rbd: use reference counts for image requests
[cascardo/linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44 #include <linux/idr.h>
45
46 #include "rbd_types.h"
47
48 #define RBD_DEBUG       /* Activate rbd_assert() calls */
49
50 /*
51  * The basic unit of block I/O is a sector.  It is interpreted in a
52  * number of contexts in Linux (blk, bio, genhd), but the default is
53  * universally 512 bytes.  These symbols are just slightly more
54  * meaningful than the bare numbers they represent.
55  */
56 #define SECTOR_SHIFT    9
57 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
58
59 /*
60  * Increment the given counter and return its updated value.
61  * If the counter is already 0 it will not be incremented.
62  * If the counter is already at its maximum value returns
63  * -EINVAL without updating it.
64  */
65 static int atomic_inc_return_safe(atomic_t *v)
66 {
67         unsigned int counter;
68
69         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
70         if (counter <= (unsigned int)INT_MAX)
71                 return (int)counter;
72
73         atomic_dec(v);
74
75         return -EINVAL;
76 }
77
78 /* Decrement the counter.  Return the resulting value, or -EINVAL */
79 static int atomic_dec_return_safe(atomic_t *v)
80 {
81         int counter;
82
83         counter = atomic_dec_return(v);
84         if (counter >= 0)
85                 return counter;
86
87         atomic_inc(v);
88
89         return -EINVAL;
90 }
91
92 #define RBD_DRV_NAME "rbd"
93
94 #define RBD_MINORS_PER_MAJOR            256
95 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
96
97 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
98 #define RBD_MAX_SNAP_NAME_LEN   \
99                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
100
101 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
102
103 #define RBD_SNAP_HEAD_NAME      "-"
104
105 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
106
107 /* This allows a single page to hold an image name sent by OSD */
108 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
109 #define RBD_IMAGE_ID_LEN_MAX    64
110
111 #define RBD_OBJ_PREFIX_LEN_MAX  64
112
113 /* Feature bits */
114
115 #define RBD_FEATURE_LAYERING    (1<<0)
116 #define RBD_FEATURE_STRIPINGV2  (1<<1)
117 #define RBD_FEATURES_ALL \
118             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
119
120 /* Features supported by this (client software) implementation. */
121
122 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
123
124 /*
125  * An RBD device name will be "rbd#", where the "rbd" comes from
126  * RBD_DRV_NAME above, and # is a unique integer identifier.
127  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
128  * enough to hold all possible device names.
129  */
130 #define DEV_NAME_LEN            32
131 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
132
133 /*
134  * block device image metadata (in-memory version)
135  */
136 struct rbd_image_header {
137         /* These six fields never change for a given rbd image */
138         char *object_prefix;
139         __u8 obj_order;
140         __u8 crypt_type;
141         __u8 comp_type;
142         u64 stripe_unit;
143         u64 stripe_count;
144         u64 features;           /* Might be changeable someday? */
145
146         /* The remaining fields need to be updated occasionally */
147         u64 image_size;
148         struct ceph_snap_context *snapc;
149         char *snap_names;       /* format 1 only */
150         u64 *snap_sizes;        /* format 1 only */
151 };
152
153 /*
154  * An rbd image specification.
155  *
156  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
157  * identify an image.  Each rbd_dev structure includes a pointer to
158  * an rbd_spec structure that encapsulates this identity.
159  *
160  * Each of the id's in an rbd_spec has an associated name.  For a
161  * user-mapped image, the names are supplied and the id's associated
162  * with them are looked up.  For a layered image, a parent image is
163  * defined by the tuple, and the names are looked up.
164  *
165  * An rbd_dev structure contains a parent_spec pointer which is
166  * non-null if the image it represents is a child in a layered
167  * image.  This pointer will refer to the rbd_spec structure used
168  * by the parent rbd_dev for its own identity (i.e., the structure
169  * is shared between the parent and child).
170  *
171  * Since these structures are populated once, during the discovery
172  * phase of image construction, they are effectively immutable so
173  * we make no effort to synchronize access to them.
174  *
175  * Note that code herein does not assume the image name is known (it
176  * could be a null pointer).
177  */
178 struct rbd_spec {
179         u64             pool_id;
180         const char      *pool_name;
181
182         const char      *image_id;
183         const char      *image_name;
184
185         u64             snap_id;
186         const char      *snap_name;
187
188         struct kref     kref;
189 };
190
191 /*
192  * an instance of the client.  multiple devices may share an rbd client.
193  */
194 struct rbd_client {
195         struct ceph_client      *client;
196         struct kref             kref;
197         struct list_head        node;
198 };
199
200 struct rbd_img_request;
201 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
202
203 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
204
205 struct rbd_obj_request;
206 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
207
208 enum obj_request_type {
209         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
210 };
211
212 enum obj_req_flags {
213         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
214         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
215         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
216         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
217 };
218
219 struct rbd_obj_request {
220         const char              *object_name;
221         u64                     offset;         /* object start byte */
222         u64                     length;         /* bytes from offset */
223         unsigned long           flags;
224
225         /*
226          * An object request associated with an image will have its
227          * img_data flag set; a standalone object request will not.
228          *
229          * A standalone object request will have which == BAD_WHICH
230          * and a null obj_request pointer.
231          *
232          * An object request initiated in support of a layered image
233          * object (to check for its existence before a write) will
234          * have which == BAD_WHICH and a non-null obj_request pointer.
235          *
236          * Finally, an object request for rbd image data will have
237          * which != BAD_WHICH, and will have a non-null img_request
238          * pointer.  The value of which will be in the range
239          * 0..(img_request->obj_request_count-1).
240          */
241         union {
242                 struct rbd_obj_request  *obj_request;   /* STAT op */
243                 struct {
244                         struct rbd_img_request  *img_request;
245                         u64                     img_offset;
246                         /* links for img_request->obj_requests list */
247                         struct list_head        links;
248                 };
249         };
250         u32                     which;          /* posn image request list */
251
252         enum obj_request_type   type;
253         union {
254                 struct bio      *bio_list;
255                 struct {
256                         struct page     **pages;
257                         u32             page_count;
258                 };
259         };
260         struct page             **copyup_pages;
261         u32                     copyup_page_count;
262
263         struct ceph_osd_request *osd_req;
264
265         u64                     xferred;        /* bytes transferred */
266         int                     result;
267
268         rbd_obj_callback_t      callback;
269         struct completion       completion;
270
271         struct kref             kref;
272 };
273
274 enum img_req_flags {
275         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
276         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
277         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
278 };
279
280 struct rbd_img_request {
281         struct rbd_device       *rbd_dev;
282         u64                     offset; /* starting image byte offset */
283         u64                     length; /* byte count from offset */
284         unsigned long           flags;
285         union {
286                 u64                     snap_id;        /* for reads */
287                 struct ceph_snap_context *snapc;        /* for writes */
288         };
289         union {
290                 struct request          *rq;            /* block request */
291                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
292         };
293         struct page             **copyup_pages;
294         u32                     copyup_page_count;
295         spinlock_t              completion_lock;/* protects next_completion */
296         u32                     next_completion;
297         rbd_img_callback_t      callback;
298         u64                     xferred;/* aggregate bytes transferred */
299         int                     result; /* first nonzero obj_request result */
300
301         u32                     obj_request_count;
302         struct list_head        obj_requests;   /* rbd_obj_request structs */
303
304         struct kref             kref;
305 };
306
307 #define for_each_obj_request(ireq, oreq) \
308         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
309 #define for_each_obj_request_from(ireq, oreq) \
310         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
311 #define for_each_obj_request_safe(ireq, oreq, n) \
312         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
313
314 struct rbd_mapping {
315         u64                     size;
316         u64                     features;
317         bool                    read_only;
318 };
319
320 /*
321  * a single device
322  */
323 struct rbd_device {
324         int                     dev_id;         /* blkdev unique id */
325
326         int                     major;          /* blkdev assigned major */
327         int                     minor;
328         struct gendisk          *disk;          /* blkdev's gendisk and rq */
329
330         u32                     image_format;   /* Either 1 or 2 */
331         struct rbd_client       *rbd_client;
332
333         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
334
335         spinlock_t              lock;           /* queue, flags, open_count */
336
337         struct rbd_image_header header;
338         unsigned long           flags;          /* possibly lock protected */
339         struct rbd_spec         *spec;
340
341         char                    *header_name;
342
343         struct ceph_file_layout layout;
344
345         struct ceph_osd_event   *watch_event;
346         struct rbd_obj_request  *watch_request;
347
348         struct rbd_spec         *parent_spec;
349         u64                     parent_overlap;
350         atomic_t                parent_ref;
351         struct rbd_device       *parent;
352
353         /* protects updating the header */
354         struct rw_semaphore     header_rwsem;
355
356         struct rbd_mapping      mapping;
357
358         struct list_head        node;
359
360         /* sysfs related */
361         struct device           dev;
362         unsigned long           open_count;     /* protected by lock */
363 };
364
365 /*
366  * Flag bits for rbd_dev->flags.  If atomicity is required,
367  * rbd_dev->lock is used to protect access.
368  *
369  * Currently, only the "removing" flag (which is coupled with the
370  * "open_count" field) requires atomic access.
371  */
372 enum rbd_dev_flags {
373         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
374         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
375 };
376
377 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
378
379 static LIST_HEAD(rbd_dev_list);    /* devices */
380 static DEFINE_SPINLOCK(rbd_dev_list_lock);
381
382 static LIST_HEAD(rbd_client_list);              /* clients */
383 static DEFINE_SPINLOCK(rbd_client_list_lock);
384
385 /* Slab caches for frequently-allocated structures */
386
387 static struct kmem_cache        *rbd_img_request_cache;
388 static struct kmem_cache        *rbd_obj_request_cache;
389 static struct kmem_cache        *rbd_segment_name_cache;
390
391 static int rbd_major;
392 static DEFINE_IDA(rbd_dev_id_ida);
393
394 /*
395  * Default to false for now, as single-major requires >= 0.75 version of
396  * userspace rbd utility.
397  */
398 static bool single_major = false;
399 module_param(single_major, bool, S_IRUGO);
400 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
401
402 static int rbd_img_request_submit(struct rbd_img_request *img_request);
403
404 static void rbd_dev_device_release(struct device *dev);
405
406 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
407                        size_t count);
408 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
409                           size_t count);
410 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
411                                     size_t count);
412 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
413                                        size_t count);
414 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
415 static void rbd_spec_put(struct rbd_spec *spec);
416
417 static int rbd_dev_id_to_minor(int dev_id)
418 {
419         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
420 }
421
422 static int minor_to_rbd_dev_id(int minor)
423 {
424         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
425 }
426
427 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
428 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
429 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
430 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
431
432 static struct attribute *rbd_bus_attrs[] = {
433         &bus_attr_add.attr,
434         &bus_attr_remove.attr,
435         &bus_attr_add_single_major.attr,
436         &bus_attr_remove_single_major.attr,
437         NULL,
438 };
439
440 static umode_t rbd_bus_is_visible(struct kobject *kobj,
441                                   struct attribute *attr, int index)
442 {
443         if (!single_major &&
444             (attr == &bus_attr_add_single_major.attr ||
445              attr == &bus_attr_remove_single_major.attr))
446                 return 0;
447
448         return attr->mode;
449 }
450
451 static const struct attribute_group rbd_bus_group = {
452         .attrs = rbd_bus_attrs,
453         .is_visible = rbd_bus_is_visible,
454 };
455 __ATTRIBUTE_GROUPS(rbd_bus);
456
457 static struct bus_type rbd_bus_type = {
458         .name           = "rbd",
459         .bus_groups     = rbd_bus_groups,
460 };
461
462 static void rbd_root_dev_release(struct device *dev)
463 {
464 }
465
466 static struct device rbd_root_dev = {
467         .init_name =    "rbd",
468         .release =      rbd_root_dev_release,
469 };
470
471 static __printf(2, 3)
472 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
473 {
474         struct va_format vaf;
475         va_list args;
476
477         va_start(args, fmt);
478         vaf.fmt = fmt;
479         vaf.va = &args;
480
481         if (!rbd_dev)
482                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
483         else if (rbd_dev->disk)
484                 printk(KERN_WARNING "%s: %s: %pV\n",
485                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
486         else if (rbd_dev->spec && rbd_dev->spec->image_name)
487                 printk(KERN_WARNING "%s: image %s: %pV\n",
488                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
489         else if (rbd_dev->spec && rbd_dev->spec->image_id)
490                 printk(KERN_WARNING "%s: id %s: %pV\n",
491                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
492         else    /* punt */
493                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
494                         RBD_DRV_NAME, rbd_dev, &vaf);
495         va_end(args);
496 }
497
498 #ifdef RBD_DEBUG
499 #define rbd_assert(expr)                                                \
500                 if (unlikely(!(expr))) {                                \
501                         printk(KERN_ERR "\nAssertion failure in %s() "  \
502                                                 "at line %d:\n\n"       \
503                                         "\trbd_assert(%s);\n\n",        \
504                                         __func__, __LINE__, #expr);     \
505                         BUG();                                          \
506                 }
507 #else /* !RBD_DEBUG */
508 #  define rbd_assert(expr)      ((void) 0)
509 #endif /* !RBD_DEBUG */
510
511 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
512 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
513 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
514
515 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
516 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
517 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
518 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
519                                         u64 snap_id);
520 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
521                                 u8 *order, u64 *snap_size);
522 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
523                 u64 *snap_features);
524 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
525
526 static int rbd_open(struct block_device *bdev, fmode_t mode)
527 {
528         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
529         bool removing = false;
530
531         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
532                 return -EROFS;
533
534         spin_lock_irq(&rbd_dev->lock);
535         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
536                 removing = true;
537         else
538                 rbd_dev->open_count++;
539         spin_unlock_irq(&rbd_dev->lock);
540         if (removing)
541                 return -ENOENT;
542
543         (void) get_device(&rbd_dev->dev);
544         set_device_ro(bdev, rbd_dev->mapping.read_only);
545
546         return 0;
547 }
548
549 static void rbd_release(struct gendisk *disk, fmode_t mode)
550 {
551         struct rbd_device *rbd_dev = disk->private_data;
552         unsigned long open_count_before;
553
554         spin_lock_irq(&rbd_dev->lock);
555         open_count_before = rbd_dev->open_count--;
556         spin_unlock_irq(&rbd_dev->lock);
557         rbd_assert(open_count_before > 0);
558
559         put_device(&rbd_dev->dev);
560 }
561
562 static const struct block_device_operations rbd_bd_ops = {
563         .owner                  = THIS_MODULE,
564         .open                   = rbd_open,
565         .release                = rbd_release,
566 };
567
568 /*
569  * Initialize an rbd client instance.  Success or not, this function
570  * consumes ceph_opts.  Caller holds client_mutex.
571  */
572 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
573 {
574         struct rbd_client *rbdc;
575         int ret = -ENOMEM;
576
577         dout("%s:\n", __func__);
578         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
579         if (!rbdc)
580                 goto out_opt;
581
582         kref_init(&rbdc->kref);
583         INIT_LIST_HEAD(&rbdc->node);
584
585         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
586         if (IS_ERR(rbdc->client))
587                 goto out_rbdc;
588         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
589
590         ret = ceph_open_session(rbdc->client);
591         if (ret < 0)
592                 goto out_client;
593
594         spin_lock(&rbd_client_list_lock);
595         list_add_tail(&rbdc->node, &rbd_client_list);
596         spin_unlock(&rbd_client_list_lock);
597
598         dout("%s: rbdc %p\n", __func__, rbdc);
599
600         return rbdc;
601 out_client:
602         ceph_destroy_client(rbdc->client);
603 out_rbdc:
604         kfree(rbdc);
605 out_opt:
606         if (ceph_opts)
607                 ceph_destroy_options(ceph_opts);
608         dout("%s: error %d\n", __func__, ret);
609
610         return ERR_PTR(ret);
611 }
612
613 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
614 {
615         kref_get(&rbdc->kref);
616
617         return rbdc;
618 }
619
620 /*
621  * Find a ceph client with specific addr and configuration.  If
622  * found, bump its reference count.
623  */
624 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
625 {
626         struct rbd_client *client_node;
627         bool found = false;
628
629         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
630                 return NULL;
631
632         spin_lock(&rbd_client_list_lock);
633         list_for_each_entry(client_node, &rbd_client_list, node) {
634                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
635                         __rbd_get_client(client_node);
636
637                         found = true;
638                         break;
639                 }
640         }
641         spin_unlock(&rbd_client_list_lock);
642
643         return found ? client_node : NULL;
644 }
645
646 /*
647  * mount options
648  */
649 enum {
650         Opt_last_int,
651         /* int args above */
652         Opt_last_string,
653         /* string args above */
654         Opt_read_only,
655         Opt_read_write,
656         /* Boolean args above */
657         Opt_last_bool,
658 };
659
660 static match_table_t rbd_opts_tokens = {
661         /* int args above */
662         /* string args above */
663         {Opt_read_only, "read_only"},
664         {Opt_read_only, "ro"},          /* Alternate spelling */
665         {Opt_read_write, "read_write"},
666         {Opt_read_write, "rw"},         /* Alternate spelling */
667         /* Boolean args above */
668         {-1, NULL}
669 };
670
671 struct rbd_options {
672         bool    read_only;
673 };
674
675 #define RBD_READ_ONLY_DEFAULT   false
676
677 static int parse_rbd_opts_token(char *c, void *private)
678 {
679         struct rbd_options *rbd_opts = private;
680         substring_t argstr[MAX_OPT_ARGS];
681         int token, intval, ret;
682
683         token = match_token(c, rbd_opts_tokens, argstr);
684         if (token < 0)
685                 return -EINVAL;
686
687         if (token < Opt_last_int) {
688                 ret = match_int(&argstr[0], &intval);
689                 if (ret < 0) {
690                         pr_err("bad mount option arg (not int) "
691                                "at '%s'\n", c);
692                         return ret;
693                 }
694                 dout("got int token %d val %d\n", token, intval);
695         } else if (token > Opt_last_int && token < Opt_last_string) {
696                 dout("got string token %d val %s\n", token,
697                      argstr[0].from);
698         } else if (token > Opt_last_string && token < Opt_last_bool) {
699                 dout("got Boolean token %d\n", token);
700         } else {
701                 dout("got token %d\n", token);
702         }
703
704         switch (token) {
705         case Opt_read_only:
706                 rbd_opts->read_only = true;
707                 break;
708         case Opt_read_write:
709                 rbd_opts->read_only = false;
710                 break;
711         default:
712                 rbd_assert(false);
713                 break;
714         }
715         return 0;
716 }
717
718 /*
719  * Get a ceph client with specific addr and configuration, if one does
720  * not exist create it.  Either way, ceph_opts is consumed by this
721  * function.
722  */
723 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
724 {
725         struct rbd_client *rbdc;
726
727         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
728         rbdc = rbd_client_find(ceph_opts);
729         if (rbdc)       /* using an existing client */
730                 ceph_destroy_options(ceph_opts);
731         else
732                 rbdc = rbd_client_create(ceph_opts);
733         mutex_unlock(&client_mutex);
734
735         return rbdc;
736 }
737
738 /*
739  * Destroy ceph client
740  *
741  * Caller must hold rbd_client_list_lock.
742  */
743 static void rbd_client_release(struct kref *kref)
744 {
745         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
746
747         dout("%s: rbdc %p\n", __func__, rbdc);
748         spin_lock(&rbd_client_list_lock);
749         list_del(&rbdc->node);
750         spin_unlock(&rbd_client_list_lock);
751
752         ceph_destroy_client(rbdc->client);
753         kfree(rbdc);
754 }
755
756 /*
757  * Drop reference to ceph client node. If it's not referenced anymore, release
758  * it.
759  */
760 static void rbd_put_client(struct rbd_client *rbdc)
761 {
762         if (rbdc)
763                 kref_put(&rbdc->kref, rbd_client_release);
764 }
765
766 static bool rbd_image_format_valid(u32 image_format)
767 {
768         return image_format == 1 || image_format == 2;
769 }
770
771 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
772 {
773         size_t size;
774         u32 snap_count;
775
776         /* The header has to start with the magic rbd header text */
777         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
778                 return false;
779
780         /* The bio layer requires at least sector-sized I/O */
781
782         if (ondisk->options.order < SECTOR_SHIFT)
783                 return false;
784
785         /* If we use u64 in a few spots we may be able to loosen this */
786
787         if (ondisk->options.order > 8 * sizeof (int) - 1)
788                 return false;
789
790         /*
791          * The size of a snapshot header has to fit in a size_t, and
792          * that limits the number of snapshots.
793          */
794         snap_count = le32_to_cpu(ondisk->snap_count);
795         size = SIZE_MAX - sizeof (struct ceph_snap_context);
796         if (snap_count > size / sizeof (__le64))
797                 return false;
798
799         /*
800          * Not only that, but the size of the entire the snapshot
801          * header must also be representable in a size_t.
802          */
803         size -= snap_count * sizeof (__le64);
804         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
805                 return false;
806
807         return true;
808 }
809
810 /*
811  * Fill an rbd image header with information from the given format 1
812  * on-disk header.
813  */
814 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
815                                  struct rbd_image_header_ondisk *ondisk)
816 {
817         struct rbd_image_header *header = &rbd_dev->header;
818         bool first_time = header->object_prefix == NULL;
819         struct ceph_snap_context *snapc;
820         char *object_prefix = NULL;
821         char *snap_names = NULL;
822         u64 *snap_sizes = NULL;
823         u32 snap_count;
824         size_t size;
825         int ret = -ENOMEM;
826         u32 i;
827
828         /* Allocate this now to avoid having to handle failure below */
829
830         if (first_time) {
831                 size_t len;
832
833                 len = strnlen(ondisk->object_prefix,
834                                 sizeof (ondisk->object_prefix));
835                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
836                 if (!object_prefix)
837                         return -ENOMEM;
838                 memcpy(object_prefix, ondisk->object_prefix, len);
839                 object_prefix[len] = '\0';
840         }
841
842         /* Allocate the snapshot context and fill it in */
843
844         snap_count = le32_to_cpu(ondisk->snap_count);
845         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
846         if (!snapc)
847                 goto out_err;
848         snapc->seq = le64_to_cpu(ondisk->snap_seq);
849         if (snap_count) {
850                 struct rbd_image_snap_ondisk *snaps;
851                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
852
853                 /* We'll keep a copy of the snapshot names... */
854
855                 if (snap_names_len > (u64)SIZE_MAX)
856                         goto out_2big;
857                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
858                 if (!snap_names)
859                         goto out_err;
860
861                 /* ...as well as the array of their sizes. */
862
863                 size = snap_count * sizeof (*header->snap_sizes);
864                 snap_sizes = kmalloc(size, GFP_KERNEL);
865                 if (!snap_sizes)
866                         goto out_err;
867
868                 /*
869                  * Copy the names, and fill in each snapshot's id
870                  * and size.
871                  *
872                  * Note that rbd_dev_v1_header_info() guarantees the
873                  * ondisk buffer we're working with has
874                  * snap_names_len bytes beyond the end of the
875                  * snapshot id array, this memcpy() is safe.
876                  */
877                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
878                 snaps = ondisk->snaps;
879                 for (i = 0; i < snap_count; i++) {
880                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
881                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
882                 }
883         }
884
885         /* We won't fail any more, fill in the header */
886
887         if (first_time) {
888                 header->object_prefix = object_prefix;
889                 header->obj_order = ondisk->options.order;
890                 header->crypt_type = ondisk->options.crypt_type;
891                 header->comp_type = ondisk->options.comp_type;
892                 /* The rest aren't used for format 1 images */
893                 header->stripe_unit = 0;
894                 header->stripe_count = 0;
895                 header->features = 0;
896         } else {
897                 ceph_put_snap_context(header->snapc);
898                 kfree(header->snap_names);
899                 kfree(header->snap_sizes);
900         }
901
902         /* The remaining fields always get updated (when we refresh) */
903
904         header->image_size = le64_to_cpu(ondisk->image_size);
905         header->snapc = snapc;
906         header->snap_names = snap_names;
907         header->snap_sizes = snap_sizes;
908
909         /* Make sure mapping size is consistent with header info */
910
911         if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
912                 if (rbd_dev->mapping.size != header->image_size)
913                         rbd_dev->mapping.size = header->image_size;
914
915         return 0;
916 out_2big:
917         ret = -EIO;
918 out_err:
919         kfree(snap_sizes);
920         kfree(snap_names);
921         ceph_put_snap_context(snapc);
922         kfree(object_prefix);
923
924         return ret;
925 }
926
927 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
928 {
929         const char *snap_name;
930
931         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
932
933         /* Skip over names until we find the one we are looking for */
934
935         snap_name = rbd_dev->header.snap_names;
936         while (which--)
937                 snap_name += strlen(snap_name) + 1;
938
939         return kstrdup(snap_name, GFP_KERNEL);
940 }
941
942 /*
943  * Snapshot id comparison function for use with qsort()/bsearch().
944  * Note that result is for snapshots in *descending* order.
945  */
946 static int snapid_compare_reverse(const void *s1, const void *s2)
947 {
948         u64 snap_id1 = *(u64 *)s1;
949         u64 snap_id2 = *(u64 *)s2;
950
951         if (snap_id1 < snap_id2)
952                 return 1;
953         return snap_id1 == snap_id2 ? 0 : -1;
954 }
955
956 /*
957  * Search a snapshot context to see if the given snapshot id is
958  * present.
959  *
960  * Returns the position of the snapshot id in the array if it's found,
961  * or BAD_SNAP_INDEX otherwise.
962  *
963  * Note: The snapshot array is in kept sorted (by the osd) in
964  * reverse order, highest snapshot id first.
965  */
966 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
967 {
968         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
969         u64 *found;
970
971         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
972                                 sizeof (snap_id), snapid_compare_reverse);
973
974         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
975 }
976
977 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
978                                         u64 snap_id)
979 {
980         u32 which;
981         const char *snap_name;
982
983         which = rbd_dev_snap_index(rbd_dev, snap_id);
984         if (which == BAD_SNAP_INDEX)
985                 return ERR_PTR(-ENOENT);
986
987         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
988         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
989 }
990
991 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
992 {
993         if (snap_id == CEPH_NOSNAP)
994                 return RBD_SNAP_HEAD_NAME;
995
996         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
997         if (rbd_dev->image_format == 1)
998                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
999
1000         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1001 }
1002
1003 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1004                                 u64 *snap_size)
1005 {
1006         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1007         if (snap_id == CEPH_NOSNAP) {
1008                 *snap_size = rbd_dev->header.image_size;
1009         } else if (rbd_dev->image_format == 1) {
1010                 u32 which;
1011
1012                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1013                 if (which == BAD_SNAP_INDEX)
1014                         return -ENOENT;
1015
1016                 *snap_size = rbd_dev->header.snap_sizes[which];
1017         } else {
1018                 u64 size = 0;
1019                 int ret;
1020
1021                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1022                 if (ret)
1023                         return ret;
1024
1025                 *snap_size = size;
1026         }
1027         return 0;
1028 }
1029
1030 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1031                         u64 *snap_features)
1032 {
1033         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1034         if (snap_id == CEPH_NOSNAP) {
1035                 *snap_features = rbd_dev->header.features;
1036         } else if (rbd_dev->image_format == 1) {
1037                 *snap_features = 0;     /* No features for format 1 */
1038         } else {
1039                 u64 features = 0;
1040                 int ret;
1041
1042                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1043                 if (ret)
1044                         return ret;
1045
1046                 *snap_features = features;
1047         }
1048         return 0;
1049 }
1050
1051 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1052 {
1053         u64 snap_id = rbd_dev->spec->snap_id;
1054         u64 size = 0;
1055         u64 features = 0;
1056         int ret;
1057
1058         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1059         if (ret)
1060                 return ret;
1061         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1062         if (ret)
1063                 return ret;
1064
1065         rbd_dev->mapping.size = size;
1066         rbd_dev->mapping.features = features;
1067
1068         return 0;
1069 }
1070
1071 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1072 {
1073         rbd_dev->mapping.size = 0;
1074         rbd_dev->mapping.features = 0;
1075 }
1076
1077 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1078 {
1079         char *name;
1080         u64 segment;
1081         int ret;
1082         char *name_format;
1083
1084         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1085         if (!name)
1086                 return NULL;
1087         segment = offset >> rbd_dev->header.obj_order;
1088         name_format = "%s.%012llx";
1089         if (rbd_dev->image_format == 2)
1090                 name_format = "%s.%016llx";
1091         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1092                         rbd_dev->header.object_prefix, segment);
1093         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1094                 pr_err("error formatting segment name for #%llu (%d)\n",
1095                         segment, ret);
1096                 kfree(name);
1097                 name = NULL;
1098         }
1099
1100         return name;
1101 }
1102
1103 static void rbd_segment_name_free(const char *name)
1104 {
1105         /* The explicit cast here is needed to drop the const qualifier */
1106
1107         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1108 }
1109
1110 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1111 {
1112         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1113
1114         return offset & (segment_size - 1);
1115 }
1116
1117 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1118                                 u64 offset, u64 length)
1119 {
1120         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1121
1122         offset &= segment_size - 1;
1123
1124         rbd_assert(length <= U64_MAX - offset);
1125         if (offset + length > segment_size)
1126                 length = segment_size - offset;
1127
1128         return length;
1129 }
1130
1131 /*
1132  * returns the size of an object in the image
1133  */
1134 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1135 {
1136         return 1 << header->obj_order;
1137 }
1138
1139 /*
1140  * bio helpers
1141  */
1142
1143 static void bio_chain_put(struct bio *chain)
1144 {
1145         struct bio *tmp;
1146
1147         while (chain) {
1148                 tmp = chain;
1149                 chain = chain->bi_next;
1150                 bio_put(tmp);
1151         }
1152 }
1153
1154 /*
1155  * zeros a bio chain, starting at specific offset
1156  */
1157 static void zero_bio_chain(struct bio *chain, int start_ofs)
1158 {
1159         struct bio_vec bv;
1160         struct bvec_iter iter;
1161         unsigned long flags;
1162         void *buf;
1163         int pos = 0;
1164
1165         while (chain) {
1166                 bio_for_each_segment(bv, chain, iter) {
1167                         if (pos + bv.bv_len > start_ofs) {
1168                                 int remainder = max(start_ofs - pos, 0);
1169                                 buf = bvec_kmap_irq(&bv, &flags);
1170                                 memset(buf + remainder, 0,
1171                                        bv.bv_len - remainder);
1172                                 flush_dcache_page(bv.bv_page);
1173                                 bvec_kunmap_irq(buf, &flags);
1174                         }
1175                         pos += bv.bv_len;
1176                 }
1177
1178                 chain = chain->bi_next;
1179         }
1180 }
1181
1182 /*
1183  * similar to zero_bio_chain(), zeros data defined by a page array,
1184  * starting at the given byte offset from the start of the array and
1185  * continuing up to the given end offset.  The pages array is
1186  * assumed to be big enough to hold all bytes up to the end.
1187  */
1188 static void zero_pages(struct page **pages, u64 offset, u64 end)
1189 {
1190         struct page **page = &pages[offset >> PAGE_SHIFT];
1191
1192         rbd_assert(end > offset);
1193         rbd_assert(end - offset <= (u64)SIZE_MAX);
1194         while (offset < end) {
1195                 size_t page_offset;
1196                 size_t length;
1197                 unsigned long flags;
1198                 void *kaddr;
1199
1200                 page_offset = offset & ~PAGE_MASK;
1201                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1202                 local_irq_save(flags);
1203                 kaddr = kmap_atomic(*page);
1204                 memset(kaddr + page_offset, 0, length);
1205                 flush_dcache_page(*page);
1206                 kunmap_atomic(kaddr);
1207                 local_irq_restore(flags);
1208
1209                 offset += length;
1210                 page++;
1211         }
1212 }
1213
1214 /*
1215  * Clone a portion of a bio, starting at the given byte offset
1216  * and continuing for the number of bytes indicated.
1217  */
1218 static struct bio *bio_clone_range(struct bio *bio_src,
1219                                         unsigned int offset,
1220                                         unsigned int len,
1221                                         gfp_t gfpmask)
1222 {
1223         struct bio *bio;
1224
1225         bio = bio_clone(bio_src, gfpmask);
1226         if (!bio)
1227                 return NULL;    /* ENOMEM */
1228
1229         bio_advance(bio, offset);
1230         bio->bi_iter.bi_size = len;
1231
1232         return bio;
1233 }
1234
1235 /*
1236  * Clone a portion of a bio chain, starting at the given byte offset
1237  * into the first bio in the source chain and continuing for the
1238  * number of bytes indicated.  The result is another bio chain of
1239  * exactly the given length, or a null pointer on error.
1240  *
1241  * The bio_src and offset parameters are both in-out.  On entry they
1242  * refer to the first source bio and the offset into that bio where
1243  * the start of data to be cloned is located.
1244  *
1245  * On return, bio_src is updated to refer to the bio in the source
1246  * chain that contains first un-cloned byte, and *offset will
1247  * contain the offset of that byte within that bio.
1248  */
1249 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1250                                         unsigned int *offset,
1251                                         unsigned int len,
1252                                         gfp_t gfpmask)
1253 {
1254         struct bio *bi = *bio_src;
1255         unsigned int off = *offset;
1256         struct bio *chain = NULL;
1257         struct bio **end;
1258
1259         /* Build up a chain of clone bios up to the limit */
1260
1261         if (!bi || off >= bi->bi_iter.bi_size || !len)
1262                 return NULL;            /* Nothing to clone */
1263
1264         end = &chain;
1265         while (len) {
1266                 unsigned int bi_size;
1267                 struct bio *bio;
1268
1269                 if (!bi) {
1270                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1271                         goto out_err;   /* EINVAL; ran out of bio's */
1272                 }
1273                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1274                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1275                 if (!bio)
1276                         goto out_err;   /* ENOMEM */
1277
1278                 *end = bio;
1279                 end = &bio->bi_next;
1280
1281                 off += bi_size;
1282                 if (off == bi->bi_iter.bi_size) {
1283                         bi = bi->bi_next;
1284                         off = 0;
1285                 }
1286                 len -= bi_size;
1287         }
1288         *bio_src = bi;
1289         *offset = off;
1290
1291         return chain;
1292 out_err:
1293         bio_chain_put(chain);
1294
1295         return NULL;
1296 }
1297
1298 /*
1299  * The default/initial value for all object request flags is 0.  For
1300  * each flag, once its value is set to 1 it is never reset to 0
1301  * again.
1302  */
1303 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1304 {
1305         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1306                 struct rbd_device *rbd_dev;
1307
1308                 rbd_dev = obj_request->img_request->rbd_dev;
1309                 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1310                         obj_request);
1311         }
1312 }
1313
1314 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1315 {
1316         smp_mb();
1317         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1318 }
1319
1320 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1321 {
1322         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1323                 struct rbd_device *rbd_dev = NULL;
1324
1325                 if (obj_request_img_data_test(obj_request))
1326                         rbd_dev = obj_request->img_request->rbd_dev;
1327                 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1328                         obj_request);
1329         }
1330 }
1331
1332 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1333 {
1334         smp_mb();
1335         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1336 }
1337
1338 /*
1339  * This sets the KNOWN flag after (possibly) setting the EXISTS
1340  * flag.  The latter is set based on the "exists" value provided.
1341  *
1342  * Note that for our purposes once an object exists it never goes
1343  * away again.  It's possible that the response from two existence
1344  * checks are separated by the creation of the target object, and
1345  * the first ("doesn't exist") response arrives *after* the second
1346  * ("does exist").  In that case we ignore the second one.
1347  */
1348 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1349                                 bool exists)
1350 {
1351         if (exists)
1352                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1353         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1354         smp_mb();
1355 }
1356
1357 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1358 {
1359         smp_mb();
1360         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1361 }
1362
1363 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1364 {
1365         smp_mb();
1366         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1367 }
1368
1369 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1370 {
1371         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1372                 atomic_read(&obj_request->kref.refcount));
1373         kref_get(&obj_request->kref);
1374 }
1375
1376 static void rbd_obj_request_destroy(struct kref *kref);
1377 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1378 {
1379         rbd_assert(obj_request != NULL);
1380         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1381                 atomic_read(&obj_request->kref.refcount));
1382         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1383 }
1384
1385 static void rbd_img_request_get(struct rbd_img_request *img_request)
1386 {
1387         dout("%s: img %p (was %d)\n", __func__, img_request,
1388              atomic_read(&img_request->kref.refcount));
1389         kref_get(&img_request->kref);
1390 }
1391
1392 static bool img_request_child_test(struct rbd_img_request *img_request);
1393 static void rbd_parent_request_destroy(struct kref *kref);
1394 static void rbd_img_request_destroy(struct kref *kref);
1395 static void rbd_img_request_put(struct rbd_img_request *img_request)
1396 {
1397         rbd_assert(img_request != NULL);
1398         dout("%s: img %p (was %d)\n", __func__, img_request,
1399                 atomic_read(&img_request->kref.refcount));
1400         if (img_request_child_test(img_request))
1401                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1402         else
1403                 kref_put(&img_request->kref, rbd_img_request_destroy);
1404 }
1405
1406 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1407                                         struct rbd_obj_request *obj_request)
1408 {
1409         rbd_assert(obj_request->img_request == NULL);
1410
1411         /* Image request now owns object's original reference */
1412         obj_request->img_request = img_request;
1413         obj_request->which = img_request->obj_request_count;
1414         rbd_assert(!obj_request_img_data_test(obj_request));
1415         obj_request_img_data_set(obj_request);
1416         rbd_assert(obj_request->which != BAD_WHICH);
1417         img_request->obj_request_count++;
1418         list_add_tail(&obj_request->links, &img_request->obj_requests);
1419         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1420                 obj_request->which);
1421 }
1422
1423 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1424                                         struct rbd_obj_request *obj_request)
1425 {
1426         rbd_assert(obj_request->which != BAD_WHICH);
1427
1428         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1429                 obj_request->which);
1430         list_del(&obj_request->links);
1431         rbd_assert(img_request->obj_request_count > 0);
1432         img_request->obj_request_count--;
1433         rbd_assert(obj_request->which == img_request->obj_request_count);
1434         obj_request->which = BAD_WHICH;
1435         rbd_assert(obj_request_img_data_test(obj_request));
1436         rbd_assert(obj_request->img_request == img_request);
1437         obj_request->img_request = NULL;
1438         obj_request->callback = NULL;
1439         rbd_obj_request_put(obj_request);
1440 }
1441
1442 static bool obj_request_type_valid(enum obj_request_type type)
1443 {
1444         switch (type) {
1445         case OBJ_REQUEST_NODATA:
1446         case OBJ_REQUEST_BIO:
1447         case OBJ_REQUEST_PAGES:
1448                 return true;
1449         default:
1450                 return false;
1451         }
1452 }
1453
1454 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1455                                 struct rbd_obj_request *obj_request)
1456 {
1457         dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1458
1459         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1460 }
1461
1462 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1463 {
1464
1465         dout("%s: img %p\n", __func__, img_request);
1466
1467         /*
1468          * If no error occurred, compute the aggregate transfer
1469          * count for the image request.  We could instead use
1470          * atomic64_cmpxchg() to update it as each object request
1471          * completes; not clear which way is better off hand.
1472          */
1473         if (!img_request->result) {
1474                 struct rbd_obj_request *obj_request;
1475                 u64 xferred = 0;
1476
1477                 for_each_obj_request(img_request, obj_request)
1478                         xferred += obj_request->xferred;
1479                 img_request->xferred = xferred;
1480         }
1481
1482         if (img_request->callback)
1483                 img_request->callback(img_request);
1484         else
1485                 rbd_img_request_put(img_request);
1486 }
1487
1488 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1489
1490 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1491 {
1492         dout("%s: obj %p\n", __func__, obj_request);
1493
1494         return wait_for_completion_interruptible(&obj_request->completion);
1495 }
1496
1497 /*
1498  * The default/initial value for all image request flags is 0.  Each
1499  * is conditionally set to 1 at image request initialization time
1500  * and currently never change thereafter.
1501  */
1502 static void img_request_write_set(struct rbd_img_request *img_request)
1503 {
1504         set_bit(IMG_REQ_WRITE, &img_request->flags);
1505         smp_mb();
1506 }
1507
1508 static bool img_request_write_test(struct rbd_img_request *img_request)
1509 {
1510         smp_mb();
1511         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1512 }
1513
1514 static void img_request_child_set(struct rbd_img_request *img_request)
1515 {
1516         set_bit(IMG_REQ_CHILD, &img_request->flags);
1517         smp_mb();
1518 }
1519
1520 static void img_request_child_clear(struct rbd_img_request *img_request)
1521 {
1522         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1523         smp_mb();
1524 }
1525
1526 static bool img_request_child_test(struct rbd_img_request *img_request)
1527 {
1528         smp_mb();
1529         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1530 }
1531
1532 static void img_request_layered_set(struct rbd_img_request *img_request)
1533 {
1534         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1535         smp_mb();
1536 }
1537
1538 static void img_request_layered_clear(struct rbd_img_request *img_request)
1539 {
1540         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1541         smp_mb();
1542 }
1543
1544 static bool img_request_layered_test(struct rbd_img_request *img_request)
1545 {
1546         smp_mb();
1547         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1548 }
1549
1550 static void
1551 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1552 {
1553         u64 xferred = obj_request->xferred;
1554         u64 length = obj_request->length;
1555
1556         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1557                 obj_request, obj_request->img_request, obj_request->result,
1558                 xferred, length);
1559         /*
1560          * ENOENT means a hole in the image.  We zero-fill the entire
1561          * length of the request.  A short read also implies zero-fill
1562          * to the end of the request.  An error requires the whole
1563          * length of the request to be reported finished with an error
1564          * to the block layer.  In each case we update the xferred
1565          * count to indicate the whole request was satisfied.
1566          */
1567         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1568         if (obj_request->result == -ENOENT) {
1569                 if (obj_request->type == OBJ_REQUEST_BIO)
1570                         zero_bio_chain(obj_request->bio_list, 0);
1571                 else
1572                         zero_pages(obj_request->pages, 0, length);
1573                 obj_request->result = 0;
1574         } else if (xferred < length && !obj_request->result) {
1575                 if (obj_request->type == OBJ_REQUEST_BIO)
1576                         zero_bio_chain(obj_request->bio_list, xferred);
1577                 else
1578                         zero_pages(obj_request->pages, xferred, length);
1579         }
1580         obj_request->xferred = length;
1581         obj_request_done_set(obj_request);
1582 }
1583
1584 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1585 {
1586         dout("%s: obj %p cb %p\n", __func__, obj_request,
1587                 obj_request->callback);
1588         if (obj_request->callback)
1589                 obj_request->callback(obj_request);
1590         else
1591                 complete_all(&obj_request->completion);
1592 }
1593
1594 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1595 {
1596         dout("%s: obj %p\n", __func__, obj_request);
1597         obj_request_done_set(obj_request);
1598 }
1599
1600 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1601 {
1602         struct rbd_img_request *img_request = NULL;
1603         struct rbd_device *rbd_dev = NULL;
1604         bool layered = false;
1605
1606         if (obj_request_img_data_test(obj_request)) {
1607                 img_request = obj_request->img_request;
1608                 layered = img_request && img_request_layered_test(img_request);
1609                 rbd_dev = img_request->rbd_dev;
1610         }
1611
1612         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1613                 obj_request, img_request, obj_request->result,
1614                 obj_request->xferred, obj_request->length);
1615         if (layered && obj_request->result == -ENOENT &&
1616                         obj_request->img_offset < rbd_dev->parent_overlap)
1617                 rbd_img_parent_read(obj_request);
1618         else if (img_request)
1619                 rbd_img_obj_request_read_callback(obj_request);
1620         else
1621                 obj_request_done_set(obj_request);
1622 }
1623
1624 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1625 {
1626         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1627                 obj_request->result, obj_request->length);
1628         /*
1629          * There is no such thing as a successful short write.  Set
1630          * it to our originally-requested length.
1631          */
1632         obj_request->xferred = obj_request->length;
1633         obj_request_done_set(obj_request);
1634 }
1635
1636 /*
1637  * For a simple stat call there's nothing to do.  We'll do more if
1638  * this is part of a write sequence for a layered image.
1639  */
1640 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1641 {
1642         dout("%s: obj %p\n", __func__, obj_request);
1643         obj_request_done_set(obj_request);
1644 }
1645
1646 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1647                                 struct ceph_msg *msg)
1648 {
1649         struct rbd_obj_request *obj_request = osd_req->r_priv;
1650         u16 opcode;
1651
1652         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1653         rbd_assert(osd_req == obj_request->osd_req);
1654         if (obj_request_img_data_test(obj_request)) {
1655                 rbd_assert(obj_request->img_request);
1656                 rbd_assert(obj_request->which != BAD_WHICH);
1657         } else {
1658                 rbd_assert(obj_request->which == BAD_WHICH);
1659         }
1660
1661         if (osd_req->r_result < 0)
1662                 obj_request->result = osd_req->r_result;
1663
1664         rbd_assert(osd_req->r_num_ops <= CEPH_OSD_MAX_OP);
1665
1666         /*
1667          * We support a 64-bit length, but ultimately it has to be
1668          * passed to blk_end_request(), which takes an unsigned int.
1669          */
1670         obj_request->xferred = osd_req->r_reply_op_len[0];
1671         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1672
1673         opcode = osd_req->r_ops[0].op;
1674         switch (opcode) {
1675         case CEPH_OSD_OP_READ:
1676                 rbd_osd_read_callback(obj_request);
1677                 break;
1678         case CEPH_OSD_OP_SETALLOCHINT:
1679                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE);
1680                 /* fall through */
1681         case CEPH_OSD_OP_WRITE:
1682                 rbd_osd_write_callback(obj_request);
1683                 break;
1684         case CEPH_OSD_OP_STAT:
1685                 rbd_osd_stat_callback(obj_request);
1686                 break;
1687         case CEPH_OSD_OP_CALL:
1688         case CEPH_OSD_OP_NOTIFY_ACK:
1689         case CEPH_OSD_OP_WATCH:
1690                 rbd_osd_trivial_callback(obj_request);
1691                 break;
1692         default:
1693                 rbd_warn(NULL, "%s: unsupported op %hu\n",
1694                         obj_request->object_name, (unsigned short) opcode);
1695                 break;
1696         }
1697
1698         if (obj_request_done_test(obj_request))
1699                 rbd_obj_request_complete(obj_request);
1700 }
1701
1702 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1703 {
1704         struct rbd_img_request *img_request = obj_request->img_request;
1705         struct ceph_osd_request *osd_req = obj_request->osd_req;
1706         u64 snap_id;
1707
1708         rbd_assert(osd_req != NULL);
1709
1710         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1711         ceph_osdc_build_request(osd_req, obj_request->offset,
1712                         NULL, snap_id, NULL);
1713 }
1714
1715 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1716 {
1717         struct rbd_img_request *img_request = obj_request->img_request;
1718         struct ceph_osd_request *osd_req = obj_request->osd_req;
1719         struct ceph_snap_context *snapc;
1720         struct timespec mtime = CURRENT_TIME;
1721
1722         rbd_assert(osd_req != NULL);
1723
1724         snapc = img_request ? img_request->snapc : NULL;
1725         ceph_osdc_build_request(osd_req, obj_request->offset,
1726                         snapc, CEPH_NOSNAP, &mtime);
1727 }
1728
1729 /*
1730  * Create an osd request.  A read request has one osd op (read).
1731  * A write request has either one (watch) or two (hint+write) osd ops.
1732  * (All rbd data writes are prefixed with an allocation hint op, but
1733  * technically osd watch is a write request, hence this distinction.)
1734  */
1735 static struct ceph_osd_request *rbd_osd_req_create(
1736                                         struct rbd_device *rbd_dev,
1737                                         bool write_request,
1738                                         unsigned int num_ops,
1739                                         struct rbd_obj_request *obj_request)
1740 {
1741         struct ceph_snap_context *snapc = NULL;
1742         struct ceph_osd_client *osdc;
1743         struct ceph_osd_request *osd_req;
1744
1745         if (obj_request_img_data_test(obj_request)) {
1746                 struct rbd_img_request *img_request = obj_request->img_request;
1747
1748                 rbd_assert(write_request ==
1749                                 img_request_write_test(img_request));
1750                 if (write_request)
1751                         snapc = img_request->snapc;
1752         }
1753
1754         rbd_assert(num_ops == 1 || (write_request && num_ops == 2));
1755
1756         /* Allocate and initialize the request, for the num_ops ops */
1757
1758         osdc = &rbd_dev->rbd_client->client->osdc;
1759         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1760                                           GFP_ATOMIC);
1761         if (!osd_req)
1762                 return NULL;    /* ENOMEM */
1763
1764         if (write_request)
1765                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1766         else
1767                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1768
1769         osd_req->r_callback = rbd_osd_req_callback;
1770         osd_req->r_priv = obj_request;
1771
1772         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1773         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1774
1775         return osd_req;
1776 }
1777
1778 /*
1779  * Create a copyup osd request based on the information in the
1780  * object request supplied.  A copyup request has three osd ops,
1781  * a copyup method call, a hint op, and a write op.
1782  */
1783 static struct ceph_osd_request *
1784 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1785 {
1786         struct rbd_img_request *img_request;
1787         struct ceph_snap_context *snapc;
1788         struct rbd_device *rbd_dev;
1789         struct ceph_osd_client *osdc;
1790         struct ceph_osd_request *osd_req;
1791
1792         rbd_assert(obj_request_img_data_test(obj_request));
1793         img_request = obj_request->img_request;
1794         rbd_assert(img_request);
1795         rbd_assert(img_request_write_test(img_request));
1796
1797         /* Allocate and initialize the request, for the three ops */
1798
1799         snapc = img_request->snapc;
1800         rbd_dev = img_request->rbd_dev;
1801         osdc = &rbd_dev->rbd_client->client->osdc;
1802         osd_req = ceph_osdc_alloc_request(osdc, snapc, 3, false, GFP_ATOMIC);
1803         if (!osd_req)
1804                 return NULL;    /* ENOMEM */
1805
1806         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1807         osd_req->r_callback = rbd_osd_req_callback;
1808         osd_req->r_priv = obj_request;
1809
1810         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1811         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1812
1813         return osd_req;
1814 }
1815
1816
1817 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1818 {
1819         ceph_osdc_put_request(osd_req);
1820 }
1821
1822 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1823
1824 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1825                                                 u64 offset, u64 length,
1826                                                 enum obj_request_type type)
1827 {
1828         struct rbd_obj_request *obj_request;
1829         size_t size;
1830         char *name;
1831
1832         rbd_assert(obj_request_type_valid(type));
1833
1834         size = strlen(object_name) + 1;
1835         name = kmalloc(size, GFP_KERNEL);
1836         if (!name)
1837                 return NULL;
1838
1839         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1840         if (!obj_request) {
1841                 kfree(name);
1842                 return NULL;
1843         }
1844
1845         obj_request->object_name = memcpy(name, object_name, size);
1846         obj_request->offset = offset;
1847         obj_request->length = length;
1848         obj_request->flags = 0;
1849         obj_request->which = BAD_WHICH;
1850         obj_request->type = type;
1851         INIT_LIST_HEAD(&obj_request->links);
1852         init_completion(&obj_request->completion);
1853         kref_init(&obj_request->kref);
1854
1855         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1856                 offset, length, (int)type, obj_request);
1857
1858         return obj_request;
1859 }
1860
1861 static void rbd_obj_request_destroy(struct kref *kref)
1862 {
1863         struct rbd_obj_request *obj_request;
1864
1865         obj_request = container_of(kref, struct rbd_obj_request, kref);
1866
1867         dout("%s: obj %p\n", __func__, obj_request);
1868
1869         rbd_assert(obj_request->img_request == NULL);
1870         rbd_assert(obj_request->which == BAD_WHICH);
1871
1872         if (obj_request->osd_req)
1873                 rbd_osd_req_destroy(obj_request->osd_req);
1874
1875         rbd_assert(obj_request_type_valid(obj_request->type));
1876         switch (obj_request->type) {
1877         case OBJ_REQUEST_NODATA:
1878                 break;          /* Nothing to do */
1879         case OBJ_REQUEST_BIO:
1880                 if (obj_request->bio_list)
1881                         bio_chain_put(obj_request->bio_list);
1882                 break;
1883         case OBJ_REQUEST_PAGES:
1884                 if (obj_request->pages)
1885                         ceph_release_page_vector(obj_request->pages,
1886                                                 obj_request->page_count);
1887                 break;
1888         }
1889
1890         kfree(obj_request->object_name);
1891         obj_request->object_name = NULL;
1892         kmem_cache_free(rbd_obj_request_cache, obj_request);
1893 }
1894
1895 /* It's OK to call this for a device with no parent */
1896
1897 static void rbd_spec_put(struct rbd_spec *spec);
1898 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1899 {
1900         rbd_dev_remove_parent(rbd_dev);
1901         rbd_spec_put(rbd_dev->parent_spec);
1902         rbd_dev->parent_spec = NULL;
1903         rbd_dev->parent_overlap = 0;
1904 }
1905
1906 /*
1907  * Parent image reference counting is used to determine when an
1908  * image's parent fields can be safely torn down--after there are no
1909  * more in-flight requests to the parent image.  When the last
1910  * reference is dropped, cleaning them up is safe.
1911  */
1912 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1913 {
1914         int counter;
1915
1916         if (!rbd_dev->parent_spec)
1917                 return;
1918
1919         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1920         if (counter > 0)
1921                 return;
1922
1923         /* Last reference; clean up parent data structures */
1924
1925         if (!counter)
1926                 rbd_dev_unparent(rbd_dev);
1927         else
1928                 rbd_warn(rbd_dev, "parent reference underflow\n");
1929 }
1930
1931 /*
1932  * If an image has a non-zero parent overlap, get a reference to its
1933  * parent.
1934  *
1935  * We must get the reference before checking for the overlap to
1936  * coordinate properly with zeroing the parent overlap in
1937  * rbd_dev_v2_parent_info() when an image gets flattened.  We
1938  * drop it again if there is no overlap.
1939  *
1940  * Returns true if the rbd device has a parent with a non-zero
1941  * overlap and a reference for it was successfully taken, or
1942  * false otherwise.
1943  */
1944 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1945 {
1946         int counter;
1947
1948         if (!rbd_dev->parent_spec)
1949                 return false;
1950
1951         counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1952         if (counter > 0 && rbd_dev->parent_overlap)
1953                 return true;
1954
1955         /* Image was flattened, but parent is not yet torn down */
1956
1957         if (counter < 0)
1958                 rbd_warn(rbd_dev, "parent reference overflow\n");
1959
1960         return false;
1961 }
1962
1963 /*
1964  * Caller is responsible for filling in the list of object requests
1965  * that comprises the image request, and the Linux request pointer
1966  * (if there is one).
1967  */
1968 static struct rbd_img_request *rbd_img_request_create(
1969                                         struct rbd_device *rbd_dev,
1970                                         u64 offset, u64 length,
1971                                         bool write_request)
1972 {
1973         struct rbd_img_request *img_request;
1974
1975         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1976         if (!img_request)
1977                 return NULL;
1978
1979         if (write_request) {
1980                 down_read(&rbd_dev->header_rwsem);
1981                 ceph_get_snap_context(rbd_dev->header.snapc);
1982                 up_read(&rbd_dev->header_rwsem);
1983         }
1984
1985         img_request->rq = NULL;
1986         img_request->rbd_dev = rbd_dev;
1987         img_request->offset = offset;
1988         img_request->length = length;
1989         img_request->flags = 0;
1990         if (write_request) {
1991                 img_request_write_set(img_request);
1992                 img_request->snapc = rbd_dev->header.snapc;
1993         } else {
1994                 img_request->snap_id = rbd_dev->spec->snap_id;
1995         }
1996         if (rbd_dev_parent_get(rbd_dev))
1997                 img_request_layered_set(img_request);
1998         spin_lock_init(&img_request->completion_lock);
1999         img_request->next_completion = 0;
2000         img_request->callback = NULL;
2001         img_request->result = 0;
2002         img_request->obj_request_count = 0;
2003         INIT_LIST_HEAD(&img_request->obj_requests);
2004         kref_init(&img_request->kref);
2005
2006         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2007                 write_request ? "write" : "read", offset, length,
2008                 img_request);
2009
2010         return img_request;
2011 }
2012
2013 static void rbd_img_request_destroy(struct kref *kref)
2014 {
2015         struct rbd_img_request *img_request;
2016         struct rbd_obj_request *obj_request;
2017         struct rbd_obj_request *next_obj_request;
2018
2019         img_request = container_of(kref, struct rbd_img_request, kref);
2020
2021         dout("%s: img %p\n", __func__, img_request);
2022
2023         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2024                 rbd_img_obj_request_del(img_request, obj_request);
2025         rbd_assert(img_request->obj_request_count == 0);
2026
2027         if (img_request_layered_test(img_request)) {
2028                 img_request_layered_clear(img_request);
2029                 rbd_dev_parent_put(img_request->rbd_dev);
2030         }
2031
2032         if (img_request_write_test(img_request))
2033                 ceph_put_snap_context(img_request->snapc);
2034
2035         kmem_cache_free(rbd_img_request_cache, img_request);
2036 }
2037
2038 static struct rbd_img_request *rbd_parent_request_create(
2039                                         struct rbd_obj_request *obj_request,
2040                                         u64 img_offset, u64 length)
2041 {
2042         struct rbd_img_request *parent_request;
2043         struct rbd_device *rbd_dev;
2044
2045         rbd_assert(obj_request->img_request);
2046         rbd_dev = obj_request->img_request->rbd_dev;
2047
2048         parent_request = rbd_img_request_create(rbd_dev->parent,
2049                                                 img_offset, length, false);
2050         if (!parent_request)
2051                 return NULL;
2052
2053         img_request_child_set(parent_request);
2054         rbd_obj_request_get(obj_request);
2055         parent_request->obj_request = obj_request;
2056
2057         return parent_request;
2058 }
2059
2060 static void rbd_parent_request_destroy(struct kref *kref)
2061 {
2062         struct rbd_img_request *parent_request;
2063         struct rbd_obj_request *orig_request;
2064
2065         parent_request = container_of(kref, struct rbd_img_request, kref);
2066         orig_request = parent_request->obj_request;
2067
2068         parent_request->obj_request = NULL;
2069         rbd_obj_request_put(orig_request);
2070         img_request_child_clear(parent_request);
2071
2072         rbd_img_request_destroy(kref);
2073 }
2074
2075 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2076 {
2077         struct rbd_img_request *img_request;
2078         unsigned int xferred;
2079         int result;
2080         bool more;
2081
2082         rbd_assert(obj_request_img_data_test(obj_request));
2083         img_request = obj_request->img_request;
2084
2085         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2086         xferred = (unsigned int)obj_request->xferred;
2087         result = obj_request->result;
2088         if (result) {
2089                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2090
2091                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2092                         img_request_write_test(img_request) ? "write" : "read",
2093                         obj_request->length, obj_request->img_offset,
2094                         obj_request->offset);
2095                 rbd_warn(rbd_dev, "  result %d xferred %x\n",
2096                         result, xferred);
2097                 if (!img_request->result)
2098                         img_request->result = result;
2099         }
2100
2101         /* Image object requests don't own their page array */
2102
2103         if (obj_request->type == OBJ_REQUEST_PAGES) {
2104                 obj_request->pages = NULL;
2105                 obj_request->page_count = 0;
2106         }
2107
2108         if (img_request_child_test(img_request)) {
2109                 rbd_assert(img_request->obj_request != NULL);
2110                 more = obj_request->which < img_request->obj_request_count - 1;
2111         } else {
2112                 rbd_assert(img_request->rq != NULL);
2113                 more = blk_end_request(img_request->rq, result, xferred);
2114         }
2115
2116         return more;
2117 }
2118
2119 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2120 {
2121         struct rbd_img_request *img_request;
2122         u32 which = obj_request->which;
2123         bool more = true;
2124
2125         rbd_assert(obj_request_img_data_test(obj_request));
2126         img_request = obj_request->img_request;
2127
2128         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2129         rbd_assert(img_request != NULL);
2130         rbd_assert(img_request->obj_request_count > 0);
2131         rbd_assert(which != BAD_WHICH);
2132         rbd_assert(which < img_request->obj_request_count);
2133
2134         spin_lock_irq(&img_request->completion_lock);
2135         if (which != img_request->next_completion)
2136                 goto out;
2137
2138         for_each_obj_request_from(img_request, obj_request) {
2139                 rbd_assert(more);
2140                 rbd_assert(which < img_request->obj_request_count);
2141
2142                 if (!obj_request_done_test(obj_request))
2143                         break;
2144                 more = rbd_img_obj_end_request(obj_request);
2145                 which++;
2146         }
2147
2148         rbd_assert(more ^ (which == img_request->obj_request_count));
2149         img_request->next_completion = which;
2150 out:
2151         spin_unlock_irq(&img_request->completion_lock);
2152         rbd_img_request_put(img_request);
2153
2154         if (!more)
2155                 rbd_img_request_complete(img_request);
2156 }
2157
2158 /*
2159  * Split up an image request into one or more object requests, each
2160  * to a different object.  The "type" parameter indicates whether
2161  * "data_desc" is the pointer to the head of a list of bio
2162  * structures, or the base of a page array.  In either case this
2163  * function assumes data_desc describes memory sufficient to hold
2164  * all data described by the image request.
2165  */
2166 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2167                                         enum obj_request_type type,
2168                                         void *data_desc)
2169 {
2170         struct rbd_device *rbd_dev = img_request->rbd_dev;
2171         struct rbd_obj_request *obj_request = NULL;
2172         struct rbd_obj_request *next_obj_request;
2173         bool write_request = img_request_write_test(img_request);
2174         struct bio *bio_list = NULL;
2175         unsigned int bio_offset = 0;
2176         struct page **pages = NULL;
2177         u64 img_offset;
2178         u64 resid;
2179         u16 opcode;
2180
2181         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2182                 (int)type, data_desc);
2183
2184         opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2185         img_offset = img_request->offset;
2186         resid = img_request->length;
2187         rbd_assert(resid > 0);
2188
2189         if (type == OBJ_REQUEST_BIO) {
2190                 bio_list = data_desc;
2191                 rbd_assert(img_offset ==
2192                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2193         } else {
2194                 rbd_assert(type == OBJ_REQUEST_PAGES);
2195                 pages = data_desc;
2196         }
2197
2198         while (resid) {
2199                 struct ceph_osd_request *osd_req;
2200                 const char *object_name;
2201                 u64 offset;
2202                 u64 length;
2203                 unsigned int which = 0;
2204
2205                 object_name = rbd_segment_name(rbd_dev, img_offset);
2206                 if (!object_name)
2207                         goto out_unwind;
2208                 offset = rbd_segment_offset(rbd_dev, img_offset);
2209                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2210                 obj_request = rbd_obj_request_create(object_name,
2211                                                 offset, length, type);
2212                 /* object request has its own copy of the object name */
2213                 rbd_segment_name_free(object_name);
2214                 if (!obj_request)
2215                         goto out_unwind;
2216
2217                 /*
2218                  * set obj_request->img_request before creating the
2219                  * osd_request so that it gets the right snapc
2220                  */
2221                 rbd_img_obj_request_add(img_request, obj_request);
2222
2223                 if (type == OBJ_REQUEST_BIO) {
2224                         unsigned int clone_size;
2225
2226                         rbd_assert(length <= (u64)UINT_MAX);
2227                         clone_size = (unsigned int)length;
2228                         obj_request->bio_list =
2229                                         bio_chain_clone_range(&bio_list,
2230                                                                 &bio_offset,
2231                                                                 clone_size,
2232                                                                 GFP_ATOMIC);
2233                         if (!obj_request->bio_list)
2234                                 goto out_unwind;
2235                 } else {
2236                         unsigned int page_count;
2237
2238                         obj_request->pages = pages;
2239                         page_count = (u32)calc_pages_for(offset, length);
2240                         obj_request->page_count = page_count;
2241                         if ((offset + length) & ~PAGE_MASK)
2242                                 page_count--;   /* more on last page */
2243                         pages += page_count;
2244                 }
2245
2246                 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2247                                              (write_request ? 2 : 1),
2248                                              obj_request);
2249                 if (!osd_req)
2250                         goto out_unwind;
2251                 obj_request->osd_req = osd_req;
2252                 obj_request->callback = rbd_img_obj_callback;
2253                 rbd_img_request_get(img_request);
2254
2255                 if (write_request) {
2256                         osd_req_op_alloc_hint_init(osd_req, which,
2257                                              rbd_obj_bytes(&rbd_dev->header),
2258                                              rbd_obj_bytes(&rbd_dev->header));
2259                         which++;
2260                 }
2261
2262                 osd_req_op_extent_init(osd_req, which, opcode, offset, length,
2263                                        0, 0);
2264                 if (type == OBJ_REQUEST_BIO)
2265                         osd_req_op_extent_osd_data_bio(osd_req, which,
2266                                         obj_request->bio_list, length);
2267                 else
2268                         osd_req_op_extent_osd_data_pages(osd_req, which,
2269                                         obj_request->pages, length,
2270                                         offset & ~PAGE_MASK, false, false);
2271
2272                 if (write_request)
2273                         rbd_osd_req_format_write(obj_request);
2274                 else
2275                         rbd_osd_req_format_read(obj_request);
2276
2277                 obj_request->img_offset = img_offset;
2278
2279                 img_offset += length;
2280                 resid -= length;
2281         }
2282
2283         return 0;
2284
2285 out_unwind:
2286         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2287                 rbd_img_obj_request_del(img_request, obj_request);
2288
2289         return -ENOMEM;
2290 }
2291
2292 static void
2293 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2294 {
2295         struct rbd_img_request *img_request;
2296         struct rbd_device *rbd_dev;
2297         struct page **pages;
2298         u32 page_count;
2299
2300         rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2301         rbd_assert(obj_request_img_data_test(obj_request));
2302         img_request = obj_request->img_request;
2303         rbd_assert(img_request);
2304
2305         rbd_dev = img_request->rbd_dev;
2306         rbd_assert(rbd_dev);
2307
2308         pages = obj_request->copyup_pages;
2309         rbd_assert(pages != NULL);
2310         obj_request->copyup_pages = NULL;
2311         page_count = obj_request->copyup_page_count;
2312         rbd_assert(page_count);
2313         obj_request->copyup_page_count = 0;
2314         ceph_release_page_vector(pages, page_count);
2315
2316         /*
2317          * We want the transfer count to reflect the size of the
2318          * original write request.  There is no such thing as a
2319          * successful short write, so if the request was successful
2320          * we can just set it to the originally-requested length.
2321          */
2322         if (!obj_request->result)
2323                 obj_request->xferred = obj_request->length;
2324
2325         /* Finish up with the normal image object callback */
2326
2327         rbd_img_obj_callback(obj_request);
2328 }
2329
2330 static void
2331 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2332 {
2333         struct rbd_obj_request *orig_request;
2334         struct ceph_osd_request *osd_req;
2335         struct ceph_osd_client *osdc;
2336         struct rbd_device *rbd_dev;
2337         struct page **pages;
2338         u32 page_count;
2339         int img_result;
2340         u64 parent_length;
2341         u64 offset;
2342         u64 length;
2343
2344         rbd_assert(img_request_child_test(img_request));
2345
2346         /* First get what we need from the image request */
2347
2348         pages = img_request->copyup_pages;
2349         rbd_assert(pages != NULL);
2350         img_request->copyup_pages = NULL;
2351         page_count = img_request->copyup_page_count;
2352         rbd_assert(page_count);
2353         img_request->copyup_page_count = 0;
2354
2355         orig_request = img_request->obj_request;
2356         rbd_assert(orig_request != NULL);
2357         rbd_assert(obj_request_type_valid(orig_request->type));
2358         img_result = img_request->result;
2359         parent_length = img_request->length;
2360         rbd_assert(parent_length == img_request->xferred);
2361         rbd_img_request_put(img_request);
2362
2363         rbd_assert(orig_request->img_request);
2364         rbd_dev = orig_request->img_request->rbd_dev;
2365         rbd_assert(rbd_dev);
2366
2367         /*
2368          * If the overlap has become 0 (most likely because the
2369          * image has been flattened) we need to free the pages
2370          * and re-submit the original write request.
2371          */
2372         if (!rbd_dev->parent_overlap) {
2373                 struct ceph_osd_client *osdc;
2374
2375                 ceph_release_page_vector(pages, page_count);
2376                 osdc = &rbd_dev->rbd_client->client->osdc;
2377                 img_result = rbd_obj_request_submit(osdc, orig_request);
2378                 if (!img_result)
2379                         return;
2380         }
2381
2382         if (img_result)
2383                 goto out_err;
2384
2385         /*
2386          * The original osd request is of no use to use any more.
2387          * We need a new one that can hold the three ops in a copyup
2388          * request.  Allocate the new copyup osd request for the
2389          * original request, and release the old one.
2390          */
2391         img_result = -ENOMEM;
2392         osd_req = rbd_osd_req_create_copyup(orig_request);
2393         if (!osd_req)
2394                 goto out_err;
2395         rbd_osd_req_destroy(orig_request->osd_req);
2396         orig_request->osd_req = osd_req;
2397         orig_request->copyup_pages = pages;
2398         orig_request->copyup_page_count = page_count;
2399
2400         /* Initialize the copyup op */
2401
2402         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2403         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2404                                                 false, false);
2405
2406         /* Then the hint op */
2407
2408         osd_req_op_alloc_hint_init(osd_req, 1, rbd_obj_bytes(&rbd_dev->header),
2409                                    rbd_obj_bytes(&rbd_dev->header));
2410
2411         /* And the original write request op */
2412
2413         offset = orig_request->offset;
2414         length = orig_request->length;
2415         osd_req_op_extent_init(osd_req, 2, CEPH_OSD_OP_WRITE,
2416                                         offset, length, 0, 0);
2417         if (orig_request->type == OBJ_REQUEST_BIO)
2418                 osd_req_op_extent_osd_data_bio(osd_req, 2,
2419                                         orig_request->bio_list, length);
2420         else
2421                 osd_req_op_extent_osd_data_pages(osd_req, 2,
2422                                         orig_request->pages, length,
2423                                         offset & ~PAGE_MASK, false, false);
2424
2425         rbd_osd_req_format_write(orig_request);
2426
2427         /* All set, send it off. */
2428
2429         orig_request->callback = rbd_img_obj_copyup_callback;
2430         osdc = &rbd_dev->rbd_client->client->osdc;
2431         img_result = rbd_obj_request_submit(osdc, orig_request);
2432         if (!img_result)
2433                 return;
2434 out_err:
2435         /* Record the error code and complete the request */
2436
2437         orig_request->result = img_result;
2438         orig_request->xferred = 0;
2439         obj_request_done_set(orig_request);
2440         rbd_obj_request_complete(orig_request);
2441 }
2442
2443 /*
2444  * Read from the parent image the range of data that covers the
2445  * entire target of the given object request.  This is used for
2446  * satisfying a layered image write request when the target of an
2447  * object request from the image request does not exist.
2448  *
2449  * A page array big enough to hold the returned data is allocated
2450  * and supplied to rbd_img_request_fill() as the "data descriptor."
2451  * When the read completes, this page array will be transferred to
2452  * the original object request for the copyup operation.
2453  *
2454  * If an error occurs, record it as the result of the original
2455  * object request and mark it done so it gets completed.
2456  */
2457 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2458 {
2459         struct rbd_img_request *img_request = NULL;
2460         struct rbd_img_request *parent_request = NULL;
2461         struct rbd_device *rbd_dev;
2462         u64 img_offset;
2463         u64 length;
2464         struct page **pages = NULL;
2465         u32 page_count;
2466         int result;
2467
2468         rbd_assert(obj_request_img_data_test(obj_request));
2469         rbd_assert(obj_request_type_valid(obj_request->type));
2470
2471         img_request = obj_request->img_request;
2472         rbd_assert(img_request != NULL);
2473         rbd_dev = img_request->rbd_dev;
2474         rbd_assert(rbd_dev->parent != NULL);
2475
2476         /*
2477          * Determine the byte range covered by the object in the
2478          * child image to which the original request was to be sent.
2479          */
2480         img_offset = obj_request->img_offset - obj_request->offset;
2481         length = (u64)1 << rbd_dev->header.obj_order;
2482
2483         /*
2484          * There is no defined parent data beyond the parent
2485          * overlap, so limit what we read at that boundary if
2486          * necessary.
2487          */
2488         if (img_offset + length > rbd_dev->parent_overlap) {
2489                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2490                 length = rbd_dev->parent_overlap - img_offset;
2491         }
2492
2493         /*
2494          * Allocate a page array big enough to receive the data read
2495          * from the parent.
2496          */
2497         page_count = (u32)calc_pages_for(0, length);
2498         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2499         if (IS_ERR(pages)) {
2500                 result = PTR_ERR(pages);
2501                 pages = NULL;
2502                 goto out_err;
2503         }
2504
2505         result = -ENOMEM;
2506         parent_request = rbd_parent_request_create(obj_request,
2507                                                 img_offset, length);
2508         if (!parent_request)
2509                 goto out_err;
2510
2511         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2512         if (result)
2513                 goto out_err;
2514         parent_request->copyup_pages = pages;
2515         parent_request->copyup_page_count = page_count;
2516
2517         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2518         result = rbd_img_request_submit(parent_request);
2519         if (!result)
2520                 return 0;
2521
2522         parent_request->copyup_pages = NULL;
2523         parent_request->copyup_page_count = 0;
2524         parent_request->obj_request = NULL;
2525         rbd_obj_request_put(obj_request);
2526 out_err:
2527         if (pages)
2528                 ceph_release_page_vector(pages, page_count);
2529         if (parent_request)
2530                 rbd_img_request_put(parent_request);
2531         obj_request->result = result;
2532         obj_request->xferred = 0;
2533         obj_request_done_set(obj_request);
2534
2535         return result;
2536 }
2537
2538 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2539 {
2540         struct rbd_obj_request *orig_request;
2541         struct rbd_device *rbd_dev;
2542         int result;
2543
2544         rbd_assert(!obj_request_img_data_test(obj_request));
2545
2546         /*
2547          * All we need from the object request is the original
2548          * request and the result of the STAT op.  Grab those, then
2549          * we're done with the request.
2550          */
2551         orig_request = obj_request->obj_request;
2552         obj_request->obj_request = NULL;
2553         rbd_obj_request_put(orig_request);
2554         rbd_assert(orig_request);
2555         rbd_assert(orig_request->img_request);
2556
2557         result = obj_request->result;
2558         obj_request->result = 0;
2559
2560         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2561                 obj_request, orig_request, result,
2562                 obj_request->xferred, obj_request->length);
2563         rbd_obj_request_put(obj_request);
2564
2565         /*
2566          * If the overlap has become 0 (most likely because the
2567          * image has been flattened) we need to free the pages
2568          * and re-submit the original write request.
2569          */
2570         rbd_dev = orig_request->img_request->rbd_dev;
2571         if (!rbd_dev->parent_overlap) {
2572                 struct ceph_osd_client *osdc;
2573
2574                 osdc = &rbd_dev->rbd_client->client->osdc;
2575                 result = rbd_obj_request_submit(osdc, orig_request);
2576                 if (!result)
2577                         return;
2578         }
2579
2580         /*
2581          * Our only purpose here is to determine whether the object
2582          * exists, and we don't want to treat the non-existence as
2583          * an error.  If something else comes back, transfer the
2584          * error to the original request and complete it now.
2585          */
2586         if (!result) {
2587                 obj_request_existence_set(orig_request, true);
2588         } else if (result == -ENOENT) {
2589                 obj_request_existence_set(orig_request, false);
2590         } else if (result) {
2591                 orig_request->result = result;
2592                 goto out;
2593         }
2594
2595         /*
2596          * Resubmit the original request now that we have recorded
2597          * whether the target object exists.
2598          */
2599         orig_request->result = rbd_img_obj_request_submit(orig_request);
2600 out:
2601         if (orig_request->result)
2602                 rbd_obj_request_complete(orig_request);
2603 }
2604
2605 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2606 {
2607         struct rbd_obj_request *stat_request;
2608         struct rbd_device *rbd_dev;
2609         struct ceph_osd_client *osdc;
2610         struct page **pages = NULL;
2611         u32 page_count;
2612         size_t size;
2613         int ret;
2614
2615         /*
2616          * The response data for a STAT call consists of:
2617          *     le64 length;
2618          *     struct {
2619          *         le32 tv_sec;
2620          *         le32 tv_nsec;
2621          *     } mtime;
2622          */
2623         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2624         page_count = (u32)calc_pages_for(0, size);
2625         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2626         if (IS_ERR(pages))
2627                 return PTR_ERR(pages);
2628
2629         ret = -ENOMEM;
2630         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2631                                                         OBJ_REQUEST_PAGES);
2632         if (!stat_request)
2633                 goto out;
2634
2635         rbd_obj_request_get(obj_request);
2636         stat_request->obj_request = obj_request;
2637         stat_request->pages = pages;
2638         stat_request->page_count = page_count;
2639
2640         rbd_assert(obj_request->img_request);
2641         rbd_dev = obj_request->img_request->rbd_dev;
2642         stat_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2643                                                    stat_request);
2644         if (!stat_request->osd_req)
2645                 goto out;
2646         stat_request->callback = rbd_img_obj_exists_callback;
2647
2648         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2649         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2650                                         false, false);
2651         rbd_osd_req_format_read(stat_request);
2652
2653         osdc = &rbd_dev->rbd_client->client->osdc;
2654         ret = rbd_obj_request_submit(osdc, stat_request);
2655 out:
2656         if (ret)
2657                 rbd_obj_request_put(obj_request);
2658
2659         return ret;
2660 }
2661
2662 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2663 {
2664         struct rbd_img_request *img_request;
2665         struct rbd_device *rbd_dev;
2666         bool known;
2667
2668         rbd_assert(obj_request_img_data_test(obj_request));
2669
2670         img_request = obj_request->img_request;
2671         rbd_assert(img_request);
2672         rbd_dev = img_request->rbd_dev;
2673
2674         /*
2675          * Only writes to layered images need special handling.
2676          * Reads and non-layered writes are simple object requests.
2677          * Layered writes that start beyond the end of the overlap
2678          * with the parent have no parent data, so they too are
2679          * simple object requests.  Finally, if the target object is
2680          * known to already exist, its parent data has already been
2681          * copied, so a write to the object can also be handled as a
2682          * simple object request.
2683          */
2684         if (!img_request_write_test(img_request) ||
2685                 !img_request_layered_test(img_request) ||
2686                 rbd_dev->parent_overlap <= obj_request->img_offset ||
2687                 ((known = obj_request_known_test(obj_request)) &&
2688                         obj_request_exists_test(obj_request))) {
2689
2690                 struct rbd_device *rbd_dev;
2691                 struct ceph_osd_client *osdc;
2692
2693                 rbd_dev = obj_request->img_request->rbd_dev;
2694                 osdc = &rbd_dev->rbd_client->client->osdc;
2695
2696                 return rbd_obj_request_submit(osdc, obj_request);
2697         }
2698
2699         /*
2700          * It's a layered write.  The target object might exist but
2701          * we may not know that yet.  If we know it doesn't exist,
2702          * start by reading the data for the full target object from
2703          * the parent so we can use it for a copyup to the target.
2704          */
2705         if (known)
2706                 return rbd_img_obj_parent_read_full(obj_request);
2707
2708         /* We don't know whether the target exists.  Go find out. */
2709
2710         return rbd_img_obj_exists_submit(obj_request);
2711 }
2712
2713 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2714 {
2715         struct rbd_obj_request *obj_request;
2716         struct rbd_obj_request *next_obj_request;
2717
2718         dout("%s: img %p\n", __func__, img_request);
2719         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2720                 int ret;
2721
2722                 ret = rbd_img_obj_request_submit(obj_request);
2723                 if (ret)
2724                         return ret;
2725         }
2726
2727         return 0;
2728 }
2729
2730 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2731 {
2732         struct rbd_obj_request *obj_request;
2733         struct rbd_device *rbd_dev;
2734         u64 obj_end;
2735         u64 img_xferred;
2736         int img_result;
2737
2738         rbd_assert(img_request_child_test(img_request));
2739
2740         /* First get what we need from the image request and release it */
2741
2742         obj_request = img_request->obj_request;
2743         img_xferred = img_request->xferred;
2744         img_result = img_request->result;
2745         rbd_img_request_put(img_request);
2746
2747         /*
2748          * If the overlap has become 0 (most likely because the
2749          * image has been flattened) we need to re-submit the
2750          * original request.
2751          */
2752         rbd_assert(obj_request);
2753         rbd_assert(obj_request->img_request);
2754         rbd_dev = obj_request->img_request->rbd_dev;
2755         if (!rbd_dev->parent_overlap) {
2756                 struct ceph_osd_client *osdc;
2757
2758                 osdc = &rbd_dev->rbd_client->client->osdc;
2759                 img_result = rbd_obj_request_submit(osdc, obj_request);
2760                 if (!img_result)
2761                         return;
2762         }
2763
2764         obj_request->result = img_result;
2765         if (obj_request->result)
2766                 goto out;
2767
2768         /*
2769          * We need to zero anything beyond the parent overlap
2770          * boundary.  Since rbd_img_obj_request_read_callback()
2771          * will zero anything beyond the end of a short read, an
2772          * easy way to do this is to pretend the data from the
2773          * parent came up short--ending at the overlap boundary.
2774          */
2775         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2776         obj_end = obj_request->img_offset + obj_request->length;
2777         if (obj_end > rbd_dev->parent_overlap) {
2778                 u64 xferred = 0;
2779
2780                 if (obj_request->img_offset < rbd_dev->parent_overlap)
2781                         xferred = rbd_dev->parent_overlap -
2782                                         obj_request->img_offset;
2783
2784                 obj_request->xferred = min(img_xferred, xferred);
2785         } else {
2786                 obj_request->xferred = img_xferred;
2787         }
2788 out:
2789         rbd_img_obj_request_read_callback(obj_request);
2790         rbd_obj_request_complete(obj_request);
2791 }
2792
2793 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2794 {
2795         struct rbd_img_request *img_request;
2796         int result;
2797
2798         rbd_assert(obj_request_img_data_test(obj_request));
2799         rbd_assert(obj_request->img_request != NULL);
2800         rbd_assert(obj_request->result == (s32) -ENOENT);
2801         rbd_assert(obj_request_type_valid(obj_request->type));
2802
2803         /* rbd_read_finish(obj_request, obj_request->length); */
2804         img_request = rbd_parent_request_create(obj_request,
2805                                                 obj_request->img_offset,
2806                                                 obj_request->length);
2807         result = -ENOMEM;
2808         if (!img_request)
2809                 goto out_err;
2810
2811         if (obj_request->type == OBJ_REQUEST_BIO)
2812                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2813                                                 obj_request->bio_list);
2814         else
2815                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2816                                                 obj_request->pages);
2817         if (result)
2818                 goto out_err;
2819
2820         img_request->callback = rbd_img_parent_read_callback;
2821         result = rbd_img_request_submit(img_request);
2822         if (result)
2823                 goto out_err;
2824
2825         return;
2826 out_err:
2827         if (img_request)
2828                 rbd_img_request_put(img_request);
2829         obj_request->result = result;
2830         obj_request->xferred = 0;
2831         obj_request_done_set(obj_request);
2832 }
2833
2834 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2835 {
2836         struct rbd_obj_request *obj_request;
2837         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2838         int ret;
2839
2840         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2841                                                         OBJ_REQUEST_NODATA);
2842         if (!obj_request)
2843                 return -ENOMEM;
2844
2845         ret = -ENOMEM;
2846         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
2847                                                   obj_request);
2848         if (!obj_request->osd_req)
2849                 goto out;
2850
2851         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2852                                         notify_id, 0, 0);
2853         rbd_osd_req_format_read(obj_request);
2854
2855         ret = rbd_obj_request_submit(osdc, obj_request);
2856         if (ret)
2857                 goto out;
2858         ret = rbd_obj_request_wait(obj_request);
2859 out:
2860         rbd_obj_request_put(obj_request);
2861
2862         return ret;
2863 }
2864
2865 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2866 {
2867         struct rbd_device *rbd_dev = (struct rbd_device *)data;
2868         int ret;
2869
2870         if (!rbd_dev)
2871                 return;
2872
2873         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2874                 rbd_dev->header_name, (unsigned long long)notify_id,
2875                 (unsigned int)opcode);
2876         ret = rbd_dev_refresh(rbd_dev);
2877         if (ret)
2878                 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2879
2880         rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2881 }
2882
2883 /*
2884  * Initiate a watch request, synchronously.
2885  */
2886 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
2887 {
2888         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2889         struct rbd_obj_request *obj_request;
2890         int ret;
2891
2892         rbd_assert(!rbd_dev->watch_event);
2893         rbd_assert(!rbd_dev->watch_request);
2894
2895         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2896                                      &rbd_dev->watch_event);
2897         if (ret < 0)
2898                 return ret;
2899
2900         rbd_assert(rbd_dev->watch_event);
2901
2902         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2903                                              OBJ_REQUEST_NODATA);
2904         if (!obj_request) {
2905                 ret = -ENOMEM;
2906                 goto out_cancel;
2907         }
2908
2909         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2910                                                   obj_request);
2911         if (!obj_request->osd_req) {
2912                 ret = -ENOMEM;
2913                 goto out_put;
2914         }
2915
2916         ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2917
2918         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2919                               rbd_dev->watch_event->cookie, 0, 1);
2920         rbd_osd_req_format_write(obj_request);
2921
2922         ret = rbd_obj_request_submit(osdc, obj_request);
2923         if (ret)
2924                 goto out_linger;
2925
2926         ret = rbd_obj_request_wait(obj_request);
2927         if (ret)
2928                 goto out_linger;
2929
2930         ret = obj_request->result;
2931         if (ret)
2932                 goto out_linger;
2933
2934         /*
2935          * A watch request is set to linger, so the underlying osd
2936          * request won't go away until we unregister it.  We retain
2937          * a pointer to the object request during that time (in
2938          * rbd_dev->watch_request), so we'll keep a reference to
2939          * it.  We'll drop that reference (below) after we've
2940          * unregistered it.
2941          */
2942         rbd_dev->watch_request = obj_request;
2943
2944         return 0;
2945
2946 out_linger:
2947         ceph_osdc_unregister_linger_request(osdc, obj_request->osd_req);
2948 out_put:
2949         rbd_obj_request_put(obj_request);
2950 out_cancel:
2951         ceph_osdc_cancel_event(rbd_dev->watch_event);
2952         rbd_dev->watch_event = NULL;
2953
2954         return ret;
2955 }
2956
2957 /*
2958  * Tear down a watch request, synchronously.
2959  */
2960 static int __rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
2961 {
2962         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2963         struct rbd_obj_request *obj_request;
2964         int ret;
2965
2966         rbd_assert(rbd_dev->watch_event);
2967         rbd_assert(rbd_dev->watch_request);
2968
2969         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2970                                              OBJ_REQUEST_NODATA);
2971         if (!obj_request) {
2972                 ret = -ENOMEM;
2973                 goto out_cancel;
2974         }
2975
2976         obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, 1,
2977                                                   obj_request);
2978         if (!obj_request->osd_req) {
2979                 ret = -ENOMEM;
2980                 goto out_put;
2981         }
2982
2983         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2984                               rbd_dev->watch_event->cookie, 0, 0);
2985         rbd_osd_req_format_write(obj_request);
2986
2987         ret = rbd_obj_request_submit(osdc, obj_request);
2988         if (ret)
2989                 goto out_put;
2990
2991         ret = rbd_obj_request_wait(obj_request);
2992         if (ret)
2993                 goto out_put;
2994
2995         ret = obj_request->result;
2996         if (ret)
2997                 goto out_put;
2998
2999         /* We have successfully torn down the watch request */
3000
3001         ceph_osdc_unregister_linger_request(osdc,
3002                                             rbd_dev->watch_request->osd_req);
3003         rbd_obj_request_put(rbd_dev->watch_request);
3004         rbd_dev->watch_request = NULL;
3005
3006 out_put:
3007         rbd_obj_request_put(obj_request);
3008 out_cancel:
3009         ceph_osdc_cancel_event(rbd_dev->watch_event);
3010         rbd_dev->watch_event = NULL;
3011
3012         return ret;
3013 }
3014
3015 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3016 {
3017         int ret;
3018
3019         ret = __rbd_dev_header_unwatch_sync(rbd_dev);
3020         if (ret) {
3021                 rbd_warn(rbd_dev, "unable to tear down watch request: %d\n",
3022                          ret);
3023         }
3024 }
3025
3026 /*
3027  * Synchronous osd object method call.  Returns the number of bytes
3028  * returned in the outbound buffer, or a negative error code.
3029  */
3030 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3031                              const char *object_name,
3032                              const char *class_name,
3033                              const char *method_name,
3034                              const void *outbound,
3035                              size_t outbound_size,
3036                              void *inbound,
3037                              size_t inbound_size)
3038 {
3039         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3040         struct rbd_obj_request *obj_request;
3041         struct page **pages;
3042         u32 page_count;
3043         int ret;
3044
3045         /*
3046          * Method calls are ultimately read operations.  The result
3047          * should placed into the inbound buffer provided.  They
3048          * also supply outbound data--parameters for the object
3049          * method.  Currently if this is present it will be a
3050          * snapshot id.
3051          */
3052         page_count = (u32)calc_pages_for(0, inbound_size);
3053         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3054         if (IS_ERR(pages))
3055                 return PTR_ERR(pages);
3056
3057         ret = -ENOMEM;
3058         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3059                                                         OBJ_REQUEST_PAGES);
3060         if (!obj_request)
3061                 goto out;
3062
3063         obj_request->pages = pages;
3064         obj_request->page_count = page_count;
3065
3066         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3067                                                   obj_request);
3068         if (!obj_request->osd_req)
3069                 goto out;
3070
3071         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3072                                         class_name, method_name);
3073         if (outbound_size) {
3074                 struct ceph_pagelist *pagelist;
3075
3076                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3077                 if (!pagelist)
3078                         goto out;
3079
3080                 ceph_pagelist_init(pagelist);
3081                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3082                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3083                                                 pagelist);
3084         }
3085         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3086                                         obj_request->pages, inbound_size,
3087                                         0, false, false);
3088         rbd_osd_req_format_read(obj_request);
3089
3090         ret = rbd_obj_request_submit(osdc, obj_request);
3091         if (ret)
3092                 goto out;
3093         ret = rbd_obj_request_wait(obj_request);
3094         if (ret)
3095                 goto out;
3096
3097         ret = obj_request->result;
3098         if (ret < 0)
3099                 goto out;
3100
3101         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3102         ret = (int)obj_request->xferred;
3103         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3104 out:
3105         if (obj_request)
3106                 rbd_obj_request_put(obj_request);
3107         else
3108                 ceph_release_page_vector(pages, page_count);
3109
3110         return ret;
3111 }
3112
3113 static void rbd_request_fn(struct request_queue *q)
3114                 __releases(q->queue_lock) __acquires(q->queue_lock)
3115 {
3116         struct rbd_device *rbd_dev = q->queuedata;
3117         bool read_only = rbd_dev->mapping.read_only;
3118         struct request *rq;
3119         int result;
3120
3121         while ((rq = blk_fetch_request(q))) {
3122                 bool write_request = rq_data_dir(rq) == WRITE;
3123                 struct rbd_img_request *img_request;
3124                 u64 offset;
3125                 u64 length;
3126
3127                 /* Ignore any non-FS requests that filter through. */
3128
3129                 if (rq->cmd_type != REQ_TYPE_FS) {
3130                         dout("%s: non-fs request type %d\n", __func__,
3131                                 (int) rq->cmd_type);
3132                         __blk_end_request_all(rq, 0);
3133                         continue;
3134                 }
3135
3136                 /* Ignore/skip any zero-length requests */
3137
3138                 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3139                 length = (u64) blk_rq_bytes(rq);
3140
3141                 if (!length) {
3142                         dout("%s: zero-length request\n", __func__);
3143                         __blk_end_request_all(rq, 0);
3144                         continue;
3145                 }
3146
3147                 spin_unlock_irq(q->queue_lock);
3148
3149                 /* Disallow writes to a read-only device */
3150
3151                 if (write_request) {
3152                         result = -EROFS;
3153                         if (read_only)
3154                                 goto end_request;
3155                         rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3156                 }
3157
3158                 /*
3159                  * Quit early if the mapped snapshot no longer
3160                  * exists.  It's still possible the snapshot will
3161                  * have disappeared by the time our request arrives
3162                  * at the osd, but there's no sense in sending it if
3163                  * we already know.
3164                  */
3165                 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3166                         dout("request for non-existent snapshot");
3167                         rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3168                         result = -ENXIO;
3169                         goto end_request;
3170                 }
3171
3172                 result = -EINVAL;
3173                 if (offset && length > U64_MAX - offset + 1) {
3174                         rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3175                                 offset, length);
3176                         goto end_request;       /* Shouldn't happen */
3177                 }
3178
3179                 result = -EIO;
3180                 if (offset + length > rbd_dev->mapping.size) {
3181                         rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3182                                 offset, length, rbd_dev->mapping.size);
3183                         goto end_request;
3184                 }
3185
3186                 result = -ENOMEM;
3187                 img_request = rbd_img_request_create(rbd_dev, offset, length,
3188                                                         write_request);
3189                 if (!img_request)
3190                         goto end_request;
3191
3192                 img_request->rq = rq;
3193
3194                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3195                                                 rq->bio);
3196                 if (!result)
3197                         result = rbd_img_request_submit(img_request);
3198                 if (result)
3199                         rbd_img_request_put(img_request);
3200 end_request:
3201                 spin_lock_irq(q->queue_lock);
3202                 if (result < 0) {
3203                         rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3204                                 write_request ? "write" : "read",
3205                                 length, offset, result);
3206
3207                         __blk_end_request_all(rq, result);
3208                 }
3209         }
3210 }
3211
3212 /*
3213  * a queue callback. Makes sure that we don't create a bio that spans across
3214  * multiple osd objects. One exception would be with a single page bios,
3215  * which we handle later at bio_chain_clone_range()
3216  */
3217 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3218                           struct bio_vec *bvec)
3219 {
3220         struct rbd_device *rbd_dev = q->queuedata;
3221         sector_t sector_offset;
3222         sector_t sectors_per_obj;
3223         sector_t obj_sector_offset;
3224         int ret;
3225
3226         /*
3227          * Find how far into its rbd object the partition-relative
3228          * bio start sector is to offset relative to the enclosing
3229          * device.
3230          */
3231         sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3232         sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3233         obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3234
3235         /*
3236          * Compute the number of bytes from that offset to the end
3237          * of the object.  Account for what's already used by the bio.
3238          */
3239         ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3240         if (ret > bmd->bi_size)
3241                 ret -= bmd->bi_size;
3242         else
3243                 ret = 0;
3244
3245         /*
3246          * Don't send back more than was asked for.  And if the bio
3247          * was empty, let the whole thing through because:  "Note
3248          * that a block device *must* allow a single page to be
3249          * added to an empty bio."
3250          */
3251         rbd_assert(bvec->bv_len <= PAGE_SIZE);
3252         if (ret > (int) bvec->bv_len || !bmd->bi_size)
3253                 ret = (int) bvec->bv_len;
3254
3255         return ret;
3256 }
3257
3258 static void rbd_free_disk(struct rbd_device *rbd_dev)
3259 {
3260         struct gendisk *disk = rbd_dev->disk;
3261
3262         if (!disk)
3263                 return;
3264
3265         rbd_dev->disk = NULL;
3266         if (disk->flags & GENHD_FL_UP) {
3267                 del_gendisk(disk);
3268                 if (disk->queue)
3269                         blk_cleanup_queue(disk->queue);
3270         }
3271         put_disk(disk);
3272 }
3273
3274 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3275                                 const char *object_name,
3276                                 u64 offset, u64 length, void *buf)
3277
3278 {
3279         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3280         struct rbd_obj_request *obj_request;
3281         struct page **pages = NULL;
3282         u32 page_count;
3283         size_t size;
3284         int ret;
3285
3286         page_count = (u32) calc_pages_for(offset, length);
3287         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3288         if (IS_ERR(pages))
3289                 ret = PTR_ERR(pages);
3290
3291         ret = -ENOMEM;
3292         obj_request = rbd_obj_request_create(object_name, offset, length,
3293                                                         OBJ_REQUEST_PAGES);
3294         if (!obj_request)
3295                 goto out;
3296
3297         obj_request->pages = pages;
3298         obj_request->page_count = page_count;
3299
3300         obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, 1,
3301                                                   obj_request);
3302         if (!obj_request->osd_req)
3303                 goto out;
3304
3305         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3306                                         offset, length, 0, 0);
3307         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3308                                         obj_request->pages,
3309                                         obj_request->length,
3310                                         obj_request->offset & ~PAGE_MASK,
3311                                         false, false);
3312         rbd_osd_req_format_read(obj_request);
3313
3314         ret = rbd_obj_request_submit(osdc, obj_request);
3315         if (ret)
3316                 goto out;
3317         ret = rbd_obj_request_wait(obj_request);
3318         if (ret)
3319                 goto out;
3320
3321         ret = obj_request->result;
3322         if (ret < 0)
3323                 goto out;
3324
3325         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3326         size = (size_t) obj_request->xferred;
3327         ceph_copy_from_page_vector(pages, buf, 0, size);
3328         rbd_assert(size <= (size_t)INT_MAX);
3329         ret = (int)size;
3330 out:
3331         if (obj_request)
3332                 rbd_obj_request_put(obj_request);
3333         else
3334                 ceph_release_page_vector(pages, page_count);
3335
3336         return ret;
3337 }
3338
3339 /*
3340  * Read the complete header for the given rbd device.  On successful
3341  * return, the rbd_dev->header field will contain up-to-date
3342  * information about the image.
3343  */
3344 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3345 {
3346         struct rbd_image_header_ondisk *ondisk = NULL;
3347         u32 snap_count = 0;
3348         u64 names_size = 0;
3349         u32 want_count;
3350         int ret;
3351
3352         /*
3353          * The complete header will include an array of its 64-bit
3354          * snapshot ids, followed by the names of those snapshots as
3355          * a contiguous block of NUL-terminated strings.  Note that
3356          * the number of snapshots could change by the time we read
3357          * it in, in which case we re-read it.
3358          */
3359         do {
3360                 size_t size;
3361
3362                 kfree(ondisk);
3363
3364                 size = sizeof (*ondisk);
3365                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3366                 size += names_size;
3367                 ondisk = kmalloc(size, GFP_KERNEL);
3368                 if (!ondisk)
3369                         return -ENOMEM;
3370
3371                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3372                                        0, size, ondisk);
3373                 if (ret < 0)
3374                         goto out;
3375                 if ((size_t)ret < size) {
3376                         ret = -ENXIO;
3377                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3378                                 size, ret);
3379                         goto out;
3380                 }
3381                 if (!rbd_dev_ondisk_valid(ondisk)) {
3382                         ret = -ENXIO;
3383                         rbd_warn(rbd_dev, "invalid header");
3384                         goto out;
3385                 }
3386
3387                 names_size = le64_to_cpu(ondisk->snap_names_len);
3388                 want_count = snap_count;
3389                 snap_count = le32_to_cpu(ondisk->snap_count);
3390         } while (snap_count != want_count);
3391
3392         ret = rbd_header_from_disk(rbd_dev, ondisk);
3393 out:
3394         kfree(ondisk);
3395
3396         return ret;
3397 }
3398
3399 /*
3400  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3401  * has disappeared from the (just updated) snapshot context.
3402  */
3403 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3404 {
3405         u64 snap_id;
3406
3407         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3408                 return;
3409
3410         snap_id = rbd_dev->spec->snap_id;
3411         if (snap_id == CEPH_NOSNAP)
3412                 return;
3413
3414         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3415                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3416 }
3417
3418 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3419 {
3420         sector_t size;
3421         bool removing;
3422
3423         /*
3424          * Don't hold the lock while doing disk operations,
3425          * or lock ordering will conflict with the bdev mutex via:
3426          * rbd_add() -> blkdev_get() -> rbd_open()
3427          */
3428         spin_lock_irq(&rbd_dev->lock);
3429         removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3430         spin_unlock_irq(&rbd_dev->lock);
3431         /*
3432          * If the device is being removed, rbd_dev->disk has
3433          * been destroyed, so don't try to update its size
3434          */
3435         if (!removing) {
3436                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3437                 dout("setting size to %llu sectors", (unsigned long long)size);
3438                 set_capacity(rbd_dev->disk, size);
3439                 revalidate_disk(rbd_dev->disk);
3440         }
3441 }
3442
3443 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3444 {
3445         u64 mapping_size;
3446         int ret;
3447
3448         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3449         down_write(&rbd_dev->header_rwsem);
3450         mapping_size = rbd_dev->mapping.size;
3451         if (rbd_dev->image_format == 1)
3452                 ret = rbd_dev_v1_header_info(rbd_dev);
3453         else
3454                 ret = rbd_dev_v2_header_info(rbd_dev);
3455
3456         /* If it's a mapped snapshot, validate its EXISTS flag */
3457
3458         rbd_exists_validate(rbd_dev);
3459         up_write(&rbd_dev->header_rwsem);
3460
3461         if (mapping_size != rbd_dev->mapping.size) {
3462                 rbd_dev_update_size(rbd_dev);
3463         }
3464
3465         return ret;
3466 }
3467
3468 static int rbd_init_disk(struct rbd_device *rbd_dev)
3469 {
3470         struct gendisk *disk;
3471         struct request_queue *q;
3472         u64 segment_size;
3473
3474         /* create gendisk info */
3475         disk = alloc_disk(single_major ?
3476                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3477                           RBD_MINORS_PER_MAJOR);
3478         if (!disk)
3479                 return -ENOMEM;
3480
3481         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3482                  rbd_dev->dev_id);
3483         disk->major = rbd_dev->major;
3484         disk->first_minor = rbd_dev->minor;
3485         if (single_major)
3486                 disk->flags |= GENHD_FL_EXT_DEVT;
3487         disk->fops = &rbd_bd_ops;
3488         disk->private_data = rbd_dev;
3489
3490         q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3491         if (!q)
3492                 goto out_disk;
3493
3494         /* We use the default size, but let's be explicit about it. */
3495         blk_queue_physical_block_size(q, SECTOR_SIZE);
3496
3497         /* set io sizes to object size */
3498         segment_size = rbd_obj_bytes(&rbd_dev->header);
3499         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3500         blk_queue_max_segment_size(q, segment_size);
3501         blk_queue_io_min(q, segment_size);
3502         blk_queue_io_opt(q, segment_size);
3503
3504         blk_queue_merge_bvec(q, rbd_merge_bvec);
3505         disk->queue = q;
3506
3507         q->queuedata = rbd_dev;
3508
3509         rbd_dev->disk = disk;
3510
3511         return 0;
3512 out_disk:
3513         put_disk(disk);
3514
3515         return -ENOMEM;
3516 }
3517
3518 /*
3519   sysfs
3520 */
3521
3522 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3523 {
3524         return container_of(dev, struct rbd_device, dev);
3525 }
3526
3527 static ssize_t rbd_size_show(struct device *dev,
3528                              struct device_attribute *attr, char *buf)
3529 {
3530         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3531
3532         return sprintf(buf, "%llu\n",
3533                 (unsigned long long)rbd_dev->mapping.size);
3534 }
3535
3536 /*
3537  * Note this shows the features for whatever's mapped, which is not
3538  * necessarily the base image.
3539  */
3540 static ssize_t rbd_features_show(struct device *dev,
3541                              struct device_attribute *attr, char *buf)
3542 {
3543         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3544
3545         return sprintf(buf, "0x%016llx\n",
3546                         (unsigned long long)rbd_dev->mapping.features);
3547 }
3548
3549 static ssize_t rbd_major_show(struct device *dev,
3550                               struct device_attribute *attr, char *buf)
3551 {
3552         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3553
3554         if (rbd_dev->major)
3555                 return sprintf(buf, "%d\n", rbd_dev->major);
3556
3557         return sprintf(buf, "(none)\n");
3558 }
3559
3560 static ssize_t rbd_minor_show(struct device *dev,
3561                               struct device_attribute *attr, char *buf)
3562 {
3563         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3564
3565         return sprintf(buf, "%d\n", rbd_dev->minor);
3566 }
3567
3568 static ssize_t rbd_client_id_show(struct device *dev,
3569                                   struct device_attribute *attr, char *buf)
3570 {
3571         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3572
3573         return sprintf(buf, "client%lld\n",
3574                         ceph_client_id(rbd_dev->rbd_client->client));
3575 }
3576
3577 static ssize_t rbd_pool_show(struct device *dev,
3578                              struct device_attribute *attr, char *buf)
3579 {
3580         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3581
3582         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3583 }
3584
3585 static ssize_t rbd_pool_id_show(struct device *dev,
3586                              struct device_attribute *attr, char *buf)
3587 {
3588         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3589
3590         return sprintf(buf, "%llu\n",
3591                         (unsigned long long) rbd_dev->spec->pool_id);
3592 }
3593
3594 static ssize_t rbd_name_show(struct device *dev,
3595                              struct device_attribute *attr, char *buf)
3596 {
3597         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3598
3599         if (rbd_dev->spec->image_name)
3600                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3601
3602         return sprintf(buf, "(unknown)\n");
3603 }
3604
3605 static ssize_t rbd_image_id_show(struct device *dev,
3606                              struct device_attribute *attr, char *buf)
3607 {
3608         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3609
3610         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3611 }
3612
3613 /*
3614  * Shows the name of the currently-mapped snapshot (or
3615  * RBD_SNAP_HEAD_NAME for the base image).
3616  */
3617 static ssize_t rbd_snap_show(struct device *dev,
3618                              struct device_attribute *attr,
3619                              char *buf)
3620 {
3621         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3622
3623         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3624 }
3625
3626 /*
3627  * For an rbd v2 image, shows the pool id, image id, and snapshot id
3628  * for the parent image.  If there is no parent, simply shows
3629  * "(no parent image)".
3630  */
3631 static ssize_t rbd_parent_show(struct device *dev,
3632                              struct device_attribute *attr,
3633                              char *buf)
3634 {
3635         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3636         struct rbd_spec *spec = rbd_dev->parent_spec;
3637         int count;
3638         char *bufp = buf;
3639
3640         if (!spec)
3641                 return sprintf(buf, "(no parent image)\n");
3642
3643         count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3644                         (unsigned long long) spec->pool_id, spec->pool_name);
3645         if (count < 0)
3646                 return count;
3647         bufp += count;
3648
3649         count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3650                         spec->image_name ? spec->image_name : "(unknown)");
3651         if (count < 0)
3652                 return count;
3653         bufp += count;
3654
3655         count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3656                         (unsigned long long) spec->snap_id, spec->snap_name);
3657         if (count < 0)
3658                 return count;
3659         bufp += count;
3660
3661         count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3662         if (count < 0)
3663                 return count;
3664         bufp += count;
3665
3666         return (ssize_t) (bufp - buf);
3667 }
3668
3669 static ssize_t rbd_image_refresh(struct device *dev,
3670                                  struct device_attribute *attr,
3671                                  const char *buf,
3672                                  size_t size)
3673 {
3674         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3675         int ret;
3676
3677         ret = rbd_dev_refresh(rbd_dev);
3678         if (ret)
3679                 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3680
3681         return ret < 0 ? ret : size;
3682 }
3683
3684 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3685 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3686 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3687 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3688 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3689 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3690 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3691 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3692 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3693 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3694 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3695 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3696
3697 static struct attribute *rbd_attrs[] = {
3698         &dev_attr_size.attr,
3699         &dev_attr_features.attr,
3700         &dev_attr_major.attr,
3701         &dev_attr_minor.attr,
3702         &dev_attr_client_id.attr,
3703         &dev_attr_pool.attr,
3704         &dev_attr_pool_id.attr,
3705         &dev_attr_name.attr,
3706         &dev_attr_image_id.attr,
3707         &dev_attr_current_snap.attr,
3708         &dev_attr_parent.attr,
3709         &dev_attr_refresh.attr,
3710         NULL
3711 };
3712
3713 static struct attribute_group rbd_attr_group = {
3714         .attrs = rbd_attrs,
3715 };
3716
3717 static const struct attribute_group *rbd_attr_groups[] = {
3718         &rbd_attr_group,
3719         NULL
3720 };
3721
3722 static void rbd_sysfs_dev_release(struct device *dev)
3723 {
3724 }
3725
3726 static struct device_type rbd_device_type = {
3727         .name           = "rbd",
3728         .groups         = rbd_attr_groups,
3729         .release        = rbd_sysfs_dev_release,
3730 };
3731
3732 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3733 {
3734         kref_get(&spec->kref);
3735
3736         return spec;
3737 }
3738
3739 static void rbd_spec_free(struct kref *kref);
3740 static void rbd_spec_put(struct rbd_spec *spec)
3741 {
3742         if (spec)
3743                 kref_put(&spec->kref, rbd_spec_free);
3744 }
3745
3746 static struct rbd_spec *rbd_spec_alloc(void)
3747 {
3748         struct rbd_spec *spec;
3749
3750         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3751         if (!spec)
3752                 return NULL;
3753         kref_init(&spec->kref);
3754
3755         return spec;
3756 }
3757
3758 static void rbd_spec_free(struct kref *kref)
3759 {
3760         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3761
3762         kfree(spec->pool_name);
3763         kfree(spec->image_id);
3764         kfree(spec->image_name);
3765         kfree(spec->snap_name);
3766         kfree(spec);
3767 }
3768
3769 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3770                                 struct rbd_spec *spec)
3771 {
3772         struct rbd_device *rbd_dev;
3773
3774         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3775         if (!rbd_dev)
3776                 return NULL;
3777
3778         spin_lock_init(&rbd_dev->lock);
3779         rbd_dev->flags = 0;
3780         atomic_set(&rbd_dev->parent_ref, 0);
3781         INIT_LIST_HEAD(&rbd_dev->node);
3782         init_rwsem(&rbd_dev->header_rwsem);
3783
3784         rbd_dev->spec = spec;
3785         rbd_dev->rbd_client = rbdc;
3786
3787         /* Initialize the layout used for all rbd requests */
3788
3789         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3790         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3791         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3792         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3793
3794         return rbd_dev;
3795 }
3796
3797 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3798 {
3799         rbd_put_client(rbd_dev->rbd_client);
3800         rbd_spec_put(rbd_dev->spec);
3801         kfree(rbd_dev);
3802 }
3803
3804 /*
3805  * Get the size and object order for an image snapshot, or if
3806  * snap_id is CEPH_NOSNAP, gets this information for the base
3807  * image.
3808  */
3809 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3810                                 u8 *order, u64 *snap_size)
3811 {
3812         __le64 snapid = cpu_to_le64(snap_id);
3813         int ret;
3814         struct {
3815                 u8 order;
3816                 __le64 size;
3817         } __attribute__ ((packed)) size_buf = { 0 };
3818
3819         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3820                                 "rbd", "get_size",
3821                                 &snapid, sizeof (snapid),
3822                                 &size_buf, sizeof (size_buf));
3823         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3824         if (ret < 0)
3825                 return ret;
3826         if (ret < sizeof (size_buf))
3827                 return -ERANGE;
3828
3829         if (order) {
3830                 *order = size_buf.order;
3831                 dout("  order %u", (unsigned int)*order);
3832         }
3833         *snap_size = le64_to_cpu(size_buf.size);
3834
3835         dout("  snap_id 0x%016llx snap_size = %llu\n",
3836                 (unsigned long long)snap_id,
3837                 (unsigned long long)*snap_size);
3838
3839         return 0;
3840 }
3841
3842 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3843 {
3844         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3845                                         &rbd_dev->header.obj_order,
3846                                         &rbd_dev->header.image_size);
3847 }
3848
3849 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3850 {
3851         void *reply_buf;
3852         int ret;
3853         void *p;
3854
3855         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3856         if (!reply_buf)
3857                 return -ENOMEM;
3858
3859         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3860                                 "rbd", "get_object_prefix", NULL, 0,
3861                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3862         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3863         if (ret < 0)
3864                 goto out;
3865
3866         p = reply_buf;
3867         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3868                                                 p + ret, NULL, GFP_NOIO);
3869         ret = 0;
3870
3871         if (IS_ERR(rbd_dev->header.object_prefix)) {
3872                 ret = PTR_ERR(rbd_dev->header.object_prefix);
3873                 rbd_dev->header.object_prefix = NULL;
3874         } else {
3875                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
3876         }
3877 out:
3878         kfree(reply_buf);
3879
3880         return ret;
3881 }
3882
3883 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3884                 u64 *snap_features)
3885 {
3886         __le64 snapid = cpu_to_le64(snap_id);
3887         struct {
3888                 __le64 features;
3889                 __le64 incompat;
3890         } __attribute__ ((packed)) features_buf = { 0 };
3891         u64 incompat;
3892         int ret;
3893
3894         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3895                                 "rbd", "get_features",
3896                                 &snapid, sizeof (snapid),
3897                                 &features_buf, sizeof (features_buf));
3898         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3899         if (ret < 0)
3900                 return ret;
3901         if (ret < sizeof (features_buf))
3902                 return -ERANGE;
3903
3904         incompat = le64_to_cpu(features_buf.incompat);
3905         if (incompat & ~RBD_FEATURES_SUPPORTED)
3906                 return -ENXIO;
3907
3908         *snap_features = le64_to_cpu(features_buf.features);
3909
3910         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3911                 (unsigned long long)snap_id,
3912                 (unsigned long long)*snap_features,
3913                 (unsigned long long)le64_to_cpu(features_buf.incompat));
3914
3915         return 0;
3916 }
3917
3918 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3919 {
3920         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3921                                                 &rbd_dev->header.features);
3922 }
3923
3924 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3925 {
3926         struct rbd_spec *parent_spec;
3927         size_t size;
3928         void *reply_buf = NULL;
3929         __le64 snapid;
3930         void *p;
3931         void *end;
3932         u64 pool_id;
3933         char *image_id;
3934         u64 snap_id;
3935         u64 overlap;
3936         int ret;
3937
3938         parent_spec = rbd_spec_alloc();
3939         if (!parent_spec)
3940                 return -ENOMEM;
3941
3942         size = sizeof (__le64) +                                /* pool_id */
3943                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
3944                 sizeof (__le64) +                               /* snap_id */
3945                 sizeof (__le64);                                /* overlap */
3946         reply_buf = kmalloc(size, GFP_KERNEL);
3947         if (!reply_buf) {
3948                 ret = -ENOMEM;
3949                 goto out_err;
3950         }
3951
3952         snapid = cpu_to_le64(CEPH_NOSNAP);
3953         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3954                                 "rbd", "get_parent",
3955                                 &snapid, sizeof (snapid),
3956                                 reply_buf, size);
3957         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3958         if (ret < 0)
3959                 goto out_err;
3960
3961         p = reply_buf;
3962         end = reply_buf + ret;
3963         ret = -ERANGE;
3964         ceph_decode_64_safe(&p, end, pool_id, out_err);
3965         if (pool_id == CEPH_NOPOOL) {
3966                 /*
3967                  * Either the parent never existed, or we have
3968                  * record of it but the image got flattened so it no
3969                  * longer has a parent.  When the parent of a
3970                  * layered image disappears we immediately set the
3971                  * overlap to 0.  The effect of this is that all new
3972                  * requests will be treated as if the image had no
3973                  * parent.
3974                  */
3975                 if (rbd_dev->parent_overlap) {
3976                         rbd_dev->parent_overlap = 0;
3977                         smp_mb();
3978                         rbd_dev_parent_put(rbd_dev);
3979                         pr_info("%s: clone image has been flattened\n",
3980                                 rbd_dev->disk->disk_name);
3981                 }
3982
3983                 goto out;       /* No parent?  No problem. */
3984         }
3985
3986         /* The ceph file layout needs to fit pool id in 32 bits */
3987
3988         ret = -EIO;
3989         if (pool_id > (u64)U32_MAX) {
3990                 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3991                         (unsigned long long)pool_id, U32_MAX);
3992                 goto out_err;
3993         }
3994
3995         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3996         if (IS_ERR(image_id)) {
3997                 ret = PTR_ERR(image_id);
3998                 goto out_err;
3999         }
4000         ceph_decode_64_safe(&p, end, snap_id, out_err);
4001         ceph_decode_64_safe(&p, end, overlap, out_err);
4002
4003         /*
4004          * The parent won't change (except when the clone is
4005          * flattened, already handled that).  So we only need to
4006          * record the parent spec we have not already done so.
4007          */
4008         if (!rbd_dev->parent_spec) {
4009                 parent_spec->pool_id = pool_id;
4010                 parent_spec->image_id = image_id;
4011                 parent_spec->snap_id = snap_id;
4012                 rbd_dev->parent_spec = parent_spec;
4013                 parent_spec = NULL;     /* rbd_dev now owns this */
4014         }
4015
4016         /*
4017          * We always update the parent overlap.  If it's zero we
4018          * treat it specially.
4019          */
4020         rbd_dev->parent_overlap = overlap;
4021         smp_mb();
4022         if (!overlap) {
4023
4024                 /* A null parent_spec indicates it's the initial probe */
4025
4026                 if (parent_spec) {
4027                         /*
4028                          * The overlap has become zero, so the clone
4029                          * must have been resized down to 0 at some
4030                          * point.  Treat this the same as a flatten.
4031                          */
4032                         rbd_dev_parent_put(rbd_dev);
4033                         pr_info("%s: clone image now standalone\n",
4034                                 rbd_dev->disk->disk_name);
4035                 } else {
4036                         /*
4037                          * For the initial probe, if we find the
4038                          * overlap is zero we just pretend there was
4039                          * no parent image.
4040                          */
4041                         rbd_warn(rbd_dev, "ignoring parent of "
4042                                                 "clone with overlap 0\n");
4043                 }
4044         }
4045 out:
4046         ret = 0;
4047 out_err:
4048         kfree(reply_buf);
4049         rbd_spec_put(parent_spec);
4050
4051         return ret;
4052 }
4053
4054 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4055 {
4056         struct {
4057                 __le64 stripe_unit;
4058                 __le64 stripe_count;
4059         } __attribute__ ((packed)) striping_info_buf = { 0 };
4060         size_t size = sizeof (striping_info_buf);
4061         void *p;
4062         u64 obj_size;
4063         u64 stripe_unit;
4064         u64 stripe_count;
4065         int ret;
4066
4067         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4068                                 "rbd", "get_stripe_unit_count", NULL, 0,
4069                                 (char *)&striping_info_buf, size);
4070         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4071         if (ret < 0)
4072                 return ret;
4073         if (ret < size)
4074                 return -ERANGE;
4075
4076         /*
4077          * We don't actually support the "fancy striping" feature
4078          * (STRIPINGV2) yet, but if the striping sizes are the
4079          * defaults the behavior is the same as before.  So find
4080          * out, and only fail if the image has non-default values.
4081          */
4082         ret = -EINVAL;
4083         obj_size = (u64)1 << rbd_dev->header.obj_order;
4084         p = &striping_info_buf;
4085         stripe_unit = ceph_decode_64(&p);
4086         if (stripe_unit != obj_size) {
4087                 rbd_warn(rbd_dev, "unsupported stripe unit "
4088                                 "(got %llu want %llu)",
4089                                 stripe_unit, obj_size);
4090                 return -EINVAL;
4091         }
4092         stripe_count = ceph_decode_64(&p);
4093         if (stripe_count != 1) {
4094                 rbd_warn(rbd_dev, "unsupported stripe count "
4095                                 "(got %llu want 1)", stripe_count);
4096                 return -EINVAL;
4097         }
4098         rbd_dev->header.stripe_unit = stripe_unit;
4099         rbd_dev->header.stripe_count = stripe_count;
4100
4101         return 0;
4102 }
4103
4104 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4105 {
4106         size_t image_id_size;
4107         char *image_id;
4108         void *p;
4109         void *end;
4110         size_t size;
4111         void *reply_buf = NULL;
4112         size_t len = 0;
4113         char *image_name = NULL;
4114         int ret;
4115
4116         rbd_assert(!rbd_dev->spec->image_name);
4117
4118         len = strlen(rbd_dev->spec->image_id);
4119         image_id_size = sizeof (__le32) + len;
4120         image_id = kmalloc(image_id_size, GFP_KERNEL);
4121         if (!image_id)
4122                 return NULL;
4123
4124         p = image_id;
4125         end = image_id + image_id_size;
4126         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4127
4128         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4129         reply_buf = kmalloc(size, GFP_KERNEL);
4130         if (!reply_buf)
4131                 goto out;
4132
4133         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4134                                 "rbd", "dir_get_name",
4135                                 image_id, image_id_size,
4136                                 reply_buf, size);
4137         if (ret < 0)
4138                 goto out;
4139         p = reply_buf;
4140         end = reply_buf + ret;
4141
4142         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4143         if (IS_ERR(image_name))
4144                 image_name = NULL;
4145         else
4146                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4147 out:
4148         kfree(reply_buf);
4149         kfree(image_id);
4150
4151         return image_name;
4152 }
4153
4154 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4155 {
4156         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4157         const char *snap_name;
4158         u32 which = 0;
4159
4160         /* Skip over names until we find the one we are looking for */
4161
4162         snap_name = rbd_dev->header.snap_names;
4163         while (which < snapc->num_snaps) {
4164                 if (!strcmp(name, snap_name))
4165                         return snapc->snaps[which];
4166                 snap_name += strlen(snap_name) + 1;
4167                 which++;
4168         }
4169         return CEPH_NOSNAP;
4170 }
4171
4172 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4173 {
4174         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4175         u32 which;
4176         bool found = false;
4177         u64 snap_id;
4178
4179         for (which = 0; !found && which < snapc->num_snaps; which++) {
4180                 const char *snap_name;
4181
4182                 snap_id = snapc->snaps[which];
4183                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4184                 if (IS_ERR(snap_name)) {
4185                         /* ignore no-longer existing snapshots */
4186                         if (PTR_ERR(snap_name) == -ENOENT)
4187                                 continue;
4188                         else
4189                                 break;
4190                 }
4191                 found = !strcmp(name, snap_name);
4192                 kfree(snap_name);
4193         }
4194         return found ? snap_id : CEPH_NOSNAP;
4195 }
4196
4197 /*
4198  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4199  * no snapshot by that name is found, or if an error occurs.
4200  */
4201 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4202 {
4203         if (rbd_dev->image_format == 1)
4204                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4205
4206         return rbd_v2_snap_id_by_name(rbd_dev, name);
4207 }
4208
4209 /*
4210  * When an rbd image has a parent image, it is identified by the
4211  * pool, image, and snapshot ids (not names).  This function fills
4212  * in the names for those ids.  (It's OK if we can't figure out the
4213  * name for an image id, but the pool and snapshot ids should always
4214  * exist and have names.)  All names in an rbd spec are dynamically
4215  * allocated.
4216  *
4217  * When an image being mapped (not a parent) is probed, we have the
4218  * pool name and pool id, image name and image id, and the snapshot
4219  * name.  The only thing we're missing is the snapshot id.
4220  */
4221 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4222 {
4223         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4224         struct rbd_spec *spec = rbd_dev->spec;
4225         const char *pool_name;
4226         const char *image_name;
4227         const char *snap_name;
4228         int ret;
4229
4230         /*
4231          * An image being mapped will have the pool name (etc.), but
4232          * we need to look up the snapshot id.
4233          */
4234         if (spec->pool_name) {
4235                 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4236                         u64 snap_id;
4237
4238                         snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4239                         if (snap_id == CEPH_NOSNAP)
4240                                 return -ENOENT;
4241                         spec->snap_id = snap_id;
4242                 } else {
4243                         spec->snap_id = CEPH_NOSNAP;
4244                 }
4245
4246                 return 0;
4247         }
4248
4249         /* Get the pool name; we have to make our own copy of this */
4250
4251         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4252         if (!pool_name) {
4253                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4254                 return -EIO;
4255         }
4256         pool_name = kstrdup(pool_name, GFP_KERNEL);
4257         if (!pool_name)
4258                 return -ENOMEM;
4259
4260         /* Fetch the image name; tolerate failure here */
4261
4262         image_name = rbd_dev_image_name(rbd_dev);
4263         if (!image_name)
4264                 rbd_warn(rbd_dev, "unable to get image name");
4265
4266         /* Look up the snapshot name, and make a copy */
4267
4268         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4269         if (IS_ERR(snap_name)) {
4270                 ret = PTR_ERR(snap_name);
4271                 goto out_err;
4272         }
4273
4274         spec->pool_name = pool_name;
4275         spec->image_name = image_name;
4276         spec->snap_name = snap_name;
4277
4278         return 0;
4279 out_err:
4280         kfree(image_name);
4281         kfree(pool_name);
4282
4283         return ret;
4284 }
4285
4286 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4287 {
4288         size_t size;
4289         int ret;
4290         void *reply_buf;
4291         void *p;
4292         void *end;
4293         u64 seq;
4294         u32 snap_count;
4295         struct ceph_snap_context *snapc;
4296         u32 i;
4297
4298         /*
4299          * We'll need room for the seq value (maximum snapshot id),
4300          * snapshot count, and array of that many snapshot ids.
4301          * For now we have a fixed upper limit on the number we're
4302          * prepared to receive.
4303          */
4304         size = sizeof (__le64) + sizeof (__le32) +
4305                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4306         reply_buf = kzalloc(size, GFP_KERNEL);
4307         if (!reply_buf)
4308                 return -ENOMEM;
4309
4310         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4311                                 "rbd", "get_snapcontext", NULL, 0,
4312                                 reply_buf, size);
4313         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4314         if (ret < 0)
4315                 goto out;
4316
4317         p = reply_buf;
4318         end = reply_buf + ret;
4319         ret = -ERANGE;
4320         ceph_decode_64_safe(&p, end, seq, out);
4321         ceph_decode_32_safe(&p, end, snap_count, out);
4322
4323         /*
4324          * Make sure the reported number of snapshot ids wouldn't go
4325          * beyond the end of our buffer.  But before checking that,
4326          * make sure the computed size of the snapshot context we
4327          * allocate is representable in a size_t.
4328          */
4329         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4330                                  / sizeof (u64)) {
4331                 ret = -EINVAL;
4332                 goto out;
4333         }
4334         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4335                 goto out;
4336         ret = 0;
4337
4338         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4339         if (!snapc) {
4340                 ret = -ENOMEM;
4341                 goto out;
4342         }
4343         snapc->seq = seq;
4344         for (i = 0; i < snap_count; i++)
4345                 snapc->snaps[i] = ceph_decode_64(&p);
4346
4347         ceph_put_snap_context(rbd_dev->header.snapc);
4348         rbd_dev->header.snapc = snapc;
4349
4350         dout("  snap context seq = %llu, snap_count = %u\n",
4351                 (unsigned long long)seq, (unsigned int)snap_count);
4352 out:
4353         kfree(reply_buf);
4354
4355         return ret;
4356 }
4357
4358 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4359                                         u64 snap_id)
4360 {
4361         size_t size;
4362         void *reply_buf;
4363         __le64 snapid;
4364         int ret;
4365         void *p;
4366         void *end;
4367         char *snap_name;
4368
4369         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4370         reply_buf = kmalloc(size, GFP_KERNEL);
4371         if (!reply_buf)
4372                 return ERR_PTR(-ENOMEM);
4373
4374         snapid = cpu_to_le64(snap_id);
4375         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4376                                 "rbd", "get_snapshot_name",
4377                                 &snapid, sizeof (snapid),
4378                                 reply_buf, size);
4379         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4380         if (ret < 0) {
4381                 snap_name = ERR_PTR(ret);
4382                 goto out;
4383         }
4384
4385         p = reply_buf;
4386         end = reply_buf + ret;
4387         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4388         if (IS_ERR(snap_name))
4389                 goto out;
4390
4391         dout("  snap_id 0x%016llx snap_name = %s\n",
4392                 (unsigned long long)snap_id, snap_name);
4393 out:
4394         kfree(reply_buf);
4395
4396         return snap_name;
4397 }
4398
4399 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4400 {
4401         bool first_time = rbd_dev->header.object_prefix == NULL;
4402         int ret;
4403
4404         ret = rbd_dev_v2_image_size(rbd_dev);
4405         if (ret)
4406                 return ret;
4407
4408         if (first_time) {
4409                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4410                 if (ret)
4411                         return ret;
4412         }
4413
4414         /*
4415          * If the image supports layering, get the parent info.  We
4416          * need to probe the first time regardless.  Thereafter we
4417          * only need to if there's a parent, to see if it has
4418          * disappeared due to the mapped image getting flattened.
4419          */
4420         if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4421                         (first_time || rbd_dev->parent_spec)) {
4422                 bool warn;
4423
4424                 ret = rbd_dev_v2_parent_info(rbd_dev);
4425                 if (ret)
4426                         return ret;
4427
4428                 /*
4429                  * Print a warning if this is the initial probe and
4430                  * the image has a parent.  Don't print it if the
4431                  * image now being probed is itself a parent.  We
4432                  * can tell at this point because we won't know its
4433                  * pool name yet (just its pool id).
4434                  */
4435                 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4436                 if (first_time && warn)
4437                         rbd_warn(rbd_dev, "WARNING: kernel layering "
4438                                         "is EXPERIMENTAL!");
4439         }
4440
4441         if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4442                 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4443                         rbd_dev->mapping.size = rbd_dev->header.image_size;
4444
4445         ret = rbd_dev_v2_snap_context(rbd_dev);
4446         dout("rbd_dev_v2_snap_context returned %d\n", ret);
4447
4448         return ret;
4449 }
4450
4451 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4452 {
4453         struct device *dev;
4454         int ret;
4455
4456         dev = &rbd_dev->dev;
4457         dev->bus = &rbd_bus_type;
4458         dev->type = &rbd_device_type;
4459         dev->parent = &rbd_root_dev;
4460         dev->release = rbd_dev_device_release;
4461         dev_set_name(dev, "%d", rbd_dev->dev_id);
4462         ret = device_register(dev);
4463
4464         return ret;
4465 }
4466
4467 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4468 {
4469         device_unregister(&rbd_dev->dev);
4470 }
4471
4472 /*
4473  * Get a unique rbd identifier for the given new rbd_dev, and add
4474  * the rbd_dev to the global list.
4475  */
4476 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4477 {
4478         int new_dev_id;
4479
4480         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4481                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4482                                     GFP_KERNEL);
4483         if (new_dev_id < 0)
4484                 return new_dev_id;
4485
4486         rbd_dev->dev_id = new_dev_id;
4487
4488         spin_lock(&rbd_dev_list_lock);
4489         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4490         spin_unlock(&rbd_dev_list_lock);
4491
4492         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4493
4494         return 0;
4495 }
4496
4497 /*
4498  * Remove an rbd_dev from the global list, and record that its
4499  * identifier is no longer in use.
4500  */
4501 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4502 {
4503         spin_lock(&rbd_dev_list_lock);
4504         list_del_init(&rbd_dev->node);
4505         spin_unlock(&rbd_dev_list_lock);
4506
4507         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4508
4509         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4510 }
4511
4512 /*
4513  * Skips over white space at *buf, and updates *buf to point to the
4514  * first found non-space character (if any). Returns the length of
4515  * the token (string of non-white space characters) found.  Note
4516  * that *buf must be terminated with '\0'.
4517  */
4518 static inline size_t next_token(const char **buf)
4519 {
4520         /*
4521         * These are the characters that produce nonzero for
4522         * isspace() in the "C" and "POSIX" locales.
4523         */
4524         const char *spaces = " \f\n\r\t\v";
4525
4526         *buf += strspn(*buf, spaces);   /* Find start of token */
4527
4528         return strcspn(*buf, spaces);   /* Return token length */
4529 }
4530
4531 /*
4532  * Finds the next token in *buf, and if the provided token buffer is
4533  * big enough, copies the found token into it.  The result, if
4534  * copied, is guaranteed to be terminated with '\0'.  Note that *buf
4535  * must be terminated with '\0' on entry.
4536  *
4537  * Returns the length of the token found (not including the '\0').
4538  * Return value will be 0 if no token is found, and it will be >=
4539  * token_size if the token would not fit.
4540  *
4541  * The *buf pointer will be updated to point beyond the end of the
4542  * found token.  Note that this occurs even if the token buffer is
4543  * too small to hold it.
4544  */
4545 static inline size_t copy_token(const char **buf,
4546                                 char *token,
4547                                 size_t token_size)
4548 {
4549         size_t len;
4550
4551         len = next_token(buf);
4552         if (len < token_size) {
4553                 memcpy(token, *buf, len);
4554                 *(token + len) = '\0';
4555         }
4556         *buf += len;
4557
4558         return len;
4559 }
4560
4561 /*
4562  * Finds the next token in *buf, dynamically allocates a buffer big
4563  * enough to hold a copy of it, and copies the token into the new
4564  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4565  * that a duplicate buffer is created even for a zero-length token.
4566  *
4567  * Returns a pointer to the newly-allocated duplicate, or a null
4568  * pointer if memory for the duplicate was not available.  If
4569  * the lenp argument is a non-null pointer, the length of the token
4570  * (not including the '\0') is returned in *lenp.
4571  *
4572  * If successful, the *buf pointer will be updated to point beyond
4573  * the end of the found token.
4574  *
4575  * Note: uses GFP_KERNEL for allocation.
4576  */
4577 static inline char *dup_token(const char **buf, size_t *lenp)
4578 {
4579         char *dup;
4580         size_t len;
4581
4582         len = next_token(buf);
4583         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4584         if (!dup)
4585                 return NULL;
4586         *(dup + len) = '\0';
4587         *buf += len;
4588
4589         if (lenp)
4590                 *lenp = len;
4591
4592         return dup;
4593 }
4594
4595 /*
4596  * Parse the options provided for an "rbd add" (i.e., rbd image
4597  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4598  * and the data written is passed here via a NUL-terminated buffer.
4599  * Returns 0 if successful or an error code otherwise.
4600  *
4601  * The information extracted from these options is recorded in
4602  * the other parameters which return dynamically-allocated
4603  * structures:
4604  *  ceph_opts
4605  *      The address of a pointer that will refer to a ceph options
4606  *      structure.  Caller must release the returned pointer using
4607  *      ceph_destroy_options() when it is no longer needed.
4608  *  rbd_opts
4609  *      Address of an rbd options pointer.  Fully initialized by
4610  *      this function; caller must release with kfree().
4611  *  spec
4612  *      Address of an rbd image specification pointer.  Fully
4613  *      initialized by this function based on parsed options.
4614  *      Caller must release with rbd_spec_put().
4615  *
4616  * The options passed take this form:
4617  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4618  * where:
4619  *  <mon_addrs>
4620  *      A comma-separated list of one or more monitor addresses.
4621  *      A monitor address is an ip address, optionally followed
4622  *      by a port number (separated by a colon).
4623  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4624  *  <options>
4625  *      A comma-separated list of ceph and/or rbd options.
4626  *  <pool_name>
4627  *      The name of the rados pool containing the rbd image.
4628  *  <image_name>
4629  *      The name of the image in that pool to map.
4630  *  <snap_id>
4631  *      An optional snapshot id.  If provided, the mapping will
4632  *      present data from the image at the time that snapshot was
4633  *      created.  The image head is used if no snapshot id is
4634  *      provided.  Snapshot mappings are always read-only.
4635  */
4636 static int rbd_add_parse_args(const char *buf,
4637                                 struct ceph_options **ceph_opts,
4638                                 struct rbd_options **opts,
4639                                 struct rbd_spec **rbd_spec)
4640 {
4641         size_t len;
4642         char *options;
4643         const char *mon_addrs;
4644         char *snap_name;
4645         size_t mon_addrs_size;
4646         struct rbd_spec *spec = NULL;
4647         struct rbd_options *rbd_opts = NULL;
4648         struct ceph_options *copts;
4649         int ret;
4650
4651         /* The first four tokens are required */
4652
4653         len = next_token(&buf);
4654         if (!len) {
4655                 rbd_warn(NULL, "no monitor address(es) provided");
4656                 return -EINVAL;
4657         }
4658         mon_addrs = buf;
4659         mon_addrs_size = len + 1;
4660         buf += len;
4661
4662         ret = -EINVAL;
4663         options = dup_token(&buf, NULL);
4664         if (!options)
4665                 return -ENOMEM;
4666         if (!*options) {
4667                 rbd_warn(NULL, "no options provided");
4668                 goto out_err;
4669         }
4670
4671         spec = rbd_spec_alloc();
4672         if (!spec)
4673                 goto out_mem;
4674
4675         spec->pool_name = dup_token(&buf, NULL);
4676         if (!spec->pool_name)
4677                 goto out_mem;
4678         if (!*spec->pool_name) {
4679                 rbd_warn(NULL, "no pool name provided");
4680                 goto out_err;
4681         }
4682
4683         spec->image_name = dup_token(&buf, NULL);
4684         if (!spec->image_name)
4685                 goto out_mem;
4686         if (!*spec->image_name) {
4687                 rbd_warn(NULL, "no image name provided");
4688                 goto out_err;
4689         }
4690
4691         /*
4692          * Snapshot name is optional; default is to use "-"
4693          * (indicating the head/no snapshot).
4694          */
4695         len = next_token(&buf);
4696         if (!len) {
4697                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4698                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4699         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4700                 ret = -ENAMETOOLONG;
4701                 goto out_err;
4702         }
4703         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4704         if (!snap_name)
4705                 goto out_mem;
4706         *(snap_name + len) = '\0';
4707         spec->snap_name = snap_name;
4708
4709         /* Initialize all rbd options to the defaults */
4710
4711         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4712         if (!rbd_opts)
4713                 goto out_mem;
4714
4715         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4716
4717         copts = ceph_parse_options(options, mon_addrs,
4718                                         mon_addrs + mon_addrs_size - 1,
4719                                         parse_rbd_opts_token, rbd_opts);
4720         if (IS_ERR(copts)) {
4721                 ret = PTR_ERR(copts);
4722                 goto out_err;
4723         }
4724         kfree(options);
4725
4726         *ceph_opts = copts;
4727         *opts = rbd_opts;
4728         *rbd_spec = spec;
4729
4730         return 0;
4731 out_mem:
4732         ret = -ENOMEM;
4733 out_err:
4734         kfree(rbd_opts);
4735         rbd_spec_put(spec);
4736         kfree(options);
4737
4738         return ret;
4739 }
4740
4741 /*
4742  * Return pool id (>= 0) or a negative error code.
4743  */
4744 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4745 {
4746         u64 newest_epoch;
4747         unsigned long timeout = rbdc->client->options->mount_timeout * HZ;
4748         int tries = 0;
4749         int ret;
4750
4751 again:
4752         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4753         if (ret == -ENOENT && tries++ < 1) {
4754                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4755                                                &newest_epoch);
4756                 if (ret < 0)
4757                         return ret;
4758
4759                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4760                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4761                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4762                                                      newest_epoch, timeout);
4763                         goto again;
4764                 } else {
4765                         /* the osdmap we have is new enough */
4766                         return -ENOENT;
4767                 }
4768         }
4769
4770         return ret;
4771 }
4772
4773 /*
4774  * An rbd format 2 image has a unique identifier, distinct from the
4775  * name given to it by the user.  Internally, that identifier is
4776  * what's used to specify the names of objects related to the image.
4777  *
4778  * A special "rbd id" object is used to map an rbd image name to its
4779  * id.  If that object doesn't exist, then there is no v2 rbd image
4780  * with the supplied name.
4781  *
4782  * This function will record the given rbd_dev's image_id field if
4783  * it can be determined, and in that case will return 0.  If any
4784  * errors occur a negative errno will be returned and the rbd_dev's
4785  * image_id field will be unchanged (and should be NULL).
4786  */
4787 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4788 {
4789         int ret;
4790         size_t size;
4791         char *object_name;
4792         void *response;
4793         char *image_id;
4794
4795         /*
4796          * When probing a parent image, the image id is already
4797          * known (and the image name likely is not).  There's no
4798          * need to fetch the image id again in this case.  We
4799          * do still need to set the image format though.
4800          */
4801         if (rbd_dev->spec->image_id) {
4802                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4803
4804                 return 0;
4805         }
4806
4807         /*
4808          * First, see if the format 2 image id file exists, and if
4809          * so, get the image's persistent id from it.
4810          */
4811         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4812         object_name = kmalloc(size, GFP_NOIO);
4813         if (!object_name)
4814                 return -ENOMEM;
4815         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4816         dout("rbd id object name is %s\n", object_name);
4817
4818         /* Response will be an encoded string, which includes a length */
4819
4820         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4821         response = kzalloc(size, GFP_NOIO);
4822         if (!response) {
4823                 ret = -ENOMEM;
4824                 goto out;
4825         }
4826
4827         /* If it doesn't exist we'll assume it's a format 1 image */
4828
4829         ret = rbd_obj_method_sync(rbd_dev, object_name,
4830                                 "rbd", "get_id", NULL, 0,
4831                                 response, RBD_IMAGE_ID_LEN_MAX);
4832         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4833         if (ret == -ENOENT) {
4834                 image_id = kstrdup("", GFP_KERNEL);
4835                 ret = image_id ? 0 : -ENOMEM;
4836                 if (!ret)
4837                         rbd_dev->image_format = 1;
4838         } else if (ret > sizeof (__le32)) {
4839                 void *p = response;
4840
4841                 image_id = ceph_extract_encoded_string(&p, p + ret,
4842                                                 NULL, GFP_NOIO);
4843                 ret = PTR_ERR_OR_ZERO(image_id);
4844                 if (!ret)
4845                         rbd_dev->image_format = 2;
4846         } else {
4847                 ret = -EINVAL;
4848         }
4849
4850         if (!ret) {
4851                 rbd_dev->spec->image_id = image_id;
4852                 dout("image_id is %s\n", image_id);
4853         }
4854 out:
4855         kfree(response);
4856         kfree(object_name);
4857
4858         return ret;
4859 }
4860
4861 /*
4862  * Undo whatever state changes are made by v1 or v2 header info
4863  * call.
4864  */
4865 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4866 {
4867         struct rbd_image_header *header;
4868
4869         /* Drop parent reference unless it's already been done (or none) */
4870
4871         if (rbd_dev->parent_overlap)
4872                 rbd_dev_parent_put(rbd_dev);
4873
4874         /* Free dynamic fields from the header, then zero it out */
4875
4876         header = &rbd_dev->header;
4877         ceph_put_snap_context(header->snapc);
4878         kfree(header->snap_sizes);
4879         kfree(header->snap_names);
4880         kfree(header->object_prefix);
4881         memset(header, 0, sizeof (*header));
4882 }
4883
4884 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4885 {
4886         int ret;
4887
4888         ret = rbd_dev_v2_object_prefix(rbd_dev);
4889         if (ret)
4890                 goto out_err;
4891
4892         /*
4893          * Get the and check features for the image.  Currently the
4894          * features are assumed to never change.
4895          */
4896         ret = rbd_dev_v2_features(rbd_dev);
4897         if (ret)
4898                 goto out_err;
4899
4900         /* If the image supports fancy striping, get its parameters */
4901
4902         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4903                 ret = rbd_dev_v2_striping_info(rbd_dev);
4904                 if (ret < 0)
4905                         goto out_err;
4906         }
4907         /* No support for crypto and compression type format 2 images */
4908
4909         return 0;
4910 out_err:
4911         rbd_dev->header.features = 0;
4912         kfree(rbd_dev->header.object_prefix);
4913         rbd_dev->header.object_prefix = NULL;
4914
4915         return ret;
4916 }
4917
4918 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4919 {
4920         struct rbd_device *parent = NULL;
4921         struct rbd_spec *parent_spec;
4922         struct rbd_client *rbdc;
4923         int ret;
4924
4925         if (!rbd_dev->parent_spec)
4926                 return 0;
4927         /*
4928          * We need to pass a reference to the client and the parent
4929          * spec when creating the parent rbd_dev.  Images related by
4930          * parent/child relationships always share both.
4931          */
4932         parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4933         rbdc = __rbd_get_client(rbd_dev->rbd_client);
4934
4935         ret = -ENOMEM;
4936         parent = rbd_dev_create(rbdc, parent_spec);
4937         if (!parent)
4938                 goto out_err;
4939
4940         ret = rbd_dev_image_probe(parent, false);
4941         if (ret < 0)
4942                 goto out_err;
4943         rbd_dev->parent = parent;
4944         atomic_set(&rbd_dev->parent_ref, 1);
4945
4946         return 0;
4947 out_err:
4948         if (parent) {
4949                 rbd_dev_unparent(rbd_dev);
4950                 kfree(rbd_dev->header_name);
4951                 rbd_dev_destroy(parent);
4952         } else {
4953                 rbd_put_client(rbdc);
4954                 rbd_spec_put(parent_spec);
4955         }
4956
4957         return ret;
4958 }
4959
4960 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4961 {
4962         int ret;
4963
4964         /* Get an id and fill in device name. */
4965
4966         ret = rbd_dev_id_get(rbd_dev);
4967         if (ret)
4968                 return ret;
4969
4970         BUILD_BUG_ON(DEV_NAME_LEN
4971                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4972         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4973
4974         /* Record our major and minor device numbers. */
4975
4976         if (!single_major) {
4977                 ret = register_blkdev(0, rbd_dev->name);
4978                 if (ret < 0)
4979                         goto err_out_id;
4980
4981                 rbd_dev->major = ret;
4982                 rbd_dev->minor = 0;
4983         } else {
4984                 rbd_dev->major = rbd_major;
4985                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
4986         }
4987
4988         /* Set up the blkdev mapping. */
4989
4990         ret = rbd_init_disk(rbd_dev);
4991         if (ret)
4992                 goto err_out_blkdev;
4993
4994         ret = rbd_dev_mapping_set(rbd_dev);
4995         if (ret)
4996                 goto err_out_disk;
4997         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4998
4999         ret = rbd_bus_add_dev(rbd_dev);
5000         if (ret)
5001                 goto err_out_mapping;
5002
5003         /* Everything's ready.  Announce the disk to the world. */
5004
5005         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5006         add_disk(rbd_dev->disk);
5007
5008         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5009                 (unsigned long long) rbd_dev->mapping.size);
5010
5011         return ret;
5012
5013 err_out_mapping:
5014         rbd_dev_mapping_clear(rbd_dev);
5015 err_out_disk:
5016         rbd_free_disk(rbd_dev);
5017 err_out_blkdev:
5018         if (!single_major)
5019                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5020 err_out_id:
5021         rbd_dev_id_put(rbd_dev);
5022         rbd_dev_mapping_clear(rbd_dev);
5023
5024         return ret;
5025 }
5026
5027 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5028 {
5029         struct rbd_spec *spec = rbd_dev->spec;
5030         size_t size;
5031
5032         /* Record the header object name for this rbd image. */
5033
5034         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5035
5036         if (rbd_dev->image_format == 1)
5037                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5038         else
5039                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5040
5041         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5042         if (!rbd_dev->header_name)
5043                 return -ENOMEM;
5044
5045         if (rbd_dev->image_format == 1)
5046                 sprintf(rbd_dev->header_name, "%s%s",
5047                         spec->image_name, RBD_SUFFIX);
5048         else
5049                 sprintf(rbd_dev->header_name, "%s%s",
5050                         RBD_HEADER_PREFIX, spec->image_id);
5051         return 0;
5052 }
5053
5054 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5055 {
5056         rbd_dev_unprobe(rbd_dev);
5057         kfree(rbd_dev->header_name);
5058         rbd_dev->header_name = NULL;
5059         rbd_dev->image_format = 0;
5060         kfree(rbd_dev->spec->image_id);
5061         rbd_dev->spec->image_id = NULL;
5062
5063         rbd_dev_destroy(rbd_dev);
5064 }
5065
5066 /*
5067  * Probe for the existence of the header object for the given rbd
5068  * device.  If this image is the one being mapped (i.e., not a
5069  * parent), initiate a watch on its header object before using that
5070  * object to get detailed information about the rbd image.
5071  */
5072 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
5073 {
5074         int ret;
5075
5076         /*
5077          * Get the id from the image id object.  Unless there's an
5078          * error, rbd_dev->spec->image_id will be filled in with
5079          * a dynamically-allocated string, and rbd_dev->image_format
5080          * will be set to either 1 or 2.
5081          */
5082         ret = rbd_dev_image_id(rbd_dev);
5083         if (ret)
5084                 return ret;
5085         rbd_assert(rbd_dev->spec->image_id);
5086         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5087
5088         ret = rbd_dev_header_name(rbd_dev);
5089         if (ret)
5090                 goto err_out_format;
5091
5092         if (mapping) {
5093                 ret = rbd_dev_header_watch_sync(rbd_dev);
5094                 if (ret)
5095                         goto out_header_name;
5096         }
5097
5098         if (rbd_dev->image_format == 1)
5099                 ret = rbd_dev_v1_header_info(rbd_dev);
5100         else
5101                 ret = rbd_dev_v2_header_info(rbd_dev);
5102         if (ret)
5103                 goto err_out_watch;
5104
5105         ret = rbd_dev_spec_update(rbd_dev);
5106         if (ret)
5107                 goto err_out_probe;
5108
5109         ret = rbd_dev_probe_parent(rbd_dev);
5110         if (ret)
5111                 goto err_out_probe;
5112
5113         dout("discovered format %u image, header name is %s\n",
5114                 rbd_dev->image_format, rbd_dev->header_name);
5115
5116         return 0;
5117 err_out_probe:
5118         rbd_dev_unprobe(rbd_dev);
5119 err_out_watch:
5120         if (mapping)
5121                 rbd_dev_header_unwatch_sync(rbd_dev);
5122 out_header_name:
5123         kfree(rbd_dev->header_name);
5124         rbd_dev->header_name = NULL;
5125 err_out_format:
5126         rbd_dev->image_format = 0;
5127         kfree(rbd_dev->spec->image_id);
5128         rbd_dev->spec->image_id = NULL;
5129
5130         dout("probe failed, returning %d\n", ret);
5131
5132         return ret;
5133 }
5134
5135 static ssize_t do_rbd_add(struct bus_type *bus,
5136                           const char *buf,
5137                           size_t count)
5138 {
5139         struct rbd_device *rbd_dev = NULL;
5140         struct ceph_options *ceph_opts = NULL;
5141         struct rbd_options *rbd_opts = NULL;
5142         struct rbd_spec *spec = NULL;
5143         struct rbd_client *rbdc;
5144         bool read_only;
5145         int rc = -ENOMEM;
5146
5147         if (!try_module_get(THIS_MODULE))
5148                 return -ENODEV;
5149
5150         /* parse add command */
5151         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5152         if (rc < 0)
5153                 goto err_out_module;
5154         read_only = rbd_opts->read_only;
5155         kfree(rbd_opts);
5156         rbd_opts = NULL;        /* done with this */
5157
5158         rbdc = rbd_get_client(ceph_opts);
5159         if (IS_ERR(rbdc)) {
5160                 rc = PTR_ERR(rbdc);
5161                 goto err_out_args;
5162         }
5163
5164         /* pick the pool */
5165         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5166         if (rc < 0)
5167                 goto err_out_client;
5168         spec->pool_id = (u64)rc;
5169
5170         /* The ceph file layout needs to fit pool id in 32 bits */
5171
5172         if (spec->pool_id > (u64)U32_MAX) {
5173                 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5174                                 (unsigned long long)spec->pool_id, U32_MAX);
5175                 rc = -EIO;
5176                 goto err_out_client;
5177         }
5178
5179         rbd_dev = rbd_dev_create(rbdc, spec);
5180         if (!rbd_dev)
5181                 goto err_out_client;
5182         rbdc = NULL;            /* rbd_dev now owns this */
5183         spec = NULL;            /* rbd_dev now owns this */
5184
5185         rc = rbd_dev_image_probe(rbd_dev, true);
5186         if (rc < 0)
5187                 goto err_out_rbd_dev;
5188
5189         /* If we are mapping a snapshot it must be marked read-only */
5190
5191         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5192                 read_only = true;
5193         rbd_dev->mapping.read_only = read_only;
5194
5195         rc = rbd_dev_device_setup(rbd_dev);
5196         if (rc) {
5197                 /*
5198                  * rbd_dev_header_unwatch_sync() can't be moved into
5199                  * rbd_dev_image_release() without refactoring, see
5200                  * commit 1f3ef78861ac.
5201                  */
5202                 rbd_dev_header_unwatch_sync(rbd_dev);
5203                 rbd_dev_image_release(rbd_dev);
5204                 goto err_out_module;
5205         }
5206
5207         return count;
5208
5209 err_out_rbd_dev:
5210         rbd_dev_destroy(rbd_dev);
5211 err_out_client:
5212         rbd_put_client(rbdc);
5213 err_out_args:
5214         rbd_spec_put(spec);
5215 err_out_module:
5216         module_put(THIS_MODULE);
5217
5218         dout("Error adding device %s\n", buf);
5219
5220         return (ssize_t)rc;
5221 }
5222
5223 static ssize_t rbd_add(struct bus_type *bus,
5224                        const char *buf,
5225                        size_t count)
5226 {
5227         if (single_major)
5228                 return -EINVAL;
5229
5230         return do_rbd_add(bus, buf, count);
5231 }
5232
5233 static ssize_t rbd_add_single_major(struct bus_type *bus,
5234                                     const char *buf,
5235                                     size_t count)
5236 {
5237         return do_rbd_add(bus, buf, count);
5238 }
5239
5240 static void rbd_dev_device_release(struct device *dev)
5241 {
5242         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5243
5244         rbd_free_disk(rbd_dev);
5245         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5246         rbd_dev_mapping_clear(rbd_dev);
5247         if (!single_major)
5248                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5249         rbd_dev_id_put(rbd_dev);
5250         rbd_dev_mapping_clear(rbd_dev);
5251 }
5252
5253 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5254 {
5255         while (rbd_dev->parent) {
5256                 struct rbd_device *first = rbd_dev;
5257                 struct rbd_device *second = first->parent;
5258                 struct rbd_device *third;
5259
5260                 /*
5261                  * Follow to the parent with no grandparent and
5262                  * remove it.
5263                  */
5264                 while (second && (third = second->parent)) {
5265                         first = second;
5266                         second = third;
5267                 }
5268                 rbd_assert(second);
5269                 rbd_dev_image_release(second);
5270                 first->parent = NULL;
5271                 first->parent_overlap = 0;
5272
5273                 rbd_assert(first->parent_spec);
5274                 rbd_spec_put(first->parent_spec);
5275                 first->parent_spec = NULL;
5276         }
5277 }
5278
5279 static ssize_t do_rbd_remove(struct bus_type *bus,
5280                              const char *buf,
5281                              size_t count)
5282 {
5283         struct rbd_device *rbd_dev = NULL;
5284         struct list_head *tmp;
5285         int dev_id;
5286         unsigned long ul;
5287         bool already = false;
5288         int ret;
5289
5290         ret = kstrtoul(buf, 10, &ul);
5291         if (ret)
5292                 return ret;
5293
5294         /* convert to int; abort if we lost anything in the conversion */
5295         dev_id = (int)ul;
5296         if (dev_id != ul)
5297                 return -EINVAL;
5298
5299         ret = -ENOENT;
5300         spin_lock(&rbd_dev_list_lock);
5301         list_for_each(tmp, &rbd_dev_list) {
5302                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5303                 if (rbd_dev->dev_id == dev_id) {
5304                         ret = 0;
5305                         break;
5306                 }
5307         }
5308         if (!ret) {
5309                 spin_lock_irq(&rbd_dev->lock);
5310                 if (rbd_dev->open_count)
5311                         ret = -EBUSY;
5312                 else
5313                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5314                                                         &rbd_dev->flags);
5315                 spin_unlock_irq(&rbd_dev->lock);
5316         }
5317         spin_unlock(&rbd_dev_list_lock);
5318         if (ret < 0 || already)
5319                 return ret;
5320
5321         rbd_dev_header_unwatch_sync(rbd_dev);
5322         /*
5323          * flush remaining watch callbacks - these must be complete
5324          * before the osd_client is shutdown
5325          */
5326         dout("%s: flushing notifies", __func__);
5327         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5328
5329         /*
5330          * Don't free anything from rbd_dev->disk until after all
5331          * notifies are completely processed. Otherwise
5332          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5333          * in a potential use after free of rbd_dev->disk or rbd_dev.
5334          */
5335         rbd_bus_del_dev(rbd_dev);
5336         rbd_dev_image_release(rbd_dev);
5337         module_put(THIS_MODULE);
5338
5339         return count;
5340 }
5341
5342 static ssize_t rbd_remove(struct bus_type *bus,
5343                           const char *buf,
5344                           size_t count)
5345 {
5346         if (single_major)
5347                 return -EINVAL;
5348
5349         return do_rbd_remove(bus, buf, count);
5350 }
5351
5352 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5353                                        const char *buf,
5354                                        size_t count)
5355 {
5356         return do_rbd_remove(bus, buf, count);
5357 }
5358
5359 /*
5360  * create control files in sysfs
5361  * /sys/bus/rbd/...
5362  */
5363 static int rbd_sysfs_init(void)
5364 {
5365         int ret;
5366
5367         ret = device_register(&rbd_root_dev);
5368         if (ret < 0)
5369                 return ret;
5370
5371         ret = bus_register(&rbd_bus_type);
5372         if (ret < 0)
5373                 device_unregister(&rbd_root_dev);
5374
5375         return ret;
5376 }
5377
5378 static void rbd_sysfs_cleanup(void)
5379 {
5380         bus_unregister(&rbd_bus_type);
5381         device_unregister(&rbd_root_dev);
5382 }
5383
5384 static int rbd_slab_init(void)
5385 {
5386         rbd_assert(!rbd_img_request_cache);
5387         rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5388                                         sizeof (struct rbd_img_request),
5389                                         __alignof__(struct rbd_img_request),
5390                                         0, NULL);
5391         if (!rbd_img_request_cache)
5392                 return -ENOMEM;
5393
5394         rbd_assert(!rbd_obj_request_cache);
5395         rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5396                                         sizeof (struct rbd_obj_request),
5397                                         __alignof__(struct rbd_obj_request),
5398                                         0, NULL);
5399         if (!rbd_obj_request_cache)
5400                 goto out_err;
5401
5402         rbd_assert(!rbd_segment_name_cache);
5403         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5404                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5405         if (rbd_segment_name_cache)
5406                 return 0;
5407 out_err:
5408         if (rbd_obj_request_cache) {
5409                 kmem_cache_destroy(rbd_obj_request_cache);
5410                 rbd_obj_request_cache = NULL;
5411         }
5412
5413         kmem_cache_destroy(rbd_img_request_cache);
5414         rbd_img_request_cache = NULL;
5415
5416         return -ENOMEM;
5417 }
5418
5419 static void rbd_slab_exit(void)
5420 {
5421         rbd_assert(rbd_segment_name_cache);
5422         kmem_cache_destroy(rbd_segment_name_cache);
5423         rbd_segment_name_cache = NULL;
5424
5425         rbd_assert(rbd_obj_request_cache);
5426         kmem_cache_destroy(rbd_obj_request_cache);
5427         rbd_obj_request_cache = NULL;
5428
5429         rbd_assert(rbd_img_request_cache);
5430         kmem_cache_destroy(rbd_img_request_cache);
5431         rbd_img_request_cache = NULL;
5432 }
5433
5434 static int __init rbd_init(void)
5435 {
5436         int rc;
5437
5438         if (!libceph_compatible(NULL)) {
5439                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5440                 return -EINVAL;
5441         }
5442
5443         rc = rbd_slab_init();
5444         if (rc)
5445                 return rc;
5446
5447         if (single_major) {
5448                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5449                 if (rbd_major < 0) {
5450                         rc = rbd_major;
5451                         goto err_out_slab;
5452                 }
5453         }
5454
5455         rc = rbd_sysfs_init();
5456         if (rc)
5457                 goto err_out_blkdev;
5458
5459         if (single_major)
5460                 pr_info("loaded (major %d)\n", rbd_major);
5461         else
5462                 pr_info("loaded\n");
5463
5464         return 0;
5465
5466 err_out_blkdev:
5467         if (single_major)
5468                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5469 err_out_slab:
5470         rbd_slab_exit();
5471         return rc;
5472 }
5473
5474 static void __exit rbd_exit(void)
5475 {
5476         rbd_sysfs_cleanup();
5477         if (single_major)
5478                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5479         rbd_slab_exit();
5480 }
5481
5482 module_init(rbd_init);
5483 module_exit(rbd_exit);
5484
5485 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5486 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5487 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5488 /* following authorship retained from original osdblk.c */
5489 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5490
5491 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5492 MODULE_LICENSE("GPL");