; i++) {
1944                 unsigned int reg = regs[i].reg;
1945                 unsigned int val = regs[i].def;
1946                 trace_regmap_hw_write_start(map, reg, 1);
1947                 map->format.format_reg(u8, reg, map->reg_shift);
1948                 u8 += reg_bytes + pad_bytes;
1949                 map->format.format_val(u8, val, 0);
1950                 u8 += val_bytes;
1951         }
1952         u8 = buf;
1953         *u8 |= map->write_flag_mask;
1954
1955         ret = map->bus->write(map->bus_context, buf, len);
1956
1957         kfree(buf);
1958
1959         for (i = 0; i < num_regs; i++) {
1960                 int reg = regs[i].reg;
1961                 trace_regmap_hw_write_done(map, reg, 1);
1962         }
1963         return ret;
1964 }
1965
1966 static unsigned int _regmap_register_page(struct regmap *map,
1967                                           unsigned int reg,
1968                                           struct regmap_range_node *range)
1969 {
1970         unsigned int win_page = (reg - range->range_min) / range->window_len;
1971
1972         return win_page;
1973 }
1974
1975 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1976                                                struct reg_sequence *regs,
1977                                                size_t num_regs)
1978 {
1979         int ret;
1980         int i, n;
1981         struct reg_sequence *base;
1982         unsigned int this_page = 0;
1983         unsigned int page_change = 0;
1984         /*
1985          * the set of registers are not neccessarily in order, but
1986          * since the order of write must be preserved this algorithm
1987          * chops the set each time the page changes. This also applies
1988          * if there is a delay required at any point in the sequence.
1989          */
1990         base = regs;
1991         for (i = 0, n = 0; i < num_regs; i++, n++) {
1992                 unsigned int reg = regs[i].reg;
1993                 struct regmap_range_node *range;
1994
1995                 range = _regmap_range_lookup(map, reg);
1996                 if (range) {
1997                         unsigned int win_page = _regmap_register_page(map, reg,
1998                                                                       range);
1999
2000                         if (i == 0)
2001                                 this_page = win_page;
2002                         if (win_page != this_page) {
2003                                 this_page = win_page;
2004                                 page_change = 1;
2005                         }
2006                 }
2007
2008                 /* If we have both a page change and a delay make sure to
2009                  * write the regs and apply the delay before we change the
2010                  * page.
2011                  */
2012
2013                 if (page_change || regs[i].delay_us) {
2014
2015                                 /* For situations where the first write requires
2016                                  * a delay we need to make sure we don't call
2017                                  * raw_multi_reg_write with n=0
2018                                  * This can't occur with page breaks as we
2019                                  * never write on the first iteration
2020                                  */
2021                                 if (regs[i].delay_us && i == 0)
2022                                         n = 1;
2023
2024                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2025                                 if (ret != 0)
2026                                         return ret;
2027
2028                                 if (regs[i].delay_us)
2029                                         udelay(regs[i].delay_us);
2030
2031                                 base += n;
2032                                 n = 0;
2033
2034                                 if (page_change) {
2035                                         ret = _regmap_select_page(map,
2036                                                                   &base[n].reg,
2037                                                                   range, 1);
2038                                         if (ret != 0)
2039                                                 return ret;
2040
2041                                         page_change = 0;
2042                                 }
2043
2044                 }
2045
2046         }
2047         if (n > 0)
2048                 return _regmap_raw_multi_reg_write(map, base, n);
2049         return 0;
2050 }
2051
2052 static int _regmap_multi_reg_write(struct regmap *map,
2053                                    const struct reg_sequence *regs,
2054                                    size_t num_regs)
2055 {
2056         int i;
2057         int ret;
2058
2059         if (!map->can_multi_write) {
2060                 for (i = 0; i < num_regs; i++) {
2061                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2062                         if (ret != 0)
2063                                 return ret;
2064
2065                         if (regs[i].delay_us)
2066                                 udelay(regs[i].delay_us);
2067                 }
2068                 return 0;
2069         }
2070
2071         if (!map->format.parse_inplace)
2072                 return -EINVAL;
2073
2074         if (map->writeable_reg)
2075                 for (i = 0; i < num_regs; i++) {
2076                         int reg = regs[i].reg;
2077                         if (!map->writeable_reg(map->dev, reg))
2078                                 return -EINVAL;
2079                         if (!IS_ALIGNED(reg, map->reg_stride))
2080                                 return -EINVAL;
2081                 }
2082
2083         if (!map->cache_bypass) {
2084                 for (i = 0; i < num_regs; i++) {
2085                         unsigned int val = regs[i].def;
2086                         unsigned int reg = regs[i].reg;
2087                         ret = regcache_write(map, reg, val);
2088                         if (ret) {
2089                                 dev_err(map->dev,
2090                                 "Error in caching of register: %x ret: %d\n",
2091                                                                 reg, ret);
2092                                 return ret;
2093                         }
2094                 }
2095                 if (map->cache_only) {
2096                         map->cache_dirty = true;
2097                         return 0;
2098                 }
2099         }
2100
2101         WARN_ON(!map->bus);
2102
2103         for (i = 0; i < num_regs; i++) {
2104                 unsigned int reg = regs[i].reg;
2105                 struct regmap_range_node *range;
2106
2107                 /* Coalesce all the writes between a page break or a delay
2108                  * in a sequence
2109                  */
2110                 range = _regmap_range_lookup(map, reg);
2111                 if (range || regs[i].delay_us) {
2112                         size_t len = sizeof(struct reg_sequence)*num_regs;
2113                         struct reg_sequence *base = kmemdup(regs, len,
2114                                                            GFP_KERNEL);
2115                         if (!base)
2116                                 return -ENOMEM;
2117                         ret = _regmap_range_multi_paged_reg_write(map, base,
2118                                                                   num_regs);
2119                         kfree(base);
2120
2121                         return ret;
2122                 }
2123         }
2124         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2125 }
2126
2127 /*
2128  * regmap_multi_reg_write(): Write multiple registers to the device
2129  *
2130  * where the set of register,value pairs are supplied in any order,
2131  * possibly not all in a single range.
2132  *
2133  * @map: Register map to write to
2134  * @regs: Array of structures containing register,value to be written
2135  * @num_regs: Number of registers to write
2136  *
2137  * The 'normal' block write mode will send ultimately send data on the
2138  * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
2139  * addressed. However, this alternative block multi write mode will send
2140  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2141  * must of course support the mode.
2142  *
2143  * A value of zero will be returned on success, a negative errno will be
2144  * returned in error cases.
2145  */
2146 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2147                            int num_regs)
2148 {
2149         int ret;
2150
2151         map->lock(map->lock_arg);
2152
2153         ret = _regmap_multi_reg_write(map, regs, num_regs);
2154
2155         map->unlock(map->lock_arg);
2156
2157         return ret;
2158 }
2159 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2160
2161 /*
2162  * regmap_multi_reg_write_bypassed(): Write multiple registers to the
2163  *                                    device but not the cache
2164  *
2165  * where the set of register are supplied in any order
2166  *
2167  * @map: Register map to write to
2168  * @regs: Array of structures containing register,value to be written
2169  * @num_regs: Number of registers to write
2170  *
2171  * This function is intended to be used for writing a large block of data
2172  * atomically to the device in single transfer for those I2C client devices
2173  * that implement this alternative block write mode.
2174  *
2175  * A value of zero will be returned on success, a negative errno will
2176  * be returned in error cases.
2177  */
2178 int regmap_multi_reg_write_bypassed(struct regmap *map,
2179                                     const struct reg_sequence *regs,
2180                                     int num_regs)
2181 {
2182         int ret;
2183         bool bypass;
2184
2185         map->lock(map->lock_arg);
2186
2187         bypass = map->cache_bypass;
2188         map->cache_bypass = true;
2189
2190         ret = _regmap_multi_reg_write(map, regs, num_regs);
2191
2192         map->cache_bypass = bypass;
2193
2194         map->unlock(map->lock_arg);
2195
2196         return ret;
2197 }
2198 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2199
2200 /**
2201  * regmap_raw_write_async(): Write raw values to one or more registers
2202  *                           asynchronously
2203  *
2204  * @map: Register map to write to
2205  * @reg: Initial register to write to
2206  * @val: Block of data to be written, laid out for direct transmission to the
2207  *       device.  Must be valid until regmap_async_complete() is called.
2208  * @val_len: Length of data pointed to by val.
2209  *
2210  * This function is intended to be used for things like firmware
2211  * download where a large block of data needs to be transferred to the
2212  * device.  No formatting will be done on the data provided.
2213  *
2214  * If supported by the underlying bus the write will be scheduled
2215  * asynchronously, helping maximise I/O speed on higher speed buses
2216  * like SPI.  regmap_async_complete() can be called to ensure that all
2217  * asynchrnous writes have been completed.
2218  *
2219  * A value of zero will be returned on success, a negative errno will
2220  * be returned in error cases.
2221  */
2222 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2223                            const void *val, size_t val_len)
2224 {
2225         int ret;
2226
2227         if (val_len % map->format.val_bytes)
2228                 return -EINVAL;
2229         if (!IS_ALIGNED(reg, map->reg_stride))
2230                 return -EINVAL;
2231
2232         map->lock(map->lock_arg);
2233
2234         map->async = true;
2235
2236         ret = _regmap_raw_write(map, reg, val, val_len);
2237
2238         map->async = false;
2239
2240         map->unlock(map->lock_arg);
2241
2242         return ret;
2243 }
2244 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2245
2246 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2247                             unsigned int val_len)
2248 {
2249         struct regmap_range_node *range;
2250         u8 *u8 = map->work_buf;
2251         int ret;
2252
2253         WARN_ON(!map->bus);
2254
2255         if (!map->bus || !map->bus->read)
2256                 return -EINVAL;
2257
2258         range = _regmap_range_lookup(map, reg);
2259         if (range) {
2260                 ret = _regmap_select_page(map, &reg, range,
2261                                           val_len / map->format.val_bytes);
2262                 if (ret != 0)
2263                         return ret;
2264         }
2265
2266         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2267
2268         /*
2269          * Some buses or devices flag reads by setting the high bits in the
2270          * register address; since it's always the high bits for all
2271          * current formats we can do this here rather than in
2272          * formatting.  This may break if we get interesting formats.
2273          */
2274         u8[0] |= map->read_flag_mask;
2275
2276         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2277
2278         ret = map->bus->read(map->bus_context, map->work_buf,
2279                              map->format.reg_bytes + map->format.pad_bytes,
2280                              val, val_len);
2281
2282         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2283
2284         return ret;
2285 }
2286
2287 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2288                                 unsigned int *val)
2289 {
2290         struct regmap *map = context;
2291
2292         return map->bus->reg_read(map->bus_context, reg, val);
2293 }
2294
2295 static int _regmap_bus_read(void *context, unsigned int reg,
2296                             unsigned int *val)
2297 {
2298         int ret;
2299         struct regmap *map = context;
2300
2301         if (!map->format.parse_val)
2302                 return -EINVAL;
2303
2304         ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2305         if (ret == 0)
2306                 *val = map->format.parse_val(map->work_buf);
2307
2308         return ret;
2309 }
2310
2311 static int _regmap_read(struct regmap *map, unsigned int reg,
2312                         unsigned int *val)
2313 {
2314         int ret;
2315         void *context = _regmap_map_get_context(map);
2316
2317         if (!map->cache_bypass) {
2318                 ret = regcache_read(map, reg, val);
2319                 if (ret == 0)
2320                         return 0;
2321         }
2322
2323         if (map->cache_only)
2324                 return -EBUSY;
2325
2326         if (!regmap_readable(map, reg))
2327                 return -EIO;
2328
2329         ret = map->reg_read(context, reg, val);
2330         if (ret == 0) {
2331 #ifdef LOG_DEVICE
2332                 if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2333                         dev_info(map->dev, "%x => %x\n", reg, *val);
2334 #endif
2335
2336                 trace_regmap_reg_read(map, reg, *val);
2337
2338                 if (!map->cache_bypass)
2339                         regcache_write(map, reg, *val);
2340         }
2341
2342         return ret;
2343 }
2344
2345 /**
2346  * regmap_read(): Read a value from a single register
2347  *
2348  * @map: Register map to read from
2349  * @reg: Register to be read from
2350  * @val: Pointer to store read value
2351  *
2352  * A value of zero will be returned on success, a negative errno will
2353  * be returned in error cases.
2354  */
2355 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2356 {
2357         int ret;
2358
2359         if (!IS_ALIGNED(reg, map->reg_stride))
2360                 return -EINVAL;
2361
2362         map->lock(map->lock_arg);
2363
2364         ret = _regmap_read(map, reg, val);
2365
2366         map->unlock(map->lock_arg);
2367
2368         return ret;
2369 }
2370 EXPORT_SYMBOL_GPL(regmap_read);
2371
2372 /**
2373  * regmap_raw_read(): Read raw data from the device
2374  *
2375  * @map: Register map to read from
2376  * @reg: First register to be read from
2377  * @val: Pointer to store read value
2378  * @val_len: Size of data to read
2379  *
2380  * A value of zero will be returned on success, a negative errno will
2381  * be returned in error cases.
2382  */
2383 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2384                     size_t val_len)
2385 {
2386         size_t val_bytes = map->format.val_bytes;
2387         size_t val_count = val_len / val_bytes;
2388         unsigned int v;
2389         int ret, i;
2390
2391         if (!map->bus)
2392                 return -EINVAL;
2393         if (val_len % map->format.val_bytes)
2394                 return -EINVAL;
2395         if (!IS_ALIGNED(reg, map->reg_stride))
2396                 return -EINVAL;
2397         if (val_count == 0)
2398                 return -EINVAL;
2399
2400         map->lock(map->lock_arg);
2401
2402         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2403             map->cache_type == REGCACHE_NONE) {
2404                 if (!map->bus->read) {
2405                         ret = -ENOTSUPP;
2406                         goto out;
2407                 }
2408                 if (map->max_raw_read && map->max_raw_read < val_len) {
2409                         ret = -E2BIG;
2410                         goto out;
2411                 }
2412
2413                 /* Physical block read if there's no cache involved */
2414                 ret = _regmap_raw_read(map, reg, val, val_len);
2415
2416         } else {
2417                 /* Otherwise go word by word for the cache; should be low
2418                  * cost as we expect to hit the cache.
2419                  */
2420                 for (i = 0; i < val_count; i++) {
2421                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2422                                            &v);
2423                         if (ret != 0)
2424                                 goto out;
2425
2426                         map->format.format_val(val + (i * val_bytes), v, 0);
2427                 }
2428         }
2429
2430  out:
2431         map->unlock(map->lock_arg);
2432
2433         return ret;
2434 }
2435 EXPORT_SYMBOL_GPL(regmap_raw_read);
2436
2437 /**
2438  * regmap_field_read(): Read a value to a single register field
2439  *
2440  * @field: Register field to read from
2441  * @val: Pointer to store read value
2442  *
2443  * A value of zero will be returned on success, a negative errno will
2444  * be returned in error cases.
2445  */
2446 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2447 {
2448         int ret;
2449         unsigned int reg_val;
2450         ret = regmap_read(field->regmap, field->reg, &reg_val);
2451         if (ret != 0)
2452                 return ret;
2453
2454         reg_val &= field->mask;
2455         reg_val >>= field->shift;
2456         *val = reg_val;
2457
2458         return ret;
2459 }
2460 EXPORT_SYMBOL_GPL(regmap_field_read);
2461
2462 /**
2463  * regmap_fields_read(): Read a value to a single register field with port ID
2464  *
2465  * @field: Register field to read from
2466  * @id: port ID
2467  * @val: Pointer to store read value
2468  *
2469  * A value of zero will be returned on success, a negative errno will
2470  * be returned in error cases.
2471  */
2472 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2473                        unsigned int *val)
2474 {
2475         int ret;
2476         unsigned int reg_val;
2477
2478         if (id >= field->id_size)
2479                 return -EINVAL;
2480
2481         ret = regmap_read(field->regmap,
2482                           field->reg + (field->id_offset * id),
2483                           &reg_val);
2484         if (ret != 0)
2485                 return ret;
2486
2487         reg_val &= field->mask;
2488         reg_val >>= field->shift;
2489         *val = reg_val;
2490
2491         return ret;
2492 }
2493 EXPORT_SYMBOL_GPL(regmap_fields_read);
2494
2495 /**
2496  * regmap_bulk_read(): Read multiple registers from the device
2497  *
2498  * @map: Register map to read from
2499  * @reg: First register to be read from
2500  * @val: Pointer to store read value, in native register size for device
2501  * @val_count: Number of registers to read
2502  *
2503  * A value of zero will be returned on success, a negative errno will
2504  * be returned in error cases.
2505  */
2506 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2507                      size_t val_count)
2508 {
2509         int ret, i;
2510         size_t val_bytes = map->format.val_bytes;
2511         bool vol = regmap_volatile_range(map, reg, val_count);
2512
2513         if (!IS_ALIGNED(reg, map->reg_stride))
2514                 return -EINVAL;
2515
2516         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2517                 /*
2518                  * Some devices does not support bulk read, for
2519                  * them we have a series of single read operations.
2520                  */
2521                 size_t total_size = val_bytes * val_count;
2522
2523                 if (!map->use_single_read &&
2524                     (!map->max_raw_read || map->max_raw_read > total_size)) {
2525                         ret = regmap_raw_read(map, reg, val,
2526                                               val_bytes * val_count);
2527                         if (ret != 0)
2528                                 return ret;
2529                 } else {
2530                         /*
2531                          * Some devices do not support bulk read or do not
2532                          * support large bulk reads, for them we have a series
2533                          * of read operations.
2534                          */
2535                         int chunk_stride = map->reg_stride;
2536                         size_t chunk_size = val_bytes;
2537                         size_t chunk_count = val_count;
2538
2539                         if (!map->use_single_read) {
2540                                 chunk_size = map->max_raw_read;
2541                                 if (chunk_size % val_bytes)
2542                                         chunk_size -= chunk_size % val_bytes;
2543                                 chunk_count = total_size / chunk_size;
2544                                 chunk_stride *= chunk_size / val_bytes;
2545                         }
2546
2547                         /* Read bytes that fit into a multiple of chunk_size */
2548                         for (i = 0; i < chunk_count; i++) {
2549                                 ret = regmap_raw_read(map,
2550                                                       reg + (i * chunk_stride),
2551                                                       val + (i * chunk_size),
2552                                                       chunk_size);
2553                                 if (ret != 0)
2554                                         return ret;
2555                         }
2556
2557                         /* Read remaining bytes */
2558                         if (chunk_size * i < total_size) {
2559                                 ret = regmap_raw_read(map,
2560                                                       reg + (i * chunk_stride),
2561                                                       val + (i * chunk_size),
2562                                                       total_size - i * chunk_size);
2563                                 if (ret != 0)
2564                                         return ret;
2565                         }
2566                 }
2567
2568                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2569                         map->format.parse_inplace(val + i);
2570         } else {
2571                 for (i = 0; i < val_count; i++) {
2572                         unsigned int ival;
2573                         ret = regmap_read(map, reg + regmap_get_offset(map, i),
2574                                           &ival);
2575                         if (ret != 0)
2576                                 return ret;
2577
2578                         if (map->format.format_val) {
2579                                 map->format.format_val(val + (i * val_bytes), ival, 0);
2580                         } else {
2581                                 /* Devices providing read and write
2582                                  * operations can use the bulk I/O
2583                                  * functions if they define a val_bytes,
2584                                  * we assume that the values are native
2585                                  * endian.
2586                                  */
2587 #ifdef CONFIG_64BIT
2588                                 u64 *u64 = val;
2589 #endif
2590                                 u32 *u32 = val;
2591                                 u16 *u16 = val;
2592                                 u8 *u8 = val;
2593
2594                                 switch (map->format.val_bytes) {
2595 #ifdef CONFIG_64BIT
2596                                 case 8:
2597                                         u64[i] = ival;
2598                                         break;
2599 #endif
2600                                 case 4:
2601                                         u32[i] = ival;
2602                                         break;
2603                                 case 2:
2604                                         u16[i] = ival;
2605                                         break;
2606                                 case 1:
2607                                         u8[i] = ival;
2608                                         break;
2609                                 default:
2610                                         return -EINVAL;
2611                                 }
2612                         }
2613                 }
2614         }
2615
2616         return 0;
2617 }
2618 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2619
2620 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2621                                unsigned int mask, unsigned int val,
2622                                bool *change, bool force_write)
2623 {
2624         int ret;
2625         unsigned int tmp, orig;
2626
2627         if (change)
2628                 *change = false;
2629
2630         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2631                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2632                 if (ret == 0 && change)
2633                         *change = true;
2634         } else {
2635                 ret = _regmap_read(map, reg, &orig);
2636                 if (ret != 0)
2637                         return ret;
2638
2639                 tmp = orig & ~mask;
2640                 tmp |= val & mask;
2641
2642                 if (force_write || (tmp != orig)) {
2643                         ret = _regmap_write(map, reg, tmp);
2644                         if (ret == 0 && change)
2645                                 *change = true;
2646                 }
2647         }
2648
2649         return ret;
2650 }
2651
2652 /**
2653  * regmap_update_bits_base:
2654  *      Perform a read/modify/write cycle on the
2655  *      register map with change, async, force option
2656  *
2657  * @map: Register map to update
2658  * @reg: Register to update
2659  * @mask: Bitmask to change
2660  * @val: New value for bitmask
2661  * @change: Boolean indicating if a write was done
2662  * @async: Boolean indicating asynchronously
2663  * @force: Boolean indicating use force update
2664  *
2665  * if async was true,
2666  * With most buses the read must be done synchronously so this is most
2667  * useful for devices with a cache which do not need to interact with
2668  * the hardware to determine the current register value.
2669  *
2670  * Returns zero for success, a negative number on error.
2671  */
2672 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2673                             unsigned int mask, unsigned int val,
2674                             bool *change, bool async, bool force)
2675 {
2676         int ret;
2677
2678         map->lock(map->lock_arg);
2679
2680         map->async = async;
2681
2682         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2683
2684         map->async = false;
2685
2686         map->unlock(map->lock_arg);
2687
2688         return ret;
2689 }
2690 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2691
2692 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2693 {
2694         struct regmap *map = async->map;
2695         bool wake;
2696
2697         trace_regmap_async_io_complete(map);
2698
2699         spin_lock(&map->async_lock);
2700         list_move(&async->list, &map->async_free);
2701         wake = list_empty(&map->async_list);
2702
2703         if (ret != 0)
2704                 map->async_ret = ret;
2705
2706         spin_unlock(&map->async_lock);
2707
2708         if (wake)
2709                 wake_up(&map->async_waitq);
2710 }
2711 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2712
2713 static int regmap_async_is_done(struct regmap *map)
2714 {
2715         unsigned long flags;
2716         int ret;
2717
2718         spin_lock_irqsave(&map->async_lock, flags);
2719         ret = list_empty(&map->async_list);
2720         spin_unlock_irqrestore(&map->async_lock, flags);
2721
2722         return ret;
2723 }
2724
2725 /**
2726  * regmap_async_complete: Ensure all asynchronous I/O has completed.
2727  *
2728  * @map: Map to operate on.
2729  *
2730  * Blocks until any pending asynchronous I/O has completed.  Returns
2731  * an error code for any failed I/O operations.
2732  */
2733 int regmap_async_complete(struct regmap *map)
2734 {
2735         unsigned long flags;
2736         int ret;
2737
2738         /* Nothing to do with no async support */
2739         if (!map->bus || !map->bus->async_write)
2740                 return 0;
2741
2742         trace_regmap_async_complete_start(map);
2743
2744         wait_event(map->async_waitq, regmap_async_is_done(map));
2745
2746         spin_lock_irqsave(&map->async_lock, flags);
2747         ret = map->async_ret;
2748         map->async_ret = 0;
2749         spin_unlock_irqrestore(&map->async_lock, flags);
2750
2751         trace_regmap_async_complete_done(map);
2752
2753         return ret;
2754 }
2755 EXPORT_SYMBOL_GPL(regmap_async_complete);
2756
2757 /**
2758  * regmap_register_patch: Register and apply register updates to be applied
2759  *                        on device initialistion
2760  *
2761  * @map: Register map to apply updates to.
2762  * @regs: Values to update.
2763  * @num_regs: Number of entries in regs.
2764  *
2765  * Register a set of register updates to be applied to the device
2766  * whenever the device registers are synchronised with the cache and
2767  * apply them immediately.  Typically this is used to apply
2768  * corrections to be applied to the device defaults on startup, such
2769  * as the updates some vendors provide to undocumented registers.
2770  *
2771  * The caller must ensure that this function cannot be called
2772  * concurrently with either itself or regcache_sync().
2773  */
2774 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2775                           int num_regs)
2776 {
2777         struct reg_sequence *p;
2778         int ret;
2779         bool bypass;
2780
2781         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2782             num_regs))
2783                 return 0;
2784
2785         p = krealloc(map->patch,
2786                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2787                      GFP_KERNEL);
2788         if (p) {
2789                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2790                 map->patch = p;
2791                 map->patch_regs += num_regs;
2792         } else {
2793                 return -ENOMEM;
2794         }
2795
2796         map->lock(map->lock_arg);
2797
2798         bypass = map->cache_bypass;
2799
2800         map->cache_bypass = true;
2801         map->async = true;
2802
2803         ret = _regmap_multi_reg_write(map, regs, num_regs);
2804
2805         map->async = false;
2806         map->cache_bypass = bypass;
2807
2808         map->unlock(map->lock_arg);
2809
2810         regmap_async_complete(map);
2811
2812         return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(regmap_register_patch);
2815
2816 /*
2817  * regmap_get_val_bytes(): Report the size of a register value
2818  *
2819  * Report the size of a register value, mainly intended to for use by
2820  * generic infrastructure built on top of regmap.
2821  */
2822 int regmap_get_val_bytes(struct regmap *map)
2823 {
2824         if (map->format.format_write)
2825                 return -EINVAL;
2826
2827         return map->format.val_bytes;
2828 }
2829 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2830
2831 /**
2832  * regmap_get_max_register(): Report the max register value
2833  *
2834  * Report the max register value, mainly intended to for use by
2835  * generic infrastructure built on top of regmap.
2836  */
2837 int regmap_get_max_register(struct regmap *map)
2838 {
2839         return map->max_register ? map->max_register : -EINVAL;
2840 }
2841 EXPORT_SYMBOL_GPL(regmap_get_max_register);
2842
2843 /**
2844  * regmap_get_reg_stride(): Report the register address stride
2845  *
2846  * Report the register address stride, mainly intended to for use by
2847  * generic infrastructure built on top of regmap.
2848  */
2849 int regmap_get_reg_stride(struct regmap *map)
2850 {
2851         return map->reg_stride;
2852 }
2853 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2854
2855 int regmap_parse_val(struct regmap *map, const void *buf,
2856                         unsigned int *val)
2857 {
2858         if (!map->format.parse_val)
2859                 return -EINVAL;
2860
2861         *val = map->format.parse_val(buf);
2862
2863         return 0;
2864 }
2865 EXPORT_SYMBOL_GPL(regmap_parse_val);
2866
2867 static int __init regmap_initcall(void)
2868 {
2869         regmap_debugfs_initcall();
2870
2871         return 0;
2872 }
2873 postcore_initcall(regmap_initcall);