rbd: get/put img_request in rbd_img_request_submit()
[cascardo/linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define SECTOR_SHIFT    9
59 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
60
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69         unsigned int counter;
70
71         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72         if (counter <= (unsigned int)INT_MAX)
73                 return (int)counter;
74
75         atomic_dec(v);
76
77         return -EINVAL;
78 }
79
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83         int counter;
84
85         counter = atomic_dec_return(v);
86         if (counter >= 0)
87                 return counter;
88
89         atomic_inc(v);
90
91         return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR            256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
98
99 #define RBD_MAX_PARENT_CHAIN_LEN        16
100
101 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN   \
103                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104
105 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
106
107 #define RBD_SNAP_HEAD_NAME      "-"
108
109 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
110
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX    64
114
115 #define RBD_OBJ_PREFIX_LEN_MAX  64
116
117 /* Feature bits */
118
119 #define RBD_FEATURE_LAYERING    (1<<0)
120 #define RBD_FEATURE_STRIPINGV2  (1<<1)
121 #define RBD_FEATURES_ALL \
122             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123
124 /* Features supported by this (client software) implementation. */
125
126 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
127
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN            32
135 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
136
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141         /* These six fields never change for a given rbd image */
142         char *object_prefix;
143         __u8 obj_order;
144         __u8 crypt_type;
145         __u8 comp_type;
146         u64 stripe_unit;
147         u64 stripe_count;
148         u64 features;           /* Might be changeable someday? */
149
150         /* The remaining fields need to be updated occasionally */
151         u64 image_size;
152         struct ceph_snap_context *snapc;
153         char *snap_names;       /* format 1 only */
154         u64 *snap_sizes;        /* format 1 only */
155 };
156
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183         u64             pool_id;
184         const char      *pool_name;
185
186         const char      *image_id;
187         const char      *image_name;
188
189         u64             snap_id;
190         const char      *snap_name;
191
192         struct kref     kref;
193 };
194
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199         struct ceph_client      *client;
200         struct kref             kref;
201         struct list_head        node;
202 };
203
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206
207 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
208
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211
212 enum obj_request_type {
213         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215
216 enum obj_operation_type {
217         OBJ_OP_WRITE,
218         OBJ_OP_READ,
219         OBJ_OP_DISCARD,
220 };
221
222 enum obj_req_flags {
223         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
224         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
225         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
226         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
227 };
228
229 struct rbd_obj_request {
230         const char              *object_name;
231         u64                     offset;         /* object start byte */
232         u64                     length;         /* bytes from offset */
233         unsigned long           flags;
234
235         /*
236          * An object request associated with an image will have its
237          * img_data flag set; a standalone object request will not.
238          *
239          * A standalone object request will have which == BAD_WHICH
240          * and a null obj_request pointer.
241          *
242          * An object request initiated in support of a layered image
243          * object (to check for its existence before a write) will
244          * have which == BAD_WHICH and a non-null obj_request pointer.
245          *
246          * Finally, an object request for rbd image data will have
247          * which != BAD_WHICH, and will have a non-null img_request
248          * pointer.  The value of which will be in the range
249          * 0..(img_request->obj_request_count-1).
250          */
251         union {
252                 struct rbd_obj_request  *obj_request;   /* STAT op */
253                 struct {
254                         struct rbd_img_request  *img_request;
255                         u64                     img_offset;
256                         /* links for img_request->obj_requests list */
257                         struct list_head        links;
258                 };
259         };
260         u32                     which;          /* posn image request list */
261
262         enum obj_request_type   type;
263         union {
264                 struct bio      *bio_list;
265                 struct {
266                         struct page     **pages;
267                         u32             page_count;
268                 };
269         };
270         struct page             **copyup_pages;
271         u32                     copyup_page_count;
272
273         struct ceph_osd_request *osd_req;
274
275         u64                     xferred;        /* bytes transferred */
276         int                     result;
277
278         rbd_obj_callback_t      callback;
279         struct completion       completion;
280
281         struct kref             kref;
282 };
283
284 enum img_req_flags {
285         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
286         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
287         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
288         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
289 };
290
291 struct rbd_img_request {
292         struct rbd_device       *rbd_dev;
293         u64                     offset; /* starting image byte offset */
294         u64                     length; /* byte count from offset */
295         unsigned long           flags;
296         union {
297                 u64                     snap_id;        /* for reads */
298                 struct ceph_snap_context *snapc;        /* for writes */
299         };
300         union {
301                 struct request          *rq;            /* block request */
302                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
303         };
304         struct page             **copyup_pages;
305         u32                     copyup_page_count;
306         spinlock_t              completion_lock;/* protects next_completion */
307         u32                     next_completion;
308         rbd_img_callback_t      callback;
309         u64                     xferred;/* aggregate bytes transferred */
310         int                     result; /* first nonzero obj_request result */
311
312         u32                     obj_request_count;
313         struct list_head        obj_requests;   /* rbd_obj_request structs */
314
315         struct kref             kref;
316 };
317
318 #define for_each_obj_request(ireq, oreq) \
319         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324
325 struct rbd_mapping {
326         u64                     size;
327         u64                     features;
328         bool                    read_only;
329 };
330
331 /*
332  * a single device
333  */
334 struct rbd_device {
335         int                     dev_id;         /* blkdev unique id */
336
337         int                     major;          /* blkdev assigned major */
338         int                     minor;
339         struct gendisk          *disk;          /* blkdev's gendisk and rq */
340
341         u32                     image_format;   /* Either 1 or 2 */
342         struct rbd_client       *rbd_client;
343
344         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345
346         spinlock_t              lock;           /* queue, flags, open_count */
347
348         struct rbd_image_header header;
349         unsigned long           flags;          /* possibly lock protected */
350         struct rbd_spec         *spec;
351         struct rbd_options      *opts;
352
353         char                    *header_name;
354
355         struct ceph_file_layout layout;
356
357         struct ceph_osd_event   *watch_event;
358         struct rbd_obj_request  *watch_request;
359
360         struct rbd_spec         *parent_spec;
361         u64                     parent_overlap;
362         atomic_t                parent_ref;
363         struct rbd_device       *parent;
364
365         /* Block layer tags. */
366         struct blk_mq_tag_set   tag_set;
367
368         /* protects updating the header */
369         struct rw_semaphore     header_rwsem;
370
371         struct rbd_mapping      mapping;
372
373         struct list_head        node;
374
375         /* sysfs related */
376         struct device           dev;
377         unsigned long           open_count;     /* protected by lock */
378 };
379
380 /*
381  * Flag bits for rbd_dev->flags.  If atomicity is required,
382  * rbd_dev->lock is used to protect access.
383  *
384  * Currently, only the "removing" flag (which is coupled with the
385  * "open_count" field) requires atomic access.
386  */
387 enum rbd_dev_flags {
388         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
389         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
390 };
391
392 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
393
394 static LIST_HEAD(rbd_dev_list);    /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396
397 static LIST_HEAD(rbd_client_list);              /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399
400 /* Slab caches for frequently-allocated structures */
401
402 static struct kmem_cache        *rbd_img_request_cache;
403 static struct kmem_cache        *rbd_obj_request_cache;
404 static struct kmem_cache        *rbd_segment_name_cache;
405
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408
409 static struct workqueue_struct *rbd_wq;
410
411 /*
412  * Default to false for now, as single-major requires >= 0.75 version of
413  * userspace rbd utility.
414  */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422                        size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424                           size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426                                     size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428                                        size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448         &bus_attr_add.attr,
449         &bus_attr_remove.attr,
450         &bus_attr_add_single_major.attr,
451         &bus_attr_remove_single_major.attr,
452         NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456                                   struct attribute *attr, int index)
457 {
458         if (!single_major &&
459             (attr == &bus_attr_add_single_major.attr ||
460              attr == &bus_attr_remove_single_major.attr))
461                 return 0;
462
463         return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467         .attrs = rbd_bus_attrs,
468         .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473         .name           = "rbd",
474         .bus_groups     = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482         .init_name =    "rbd",
483         .release =      rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489         struct va_format vaf;
490         va_list args;
491
492         va_start(args, fmt);
493         vaf.fmt = fmt;
494         vaf.va = &args;
495
496         if (!rbd_dev)
497                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498         else if (rbd_dev->disk)
499                 printk(KERN_WARNING "%s: %s: %pV\n",
500                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501         else if (rbd_dev->spec && rbd_dev->spec->image_name)
502                 printk(KERN_WARNING "%s: image %s: %pV\n",
503                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504         else if (rbd_dev->spec && rbd_dev->spec->image_id)
505                 printk(KERN_WARNING "%s: id %s: %pV\n",
506                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507         else    /* punt */
508                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509                         RBD_DRV_NAME, rbd_dev, &vaf);
510         va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)                                                \
515                 if (unlikely(!(expr))) {                                \
516                         printk(KERN_ERR "\nAssertion failure in %s() "  \
517                                                 "at line %d:\n\n"       \
518                                         "\trbd_assert(%s);\n\n",        \
519                                         __func__, __LINE__, #expr);     \
520                         BUG();                                          \
521                 }
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)      ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536                                         u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538                                 u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540                 u64 *snap_features);
541
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545         bool removing = false;
546
547         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548                 return -EROFS;
549
550         spin_lock_irq(&rbd_dev->lock);
551         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552                 removing = true;
553         else
554                 rbd_dev->open_count++;
555         spin_unlock_irq(&rbd_dev->lock);
556         if (removing)
557                 return -ENOENT;
558
559         (void) get_device(&rbd_dev->dev);
560
561         return 0;
562 }
563
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566         struct rbd_device *rbd_dev = disk->private_data;
567         unsigned long open_count_before;
568
569         spin_lock_irq(&rbd_dev->lock);
570         open_count_before = rbd_dev->open_count--;
571         spin_unlock_irq(&rbd_dev->lock);
572         rbd_assert(open_count_before > 0);
573
574         put_device(&rbd_dev->dev);
575 }
576
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579         int ret = 0;
580         int val;
581         bool ro;
582         bool ro_changed = false;
583
584         /* get_user() may sleep, so call it before taking rbd_dev->lock */
585         if (get_user(val, (int __user *)(arg)))
586                 return -EFAULT;
587
588         ro = val ? true : false;
589         /* Snapshot doesn't allow to write*/
590         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591                 return -EROFS;
592
593         spin_lock_irq(&rbd_dev->lock);
594         /* prevent others open this device */
595         if (rbd_dev->open_count > 1) {
596                 ret = -EBUSY;
597                 goto out;
598         }
599
600         if (rbd_dev->mapping.read_only != ro) {
601                 rbd_dev->mapping.read_only = ro;
602                 ro_changed = true;
603         }
604
605 out:
606         spin_unlock_irq(&rbd_dev->lock);
607         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608         if (ret == 0 && ro_changed)
609                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610
611         return ret;
612 }
613
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615                         unsigned int cmd, unsigned long arg)
616 {
617         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618         int ret = 0;
619
620         switch (cmd) {
621         case BLKROSET:
622                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
623                 break;
624         default:
625                 ret = -ENOTTY;
626         }
627
628         return ret;
629 }
630
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633                                 unsigned int cmd, unsigned long arg)
634 {
635         return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638
639 static const struct block_device_operations rbd_bd_ops = {
640         .owner                  = THIS_MODULE,
641         .open                   = rbd_open,
642         .release                = rbd_release,
643         .ioctl                  = rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645         .compat_ioctl           = rbd_compat_ioctl,
646 #endif
647 };
648
649 /*
650  * Initialize an rbd client instance.  Success or not, this function
651  * consumes ceph_opts.  Caller holds client_mutex.
652  */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655         struct rbd_client *rbdc;
656         int ret = -ENOMEM;
657
658         dout("%s:\n", __func__);
659         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660         if (!rbdc)
661                 goto out_opt;
662
663         kref_init(&rbdc->kref);
664         INIT_LIST_HEAD(&rbdc->node);
665
666         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667         if (IS_ERR(rbdc->client))
668                 goto out_rbdc;
669         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670
671         ret = ceph_open_session(rbdc->client);
672         if (ret < 0)
673                 goto out_client;
674
675         spin_lock(&rbd_client_list_lock);
676         list_add_tail(&rbdc->node, &rbd_client_list);
677         spin_unlock(&rbd_client_list_lock);
678
679         dout("%s: rbdc %p\n", __func__, rbdc);
680
681         return rbdc;
682 out_client:
683         ceph_destroy_client(rbdc->client);
684 out_rbdc:
685         kfree(rbdc);
686 out_opt:
687         if (ceph_opts)
688                 ceph_destroy_options(ceph_opts);
689         dout("%s: error %d\n", __func__, ret);
690
691         return ERR_PTR(ret);
692 }
693
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696         kref_get(&rbdc->kref);
697
698         return rbdc;
699 }
700
701 /*
702  * Find a ceph client with specific addr and configuration.  If
703  * found, bump its reference count.
704  */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707         struct rbd_client *client_node;
708         bool found = false;
709
710         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711                 return NULL;
712
713         spin_lock(&rbd_client_list_lock);
714         list_for_each_entry(client_node, &rbd_client_list, node) {
715                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
716                         __rbd_get_client(client_node);
717
718                         found = true;
719                         break;
720                 }
721         }
722         spin_unlock(&rbd_client_list_lock);
723
724         return found ? client_node : NULL;
725 }
726
727 /*
728  * (Per device) rbd map options
729  */
730 enum {
731         Opt_queue_depth,
732         Opt_last_int,
733         /* int args above */
734         Opt_last_string,
735         /* string args above */
736         Opt_read_only,
737         Opt_read_write,
738         Opt_err
739 };
740
741 static match_table_t rbd_opts_tokens = {
742         {Opt_queue_depth, "queue_depth=%d"},
743         /* int args above */
744         /* string args above */
745         {Opt_read_only, "read_only"},
746         {Opt_read_only, "ro"},          /* Alternate spelling */
747         {Opt_read_write, "read_write"},
748         {Opt_read_write, "rw"},         /* Alternate spelling */
749         {Opt_err, NULL}
750 };
751
752 struct rbd_options {
753         int     queue_depth;
754         bool    read_only;
755 };
756
757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT   false
759
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762         struct rbd_options *rbd_opts = private;
763         substring_t argstr[MAX_OPT_ARGS];
764         int token, intval, ret;
765
766         token = match_token(c, rbd_opts_tokens, argstr);
767         if (token < Opt_last_int) {
768                 ret = match_int(&argstr[0], &intval);
769                 if (ret < 0) {
770                         pr_err("bad mount option arg (not int) at '%s'\n", c);
771                         return ret;
772                 }
773                 dout("got int token %d val %d\n", token, intval);
774         } else if (token > Opt_last_int && token < Opt_last_string) {
775                 dout("got string token %d val %s\n", token, argstr[0].from);
776         } else {
777                 dout("got token %d\n", token);
778         }
779
780         switch (token) {
781         case Opt_queue_depth:
782                 if (intval < 1) {
783                         pr_err("queue_depth out of range\n");
784                         return -EINVAL;
785                 }
786                 rbd_opts->queue_depth = intval;
787                 break;
788         case Opt_read_only:
789                 rbd_opts->read_only = true;
790                 break;
791         case Opt_read_write:
792                 rbd_opts->read_only = false;
793                 break;
794         default:
795                 /* libceph prints "bad option" msg */
796                 return -EINVAL;
797         }
798
799         return 0;
800 }
801
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804         switch (op_type) {
805         case OBJ_OP_READ:
806                 return "read";
807         case OBJ_OP_WRITE:
808                 return "write";
809         case OBJ_OP_DISCARD:
810                 return "discard";
811         default:
812                 return "???";
813         }
814 }
815
816 /*
817  * Get a ceph client with specific addr and configuration, if one does
818  * not exist create it.  Either way, ceph_opts is consumed by this
819  * function.
820  */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823         struct rbd_client *rbdc;
824
825         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826         rbdc = rbd_client_find(ceph_opts);
827         if (rbdc)       /* using an existing client */
828                 ceph_destroy_options(ceph_opts);
829         else
830                 rbdc = rbd_client_create(ceph_opts);
831         mutex_unlock(&client_mutex);
832
833         return rbdc;
834 }
835
836 /*
837  * Destroy ceph client
838  *
839  * Caller must hold rbd_client_list_lock.
840  */
841 static void rbd_client_release(struct kref *kref)
842 {
843         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844
845         dout("%s: rbdc %p\n", __func__, rbdc);
846         spin_lock(&rbd_client_list_lock);
847         list_del(&rbdc->node);
848         spin_unlock(&rbd_client_list_lock);
849
850         ceph_destroy_client(rbdc->client);
851         kfree(rbdc);
852 }
853
854 /*
855  * Drop reference to ceph client node. If it's not referenced anymore, release
856  * it.
857  */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860         if (rbdc)
861                 kref_put(&rbdc->kref, rbd_client_release);
862 }
863
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866         return image_format == 1 || image_format == 2;
867 }
868
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871         size_t size;
872         u32 snap_count;
873
874         /* The header has to start with the magic rbd header text */
875         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876                 return false;
877
878         /* The bio layer requires at least sector-sized I/O */
879
880         if (ondisk->options.order < SECTOR_SHIFT)
881                 return false;
882
883         /* If we use u64 in a few spots we may be able to loosen this */
884
885         if (ondisk->options.order > 8 * sizeof (int) - 1)
886                 return false;
887
888         /*
889          * The size of a snapshot header has to fit in a size_t, and
890          * that limits the number of snapshots.
891          */
892         snap_count = le32_to_cpu(ondisk->snap_count);
893         size = SIZE_MAX - sizeof (struct ceph_snap_context);
894         if (snap_count > size / sizeof (__le64))
895                 return false;
896
897         /*
898          * Not only that, but the size of the entire the snapshot
899          * header must also be representable in a size_t.
900          */
901         size -= snap_count * sizeof (__le64);
902         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903                 return false;
904
905         return true;
906 }
907
908 /*
909  * Fill an rbd image header with information from the given format 1
910  * on-disk header.
911  */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913                                  struct rbd_image_header_ondisk *ondisk)
914 {
915         struct rbd_image_header *header = &rbd_dev->header;
916         bool first_time = header->object_prefix == NULL;
917         struct ceph_snap_context *snapc;
918         char *object_prefix = NULL;
919         char *snap_names = NULL;
920         u64 *snap_sizes = NULL;
921         u32 snap_count;
922         size_t size;
923         int ret = -ENOMEM;
924         u32 i;
925
926         /* Allocate this now to avoid having to handle failure below */
927
928         if (first_time) {
929                 size_t len;
930
931                 len = strnlen(ondisk->object_prefix,
932                                 sizeof (ondisk->object_prefix));
933                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
934                 if (!object_prefix)
935                         return -ENOMEM;
936                 memcpy(object_prefix, ondisk->object_prefix, len);
937                 object_prefix[len] = '\0';
938         }
939
940         /* Allocate the snapshot context and fill it in */
941
942         snap_count = le32_to_cpu(ondisk->snap_count);
943         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944         if (!snapc)
945                 goto out_err;
946         snapc->seq = le64_to_cpu(ondisk->snap_seq);
947         if (snap_count) {
948                 struct rbd_image_snap_ondisk *snaps;
949                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950
951                 /* We'll keep a copy of the snapshot names... */
952
953                 if (snap_names_len > (u64)SIZE_MAX)
954                         goto out_2big;
955                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956                 if (!snap_names)
957                         goto out_err;
958
959                 /* ...as well as the array of their sizes. */
960
961                 size = snap_count * sizeof (*header->snap_sizes);
962                 snap_sizes = kmalloc(size, GFP_KERNEL);
963                 if (!snap_sizes)
964                         goto out_err;
965
966                 /*
967                  * Copy the names, and fill in each snapshot's id
968                  * and size.
969                  *
970                  * Note that rbd_dev_v1_header_info() guarantees the
971                  * ondisk buffer we're working with has
972                  * snap_names_len bytes beyond the end of the
973                  * snapshot id array, this memcpy() is safe.
974                  */
975                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976                 snaps = ondisk->snaps;
977                 for (i = 0; i < snap_count; i++) {
978                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980                 }
981         }
982
983         /* We won't fail any more, fill in the header */
984
985         if (first_time) {
986                 header->object_prefix = object_prefix;
987                 header->obj_order = ondisk->options.order;
988                 header->crypt_type = ondisk->options.crypt_type;
989                 header->comp_type = ondisk->options.comp_type;
990                 /* The rest aren't used for format 1 images */
991                 header->stripe_unit = 0;
992                 header->stripe_count = 0;
993                 header->features = 0;
994         } else {
995                 ceph_put_snap_context(header->snapc);
996                 kfree(header->snap_names);
997                 kfree(header->snap_sizes);
998         }
999
1000         /* The remaining fields always get updated (when we refresh) */
1001
1002         header->image_size = le64_to_cpu(ondisk->image_size);
1003         header->snapc = snapc;
1004         header->snap_names = snap_names;
1005         header->snap_sizes = snap_sizes;
1006
1007         return 0;
1008 out_2big:
1009         ret = -EIO;
1010 out_err:
1011         kfree(snap_sizes);
1012         kfree(snap_names);
1013         ceph_put_snap_context(snapc);
1014         kfree(object_prefix);
1015
1016         return ret;
1017 }
1018
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021         const char *snap_name;
1022
1023         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024
1025         /* Skip over names until we find the one we are looking for */
1026
1027         snap_name = rbd_dev->header.snap_names;
1028         while (which--)
1029                 snap_name += strlen(snap_name) + 1;
1030
1031         return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033
1034 /*
1035  * Snapshot id comparison function for use with qsort()/bsearch().
1036  * Note that result is for snapshots in *descending* order.
1037  */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040         u64 snap_id1 = *(u64 *)s1;
1041         u64 snap_id2 = *(u64 *)s2;
1042
1043         if (snap_id1 < snap_id2)
1044                 return 1;
1045         return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047
1048 /*
1049  * Search a snapshot context to see if the given snapshot id is
1050  * present.
1051  *
1052  * Returns the position of the snapshot id in the array if it's found,
1053  * or BAD_SNAP_INDEX otherwise.
1054  *
1055  * Note: The snapshot array is in kept sorted (by the osd) in
1056  * reverse order, highest snapshot id first.
1057  */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061         u64 *found;
1062
1063         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064                                 sizeof (snap_id), snapid_compare_reverse);
1065
1066         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070                                         u64 snap_id)
1071 {
1072         u32 which;
1073         const char *snap_name;
1074
1075         which = rbd_dev_snap_index(rbd_dev, snap_id);
1076         if (which == BAD_SNAP_INDEX)
1077                 return ERR_PTR(-ENOENT);
1078
1079         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085         if (snap_id == CEPH_NOSNAP)
1086                 return RBD_SNAP_HEAD_NAME;
1087
1088         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089         if (rbd_dev->image_format == 1)
1090                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091
1092         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096                                 u64 *snap_size)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_size = rbd_dev->header.image_size;
1101         } else if (rbd_dev->image_format == 1) {
1102                 u32 which;
1103
1104                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1105                 if (which == BAD_SNAP_INDEX)
1106                         return -ENOENT;
1107
1108                 *snap_size = rbd_dev->header.snap_sizes[which];
1109         } else {
1110                 u64 size = 0;
1111                 int ret;
1112
1113                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114                 if (ret)
1115                         return ret;
1116
1117                 *snap_size = size;
1118         }
1119         return 0;
1120 }
1121
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123                         u64 *snap_features)
1124 {
1125         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126         if (snap_id == CEPH_NOSNAP) {
1127                 *snap_features = rbd_dev->header.features;
1128         } else if (rbd_dev->image_format == 1) {
1129                 *snap_features = 0;     /* No features for format 1 */
1130         } else {
1131                 u64 features = 0;
1132                 int ret;
1133
1134                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135                 if (ret)
1136                         return ret;
1137
1138                 *snap_features = features;
1139         }
1140         return 0;
1141 }
1142
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145         u64 snap_id = rbd_dev->spec->snap_id;
1146         u64 size = 0;
1147         u64 features = 0;
1148         int ret;
1149
1150         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151         if (ret)
1152                 return ret;
1153         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154         if (ret)
1155                 return ret;
1156
1157         rbd_dev->mapping.size = size;
1158         rbd_dev->mapping.features = features;
1159
1160         return 0;
1161 }
1162
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165         rbd_dev->mapping.size = 0;
1166         rbd_dev->mapping.features = 0;
1167 }
1168
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171         /* The explicit cast here is needed to drop the const qualifier */
1172
1173         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178         char *name;
1179         u64 segment;
1180         int ret;
1181         char *name_format;
1182
1183         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184         if (!name)
1185                 return NULL;
1186         segment = offset >> rbd_dev->header.obj_order;
1187         name_format = "%s.%012llx";
1188         if (rbd_dev->image_format == 2)
1189                 name_format = "%s.%016llx";
1190         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191                         rbd_dev->header.object_prefix, segment);
1192         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193                 pr_err("error formatting segment name for #%llu (%d)\n",
1194                         segment, ret);
1195                 rbd_segment_name_free(name);
1196                 name = NULL;
1197         }
1198
1199         return name;
1200 }
1201
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206         return offset & (segment_size - 1);
1207 }
1208
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210                                 u64 offset, u64 length)
1211 {
1212         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213
1214         offset &= segment_size - 1;
1215
1216         rbd_assert(length <= U64_MAX - offset);
1217         if (offset + length > segment_size)
1218                 length = segment_size - offset;
1219
1220         return length;
1221 }
1222
1223 /*
1224  * returns the size of an object in the image
1225  */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228         return 1 << header->obj_order;
1229 }
1230
1231 /*
1232  * bio helpers
1233  */
1234
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237         struct bio *tmp;
1238
1239         while (chain) {
1240                 tmp = chain;
1241                 chain = chain->bi_next;
1242                 bio_put(tmp);
1243         }
1244 }
1245
1246 /*
1247  * zeros a bio chain, starting at specific offset
1248  */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251         struct bio_vec bv;
1252         struct bvec_iter iter;
1253         unsigned long flags;
1254         void *buf;
1255         int pos = 0;
1256
1257         while (chain) {
1258                 bio_for_each_segment(bv, chain, iter) {
1259                         if (pos + bv.bv_len > start_ofs) {
1260                                 int remainder = max(start_ofs - pos, 0);
1261                                 buf = bvec_kmap_irq(&bv, &flags);
1262                                 memset(buf + remainder, 0,
1263                                        bv.bv_len - remainder);
1264                                 flush_dcache_page(bv.bv_page);
1265                                 bvec_kunmap_irq(buf, &flags);
1266                         }
1267                         pos += bv.bv_len;
1268                 }
1269
1270                 chain = chain->bi_next;
1271         }
1272 }
1273
1274 /*
1275  * similar to zero_bio_chain(), zeros data defined by a page array,
1276  * starting at the given byte offset from the start of the array and
1277  * continuing up to the given end offset.  The pages array is
1278  * assumed to be big enough to hold all bytes up to the end.
1279  */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282         struct page **page = &pages[offset >> PAGE_SHIFT];
1283
1284         rbd_assert(end > offset);
1285         rbd_assert(end - offset <= (u64)SIZE_MAX);
1286         while (offset < end) {
1287                 size_t page_offset;
1288                 size_t length;
1289                 unsigned long flags;
1290                 void *kaddr;
1291
1292                 page_offset = offset & ~PAGE_MASK;
1293                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294                 local_irq_save(flags);
1295                 kaddr = kmap_atomic(*page);
1296                 memset(kaddr + page_offset, 0, length);
1297                 flush_dcache_page(*page);
1298                 kunmap_atomic(kaddr);
1299                 local_irq_restore(flags);
1300
1301                 offset += length;
1302                 page++;
1303         }
1304 }
1305
1306 /*
1307  * Clone a portion of a bio, starting at the given byte offset
1308  * and continuing for the number of bytes indicated.
1309  */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311                                         unsigned int offset,
1312                                         unsigned int len,
1313                                         gfp_t gfpmask)
1314 {
1315         struct bio *bio;
1316
1317         bio = bio_clone(bio_src, gfpmask);
1318         if (!bio)
1319                 return NULL;    /* ENOMEM */
1320
1321         bio_advance(bio, offset);
1322         bio->bi_iter.bi_size = len;
1323
1324         return bio;
1325 }
1326
1327 /*
1328  * Clone a portion of a bio chain, starting at the given byte offset
1329  * into the first bio in the source chain and continuing for the
1330  * number of bytes indicated.  The result is another bio chain of
1331  * exactly the given length, or a null pointer on error.
1332  *
1333  * The bio_src and offset parameters are both in-out.  On entry they
1334  * refer to the first source bio and the offset into that bio where
1335  * the start of data to be cloned is located.
1336  *
1337  * On return, bio_src is updated to refer to the bio in the source
1338  * chain that contains first un-cloned byte, and *offset will
1339  * contain the offset of that byte within that bio.
1340  */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342                                         unsigned int *offset,
1343                                         unsigned int len,
1344                                         gfp_t gfpmask)
1345 {
1346         struct bio *bi = *bio_src;
1347         unsigned int off = *offset;
1348         struct bio *chain = NULL;
1349         struct bio **end;
1350
1351         /* Build up a chain of clone bios up to the limit */
1352
1353         if (!bi || off >= bi->bi_iter.bi_size || !len)
1354                 return NULL;            /* Nothing to clone */
1355
1356         end = &chain;
1357         while (len) {
1358                 unsigned int bi_size;
1359                 struct bio *bio;
1360
1361                 if (!bi) {
1362                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363                         goto out_err;   /* EINVAL; ran out of bio's */
1364                 }
1365                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367                 if (!bio)
1368                         goto out_err;   /* ENOMEM */
1369
1370                 *end = bio;
1371                 end = &bio->bi_next;
1372
1373                 off += bi_size;
1374                 if (off == bi->bi_iter.bi_size) {
1375                         bi = bi->bi_next;
1376                         off = 0;
1377                 }
1378                 len -= bi_size;
1379         }
1380         *bio_src = bi;
1381         *offset = off;
1382
1383         return chain;
1384 out_err:
1385         bio_chain_put(chain);
1386
1387         return NULL;
1388 }
1389
1390 /*
1391  * The default/initial value for all object request flags is 0.  For
1392  * each flag, once its value is set to 1 it is never reset to 0
1393  * again.
1394  */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398                 struct rbd_device *rbd_dev;
1399
1400                 rbd_dev = obj_request->img_request->rbd_dev;
1401                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402                         obj_request);
1403         }
1404 }
1405
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408         smp_mb();
1409         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415                 struct rbd_device *rbd_dev = NULL;
1416
1417                 if (obj_request_img_data_test(obj_request))
1418                         rbd_dev = obj_request->img_request->rbd_dev;
1419                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1420                         obj_request);
1421         }
1422 }
1423
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426         smp_mb();
1427         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429
1430 /*
1431  * This sets the KNOWN flag after (possibly) setting the EXISTS
1432  * flag.  The latter is set based on the "exists" value provided.
1433  *
1434  * Note that for our purposes once an object exists it never goes
1435  * away again.  It's possible that the response from two existence
1436  * checks are separated by the creation of the target object, and
1437  * the first ("doesn't exist") response arrives *after* the second
1438  * ("does exist").  In that case we ignore the second one.
1439  */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441                                 bool exists)
1442 {
1443         if (exists)
1444                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446         smp_mb();
1447 }
1448
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451         smp_mb();
1452         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457         smp_mb();
1458         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464
1465         return obj_request->img_offset <
1466             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472                 atomic_read(&obj_request->kref.refcount));
1473         kref_get(&obj_request->kref);
1474 }
1475
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479         rbd_assert(obj_request != NULL);
1480         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481                 atomic_read(&obj_request->kref.refcount));
1482         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487         dout("%s: img %p (was %d)\n", __func__, img_request,
1488              atomic_read(&img_request->kref.refcount));
1489         kref_get(&img_request->kref);
1490 }
1491
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497         rbd_assert(img_request != NULL);
1498         dout("%s: img %p (was %d)\n", __func__, img_request,
1499                 atomic_read(&img_request->kref.refcount));
1500         if (img_request_child_test(img_request))
1501                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1502         else
1503                 kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507                                         struct rbd_obj_request *obj_request)
1508 {
1509         rbd_assert(obj_request->img_request == NULL);
1510
1511         /* Image request now owns object's original reference */
1512         obj_request->img_request = img_request;
1513         obj_request->which = img_request->obj_request_count;
1514         rbd_assert(!obj_request_img_data_test(obj_request));
1515         obj_request_img_data_set(obj_request);
1516         rbd_assert(obj_request->which != BAD_WHICH);
1517         img_request->obj_request_count++;
1518         list_add_tail(&obj_request->links, &img_request->obj_requests);
1519         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520                 obj_request->which);
1521 }
1522
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524                                         struct rbd_obj_request *obj_request)
1525 {
1526         rbd_assert(obj_request->which != BAD_WHICH);
1527
1528         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529                 obj_request->which);
1530         list_del(&obj_request->links);
1531         rbd_assert(img_request->obj_request_count > 0);
1532         img_request->obj_request_count--;
1533         rbd_assert(obj_request->which == img_request->obj_request_count);
1534         obj_request->which = BAD_WHICH;
1535         rbd_assert(obj_request_img_data_test(obj_request));
1536         rbd_assert(obj_request->img_request == img_request);
1537         obj_request->img_request = NULL;
1538         obj_request->callback = NULL;
1539         rbd_obj_request_put(obj_request);
1540 }
1541
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544         switch (type) {
1545         case OBJ_REQUEST_NODATA:
1546         case OBJ_REQUEST_BIO:
1547         case OBJ_REQUEST_PAGES:
1548                 return true;
1549         default:
1550                 return false;
1551         }
1552 }
1553
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555                                 struct rbd_obj_request *obj_request)
1556 {
1557         dout("%s %p\n", __func__, obj_request);
1558         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563         dout("%s %p\n", __func__, obj_request);
1564         ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566
1567 /*
1568  * Wait for an object request to complete.  If interrupted, cancel the
1569  * underlying osd request.
1570  *
1571  * @timeout: in jiffies, 0 means "wait forever"
1572  */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574                                   unsigned long timeout)
1575 {
1576         long ret;
1577
1578         dout("%s %p\n", __func__, obj_request);
1579         ret = wait_for_completion_interruptible_timeout(
1580                                         &obj_request->completion,
1581                                         ceph_timeout_jiffies(timeout));
1582         if (ret <= 0) {
1583                 if (ret == 0)
1584                         ret = -ETIMEDOUT;
1585                 rbd_obj_request_end(obj_request);
1586         } else {
1587                 ret = 0;
1588         }
1589
1590         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591         return ret;
1592 }
1593
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596         return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1600                                         unsigned long timeout)
1601 {
1602         return __rbd_obj_request_wait(obj_request, timeout);
1603 }
1604
1605 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1606 {
1607
1608         dout("%s: img %p\n", __func__, img_request);
1609
1610         /*
1611          * If no error occurred, compute the aggregate transfer
1612          * count for the image request.  We could instead use
1613          * atomic64_cmpxchg() to update it as each object request
1614          * completes; not clear which way is better off hand.
1615          */
1616         if (!img_request->result) {
1617                 struct rbd_obj_request *obj_request;
1618                 u64 xferred = 0;
1619
1620                 for_each_obj_request(img_request, obj_request)
1621                         xferred += obj_request->xferred;
1622                 img_request->xferred = xferred;
1623         }
1624
1625         if (img_request->callback)
1626                 img_request->callback(img_request);
1627         else
1628                 rbd_img_request_put(img_request);
1629 }
1630
1631 /*
1632  * The default/initial value for all image request flags is 0.  Each
1633  * is conditionally set to 1 at image request initialization time
1634  * and currently never change thereafter.
1635  */
1636 static void img_request_write_set(struct rbd_img_request *img_request)
1637 {
1638         set_bit(IMG_REQ_WRITE, &img_request->flags);
1639         smp_mb();
1640 }
1641
1642 static bool img_request_write_test(struct rbd_img_request *img_request)
1643 {
1644         smp_mb();
1645         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1646 }
1647
1648 /*
1649  * Set the discard flag when the img_request is an discard request
1650  */
1651 static void img_request_discard_set(struct rbd_img_request *img_request)
1652 {
1653         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1654         smp_mb();
1655 }
1656
1657 static bool img_request_discard_test(struct rbd_img_request *img_request)
1658 {
1659         smp_mb();
1660         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1661 }
1662
1663 static void img_request_child_set(struct rbd_img_request *img_request)
1664 {
1665         set_bit(IMG_REQ_CHILD, &img_request->flags);
1666         smp_mb();
1667 }
1668
1669 static void img_request_child_clear(struct rbd_img_request *img_request)
1670 {
1671         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1672         smp_mb();
1673 }
1674
1675 static bool img_request_child_test(struct rbd_img_request *img_request)
1676 {
1677         smp_mb();
1678         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1679 }
1680
1681 static void img_request_layered_set(struct rbd_img_request *img_request)
1682 {
1683         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1684         smp_mb();
1685 }
1686
1687 static void img_request_layered_clear(struct rbd_img_request *img_request)
1688 {
1689         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1690         smp_mb();
1691 }
1692
1693 static bool img_request_layered_test(struct rbd_img_request *img_request)
1694 {
1695         smp_mb();
1696         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1697 }
1698
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request *img_request)
1701 {
1702         if (img_request_write_test(img_request))
1703                 return OBJ_OP_WRITE;
1704         else if (img_request_discard_test(img_request))
1705                 return OBJ_OP_DISCARD;
1706         else
1707                 return OBJ_OP_READ;
1708 }
1709
1710 static void
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1712 {
1713         u64 xferred = obj_request->xferred;
1714         u64 length = obj_request->length;
1715
1716         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1717                 obj_request, obj_request->img_request, obj_request->result,
1718                 xferred, length);
1719         /*
1720          * ENOENT means a hole in the image.  We zero-fill the entire
1721          * length of the request.  A short read also implies zero-fill
1722          * to the end of the request.  An error requires the whole
1723          * length of the request to be reported finished with an error
1724          * to the block layer.  In each case we update the xferred
1725          * count to indicate the whole request was satisfied.
1726          */
1727         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1728         if (obj_request->result == -ENOENT) {
1729                 if (obj_request->type == OBJ_REQUEST_BIO)
1730                         zero_bio_chain(obj_request->bio_list, 0);
1731                 else
1732                         zero_pages(obj_request->pages, 0, length);
1733                 obj_request->result = 0;
1734         } else if (xferred < length && !obj_request->result) {
1735                 if (obj_request->type == OBJ_REQUEST_BIO)
1736                         zero_bio_chain(obj_request->bio_list, xferred);
1737                 else
1738                         zero_pages(obj_request->pages, xferred, length);
1739         }
1740         obj_request->xferred = length;
1741         obj_request_done_set(obj_request);
1742 }
1743
1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1745 {
1746         dout("%s: obj %p cb %p\n", __func__, obj_request,
1747                 obj_request->callback);
1748         if (obj_request->callback)
1749                 obj_request->callback(obj_request);
1750         else
1751                 complete_all(&obj_request->completion);
1752 }
1753
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1755 {
1756         dout("%s: obj %p\n", __func__, obj_request);
1757         obj_request_done_set(obj_request);
1758 }
1759
1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1761 {
1762         struct rbd_img_request *img_request = NULL;
1763         struct rbd_device *rbd_dev = NULL;
1764         bool layered = false;
1765
1766         if (obj_request_img_data_test(obj_request)) {
1767                 img_request = obj_request->img_request;
1768                 layered = img_request && img_request_layered_test(img_request);
1769                 rbd_dev = img_request->rbd_dev;
1770         }
1771
1772         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1773                 obj_request, img_request, obj_request->result,
1774                 obj_request->xferred, obj_request->length);
1775         if (layered && obj_request->result == -ENOENT &&
1776                         obj_request->img_offset < rbd_dev->parent_overlap)
1777                 rbd_img_parent_read(obj_request);
1778         else if (img_request)
1779                 rbd_img_obj_request_read_callback(obj_request);
1780         else
1781                 obj_request_done_set(obj_request);
1782 }
1783
1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1785 {
1786         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787                 obj_request->result, obj_request->length);
1788         /*
1789          * There is no such thing as a successful short write.  Set
1790          * it to our originally-requested length.
1791          */
1792         obj_request->xferred = obj_request->length;
1793         obj_request_done_set(obj_request);
1794 }
1795
1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1797 {
1798         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1799                 obj_request->result, obj_request->length);
1800         /*
1801          * There is no such thing as a successful short discard.  Set
1802          * it to our originally-requested length.
1803          */
1804         obj_request->xferred = obj_request->length;
1805         /* discarding a non-existent object is not a problem */
1806         if (obj_request->result == -ENOENT)
1807                 obj_request->result = 0;
1808         obj_request_done_set(obj_request);
1809 }
1810
1811 /*
1812  * For a simple stat call there's nothing to do.  We'll do more if
1813  * this is part of a write sequence for a layered image.
1814  */
1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1816 {
1817         dout("%s: obj %p\n", __func__, obj_request);
1818         obj_request_done_set(obj_request);
1819 }
1820
1821 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1822 {
1823         dout("%s: obj %p\n", __func__, obj_request);
1824
1825         if (obj_request_img_data_test(obj_request))
1826                 rbd_osd_copyup_callback(obj_request);
1827         else
1828                 obj_request_done_set(obj_request);
1829 }
1830
1831 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1832                                 struct ceph_msg *msg)
1833 {
1834         struct rbd_obj_request *obj_request = osd_req->r_priv;
1835         u16 opcode;
1836
1837         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1838         rbd_assert(osd_req == obj_request->osd_req);
1839         if (obj_request_img_data_test(obj_request)) {
1840                 rbd_assert(obj_request->img_request);
1841                 rbd_assert(obj_request->which != BAD_WHICH);
1842         } else {
1843                 rbd_assert(obj_request->which == BAD_WHICH);
1844         }
1845
1846         if (osd_req->r_result < 0)
1847                 obj_request->result = osd_req->r_result;
1848
1849         /*
1850          * We support a 64-bit length, but ultimately it has to be
1851          * passed to the block layer, which just supports a 32-bit
1852          * length field.
1853          */
1854         obj_request->xferred = osd_req->r_ops[0].outdata_len;
1855         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1856
1857         opcode = osd_req->r_ops[0].op;
1858         switch (opcode) {
1859         case CEPH_OSD_OP_READ:
1860                 rbd_osd_read_callback(obj_request);
1861                 break;
1862         case CEPH_OSD_OP_SETALLOCHINT:
1863                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1864                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1865                 /* fall through */
1866         case CEPH_OSD_OP_WRITE:
1867         case CEPH_OSD_OP_WRITEFULL:
1868                 rbd_osd_write_callback(obj_request);
1869                 break;
1870         case CEPH_OSD_OP_STAT:
1871                 rbd_osd_stat_callback(obj_request);
1872                 break;
1873         case CEPH_OSD_OP_DELETE:
1874         case CEPH_OSD_OP_TRUNCATE:
1875         case CEPH_OSD_OP_ZERO:
1876                 rbd_osd_discard_callback(obj_request);
1877                 break;
1878         case CEPH_OSD_OP_CALL:
1879                 rbd_osd_call_callback(obj_request);
1880                 break;
1881         case CEPH_OSD_OP_NOTIFY_ACK:
1882         case CEPH_OSD_OP_WATCH:
1883                 rbd_osd_trivial_callback(obj_request);
1884                 break;
1885         default:
1886                 rbd_warn(NULL, "%s: unsupported op %hu",
1887                         obj_request->object_name, (unsigned short) opcode);
1888                 break;
1889         }
1890
1891         if (obj_request_done_test(obj_request))
1892                 rbd_obj_request_complete(obj_request);
1893 }
1894
1895 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1896 {
1897         struct rbd_img_request *img_request = obj_request->img_request;
1898         struct ceph_osd_request *osd_req = obj_request->osd_req;
1899         u64 snap_id;
1900
1901         rbd_assert(osd_req != NULL);
1902
1903         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1904         ceph_osdc_build_request(osd_req, obj_request->offset,
1905                         NULL, snap_id, NULL);
1906 }
1907
1908 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1909 {
1910         struct rbd_img_request *img_request = obj_request->img_request;
1911         struct ceph_osd_request *osd_req = obj_request->osd_req;
1912         struct ceph_snap_context *snapc;
1913         struct timespec mtime = CURRENT_TIME;
1914
1915         rbd_assert(osd_req != NULL);
1916
1917         snapc = img_request ? img_request->snapc : NULL;
1918         ceph_osdc_build_request(osd_req, obj_request->offset,
1919                         snapc, CEPH_NOSNAP, &mtime);
1920 }
1921
1922 /*
1923  * Create an osd request.  A read request has one osd op (read).
1924  * A write request has either one (watch) or two (hint+write) osd ops.
1925  * (All rbd data writes are prefixed with an allocation hint op, but
1926  * technically osd watch is a write request, hence this distinction.)
1927  */
1928 static struct ceph_osd_request *rbd_osd_req_create(
1929                                         struct rbd_device *rbd_dev,
1930                                         enum obj_operation_type op_type,
1931                                         unsigned int num_ops,
1932                                         struct rbd_obj_request *obj_request)
1933 {
1934         struct ceph_snap_context *snapc = NULL;
1935         struct ceph_osd_client *osdc;
1936         struct ceph_osd_request *osd_req;
1937
1938         if (obj_request_img_data_test(obj_request) &&
1939                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1940                 struct rbd_img_request *img_request = obj_request->img_request;
1941                 if (op_type == OBJ_OP_WRITE) {
1942                         rbd_assert(img_request_write_test(img_request));
1943                 } else {
1944                         rbd_assert(img_request_discard_test(img_request));
1945                 }
1946                 snapc = img_request->snapc;
1947         }
1948
1949         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1950
1951         /* Allocate and initialize the request, for the num_ops ops */
1952
1953         osdc = &rbd_dev->rbd_client->client->osdc;
1954         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1955                                           GFP_NOIO);
1956         if (!osd_req)
1957                 return NULL;    /* ENOMEM */
1958
1959         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1960                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1961         else
1962                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1963
1964         osd_req->r_callback = rbd_osd_req_callback;
1965         osd_req->r_priv = obj_request;
1966
1967         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1968         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1969
1970         return osd_req;
1971 }
1972
1973 /*
1974  * Create a copyup osd request based on the information in the object
1975  * request supplied.  A copyup request has two or three osd ops, a
1976  * copyup method call, potentially a hint op, and a write or truncate
1977  * or zero op.
1978  */
1979 static struct ceph_osd_request *
1980 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1981 {
1982         struct rbd_img_request *img_request;
1983         struct ceph_snap_context *snapc;
1984         struct rbd_device *rbd_dev;
1985         struct ceph_osd_client *osdc;
1986         struct ceph_osd_request *osd_req;
1987         int num_osd_ops = 3;
1988
1989         rbd_assert(obj_request_img_data_test(obj_request));
1990         img_request = obj_request->img_request;
1991         rbd_assert(img_request);
1992         rbd_assert(img_request_write_test(img_request) ||
1993                         img_request_discard_test(img_request));
1994
1995         if (img_request_discard_test(img_request))
1996                 num_osd_ops = 2;
1997
1998         /* Allocate and initialize the request, for all the ops */
1999
2000         snapc = img_request->snapc;
2001         rbd_dev = img_request->rbd_dev;
2002         osdc = &rbd_dev->rbd_client->client->osdc;
2003         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2004                                                 false, GFP_NOIO);
2005         if (!osd_req)
2006                 return NULL;    /* ENOMEM */
2007
2008         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2009         osd_req->r_callback = rbd_osd_req_callback;
2010         osd_req->r_priv = obj_request;
2011
2012         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2013         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2014
2015         return osd_req;
2016 }
2017
2018
2019 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2020 {
2021         ceph_osdc_put_request(osd_req);
2022 }
2023
2024 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2025
2026 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2027                                                 u64 offset, u64 length,
2028                                                 enum obj_request_type type)
2029 {
2030         struct rbd_obj_request *obj_request;
2031         size_t size;
2032         char *name;
2033
2034         rbd_assert(obj_request_type_valid(type));
2035
2036         size = strlen(object_name) + 1;
2037         name = kmalloc(size, GFP_NOIO);
2038         if (!name)
2039                 return NULL;
2040
2041         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2042         if (!obj_request) {
2043                 kfree(name);
2044                 return NULL;
2045         }
2046
2047         obj_request->object_name = memcpy(name, object_name, size);
2048         obj_request->offset = offset;
2049         obj_request->length = length;
2050         obj_request->flags = 0;
2051         obj_request->which = BAD_WHICH;
2052         obj_request->type = type;
2053         INIT_LIST_HEAD(&obj_request->links);
2054         init_completion(&obj_request->completion);
2055         kref_init(&obj_request->kref);
2056
2057         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2058                 offset, length, (int)type, obj_request);
2059
2060         return obj_request;
2061 }
2062
2063 static void rbd_obj_request_destroy(struct kref *kref)
2064 {
2065         struct rbd_obj_request *obj_request;
2066
2067         obj_request = container_of(kref, struct rbd_obj_request, kref);
2068
2069         dout("%s: obj %p\n", __func__, obj_request);
2070
2071         rbd_assert(obj_request->img_request == NULL);
2072         rbd_assert(obj_request->which == BAD_WHICH);
2073
2074         if (obj_request->osd_req)
2075                 rbd_osd_req_destroy(obj_request->osd_req);
2076
2077         rbd_assert(obj_request_type_valid(obj_request->type));
2078         switch (obj_request->type) {
2079         case OBJ_REQUEST_NODATA:
2080                 break;          /* Nothing to do */
2081         case OBJ_REQUEST_BIO:
2082                 if (obj_request->bio_list)
2083                         bio_chain_put(obj_request->bio_list);
2084                 break;
2085         case OBJ_REQUEST_PAGES:
2086                 if (obj_request->pages)
2087                         ceph_release_page_vector(obj_request->pages,
2088                                                 obj_request->page_count);
2089                 break;
2090         }
2091
2092         kfree(obj_request->object_name);
2093         obj_request->object_name = NULL;
2094         kmem_cache_free(rbd_obj_request_cache, obj_request);
2095 }
2096
2097 /* It's OK to call this for a device with no parent */
2098
2099 static void rbd_spec_put(struct rbd_spec *spec);
2100 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2101 {
2102         rbd_dev_remove_parent(rbd_dev);
2103         rbd_spec_put(rbd_dev->parent_spec);
2104         rbd_dev->parent_spec = NULL;
2105         rbd_dev->parent_overlap = 0;
2106 }
2107
2108 /*
2109  * Parent image reference counting is used to determine when an
2110  * image's parent fields can be safely torn down--after there are no
2111  * more in-flight requests to the parent image.  When the last
2112  * reference is dropped, cleaning them up is safe.
2113  */
2114 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2115 {
2116         int counter;
2117
2118         if (!rbd_dev->parent_spec)
2119                 return;
2120
2121         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2122         if (counter > 0)
2123                 return;
2124
2125         /* Last reference; clean up parent data structures */
2126
2127         if (!counter)
2128                 rbd_dev_unparent(rbd_dev);
2129         else
2130                 rbd_warn(rbd_dev, "parent reference underflow");
2131 }
2132
2133 /*
2134  * If an image has a non-zero parent overlap, get a reference to its
2135  * parent.
2136  *
2137  * Returns true if the rbd device has a parent with a non-zero
2138  * overlap and a reference for it was successfully taken, or
2139  * false otherwise.
2140  */
2141 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2142 {
2143         int counter = 0;
2144
2145         if (!rbd_dev->parent_spec)
2146                 return false;
2147
2148         down_read(&rbd_dev->header_rwsem);
2149         if (rbd_dev->parent_overlap)
2150                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2151         up_read(&rbd_dev->header_rwsem);
2152
2153         if (counter < 0)
2154                 rbd_warn(rbd_dev, "parent reference overflow");
2155
2156         return counter > 0;
2157 }
2158
2159 /*
2160  * Caller is responsible for filling in the list of object requests
2161  * that comprises the image request, and the Linux request pointer
2162  * (if there is one).
2163  */
2164 static struct rbd_img_request *rbd_img_request_create(
2165                                         struct rbd_device *rbd_dev,
2166                                         u64 offset, u64 length,
2167                                         enum obj_operation_type op_type,
2168                                         struct ceph_snap_context *snapc)
2169 {
2170         struct rbd_img_request *img_request;
2171
2172         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2173         if (!img_request)
2174                 return NULL;
2175
2176         img_request->rq = NULL;
2177         img_request->rbd_dev = rbd_dev;
2178         img_request->offset = offset;
2179         img_request->length = length;
2180         img_request->flags = 0;
2181         if (op_type == OBJ_OP_DISCARD) {
2182                 img_request_discard_set(img_request);
2183                 img_request->snapc = snapc;
2184         } else if (op_type == OBJ_OP_WRITE) {
2185                 img_request_write_set(img_request);
2186                 img_request->snapc = snapc;
2187         } else {
2188                 img_request->snap_id = rbd_dev->spec->snap_id;
2189         }
2190         if (rbd_dev_parent_get(rbd_dev))
2191                 img_request_layered_set(img_request);
2192         spin_lock_init(&img_request->completion_lock);
2193         img_request->next_completion = 0;
2194         img_request->callback = NULL;
2195         img_request->result = 0;
2196         img_request->obj_request_count = 0;
2197         INIT_LIST_HEAD(&img_request->obj_requests);
2198         kref_init(&img_request->kref);
2199
2200         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2201                 obj_op_name(op_type), offset, length, img_request);
2202
2203         return img_request;
2204 }
2205
2206 static void rbd_img_request_destroy(struct kref *kref)
2207 {
2208         struct rbd_img_request *img_request;
2209         struct rbd_obj_request *obj_request;
2210         struct rbd_obj_request *next_obj_request;
2211
2212         img_request = container_of(kref, struct rbd_img_request, kref);
2213
2214         dout("%s: img %p\n", __func__, img_request);
2215
2216         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2217                 rbd_img_obj_request_del(img_request, obj_request);
2218         rbd_assert(img_request->obj_request_count == 0);
2219
2220         if (img_request_layered_test(img_request)) {
2221                 img_request_layered_clear(img_request);
2222                 rbd_dev_parent_put(img_request->rbd_dev);
2223         }
2224
2225         if (img_request_write_test(img_request) ||
2226                 img_request_discard_test(img_request))
2227                 ceph_put_snap_context(img_request->snapc);
2228
2229         kmem_cache_free(rbd_img_request_cache, img_request);
2230 }
2231
2232 static struct rbd_img_request *rbd_parent_request_create(
2233                                         struct rbd_obj_request *obj_request,
2234                                         u64 img_offset, u64 length)
2235 {
2236         struct rbd_img_request *parent_request;
2237         struct rbd_device *rbd_dev;
2238
2239         rbd_assert(obj_request->img_request);
2240         rbd_dev = obj_request->img_request->rbd_dev;
2241
2242         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2243                                                 length, OBJ_OP_READ, NULL);
2244         if (!parent_request)
2245                 return NULL;
2246
2247         img_request_child_set(parent_request);
2248         rbd_obj_request_get(obj_request);
2249         parent_request->obj_request = obj_request;
2250
2251         return parent_request;
2252 }
2253
2254 static void rbd_parent_request_destroy(struct kref *kref)
2255 {
2256         struct rbd_img_request *parent_request;
2257         struct rbd_obj_request *orig_request;
2258
2259         parent_request = container_of(kref, struct rbd_img_request, kref);
2260         orig_request = parent_request->obj_request;
2261
2262         parent_request->obj_request = NULL;
2263         rbd_obj_request_put(orig_request);
2264         img_request_child_clear(parent_request);
2265
2266         rbd_img_request_destroy(kref);
2267 }
2268
2269 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2270 {
2271         struct rbd_img_request *img_request;
2272         unsigned int xferred;
2273         int result;
2274         bool more;
2275
2276         rbd_assert(obj_request_img_data_test(obj_request));
2277         img_request = obj_request->img_request;
2278
2279         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2280         xferred = (unsigned int)obj_request->xferred;
2281         result = obj_request->result;
2282         if (result) {
2283                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2284                 enum obj_operation_type op_type;
2285
2286                 if (img_request_discard_test(img_request))
2287                         op_type = OBJ_OP_DISCARD;
2288                 else if (img_request_write_test(img_request))
2289                         op_type = OBJ_OP_WRITE;
2290                 else
2291                         op_type = OBJ_OP_READ;
2292
2293                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2294                         obj_op_name(op_type), obj_request->length,
2295                         obj_request->img_offset, obj_request->offset);
2296                 rbd_warn(rbd_dev, "  result %d xferred %x",
2297                         result, xferred);
2298                 if (!img_request->result)
2299                         img_request->result = result;
2300                 /*
2301                  * Need to end I/O on the entire obj_request worth of
2302                  * bytes in case of error.
2303                  */
2304                 xferred = obj_request->length;
2305         }
2306
2307         /* Image object requests don't own their page array */
2308
2309         if (obj_request->type == OBJ_REQUEST_PAGES) {
2310                 obj_request->pages = NULL;
2311                 obj_request->page_count = 0;
2312         }
2313
2314         if (img_request_child_test(img_request)) {
2315                 rbd_assert(img_request->obj_request != NULL);
2316                 more = obj_request->which < img_request->obj_request_count - 1;
2317         } else {
2318                 rbd_assert(img_request->rq != NULL);
2319
2320                 more = blk_update_request(img_request->rq, result, xferred);
2321                 if (!more)
2322                         __blk_mq_end_request(img_request->rq, result);
2323         }
2324
2325         return more;
2326 }
2327
2328 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2329 {
2330         struct rbd_img_request *img_request;
2331         u32 which = obj_request->which;
2332         bool more = true;
2333
2334         rbd_assert(obj_request_img_data_test(obj_request));
2335         img_request = obj_request->img_request;
2336
2337         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2338         rbd_assert(img_request != NULL);
2339         rbd_assert(img_request->obj_request_count > 0);
2340         rbd_assert(which != BAD_WHICH);
2341         rbd_assert(which < img_request->obj_request_count);
2342
2343         spin_lock_irq(&img_request->completion_lock);
2344         if (which != img_request->next_completion)
2345                 goto out;
2346
2347         for_each_obj_request_from(img_request, obj_request) {
2348                 rbd_assert(more);
2349                 rbd_assert(which < img_request->obj_request_count);
2350
2351                 if (!obj_request_done_test(obj_request))
2352                         break;
2353                 more = rbd_img_obj_end_request(obj_request);
2354                 which++;
2355         }
2356
2357         rbd_assert(more ^ (which == img_request->obj_request_count));
2358         img_request->next_completion = which;
2359 out:
2360         spin_unlock_irq(&img_request->completion_lock);
2361         rbd_img_request_put(img_request);
2362
2363         if (!more)
2364                 rbd_img_request_complete(img_request);
2365 }
2366
2367 /*
2368  * Add individual osd ops to the given ceph_osd_request and prepare
2369  * them for submission. num_ops is the current number of
2370  * osd operations already to the object request.
2371  */
2372 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2373                                 struct ceph_osd_request *osd_request,
2374                                 enum obj_operation_type op_type,
2375                                 unsigned int num_ops)
2376 {
2377         struct rbd_img_request *img_request = obj_request->img_request;
2378         struct rbd_device *rbd_dev = img_request->rbd_dev;
2379         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2380         u64 offset = obj_request->offset;
2381         u64 length = obj_request->length;
2382         u64 img_end;
2383         u16 opcode;
2384
2385         if (op_type == OBJ_OP_DISCARD) {
2386                 if (!offset && length == object_size &&
2387                     (!img_request_layered_test(img_request) ||
2388                      !obj_request_overlaps_parent(obj_request))) {
2389                         opcode = CEPH_OSD_OP_DELETE;
2390                 } else if ((offset + length == object_size)) {
2391                         opcode = CEPH_OSD_OP_TRUNCATE;
2392                 } else {
2393                         down_read(&rbd_dev->header_rwsem);
2394                         img_end = rbd_dev->header.image_size;
2395                         up_read(&rbd_dev->header_rwsem);
2396
2397                         if (obj_request->img_offset + length == img_end)
2398                                 opcode = CEPH_OSD_OP_TRUNCATE;
2399                         else
2400                                 opcode = CEPH_OSD_OP_ZERO;
2401                 }
2402         } else if (op_type == OBJ_OP_WRITE) {
2403                 if (!offset && length == object_size)
2404                         opcode = CEPH_OSD_OP_WRITEFULL;
2405                 else
2406                         opcode = CEPH_OSD_OP_WRITE;
2407                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2408                                         object_size, object_size);
2409                 num_ops++;
2410         } else {
2411                 opcode = CEPH_OSD_OP_READ;
2412         }
2413
2414         if (opcode == CEPH_OSD_OP_DELETE)
2415                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2416         else
2417                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2418                                        offset, length, 0, 0);
2419
2420         if (obj_request->type == OBJ_REQUEST_BIO)
2421                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2422                                         obj_request->bio_list, length);
2423         else if (obj_request->type == OBJ_REQUEST_PAGES)
2424                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2425                                         obj_request->pages, length,
2426                                         offset & ~PAGE_MASK, false, false);
2427
2428         /* Discards are also writes */
2429         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2430                 rbd_osd_req_format_write(obj_request);
2431         else
2432                 rbd_osd_req_format_read(obj_request);
2433 }
2434
2435 /*
2436  * Split up an image request into one or more object requests, each
2437  * to a different object.  The "type" parameter indicates whether
2438  * "data_desc" is the pointer to the head of a list of bio
2439  * structures, or the base of a page array.  In either case this
2440  * function assumes data_desc describes memory sufficient to hold
2441  * all data described by the image request.
2442  */
2443 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2444                                         enum obj_request_type type,
2445                                         void *data_desc)
2446 {
2447         struct rbd_device *rbd_dev = img_request->rbd_dev;
2448         struct rbd_obj_request *obj_request = NULL;
2449         struct rbd_obj_request *next_obj_request;
2450         struct bio *bio_list = NULL;
2451         unsigned int bio_offset = 0;
2452         struct page **pages = NULL;
2453         enum obj_operation_type op_type;
2454         u64 img_offset;
2455         u64 resid;
2456
2457         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2458                 (int)type, data_desc);
2459
2460         img_offset = img_request->offset;
2461         resid = img_request->length;
2462         rbd_assert(resid > 0);
2463         op_type = rbd_img_request_op_type(img_request);
2464
2465         if (type == OBJ_REQUEST_BIO) {
2466                 bio_list = data_desc;
2467                 rbd_assert(img_offset ==
2468                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2469         } else if (type == OBJ_REQUEST_PAGES) {
2470                 pages = data_desc;
2471         }
2472
2473         while (resid) {
2474                 struct ceph_osd_request *osd_req;
2475                 const char *object_name;
2476                 u64 offset;
2477                 u64 length;
2478
2479                 object_name = rbd_segment_name(rbd_dev, img_offset);
2480                 if (!object_name)
2481                         goto out_unwind;
2482                 offset = rbd_segment_offset(rbd_dev, img_offset);
2483                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2484                 obj_request = rbd_obj_request_create(object_name,
2485                                                 offset, length, type);
2486                 /* object request has its own copy of the object name */
2487                 rbd_segment_name_free(object_name);
2488                 if (!obj_request)
2489                         goto out_unwind;
2490
2491                 /*
2492                  * set obj_request->img_request before creating the
2493                  * osd_request so that it gets the right snapc
2494                  */
2495                 rbd_img_obj_request_add(img_request, obj_request);
2496
2497                 if (type == OBJ_REQUEST_BIO) {
2498                         unsigned int clone_size;
2499
2500                         rbd_assert(length <= (u64)UINT_MAX);
2501                         clone_size = (unsigned int)length;
2502                         obj_request->bio_list =
2503                                         bio_chain_clone_range(&bio_list,
2504                                                                 &bio_offset,
2505                                                                 clone_size,
2506                                                                 GFP_NOIO);
2507                         if (!obj_request->bio_list)
2508                                 goto out_unwind;
2509                 } else if (type == OBJ_REQUEST_PAGES) {
2510                         unsigned int page_count;
2511
2512                         obj_request->pages = pages;
2513                         page_count = (u32)calc_pages_for(offset, length);
2514                         obj_request->page_count = page_count;
2515                         if ((offset + length) & ~PAGE_MASK)
2516                                 page_count--;   /* more on last page */
2517                         pages += page_count;
2518                 }
2519
2520                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2521                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2522                                         obj_request);
2523                 if (!osd_req)
2524                         goto out_unwind;
2525
2526                 obj_request->osd_req = osd_req;
2527                 obj_request->callback = rbd_img_obj_callback;
2528                 obj_request->img_offset = img_offset;
2529
2530                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2531
2532                 rbd_img_request_get(img_request);
2533
2534                 img_offset += length;
2535                 resid -= length;
2536         }
2537
2538         return 0;
2539
2540 out_unwind:
2541         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2542                 rbd_img_obj_request_del(img_request, obj_request);
2543
2544         return -ENOMEM;
2545 }
2546
2547 static void
2548 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2549 {
2550         struct rbd_img_request *img_request;
2551         struct rbd_device *rbd_dev;
2552         struct page **pages;
2553         u32 page_count;
2554
2555         dout("%s: obj %p\n", __func__, obj_request);
2556
2557         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2558                 obj_request->type == OBJ_REQUEST_NODATA);
2559         rbd_assert(obj_request_img_data_test(obj_request));
2560         img_request = obj_request->img_request;
2561         rbd_assert(img_request);
2562
2563         rbd_dev = img_request->rbd_dev;
2564         rbd_assert(rbd_dev);
2565
2566         pages = obj_request->copyup_pages;
2567         rbd_assert(pages != NULL);
2568         obj_request->copyup_pages = NULL;
2569         page_count = obj_request->copyup_page_count;
2570         rbd_assert(page_count);
2571         obj_request->copyup_page_count = 0;
2572         ceph_release_page_vector(pages, page_count);
2573
2574         /*
2575          * We want the transfer count to reflect the size of the
2576          * original write request.  There is no such thing as a
2577          * successful short write, so if the request was successful
2578          * we can just set it to the originally-requested length.
2579          */
2580         if (!obj_request->result)
2581                 obj_request->xferred = obj_request->length;
2582
2583         obj_request_done_set(obj_request);
2584 }
2585
2586 static void
2587 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2588 {
2589         struct rbd_obj_request *orig_request;
2590         struct ceph_osd_request *osd_req;
2591         struct ceph_osd_client *osdc;
2592         struct rbd_device *rbd_dev;
2593         struct page **pages;
2594         enum obj_operation_type op_type;
2595         u32 page_count;
2596         int img_result;
2597         u64 parent_length;
2598
2599         rbd_assert(img_request_child_test(img_request));
2600
2601         /* First get what we need from the image request */
2602
2603         pages = img_request->copyup_pages;
2604         rbd_assert(pages != NULL);
2605         img_request->copyup_pages = NULL;
2606         page_count = img_request->copyup_page_count;
2607         rbd_assert(page_count);
2608         img_request->copyup_page_count = 0;
2609
2610         orig_request = img_request->obj_request;
2611         rbd_assert(orig_request != NULL);
2612         rbd_assert(obj_request_type_valid(orig_request->type));
2613         img_result = img_request->result;
2614         parent_length = img_request->length;
2615         rbd_assert(parent_length == img_request->xferred);
2616         rbd_img_request_put(img_request);
2617
2618         rbd_assert(orig_request->img_request);
2619         rbd_dev = orig_request->img_request->rbd_dev;
2620         rbd_assert(rbd_dev);
2621
2622         /*
2623          * If the overlap has become 0 (most likely because the
2624          * image has been flattened) we need to free the pages
2625          * and re-submit the original write request.
2626          */
2627         if (!rbd_dev->parent_overlap) {
2628                 struct ceph_osd_client *osdc;
2629
2630                 ceph_release_page_vector(pages, page_count);
2631                 osdc = &rbd_dev->rbd_client->client->osdc;
2632                 img_result = rbd_obj_request_submit(osdc, orig_request);
2633                 if (!img_result)
2634                         return;
2635         }
2636
2637         if (img_result)
2638                 goto out_err;
2639
2640         /*
2641          * The original osd request is of no use to use any more.
2642          * We need a new one that can hold the three ops in a copyup
2643          * request.  Allocate the new copyup osd request for the
2644          * original request, and release the old one.
2645          */
2646         img_result = -ENOMEM;
2647         osd_req = rbd_osd_req_create_copyup(orig_request);
2648         if (!osd_req)
2649                 goto out_err;
2650         rbd_osd_req_destroy(orig_request->osd_req);
2651         orig_request->osd_req = osd_req;
2652         orig_request->copyup_pages = pages;
2653         orig_request->copyup_page_count = page_count;
2654
2655         /* Initialize the copyup op */
2656
2657         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2658         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2659                                                 false, false);
2660
2661         /* Add the other op(s) */
2662
2663         op_type = rbd_img_request_op_type(orig_request->img_request);
2664         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2665
2666         /* All set, send it off. */
2667
2668         osdc = &rbd_dev->rbd_client->client->osdc;
2669         img_result = rbd_obj_request_submit(osdc, orig_request);
2670         if (!img_result)
2671                 return;
2672 out_err:
2673         /* Record the error code and complete the request */
2674
2675         orig_request->result = img_result;
2676         orig_request->xferred = 0;
2677         obj_request_done_set(orig_request);
2678         rbd_obj_request_complete(orig_request);
2679 }
2680
2681 /*
2682  * Read from the parent image the range of data that covers the
2683  * entire target of the given object request.  This is used for
2684  * satisfying a layered image write request when the target of an
2685  * object request from the image request does not exist.
2686  *
2687  * A page array big enough to hold the returned data is allocated
2688  * and supplied to rbd_img_request_fill() as the "data descriptor."
2689  * When the read completes, this page array will be transferred to
2690  * the original object request for the copyup operation.
2691  *
2692  * If an error occurs, record it as the result of the original
2693  * object request and mark it done so it gets completed.
2694  */
2695 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2696 {
2697         struct rbd_img_request *img_request = NULL;
2698         struct rbd_img_request *parent_request = NULL;
2699         struct rbd_device *rbd_dev;
2700         u64 img_offset;
2701         u64 length;
2702         struct page **pages = NULL;
2703         u32 page_count;
2704         int result;
2705
2706         rbd_assert(obj_request_img_data_test(obj_request));
2707         rbd_assert(obj_request_type_valid(obj_request->type));
2708
2709         img_request = obj_request->img_request;
2710         rbd_assert(img_request != NULL);
2711         rbd_dev = img_request->rbd_dev;
2712         rbd_assert(rbd_dev->parent != NULL);
2713
2714         /*
2715          * Determine the byte range covered by the object in the
2716          * child image to which the original request was to be sent.
2717          */
2718         img_offset = obj_request->img_offset - obj_request->offset;
2719         length = (u64)1 << rbd_dev->header.obj_order;
2720
2721         /*
2722          * There is no defined parent data beyond the parent
2723          * overlap, so limit what we read at that boundary if
2724          * necessary.
2725          */
2726         if (img_offset + length > rbd_dev->parent_overlap) {
2727                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2728                 length = rbd_dev->parent_overlap - img_offset;
2729         }
2730
2731         /*
2732          * Allocate a page array big enough to receive the data read
2733          * from the parent.
2734          */
2735         page_count = (u32)calc_pages_for(0, length);
2736         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2737         if (IS_ERR(pages)) {
2738                 result = PTR_ERR(pages);
2739                 pages = NULL;
2740                 goto out_err;
2741         }
2742
2743         result = -ENOMEM;
2744         parent_request = rbd_parent_request_create(obj_request,
2745                                                 img_offset, length);
2746         if (!parent_request)
2747                 goto out_err;
2748
2749         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2750         if (result)
2751                 goto out_err;
2752         parent_request->copyup_pages = pages;
2753         parent_request->copyup_page_count = page_count;
2754
2755         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2756         result = rbd_img_request_submit(parent_request);
2757         if (!result)
2758                 return 0;
2759
2760         parent_request->copyup_pages = NULL;
2761         parent_request->copyup_page_count = 0;
2762         parent_request->obj_request = NULL;
2763         rbd_obj_request_put(obj_request);
2764 out_err:
2765         if (pages)
2766                 ceph_release_page_vector(pages, page_count);
2767         if (parent_request)
2768                 rbd_img_request_put(parent_request);
2769         obj_request->result = result;
2770         obj_request->xferred = 0;
2771         obj_request_done_set(obj_request);
2772
2773         return result;
2774 }
2775
2776 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2777 {
2778         struct rbd_obj_request *orig_request;
2779         struct rbd_device *rbd_dev;
2780         int result;
2781
2782         rbd_assert(!obj_request_img_data_test(obj_request));
2783
2784         /*
2785          * All we need from the object request is the original
2786          * request and the result of the STAT op.  Grab those, then
2787          * we're done with the request.
2788          */
2789         orig_request = obj_request->obj_request;
2790         obj_request->obj_request = NULL;
2791         rbd_obj_request_put(orig_request);
2792         rbd_assert(orig_request);
2793         rbd_assert(orig_request->img_request);
2794
2795         result = obj_request->result;
2796         obj_request->result = 0;
2797
2798         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2799                 obj_request, orig_request, result,
2800                 obj_request->xferred, obj_request->length);
2801         rbd_obj_request_put(obj_request);
2802
2803         /*
2804          * If the overlap has become 0 (most likely because the
2805          * image has been flattened) we need to free the pages
2806          * and re-submit the original write request.
2807          */
2808         rbd_dev = orig_request->img_request->rbd_dev;
2809         if (!rbd_dev->parent_overlap) {
2810                 struct ceph_osd_client *osdc;
2811
2812                 osdc = &rbd_dev->rbd_client->client->osdc;
2813                 result = rbd_obj_request_submit(osdc, orig_request);
2814                 if (!result)
2815                         return;
2816         }
2817
2818         /*
2819          * Our only purpose here is to determine whether the object
2820          * exists, and we don't want to treat the non-existence as
2821          * an error.  If something else comes back, transfer the
2822          * error to the original request and complete it now.
2823          */
2824         if (!result) {
2825                 obj_request_existence_set(orig_request, true);
2826         } else if (result == -ENOENT) {
2827                 obj_request_existence_set(orig_request, false);
2828         } else if (result) {
2829                 orig_request->result = result;
2830                 goto out;
2831         }
2832
2833         /*
2834          * Resubmit the original request now that we have recorded
2835          * whether the target object exists.
2836          */
2837         orig_request->result = rbd_img_obj_request_submit(orig_request);
2838 out:
2839         if (orig_request->result)
2840                 rbd_obj_request_complete(orig_request);
2841 }
2842
2843 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2844 {
2845         struct rbd_obj_request *stat_request;
2846         struct rbd_device *rbd_dev;
2847         struct ceph_osd_client *osdc;
2848         struct page **pages = NULL;
2849         u32 page_count;
2850         size_t size;
2851         int ret;
2852
2853         /*
2854          * The response data for a STAT call consists of:
2855          *     le64 length;
2856          *     struct {
2857          *         le32 tv_sec;
2858          *         le32 tv_nsec;
2859          *     } mtime;
2860          */
2861         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2862         page_count = (u32)calc_pages_for(0, size);
2863         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2864         if (IS_ERR(pages))
2865                 return PTR_ERR(pages);
2866
2867         ret = -ENOMEM;
2868         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2869                                                         OBJ_REQUEST_PAGES);
2870         if (!stat_request)
2871                 goto out;
2872
2873         rbd_obj_request_get(obj_request);
2874         stat_request->obj_request = obj_request;
2875         stat_request->pages = pages;
2876         stat_request->page_count = page_count;
2877
2878         rbd_assert(obj_request->img_request);
2879         rbd_dev = obj_request->img_request->rbd_dev;
2880         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2881                                                    stat_request);
2882         if (!stat_request->osd_req)
2883                 goto out;
2884         stat_request->callback = rbd_img_obj_exists_callback;
2885
2886         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2887         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2888                                         false, false);
2889         rbd_osd_req_format_read(stat_request);
2890
2891         osdc = &rbd_dev->rbd_client->client->osdc;
2892         ret = rbd_obj_request_submit(osdc, stat_request);
2893 out:
2894         if (ret)
2895                 rbd_obj_request_put(obj_request);
2896
2897         return ret;
2898 }
2899
2900 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2901 {
2902         struct rbd_img_request *img_request;
2903         struct rbd_device *rbd_dev;
2904
2905         rbd_assert(obj_request_img_data_test(obj_request));
2906
2907         img_request = obj_request->img_request;
2908         rbd_assert(img_request);
2909         rbd_dev = img_request->rbd_dev;
2910
2911         /* Reads */
2912         if (!img_request_write_test(img_request) &&
2913             !img_request_discard_test(img_request))
2914                 return true;
2915
2916         /* Non-layered writes */
2917         if (!img_request_layered_test(img_request))
2918                 return true;
2919
2920         /*
2921          * Layered writes outside of the parent overlap range don't
2922          * share any data with the parent.
2923          */
2924         if (!obj_request_overlaps_parent(obj_request))
2925                 return true;
2926
2927         /*
2928          * Entire-object layered writes - we will overwrite whatever
2929          * parent data there is anyway.
2930          */
2931         if (!obj_request->offset &&
2932             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2933                 return true;
2934
2935         /*
2936          * If the object is known to already exist, its parent data has
2937          * already been copied.
2938          */
2939         if (obj_request_known_test(obj_request) &&
2940             obj_request_exists_test(obj_request))
2941                 return true;
2942
2943         return false;
2944 }
2945
2946 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2947 {
2948         if (img_obj_request_simple(obj_request)) {
2949                 struct rbd_device *rbd_dev;
2950                 struct ceph_osd_client *osdc;
2951
2952                 rbd_dev = obj_request->img_request->rbd_dev;
2953                 osdc = &rbd_dev->rbd_client->client->osdc;
2954
2955                 return rbd_obj_request_submit(osdc, obj_request);
2956         }
2957
2958         /*
2959          * It's a layered write.  The target object might exist but
2960          * we may not know that yet.  If we know it doesn't exist,
2961          * start by reading the data for the full target object from
2962          * the parent so we can use it for a copyup to the target.
2963          */
2964         if (obj_request_known_test(obj_request))
2965                 return rbd_img_obj_parent_read_full(obj_request);
2966
2967         /* We don't know whether the target exists.  Go find out. */
2968
2969         return rbd_img_obj_exists_submit(obj_request);
2970 }
2971
2972 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2973 {
2974         struct rbd_obj_request *obj_request;
2975         struct rbd_obj_request *next_obj_request;
2976         int ret = 0;
2977
2978         dout("%s: img %p\n", __func__, img_request);
2979
2980         rbd_img_request_get(img_request);
2981         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2982                 ret = rbd_img_obj_request_submit(obj_request);
2983                 if (ret)
2984                         goto out_put_ireq;
2985         }
2986
2987 out_put_ireq:
2988         rbd_img_request_put(img_request);
2989         return ret;
2990 }
2991
2992 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2993 {
2994         struct rbd_obj_request *obj_request;
2995         struct rbd_device *rbd_dev;
2996         u64 obj_end;
2997         u64 img_xferred;
2998         int img_result;
2999
3000         rbd_assert(img_request_child_test(img_request));
3001
3002         /* First get what we need from the image request and release it */
3003
3004         obj_request = img_request->obj_request;
3005         img_xferred = img_request->xferred;
3006         img_result = img_request->result;
3007         rbd_img_request_put(img_request);
3008
3009         /*
3010          * If the overlap has become 0 (most likely because the
3011          * image has been flattened) we need to re-submit the
3012          * original request.
3013          */
3014         rbd_assert(obj_request);
3015         rbd_assert(obj_request->img_request);
3016         rbd_dev = obj_request->img_request->rbd_dev;
3017         if (!rbd_dev->parent_overlap) {
3018                 struct ceph_osd_client *osdc;
3019
3020                 osdc = &rbd_dev->rbd_client->client->osdc;
3021                 img_result = rbd_obj_request_submit(osdc, obj_request);
3022                 if (!img_result)
3023                         return;
3024         }
3025
3026         obj_request->result = img_result;
3027         if (obj_request->result)
3028                 goto out;
3029
3030         /*
3031          * We need to zero anything beyond the parent overlap
3032          * boundary.  Since rbd_img_obj_request_read_callback()
3033          * will zero anything beyond the end of a short read, an
3034          * easy way to do this is to pretend the data from the
3035          * parent came up short--ending at the overlap boundary.
3036          */
3037         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3038         obj_end = obj_request->img_offset + obj_request->length;
3039         if (obj_end > rbd_dev->parent_overlap) {
3040                 u64 xferred = 0;
3041
3042                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3043                         xferred = rbd_dev->parent_overlap -
3044                                         obj_request->img_offset;
3045
3046                 obj_request->xferred = min(img_xferred, xferred);
3047         } else {
3048                 obj_request->xferred = img_xferred;
3049         }
3050 out:
3051         rbd_img_obj_request_read_callback(obj_request);
3052         rbd_obj_request_complete(obj_request);
3053 }
3054
3055 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3056 {
3057         struct rbd_img_request *img_request;
3058         int result;
3059
3060         rbd_assert(obj_request_img_data_test(obj_request));
3061         rbd_assert(obj_request->img_request != NULL);
3062         rbd_assert(obj_request->result == (s32) -ENOENT);
3063         rbd_assert(obj_request_type_valid(obj_request->type));
3064
3065         /* rbd_read_finish(obj_request, obj_request->length); */
3066         img_request = rbd_parent_request_create(obj_request,
3067                                                 obj_request->img_offset,
3068                                                 obj_request->length);
3069         result = -ENOMEM;
3070         if (!img_request)
3071                 goto out_err;
3072
3073         if (obj_request->type == OBJ_REQUEST_BIO)
3074                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3075                                                 obj_request->bio_list);
3076         else
3077                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3078                                                 obj_request->pages);
3079         if (result)
3080                 goto out_err;
3081
3082         img_request->callback = rbd_img_parent_read_callback;
3083         result = rbd_img_request_submit(img_request);
3084         if (result)
3085                 goto out_err;
3086
3087         return;
3088 out_err:
3089         if (img_request)
3090                 rbd_img_request_put(img_request);
3091         obj_request->result = result;
3092         obj_request->xferred = 0;
3093         obj_request_done_set(obj_request);
3094 }
3095
3096 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3097 {
3098         struct rbd_obj_request *obj_request;
3099         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3100         int ret;
3101
3102         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3103                                                         OBJ_REQUEST_NODATA);
3104         if (!obj_request)
3105                 return -ENOMEM;
3106
3107         ret = -ENOMEM;
3108         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3109                                                   obj_request);
3110         if (!obj_request->osd_req)
3111                 goto out;
3112
3113         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3114                                         notify_id, 0, 0);
3115         rbd_osd_req_format_read(obj_request);
3116
3117         ret = rbd_obj_request_submit(osdc, obj_request);
3118         if (ret)
3119                 goto out;
3120         ret = rbd_obj_request_wait(obj_request);
3121 out:
3122         rbd_obj_request_put(obj_request);
3123
3124         return ret;
3125 }
3126
3127 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3128 {
3129         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3130         int ret;
3131
3132         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3133                 rbd_dev->header_name, (unsigned long long)notify_id,
3134                 (unsigned int)opcode);
3135
3136         /*
3137          * Until adequate refresh error handling is in place, there is
3138          * not much we can do here, except warn.
3139          *
3140          * See http://tracker.ceph.com/issues/5040
3141          */
3142         ret = rbd_dev_refresh(rbd_dev);
3143         if (ret)
3144                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3145
3146         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3147         if (ret)
3148                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3149 }
3150
3151 /*
3152  * Send a (un)watch request and wait for the ack.  Return a request
3153  * with a ref held on success or error.
3154  */
3155 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3156                                                 struct rbd_device *rbd_dev,
3157                                                 bool watch)
3158 {
3159         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3160         struct ceph_options *opts = osdc->client->options;
3161         struct rbd_obj_request *obj_request;
3162         int ret;
3163
3164         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3165                                              OBJ_REQUEST_NODATA);
3166         if (!obj_request)
3167                 return ERR_PTR(-ENOMEM);
3168
3169         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3170                                                   obj_request);
3171         if (!obj_request->osd_req) {
3172                 ret = -ENOMEM;
3173                 goto out;
3174         }
3175
3176         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3177                               rbd_dev->watch_event->cookie, 0, watch);
3178         rbd_osd_req_format_write(obj_request);
3179
3180         if (watch)
3181                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3182
3183         ret = rbd_obj_request_submit(osdc, obj_request);
3184         if (ret)
3185                 goto out;
3186
3187         ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3188         if (ret)
3189                 goto out;
3190
3191         ret = obj_request->result;
3192         if (ret) {
3193                 if (watch)
3194                         rbd_obj_request_end(obj_request);
3195                 goto out;
3196         }
3197
3198         return obj_request;
3199
3200 out:
3201         rbd_obj_request_put(obj_request);
3202         return ERR_PTR(ret);
3203 }
3204
3205 /*
3206  * Initiate a watch request, synchronously.
3207  */
3208 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3209 {
3210         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3211         struct rbd_obj_request *obj_request;
3212         int ret;
3213
3214         rbd_assert(!rbd_dev->watch_event);
3215         rbd_assert(!rbd_dev->watch_request);
3216
3217         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3218                                      &rbd_dev->watch_event);
3219         if (ret < 0)
3220                 return ret;
3221
3222         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3223         if (IS_ERR(obj_request)) {
3224                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3225                 rbd_dev->watch_event = NULL;
3226                 return PTR_ERR(obj_request);
3227         }
3228
3229         /*
3230          * A watch request is set to linger, so the underlying osd
3231          * request won't go away until we unregister it.  We retain
3232          * a pointer to the object request during that time (in
3233          * rbd_dev->watch_request), so we'll keep a reference to it.
3234          * We'll drop that reference after we've unregistered it in
3235          * rbd_dev_header_unwatch_sync().
3236          */
3237         rbd_dev->watch_request = obj_request;
3238
3239         return 0;
3240 }
3241
3242 /*
3243  * Tear down a watch request, synchronously.
3244  */
3245 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3246 {
3247         struct rbd_obj_request *obj_request;
3248
3249         rbd_assert(rbd_dev->watch_event);
3250         rbd_assert(rbd_dev->watch_request);
3251
3252         rbd_obj_request_end(rbd_dev->watch_request);
3253         rbd_obj_request_put(rbd_dev->watch_request);
3254         rbd_dev->watch_request = NULL;
3255
3256         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3257         if (!IS_ERR(obj_request))
3258                 rbd_obj_request_put(obj_request);
3259         else
3260                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3261                          PTR_ERR(obj_request));
3262
3263         ceph_osdc_cancel_event(rbd_dev->watch_event);
3264         rbd_dev->watch_event = NULL;
3265
3266         dout("%s flushing notifies\n", __func__);
3267         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3268 }
3269
3270 /*
3271  * Synchronous osd object method call.  Returns the number of bytes
3272  * returned in the outbound buffer, or a negative error code.
3273  */
3274 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3275                              const char *object_name,
3276                              const char *class_name,
3277                              const char *method_name,
3278                              const void *outbound,
3279                              size_t outbound_size,
3280                              void *inbound,
3281                              size_t inbound_size)
3282 {
3283         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3284         struct rbd_obj_request *obj_request;
3285         struct page **pages;
3286         u32 page_count;
3287         int ret;
3288
3289         /*
3290          * Method calls are ultimately read operations.  The result
3291          * should placed into the inbound buffer provided.  They
3292          * also supply outbound data--parameters for the object
3293          * method.  Currently if this is present it will be a
3294          * snapshot id.
3295          */
3296         page_count = (u32)calc_pages_for(0, inbound_size);
3297         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3298         if (IS_ERR(pages))
3299                 return PTR_ERR(pages);
3300
3301         ret = -ENOMEM;
3302         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3303                                                         OBJ_REQUEST_PAGES);
3304         if (!obj_request)
3305                 goto out;
3306
3307         obj_request->pages = pages;
3308         obj_request->page_count = page_count;
3309
3310         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3311                                                   obj_request);
3312         if (!obj_request->osd_req)
3313                 goto out;
3314
3315         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3316                                         class_name, method_name);
3317         if (outbound_size) {
3318                 struct ceph_pagelist *pagelist;
3319
3320                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3321                 if (!pagelist)
3322                         goto out;
3323
3324                 ceph_pagelist_init(pagelist);
3325                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3326                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3327                                                 pagelist);
3328         }
3329         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3330                                         obj_request->pages, inbound_size,
3331                                         0, false, false);
3332         rbd_osd_req_format_read(obj_request);
3333
3334         ret = rbd_obj_request_submit(osdc, obj_request);
3335         if (ret)
3336                 goto out;
3337         ret = rbd_obj_request_wait(obj_request);
3338         if (ret)
3339                 goto out;
3340
3341         ret = obj_request->result;
3342         if (ret < 0)
3343                 goto out;
3344
3345         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3346         ret = (int)obj_request->xferred;
3347         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3348 out:
3349         if (obj_request)
3350                 rbd_obj_request_put(obj_request);
3351         else
3352                 ceph_release_page_vector(pages, page_count);
3353
3354         return ret;
3355 }
3356
3357 static void rbd_queue_workfn(struct work_struct *work)
3358 {
3359         struct request *rq = blk_mq_rq_from_pdu(work);
3360         struct rbd_device *rbd_dev = rq->q->queuedata;
3361         struct rbd_img_request *img_request;
3362         struct ceph_snap_context *snapc = NULL;
3363         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3364         u64 length = blk_rq_bytes(rq);
3365         enum obj_operation_type op_type;
3366         u64 mapping_size;
3367         int result;
3368
3369         if (rq->cmd_type != REQ_TYPE_FS) {
3370                 dout("%s: non-fs request type %d\n", __func__,
3371                         (int) rq->cmd_type);
3372                 result = -EIO;
3373                 goto err;
3374         }
3375
3376         if (rq->cmd_flags & REQ_DISCARD)
3377                 op_type = OBJ_OP_DISCARD;
3378         else if (rq->cmd_flags & REQ_WRITE)
3379                 op_type = OBJ_OP_WRITE;
3380         else
3381                 op_type = OBJ_OP_READ;
3382
3383         /* Ignore/skip any zero-length requests */
3384
3385         if (!length) {
3386                 dout("%s: zero-length request\n", __func__);
3387                 result = 0;
3388                 goto err_rq;
3389         }
3390
3391         /* Only reads are allowed to a read-only device */
3392
3393         if (op_type != OBJ_OP_READ) {
3394                 if (rbd_dev->mapping.read_only) {
3395                         result = -EROFS;
3396                         goto err_rq;
3397                 }
3398                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3399         }
3400
3401         /*
3402          * Quit early if the mapped snapshot no longer exists.  It's
3403          * still possible the snapshot will have disappeared by the
3404          * time our request arrives at the osd, but there's no sense in
3405          * sending it if we already know.
3406          */
3407         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3408                 dout("request for non-existent snapshot");
3409                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3410                 result = -ENXIO;
3411                 goto err_rq;
3412         }
3413
3414         if (offset && length > U64_MAX - offset + 1) {
3415                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3416                          length);
3417                 result = -EINVAL;
3418                 goto err_rq;    /* Shouldn't happen */
3419         }
3420
3421         blk_mq_start_request(rq);
3422
3423         down_read(&rbd_dev->header_rwsem);
3424         mapping_size = rbd_dev->mapping.size;
3425         if (op_type != OBJ_OP_READ) {
3426                 snapc = rbd_dev->header.snapc;
3427                 ceph_get_snap_context(snapc);
3428         }
3429         up_read(&rbd_dev->header_rwsem);
3430
3431         if (offset + length > mapping_size) {
3432                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3433                          length, mapping_size);
3434                 result = -EIO;
3435                 goto err_rq;
3436         }
3437
3438         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3439                                              snapc);
3440         if (!img_request) {
3441                 result = -ENOMEM;
3442                 goto err_rq;
3443         }
3444         img_request->rq = rq;
3445         snapc = NULL; /* img_request consumes a ref */
3446
3447         if (op_type == OBJ_OP_DISCARD)
3448                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3449                                               NULL);
3450         else
3451                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3452                                               rq->bio);
3453         if (result)
3454                 goto err_img_request;
3455
3456         result = rbd_img_request_submit(img_request);
3457         if (result)
3458                 goto err_img_request;
3459
3460         return;
3461
3462 err_img_request:
3463         rbd_img_request_put(img_request);
3464 err_rq:
3465         if (result)
3466                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3467                          obj_op_name(op_type), length, offset, result);
3468         ceph_put_snap_context(snapc);
3469 err:
3470         blk_mq_end_request(rq, result);
3471 }
3472
3473 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3474                 const struct blk_mq_queue_data *bd)
3475 {
3476         struct request *rq = bd->rq;
3477         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3478
3479         queue_work(rbd_wq, work);
3480         return BLK_MQ_RQ_QUEUE_OK;
3481 }
3482
3483 static void rbd_free_disk(struct rbd_device *rbd_dev)
3484 {
3485         struct gendisk *disk = rbd_dev->disk;
3486
3487         if (!disk)
3488                 return;
3489
3490         rbd_dev->disk = NULL;
3491         if (disk->flags & GENHD_FL_UP) {
3492                 del_gendisk(disk);
3493                 if (disk->queue)
3494                         blk_cleanup_queue(disk->queue);
3495                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3496         }
3497         put_disk(disk);
3498 }
3499
3500 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3501                                 const char *object_name,
3502                                 u64 offset, u64 length, void *buf)
3503
3504 {
3505         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3506         struct rbd_obj_request *obj_request;
3507         struct page **pages = NULL;
3508         u32 page_count;
3509         size_t size;
3510         int ret;
3511
3512         page_count = (u32) calc_pages_for(offset, length);
3513         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3514         if (IS_ERR(pages))
3515                 return PTR_ERR(pages);
3516
3517         ret = -ENOMEM;
3518         obj_request = rbd_obj_request_create(object_name, offset, length,
3519                                                         OBJ_REQUEST_PAGES);
3520         if (!obj_request)
3521                 goto out;
3522
3523         obj_request->pages = pages;
3524         obj_request->page_count = page_count;
3525
3526         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3527                                                   obj_request);
3528         if (!obj_request->osd_req)
3529                 goto out;
3530
3531         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3532                                         offset, length, 0, 0);
3533         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3534                                         obj_request->pages,
3535                                         obj_request->length,
3536                                         obj_request->offset & ~PAGE_MASK,
3537                                         false, false);
3538         rbd_osd_req_format_read(obj_request);
3539
3540         ret = rbd_obj_request_submit(osdc, obj_request);
3541         if (ret)
3542                 goto out;
3543         ret = rbd_obj_request_wait(obj_request);
3544         if (ret)
3545                 goto out;
3546
3547         ret = obj_request->result;
3548         if (ret < 0)
3549                 goto out;
3550
3551         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3552         size = (size_t) obj_request->xferred;
3553         ceph_copy_from_page_vector(pages, buf, 0, size);
3554         rbd_assert(size <= (size_t)INT_MAX);
3555         ret = (int)size;
3556 out:
3557         if (obj_request)
3558                 rbd_obj_request_put(obj_request);
3559         else
3560                 ceph_release_page_vector(pages, page_count);
3561
3562         return ret;
3563 }
3564
3565 /*
3566  * Read the complete header for the given rbd device.  On successful
3567  * return, the rbd_dev->header field will contain up-to-date
3568  * information about the image.
3569  */
3570 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3571 {
3572         struct rbd_image_header_ondisk *ondisk = NULL;
3573         u32 snap_count = 0;
3574         u64 names_size = 0;
3575         u32 want_count;
3576         int ret;
3577
3578         /*
3579          * The complete header will include an array of its 64-bit
3580          * snapshot ids, followed by the names of those snapshots as
3581          * a contiguous block of NUL-terminated strings.  Note that
3582          * the number of snapshots could change by the time we read
3583          * it in, in which case we re-read it.
3584          */
3585         do {
3586                 size_t size;
3587
3588                 kfree(ondisk);
3589
3590                 size = sizeof (*ondisk);
3591                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3592                 size += names_size;
3593                 ondisk = kmalloc(size, GFP_KERNEL);
3594                 if (!ondisk)
3595                         return -ENOMEM;
3596
3597                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3598                                        0, size, ondisk);
3599                 if (ret < 0)
3600                         goto out;
3601                 if ((size_t)ret < size) {
3602                         ret = -ENXIO;
3603                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3604                                 size, ret);
3605                         goto out;
3606                 }
3607                 if (!rbd_dev_ondisk_valid(ondisk)) {
3608                         ret = -ENXIO;
3609                         rbd_warn(rbd_dev, "invalid header");
3610                         goto out;
3611                 }
3612
3613                 names_size = le64_to_cpu(ondisk->snap_names_len);
3614                 want_count = snap_count;
3615                 snap_count = le32_to_cpu(ondisk->snap_count);
3616         } while (snap_count != want_count);
3617
3618         ret = rbd_header_from_disk(rbd_dev, ondisk);
3619 out:
3620         kfree(ondisk);
3621
3622         return ret;
3623 }
3624
3625 /*
3626  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3627  * has disappeared from the (just updated) snapshot context.
3628  */
3629 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3630 {
3631         u64 snap_id;
3632
3633         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3634                 return;
3635
3636         snap_id = rbd_dev->spec->snap_id;
3637         if (snap_id == CEPH_NOSNAP)
3638                 return;
3639
3640         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3641                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3642 }
3643
3644 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3645 {
3646         sector_t size;
3647
3648         /*
3649          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3650          * try to update its size.  If REMOVING is set, updating size
3651          * is just useless work since the device can't be opened.
3652          */
3653         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3654             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3655                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3656                 dout("setting size to %llu sectors", (unsigned long long)size);
3657                 set_capacity(rbd_dev->disk, size);
3658                 revalidate_disk(rbd_dev->disk);
3659         }
3660 }
3661
3662 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3663 {
3664         u64 mapping_size;
3665         int ret;
3666
3667         down_write(&rbd_dev->header_rwsem);
3668         mapping_size = rbd_dev->mapping.size;
3669
3670         ret = rbd_dev_header_info(rbd_dev);
3671         if (ret)
3672                 goto out;
3673
3674         /*
3675          * If there is a parent, see if it has disappeared due to the
3676          * mapped image getting flattened.
3677          */
3678         if (rbd_dev->parent) {
3679                 ret = rbd_dev_v2_parent_info(rbd_dev);
3680                 if (ret)
3681                         goto out;
3682         }
3683
3684         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3685                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3686         } else {
3687                 /* validate mapped snapshot's EXISTS flag */
3688                 rbd_exists_validate(rbd_dev);
3689         }
3690
3691 out:
3692         up_write(&rbd_dev->header_rwsem);
3693         if (!ret && mapping_size != rbd_dev->mapping.size)
3694                 rbd_dev_update_size(rbd_dev);
3695
3696         return ret;
3697 }
3698
3699 static int rbd_init_request(void *data, struct request *rq,
3700                 unsigned int hctx_idx, unsigned int request_idx,
3701                 unsigned int numa_node)
3702 {
3703         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3704
3705         INIT_WORK(work, rbd_queue_workfn);
3706         return 0;
3707 }
3708
3709 static struct blk_mq_ops rbd_mq_ops = {
3710         .queue_rq       = rbd_queue_rq,
3711         .map_queue      = blk_mq_map_queue,
3712         .init_request   = rbd_init_request,
3713 };
3714
3715 static int rbd_init_disk(struct rbd_device *rbd_dev)
3716 {
3717         struct gendisk *disk;
3718         struct request_queue *q;
3719         u64 segment_size;
3720         int err;
3721
3722         /* create gendisk info */
3723         disk = alloc_disk(single_major ?
3724                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3725                           RBD_MINORS_PER_MAJOR);
3726         if (!disk)
3727                 return -ENOMEM;
3728
3729         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3730                  rbd_dev->dev_id);
3731         disk->major = rbd_dev->major;
3732         disk->first_minor = rbd_dev->minor;
3733         if (single_major)
3734                 disk->flags |= GENHD_FL_EXT_DEVT;
3735         disk->fops = &rbd_bd_ops;
3736         disk->private_data = rbd_dev;
3737
3738         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3739         rbd_dev->tag_set.ops = &rbd_mq_ops;
3740         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3741         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3742         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3743         rbd_dev->tag_set.nr_hw_queues = 1;
3744         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3745
3746         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3747         if (err)
3748                 goto out_disk;
3749
3750         q = blk_mq_init_queue(&rbd_dev->tag_set);
3751         if (IS_ERR(q)) {
3752                 err = PTR_ERR(q);
3753                 goto out_tag_set;
3754         }
3755
3756         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3757         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3758
3759         /* set io sizes to object size */
3760         segment_size = rbd_obj_bytes(&rbd_dev->header);
3761         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3762         q->limits.max_sectors = queue_max_hw_sectors(q);
3763         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3764         blk_queue_max_segment_size(q, segment_size);
3765         blk_queue_io_min(q, segment_size);
3766         blk_queue_io_opt(q, segment_size);
3767
3768         /* enable the discard support */
3769         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3770         q->limits.discard_granularity = segment_size;
3771         q->limits.discard_alignment = segment_size;
3772         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3773         q->limits.discard_zeroes_data = 1;
3774
3775         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3776                 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3777
3778         disk->queue = q;
3779
3780         q->queuedata = rbd_dev;
3781
3782         rbd_dev->disk = disk;
3783
3784         return 0;
3785 out_tag_set:
3786         blk_mq_free_tag_set(&rbd_dev->tag_set);
3787 out_disk:
3788         put_disk(disk);
3789         return err;
3790 }
3791
3792 /*
3793   sysfs
3794 */
3795
3796 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3797 {
3798         return container_of(dev, struct rbd_device, dev);
3799 }
3800
3801 static ssize_t rbd_size_show(struct device *dev,
3802                              struct device_attribute *attr, char *buf)
3803 {
3804         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3805
3806         return sprintf(buf, "%llu\n",
3807                 (unsigned long long)rbd_dev->mapping.size);
3808 }
3809
3810 /*
3811  * Note this shows the features for whatever's mapped, which is not
3812  * necessarily the base image.
3813  */
3814 static ssize_t rbd_features_show(struct device *dev,
3815                              struct device_attribute *attr, char *buf)
3816 {
3817         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3818
3819         return sprintf(buf, "0x%016llx\n",
3820                         (unsigned long long)rbd_dev->mapping.features);
3821 }
3822
3823 static ssize_t rbd_major_show(struct device *dev,
3824                               struct device_attribute *attr, char *buf)
3825 {
3826         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3827
3828         if (rbd_dev->major)
3829                 return sprintf(buf, "%d\n", rbd_dev->major);
3830
3831         return sprintf(buf, "(none)\n");
3832 }
3833
3834 static ssize_t rbd_minor_show(struct device *dev,
3835                               struct device_attribute *attr, char *buf)
3836 {
3837         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3838
3839         return sprintf(buf, "%d\n", rbd_dev->minor);
3840 }
3841
3842 static ssize_t rbd_client_id_show(struct device *dev,
3843                                   struct device_attribute *attr, char *buf)
3844 {
3845         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3846
3847         return sprintf(buf, "client%lld\n",
3848                         ceph_client_id(rbd_dev->rbd_client->client));
3849 }
3850
3851 static ssize_t rbd_pool_show(struct device *dev,
3852                              struct device_attribute *attr, char *buf)
3853 {
3854         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3855
3856         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3857 }
3858
3859 static ssize_t rbd_pool_id_show(struct device *dev,
3860                              struct device_attribute *attr, char *buf)
3861 {
3862         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3863
3864         return sprintf(buf, "%llu\n",
3865                         (unsigned long long) rbd_dev->spec->pool_id);
3866 }
3867
3868 static ssize_t rbd_name_show(struct device *dev,
3869                              struct device_attribute *attr, char *buf)
3870 {
3871         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3872
3873         if (rbd_dev->spec->image_name)
3874                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3875
3876         return sprintf(buf, "(unknown)\n");
3877 }
3878
3879 static ssize_t rbd_image_id_show(struct device *dev,
3880                              struct device_attribute *attr, char *buf)
3881 {
3882         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3883
3884         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3885 }
3886
3887 /*
3888  * Shows the name of the currently-mapped snapshot (or
3889  * RBD_SNAP_HEAD_NAME for the base image).
3890  */
3891 static ssize_t rbd_snap_show(struct device *dev,
3892                              struct device_attribute *attr,
3893                              char *buf)
3894 {
3895         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3896
3897         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3898 }
3899
3900 /*
3901  * For a v2 image, shows the chain of parent images, separated by empty
3902  * lines.  For v1 images or if there is no parent, shows "(no parent
3903  * image)".
3904  */
3905 static ssize_t rbd_parent_show(struct device *dev,
3906                                struct device_attribute *attr,
3907                                char *buf)
3908 {
3909         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3910         ssize_t count = 0;
3911
3912         if (!rbd_dev->parent)
3913                 return sprintf(buf, "(no parent image)\n");
3914
3915         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3916                 struct rbd_spec *spec = rbd_dev->parent_spec;
3917
3918                 count += sprintf(&buf[count], "%s"
3919                             "pool_id %llu\npool_name %s\n"
3920                             "image_id %s\nimage_name %s\n"
3921                             "snap_id %llu\nsnap_name %s\n"
3922                             "overlap %llu\n",
3923                             !count ? "" : "\n", /* first? */
3924                             spec->pool_id, spec->pool_name,
3925                             spec->image_id, spec->image_name ?: "(unknown)",
3926                             spec->snap_id, spec->snap_name,
3927                             rbd_dev->parent_overlap);
3928         }
3929
3930         return count;
3931 }
3932
3933 static ssize_t rbd_image_refresh(struct device *dev,
3934                                  struct device_attribute *attr,
3935                                  const char *buf,
3936                                  size_t size)
3937 {
3938         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3939         int ret;
3940
3941         ret = rbd_dev_refresh(rbd_dev);
3942         if (ret)
3943                 return ret;
3944
3945         return size;
3946 }
3947
3948 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3949 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3950 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3951 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3952 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3953 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3954 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3955 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3956 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3957 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3958 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3959 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3960
3961 static struct attribute *rbd_attrs[] = {
3962         &dev_attr_size.attr,
3963         &dev_attr_features.attr,
3964         &dev_attr_major.attr,
3965         &dev_attr_minor.attr,
3966         &dev_attr_client_id.attr,
3967         &dev_attr_pool.attr,
3968         &dev_attr_pool_id.attr,
3969         &dev_attr_name.attr,
3970         &dev_attr_image_id.attr,
3971         &dev_attr_current_snap.attr,
3972         &dev_attr_parent.attr,
3973         &dev_attr_refresh.attr,
3974         NULL
3975 };
3976
3977 static struct attribute_group rbd_attr_group = {
3978         .attrs = rbd_attrs,
3979 };
3980
3981 static const struct attribute_group *rbd_attr_groups[] = {
3982         &rbd_attr_group,
3983         NULL
3984 };
3985
3986 static void rbd_dev_release(struct device *dev);
3987
3988 static struct device_type rbd_device_type = {
3989         .name           = "rbd",
3990         .groups         = rbd_attr_groups,
3991         .release        = rbd_dev_release,
3992 };
3993
3994 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3995 {
3996         kref_get(&spec->kref);
3997
3998         return spec;
3999 }
4000
4001 static void rbd_spec_free(struct kref *kref);
4002 static void rbd_spec_put(struct rbd_spec *spec)
4003 {
4004         if (spec)
4005                 kref_put(&spec->kref, rbd_spec_free);
4006 }
4007
4008 static struct rbd_spec *rbd_spec_alloc(void)
4009 {
4010         struct rbd_spec *spec;
4011
4012         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4013         if (!spec)
4014                 return NULL;
4015
4016         spec->pool_id = CEPH_NOPOOL;
4017         spec->snap_id = CEPH_NOSNAP;
4018         kref_init(&spec->kref);
4019
4020         return spec;
4021 }
4022
4023 static void rbd_spec_free(struct kref *kref)
4024 {
4025         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4026
4027         kfree(spec->pool_name);
4028         kfree(spec->image_id);
4029         kfree(spec->image_name);
4030         kfree(spec->snap_name);
4031         kfree(spec);
4032 }
4033
4034 static void rbd_dev_release(struct device *dev)
4035 {
4036         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4037         bool need_put = !!rbd_dev->opts;
4038
4039         rbd_put_client(rbd_dev->rbd_client);
4040         rbd_spec_put(rbd_dev->spec);
4041         kfree(rbd_dev->opts);
4042         kfree(rbd_dev);
4043
4044         /*
4045          * This is racy, but way better than putting module outside of
4046          * the release callback.  The race window is pretty small, so
4047          * doing something similar to dm (dm-builtin.c) is overkill.
4048          */
4049         if (need_put)
4050                 module_put(THIS_MODULE);
4051 }
4052
4053 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4054                                          struct rbd_spec *spec,
4055                                          struct rbd_options *opts)
4056 {
4057         struct rbd_device *rbd_dev;
4058
4059         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4060         if (!rbd_dev)
4061                 return NULL;
4062
4063         spin_lock_init(&rbd_dev->lock);
4064         rbd_dev->flags = 0;
4065         atomic_set(&rbd_dev->parent_ref, 0);
4066         INIT_LIST_HEAD(&rbd_dev->node);
4067         init_rwsem(&rbd_dev->header_rwsem);
4068
4069         rbd_dev->dev.bus = &rbd_bus_type;
4070         rbd_dev->dev.type = &rbd_device_type;
4071         rbd_dev->dev.parent = &rbd_root_dev;
4072         device_initialize(&rbd_dev->dev);
4073
4074         rbd_dev->rbd_client = rbdc;
4075         rbd_dev->spec = spec;
4076         rbd_dev->opts = opts;
4077
4078         /* Initialize the layout used for all rbd requests */
4079
4080         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4081         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4082         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4083         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4084
4085         /*
4086          * If this is a mapping rbd_dev (as opposed to a parent one),
4087          * pin our module.  We have a ref from do_rbd_add(), so use
4088          * __module_get().
4089          */
4090         if (rbd_dev->opts)
4091                 __module_get(THIS_MODULE);
4092
4093         return rbd_dev;
4094 }
4095
4096 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4097 {
4098         if (rbd_dev)
4099                 put_device(&rbd_dev->dev);
4100 }
4101
4102 /*
4103  * Get the size and object order for an image snapshot, or if
4104  * snap_id is CEPH_NOSNAP, gets this information for the base
4105  * image.
4106  */
4107 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4108                                 u8 *order, u64 *snap_size)
4109 {
4110         __le64 snapid = cpu_to_le64(snap_id);
4111         int ret;
4112         struct {
4113                 u8 order;
4114                 __le64 size;
4115         } __attribute__ ((packed)) size_buf = { 0 };
4116
4117         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4118                                 "rbd", "get_size",
4119                                 &snapid, sizeof (snapid),
4120                                 &size_buf, sizeof (size_buf));
4121         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4122         if (ret < 0)
4123                 return ret;
4124         if (ret < sizeof (size_buf))
4125                 return -ERANGE;
4126
4127         if (order) {
4128                 *order = size_buf.order;
4129                 dout("  order %u", (unsigned int)*order);
4130         }
4131         *snap_size = le64_to_cpu(size_buf.size);
4132
4133         dout("  snap_id 0x%016llx snap_size = %llu\n",
4134                 (unsigned long long)snap_id,
4135                 (unsigned long long)*snap_size);
4136
4137         return 0;
4138 }
4139
4140 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4141 {
4142         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4143                                         &rbd_dev->header.obj_order,
4144                                         &rbd_dev->header.image_size);
4145 }
4146
4147 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4148 {
4149         void *reply_buf;
4150         int ret;
4151         void *p;
4152
4153         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4154         if (!reply_buf)
4155                 return -ENOMEM;
4156
4157         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4158                                 "rbd", "get_object_prefix", NULL, 0,
4159                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4160         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4161         if (ret < 0)
4162                 goto out;
4163
4164         p = reply_buf;
4165         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4166                                                 p + ret, NULL, GFP_NOIO);
4167         ret = 0;
4168
4169         if (IS_ERR(rbd_dev->header.object_prefix)) {
4170                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4171                 rbd_dev->header.object_prefix = NULL;
4172         } else {
4173                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4174         }
4175 out:
4176         kfree(reply_buf);
4177
4178         return ret;
4179 }
4180
4181 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4182                 u64 *snap_features)
4183 {
4184         __le64 snapid = cpu_to_le64(snap_id);
4185         struct {
4186                 __le64 features;
4187                 __le64 incompat;
4188         } __attribute__ ((packed)) features_buf = { 0 };
4189         u64 unsup;
4190         int ret;
4191
4192         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4193                                 "rbd", "get_features",
4194                                 &snapid, sizeof (snapid),
4195                                 &features_buf, sizeof (features_buf));
4196         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4197         if (ret < 0)
4198                 return ret;
4199         if (ret < sizeof (features_buf))
4200                 return -ERANGE;
4201
4202         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4203         if (unsup) {
4204                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4205                          unsup);
4206                 return -ENXIO;
4207         }
4208
4209         *snap_features = le64_to_cpu(features_buf.features);
4210
4211         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4212                 (unsigned long long)snap_id,
4213                 (unsigned long long)*snap_features,
4214                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4215
4216         return 0;
4217 }
4218
4219 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4220 {
4221         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4222                                                 &rbd_dev->header.features);
4223 }
4224
4225 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4226 {
4227         struct rbd_spec *parent_spec;
4228         size_t size;
4229         void *reply_buf = NULL;
4230         __le64 snapid;
4231         void *p;
4232         void *end;
4233         u64 pool_id;
4234         char *image_id;
4235         u64 snap_id;
4236         u64 overlap;
4237         int ret;
4238
4239         parent_spec = rbd_spec_alloc();
4240         if (!parent_spec)
4241                 return -ENOMEM;
4242
4243         size = sizeof (__le64) +                                /* pool_id */
4244                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4245                 sizeof (__le64) +                               /* snap_id */
4246                 sizeof (__le64);                                /* overlap */
4247         reply_buf = kmalloc(size, GFP_KERNEL);
4248         if (!reply_buf) {
4249                 ret = -ENOMEM;
4250                 goto out_err;
4251         }
4252
4253         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4254         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4255                                 "rbd", "get_parent",
4256                                 &snapid, sizeof (snapid),
4257                                 reply_buf, size);
4258         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4259         if (ret < 0)
4260                 goto out_err;
4261
4262         p = reply_buf;
4263         end = reply_buf + ret;
4264         ret = -ERANGE;
4265         ceph_decode_64_safe(&p, end, pool_id, out_err);
4266         if (pool_id == CEPH_NOPOOL) {
4267                 /*
4268                  * Either the parent never existed, or we have
4269                  * record of it but the image got flattened so it no
4270                  * longer has a parent.  When the parent of a
4271                  * layered image disappears we immediately set the
4272                  * overlap to 0.  The effect of this is that all new
4273                  * requests will be treated as if the image had no
4274                  * parent.
4275                  */
4276                 if (rbd_dev->parent_overlap) {
4277                         rbd_dev->parent_overlap = 0;
4278                         rbd_dev_parent_put(rbd_dev);
4279                         pr_info("%s: clone image has been flattened\n",
4280                                 rbd_dev->disk->disk_name);
4281                 }
4282
4283                 goto out;       /* No parent?  No problem. */
4284         }
4285
4286         /* The ceph file layout needs to fit pool id in 32 bits */
4287
4288         ret = -EIO;
4289         if (pool_id > (u64)U32_MAX) {
4290                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4291                         (unsigned long long)pool_id, U32_MAX);
4292                 goto out_err;
4293         }
4294
4295         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4296         if (IS_ERR(image_id)) {
4297                 ret = PTR_ERR(image_id);
4298                 goto out_err;
4299         }
4300         ceph_decode_64_safe(&p, end, snap_id, out_err);
4301         ceph_decode_64_safe(&p, end, overlap, out_err);
4302
4303         /*
4304          * The parent won't change (except when the clone is
4305          * flattened, already handled that).  So we only need to
4306          * record the parent spec we have not already done so.
4307          */
4308         if (!rbd_dev->parent_spec) {
4309                 parent_spec->pool_id = pool_id;
4310                 parent_spec->image_id = image_id;
4311                 parent_spec->snap_id = snap_id;
4312                 rbd_dev->parent_spec = parent_spec;
4313                 parent_spec = NULL;     /* rbd_dev now owns this */
4314         } else {
4315                 kfree(image_id);
4316         }
4317
4318         /*
4319          * We always update the parent overlap.  If it's zero we issue
4320          * a warning, as we will proceed as if there was no parent.
4321          */
4322         if (!overlap) {
4323                 if (parent_spec) {
4324                         /* refresh, careful to warn just once */
4325                         if (rbd_dev->parent_overlap)
4326                                 rbd_warn(rbd_dev,
4327                                     "clone now standalone (overlap became 0)");
4328                 } else {
4329                         /* initial probe */
4330                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4331                 }
4332         }
4333         rbd_dev->parent_overlap = overlap;
4334
4335 out:
4336         ret = 0;
4337 out_err:
4338         kfree(reply_buf);
4339         rbd_spec_put(parent_spec);
4340
4341         return ret;
4342 }
4343
4344 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4345 {
4346         struct {
4347                 __le64 stripe_unit;
4348                 __le64 stripe_count;
4349         } __attribute__ ((packed)) striping_info_buf = { 0 };
4350         size_t size = sizeof (striping_info_buf);
4351         void *p;
4352         u64 obj_size;
4353         u64 stripe_unit;
4354         u64 stripe_count;
4355         int ret;
4356
4357         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4358                                 "rbd", "get_stripe_unit_count", NULL, 0,
4359                                 (char *)&striping_info_buf, size);
4360         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4361         if (ret < 0)
4362                 return ret;
4363         if (ret < size)
4364                 return -ERANGE;
4365
4366         /*
4367          * We don't actually support the "fancy striping" feature
4368          * (STRIPINGV2) yet, but if the striping sizes are the
4369          * defaults the behavior is the same as before.  So find
4370          * out, and only fail if the image has non-default values.
4371          */
4372         ret = -EINVAL;
4373         obj_size = (u64)1 << rbd_dev->header.obj_order;
4374         p = &striping_info_buf;
4375         stripe_unit = ceph_decode_64(&p);
4376         if (stripe_unit != obj_size) {
4377                 rbd_warn(rbd_dev, "unsupported stripe unit "
4378                                 "(got %llu want %llu)",
4379                                 stripe_unit, obj_size);
4380                 return -EINVAL;
4381         }
4382         stripe_count = ceph_decode_64(&p);
4383         if (stripe_count != 1) {
4384                 rbd_warn(rbd_dev, "unsupported stripe count "
4385                                 "(got %llu want 1)", stripe_count);
4386                 return -EINVAL;
4387         }
4388         rbd_dev->header.stripe_unit = stripe_unit;
4389         rbd_dev->header.stripe_count = stripe_count;
4390
4391         return 0;
4392 }
4393
4394 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4395 {
4396         size_t image_id_size;
4397         char *image_id;
4398         void *p;
4399         void *end;
4400         size_t size;
4401         void *reply_buf = NULL;
4402         size_t len = 0;
4403         char *image_name = NULL;
4404         int ret;
4405
4406         rbd_assert(!rbd_dev->spec->image_name);
4407
4408         len = strlen(rbd_dev->spec->image_id);
4409         image_id_size = sizeof (__le32) + len;
4410         image_id = kmalloc(image_id_size, GFP_KERNEL);
4411         if (!image_id)
4412                 return NULL;
4413
4414         p = image_id;
4415         end = image_id + image_id_size;
4416         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4417
4418         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4419         reply_buf = kmalloc(size, GFP_KERNEL);
4420         if (!reply_buf)
4421                 goto out;
4422
4423         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4424                                 "rbd", "dir_get_name",
4425                                 image_id, image_id_size,
4426                                 reply_buf, size);
4427         if (ret < 0)
4428                 goto out;
4429         p = reply_buf;
4430         end = reply_buf + ret;
4431
4432         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4433         if (IS_ERR(image_name))
4434                 image_name = NULL;
4435         else
4436                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4437 out:
4438         kfree(reply_buf);
4439         kfree(image_id);
4440
4441         return image_name;
4442 }
4443
4444 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4445 {
4446         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4447         const char *snap_name;
4448         u32 which = 0;
4449
4450         /* Skip over names until we find the one we are looking for */
4451
4452         snap_name = rbd_dev->header.snap_names;
4453         while (which < snapc->num_snaps) {
4454                 if (!strcmp(name, snap_name))
4455                         return snapc->snaps[which];
4456                 snap_name += strlen(snap_name) + 1;
4457                 which++;
4458         }
4459         return CEPH_NOSNAP;
4460 }
4461
4462 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4463 {
4464         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4465         u32 which;
4466         bool found = false;
4467         u64 snap_id;
4468
4469         for (which = 0; !found && which < snapc->num_snaps; which++) {
4470                 const char *snap_name;
4471
4472                 snap_id = snapc->snaps[which];
4473                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4474                 if (IS_ERR(snap_name)) {
4475                         /* ignore no-longer existing snapshots */
4476                         if (PTR_ERR(snap_name) == -ENOENT)
4477                                 continue;
4478                         else
4479                                 break;
4480                 }
4481                 found = !strcmp(name, snap_name);
4482                 kfree(snap_name);
4483         }
4484         return found ? snap_id : CEPH_NOSNAP;
4485 }
4486
4487 /*
4488  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4489  * no snapshot by that name is found, or if an error occurs.
4490  */
4491 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4492 {
4493         if (rbd_dev->image_format == 1)
4494                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4495
4496         return rbd_v2_snap_id_by_name(rbd_dev, name);
4497 }
4498
4499 /*
4500  * An image being mapped will have everything but the snap id.
4501  */
4502 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4503 {
4504         struct rbd_spec *spec = rbd_dev->spec;
4505
4506         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4507         rbd_assert(spec->image_id && spec->image_name);
4508         rbd_assert(spec->snap_name);
4509
4510         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4511                 u64 snap_id;
4512
4513                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4514                 if (snap_id == CEPH_NOSNAP)
4515                         return -ENOENT;
4516
4517                 spec->snap_id = snap_id;
4518         } else {
4519                 spec->snap_id = CEPH_NOSNAP;
4520         }
4521
4522         return 0;
4523 }
4524
4525 /*
4526  * A parent image will have all ids but none of the names.
4527  *
4528  * All names in an rbd spec are dynamically allocated.  It's OK if we
4529  * can't figure out the name for an image id.
4530  */
4531 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4532 {
4533         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4534         struct rbd_spec *spec = rbd_dev->spec;
4535         const char *pool_name;
4536         const char *image_name;
4537         const char *snap_name;
4538         int ret;
4539
4540         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4541         rbd_assert(spec->image_id);
4542         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4543
4544         /* Get the pool name; we have to make our own copy of this */
4545
4546         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4547         if (!pool_name) {
4548                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4549                 return -EIO;
4550         }
4551         pool_name = kstrdup(pool_name, GFP_KERNEL);
4552         if (!pool_name)
4553                 return -ENOMEM;
4554
4555         /* Fetch the image name; tolerate failure here */
4556
4557         image_name = rbd_dev_image_name(rbd_dev);
4558         if (!image_name)
4559                 rbd_warn(rbd_dev, "unable to get image name");
4560
4561         /* Fetch the snapshot name */
4562
4563         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4564         if (IS_ERR(snap_name)) {
4565                 ret = PTR_ERR(snap_name);
4566                 goto out_err;
4567         }
4568
4569         spec->pool_name = pool_name;
4570         spec->image_name = image_name;
4571         spec->snap_name = snap_name;
4572
4573         return 0;
4574
4575 out_err:
4576         kfree(image_name);
4577         kfree(pool_name);
4578         return ret;
4579 }
4580
4581 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4582 {
4583         size_t size;
4584         int ret;
4585         void *reply_buf;
4586         void *p;
4587         void *end;
4588         u64 seq;
4589         u32 snap_count;
4590         struct ceph_snap_context *snapc;
4591         u32 i;
4592
4593         /*
4594          * We'll need room for the seq value (maximum snapshot id),
4595          * snapshot count, and array of that many snapshot ids.
4596          * For now we have a fixed upper limit on the number we're
4597          * prepared to receive.
4598          */
4599         size = sizeof (__le64) + sizeof (__le32) +
4600                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4601         reply_buf = kzalloc(size, GFP_KERNEL);
4602         if (!reply_buf)
4603                 return -ENOMEM;
4604
4605         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4606                                 "rbd", "get_snapcontext", NULL, 0,
4607                                 reply_buf, size);
4608         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4609         if (ret < 0)
4610                 goto out;
4611
4612         p = reply_buf;
4613         end = reply_buf + ret;
4614         ret = -ERANGE;
4615         ceph_decode_64_safe(&p, end, seq, out);
4616         ceph_decode_32_safe(&p, end, snap_count, out);
4617
4618         /*
4619          * Make sure the reported number of snapshot ids wouldn't go
4620          * beyond the end of our buffer.  But before checking that,
4621          * make sure the computed size of the snapshot context we
4622          * allocate is representable in a size_t.
4623          */
4624         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4625                                  / sizeof (u64)) {
4626                 ret = -EINVAL;
4627                 goto out;
4628         }
4629         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4630                 goto out;
4631         ret = 0;
4632
4633         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4634         if (!snapc) {
4635                 ret = -ENOMEM;
4636                 goto out;
4637         }
4638         snapc->seq = seq;
4639         for (i = 0; i < snap_count; i++)
4640                 snapc->snaps[i] = ceph_decode_64(&p);
4641
4642         ceph_put_snap_context(rbd_dev->header.snapc);
4643         rbd_dev->header.snapc = snapc;
4644
4645         dout("  snap context seq = %llu, snap_count = %u\n",
4646                 (unsigned long long)seq, (unsigned int)snap_count);
4647 out:
4648         kfree(reply_buf);
4649
4650         return ret;
4651 }
4652
4653 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4654                                         u64 snap_id)
4655 {
4656         size_t size;
4657         void *reply_buf;
4658         __le64 snapid;
4659         int ret;
4660         void *p;
4661         void *end;
4662         char *snap_name;
4663
4664         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4665         reply_buf = kmalloc(size, GFP_KERNEL);
4666         if (!reply_buf)
4667                 return ERR_PTR(-ENOMEM);
4668
4669         snapid = cpu_to_le64(snap_id);
4670         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4671                                 "rbd", "get_snapshot_name",
4672                                 &snapid, sizeof (snapid),
4673                                 reply_buf, size);
4674         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4675         if (ret < 0) {
4676                 snap_name = ERR_PTR(ret);
4677                 goto out;
4678         }
4679
4680         p = reply_buf;
4681         end = reply_buf + ret;
4682         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4683         if (IS_ERR(snap_name))
4684                 goto out;
4685
4686         dout("  snap_id 0x%016llx snap_name = %s\n",
4687                 (unsigned long long)snap_id, snap_name);
4688 out:
4689         kfree(reply_buf);
4690
4691         return snap_name;
4692 }
4693
4694 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4695 {
4696         bool first_time = rbd_dev->header.object_prefix == NULL;
4697         int ret;
4698
4699         ret = rbd_dev_v2_image_size(rbd_dev);
4700         if (ret)
4701                 return ret;
4702
4703         if (first_time) {
4704                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4705                 if (ret)
4706                         return ret;
4707         }
4708
4709         ret = rbd_dev_v2_snap_context(rbd_dev);
4710         if (ret && first_time) {
4711                 kfree(rbd_dev->header.object_prefix);
4712                 rbd_dev->header.object_prefix = NULL;
4713         }
4714
4715         return ret;
4716 }
4717
4718 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4719 {
4720         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4721
4722         if (rbd_dev->image_format == 1)
4723                 return rbd_dev_v1_header_info(rbd_dev);
4724
4725         return rbd_dev_v2_header_info(rbd_dev);
4726 }
4727
4728 /*
4729  * Get a unique rbd identifier for the given new rbd_dev, and add
4730  * the rbd_dev to the global list.
4731  */
4732 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4733 {
4734         int new_dev_id;
4735
4736         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4737                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4738                                     GFP_KERNEL);
4739         if (new_dev_id < 0)
4740                 return new_dev_id;
4741
4742         rbd_dev->dev_id = new_dev_id;
4743
4744         spin_lock(&rbd_dev_list_lock);
4745         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4746         spin_unlock(&rbd_dev_list_lock);
4747
4748         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4749
4750         return 0;
4751 }
4752
4753 /*
4754  * Remove an rbd_dev from the global list, and record that its
4755  * identifier is no longer in use.
4756  */
4757 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4758 {
4759         spin_lock(&rbd_dev_list_lock);
4760         list_del_init(&rbd_dev->node);
4761         spin_unlock(&rbd_dev_list_lock);
4762
4763         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4764
4765         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4766 }
4767
4768 /*
4769  * Skips over white space at *buf, and updates *buf to point to the
4770  * first found non-space character (if any). Returns the length of
4771  * the token (string of non-white space characters) found.  Note
4772  * that *buf must be terminated with '\0'.
4773  */
4774 static inline size_t next_token(const char **buf)
4775 {
4776         /*
4777         * These are the characters that produce nonzero for
4778         * isspace() in the "C" and "POSIX" locales.
4779         */
4780         const char *spaces = " \f\n\r\t\v";
4781
4782         *buf += strspn(*buf, spaces);   /* Find start of token */
4783
4784         return strcspn(*buf, spaces);   /* Return token length */
4785 }
4786
4787 /*
4788  * Finds the next token in *buf, dynamically allocates a buffer big
4789  * enough to hold a copy of it, and copies the token into the new
4790  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4791  * that a duplicate buffer is created even for a zero-length token.
4792  *
4793  * Returns a pointer to the newly-allocated duplicate, or a null
4794  * pointer if memory for the duplicate was not available.  If
4795  * the lenp argument is a non-null pointer, the length of the token
4796  * (not including the '\0') is returned in *lenp.
4797  *
4798  * If successful, the *buf pointer will be updated to point beyond
4799  * the end of the found token.
4800  *
4801  * Note: uses GFP_KERNEL for allocation.
4802  */
4803 static inline char *dup_token(const char **buf, size_t *lenp)
4804 {
4805         char *dup;
4806         size_t len;
4807
4808         len = next_token(buf);
4809         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4810         if (!dup)
4811                 return NULL;
4812         *(dup + len) = '\0';
4813         *buf += len;
4814
4815         if (lenp)
4816                 *lenp = len;
4817
4818         return dup;
4819 }
4820
4821 /*
4822  * Parse the options provided for an "rbd add" (i.e., rbd image
4823  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4824  * and the data written is passed here via a NUL-terminated buffer.
4825  * Returns 0 if successful or an error code otherwise.
4826  *
4827  * The information extracted from these options is recorded in
4828  * the other parameters which return dynamically-allocated
4829  * structures:
4830  *  ceph_opts
4831  *      The address of a pointer that will refer to a ceph options
4832  *      structure.  Caller must release the returned pointer using
4833  *      ceph_destroy_options() when it is no longer needed.
4834  *  rbd_opts
4835  *      Address of an rbd options pointer.  Fully initialized by
4836  *      this function; caller must release with kfree().
4837  *  spec
4838  *      Address of an rbd image specification pointer.  Fully
4839  *      initialized by this function based on parsed options.
4840  *      Caller must release with rbd_spec_put().
4841  *
4842  * The options passed take this form:
4843  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4844  * where:
4845  *  <mon_addrs>
4846  *      A comma-separated list of one or more monitor addresses.
4847  *      A monitor address is an ip address, optionally followed
4848  *      by a port number (separated by a colon).
4849  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4850  *  <options>
4851  *      A comma-separated list of ceph and/or rbd options.
4852  *  <pool_name>
4853  *      The name of the rados pool containing the rbd image.
4854  *  <image_name>
4855  *      The name of the image in that pool to map.
4856  *  <snap_id>
4857  *      An optional snapshot id.  If provided, the mapping will
4858  *      present data from the image at the time that snapshot was
4859  *      created.  The image head is used if no snapshot id is
4860  *      provided.  Snapshot mappings are always read-only.
4861  */
4862 static int rbd_add_parse_args(const char *buf,
4863                                 struct ceph_options **ceph_opts,
4864                                 struct rbd_options **opts,
4865                                 struct rbd_spec **rbd_spec)
4866 {
4867         size_t len;
4868         char *options;
4869         const char *mon_addrs;
4870         char *snap_name;
4871         size_t mon_addrs_size;
4872         struct rbd_spec *spec = NULL;
4873         struct rbd_options *rbd_opts = NULL;
4874         struct ceph_options *copts;
4875         int ret;
4876
4877         /* The first four tokens are required */
4878
4879         len = next_token(&buf);
4880         if (!len) {
4881                 rbd_warn(NULL, "no monitor address(es) provided");
4882                 return -EINVAL;
4883         }
4884         mon_addrs = buf;
4885         mon_addrs_size = len + 1;
4886         buf += len;
4887
4888         ret = -EINVAL;
4889         options = dup_token(&buf, NULL);
4890         if (!options)
4891                 return -ENOMEM;
4892         if (!*options) {
4893                 rbd_warn(NULL, "no options provided");
4894                 goto out_err;
4895         }
4896
4897         spec = rbd_spec_alloc();
4898         if (!spec)
4899                 goto out_mem;
4900
4901         spec->pool_name = dup_token(&buf, NULL);
4902         if (!spec->pool_name)
4903                 goto out_mem;
4904         if (!*spec->pool_name) {
4905                 rbd_warn(NULL, "no pool name provided");
4906                 goto out_err;
4907         }
4908
4909         spec->image_name = dup_token(&buf, NULL);
4910         if (!spec->image_name)
4911                 goto out_mem;
4912         if (!*spec->image_name) {
4913                 rbd_warn(NULL, "no image name provided");
4914                 goto out_err;
4915         }
4916
4917         /*
4918          * Snapshot name is optional; default is to use "-"
4919          * (indicating the head/no snapshot).
4920          */
4921         len = next_token(&buf);
4922         if (!len) {
4923                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4924                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4925         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4926                 ret = -ENAMETOOLONG;
4927                 goto out_err;
4928         }
4929         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4930         if (!snap_name)
4931                 goto out_mem;
4932         *(snap_name + len) = '\0';
4933         spec->snap_name = snap_name;
4934
4935         /* Initialize all rbd options to the defaults */
4936
4937         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4938         if (!rbd_opts)
4939                 goto out_mem;
4940
4941         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4942         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4943
4944         copts = ceph_parse_options(options, mon_addrs,
4945                                         mon_addrs + mon_addrs_size - 1,
4946                                         parse_rbd_opts_token, rbd_opts);
4947         if (IS_ERR(copts)) {
4948                 ret = PTR_ERR(copts);
4949                 goto out_err;
4950         }
4951         kfree(options);
4952
4953         *ceph_opts = copts;
4954         *opts = rbd_opts;
4955         *rbd_spec = spec;
4956
4957         return 0;
4958 out_mem:
4959         ret = -ENOMEM;
4960 out_err:
4961         kfree(rbd_opts);
4962         rbd_spec_put(spec);
4963         kfree(options);
4964
4965         return ret;
4966 }
4967
4968 /*
4969  * Return pool id (>= 0) or a negative error code.
4970  */
4971 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4972 {
4973         struct ceph_options *opts = rbdc->client->options;
4974         u64 newest_epoch;
4975         int tries = 0;
4976         int ret;
4977
4978 again:
4979         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4980         if (ret == -ENOENT && tries++ < 1) {
4981                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4982                                                &newest_epoch);
4983                 if (ret < 0)
4984                         return ret;
4985
4986                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4987                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4988                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4989                                                      newest_epoch,
4990                                                      opts->mount_timeout);
4991                         goto again;
4992                 } else {
4993                         /* the osdmap we have is new enough */
4994                         return -ENOENT;
4995                 }
4996         }
4997
4998         return ret;
4999 }
5000
5001 /*
5002  * An rbd format 2 image has a unique identifier, distinct from the
5003  * name given to it by the user.  Internally, that identifier is
5004  * what's used to specify the names of objects related to the image.
5005  *
5006  * A special "rbd id" object is used to map an rbd image name to its
5007  * id.  If that object doesn't exist, then there is no v2 rbd image
5008  * with the supplied name.
5009  *
5010  * This function will record the given rbd_dev's image_id field if
5011  * it can be determined, and in that case will return 0.  If any
5012  * errors occur a negative errno will be returned and the rbd_dev's
5013  * image_id field will be unchanged (and should be NULL).
5014  */
5015 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5016 {
5017         int ret;
5018         size_t size;
5019         char *object_name;
5020         void *response;
5021         char *image_id;
5022
5023         /*
5024          * When probing a parent image, the image id is already
5025          * known (and the image name likely is not).  There's no
5026          * need to fetch the image id again in this case.  We
5027          * do still need to set the image format though.
5028          */
5029         if (rbd_dev->spec->image_id) {
5030                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5031
5032                 return 0;
5033         }
5034
5035         /*
5036          * First, see if the format 2 image id file exists, and if
5037          * so, get the image's persistent id from it.
5038          */
5039         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5040         object_name = kmalloc(size, GFP_NOIO);
5041         if (!object_name)
5042                 return -ENOMEM;
5043         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5044         dout("rbd id object name is %s\n", object_name);
5045
5046         /* Response will be an encoded string, which includes a length */
5047
5048         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5049         response = kzalloc(size, GFP_NOIO);
5050         if (!response) {
5051                 ret = -ENOMEM;
5052                 goto out;
5053         }
5054
5055         /* If it doesn't exist we'll assume it's a format 1 image */
5056
5057         ret = rbd_obj_method_sync(rbd_dev, object_name,
5058                                 "rbd", "get_id", NULL, 0,
5059                                 response, RBD_IMAGE_ID_LEN_MAX);
5060         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5061         if (ret == -ENOENT) {
5062                 image_id = kstrdup("", GFP_KERNEL);
5063                 ret = image_id ? 0 : -ENOMEM;
5064                 if (!ret)
5065                         rbd_dev->image_format = 1;
5066         } else if (ret >= 0) {
5067                 void *p = response;
5068
5069                 image_id = ceph_extract_encoded_string(&p, p + ret,
5070                                                 NULL, GFP_NOIO);
5071                 ret = PTR_ERR_OR_ZERO(image_id);
5072                 if (!ret)
5073                         rbd_dev->image_format = 2;
5074         }
5075
5076         if (!ret) {
5077                 rbd_dev->spec->image_id = image_id;
5078                 dout("image_id is %s\n", image_id);
5079         }
5080 out:
5081         kfree(response);
5082         kfree(object_name);
5083
5084         return ret;
5085 }
5086
5087 /*
5088  * Undo whatever state changes are made by v1 or v2 header info
5089  * call.
5090  */
5091 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5092 {
5093         struct rbd_image_header *header;
5094
5095         rbd_dev_parent_put(rbd_dev);
5096
5097         /* Free dynamic fields from the header, then zero it out */
5098
5099         header = &rbd_dev->header;
5100         ceph_put_snap_context(header->snapc);
5101         kfree(header->snap_sizes);
5102         kfree(header->snap_names);
5103         kfree(header->object_prefix);
5104         memset(header, 0, sizeof (*header));
5105 }
5106
5107 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5108 {
5109         int ret;
5110
5111         ret = rbd_dev_v2_object_prefix(rbd_dev);
5112         if (ret)
5113                 goto out_err;
5114
5115         /*
5116          * Get the and check features for the image.  Currently the
5117          * features are assumed to never change.
5118          */
5119         ret = rbd_dev_v2_features(rbd_dev);
5120         if (ret)
5121                 goto out_err;
5122
5123         /* If the image supports fancy striping, get its parameters */
5124
5125         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5126                 ret = rbd_dev_v2_striping_info(rbd_dev);
5127                 if (ret < 0)
5128                         goto out_err;
5129         }
5130         /* No support for crypto and compression type format 2 images */
5131
5132         return 0;
5133 out_err:
5134         rbd_dev->header.features = 0;
5135         kfree(rbd_dev->header.object_prefix);
5136         rbd_dev->header.object_prefix = NULL;
5137
5138         return ret;
5139 }
5140
5141 /*
5142  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5143  * rbd_dev_image_probe() recursion depth, which means it's also the
5144  * length of the already discovered part of the parent chain.
5145  */
5146 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5147 {
5148         struct rbd_device *parent = NULL;
5149         int ret;
5150
5151         if (!rbd_dev->parent_spec)
5152                 return 0;
5153
5154         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5155                 pr_info("parent chain is too long (%d)\n", depth);
5156                 ret = -EINVAL;
5157                 goto out_err;
5158         }
5159
5160         parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5161                                 NULL);
5162         if (!parent) {
5163                 ret = -ENOMEM;
5164                 goto out_err;
5165         }
5166
5167         /*
5168          * Images related by parent/child relationships always share
5169          * rbd_client and spec/parent_spec, so bump their refcounts.
5170          */
5171         __rbd_get_client(rbd_dev->rbd_client);
5172         rbd_spec_get(rbd_dev->parent_spec);
5173
5174         ret = rbd_dev_image_probe(parent, depth);
5175         if (ret < 0)
5176                 goto out_err;
5177
5178         rbd_dev->parent = parent;
5179         atomic_set(&rbd_dev->parent_ref, 1);
5180         return 0;
5181
5182 out_err:
5183         rbd_dev_unparent(rbd_dev);
5184         rbd_dev_destroy(parent);
5185         return ret;
5186 }
5187
5188 /*
5189  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5190  * upon return.
5191  */
5192 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5193 {
5194         int ret;
5195
5196         /* Get an id and fill in device name. */
5197
5198         ret = rbd_dev_id_get(rbd_dev);
5199         if (ret)
5200                 goto err_out_unlock;
5201
5202         BUILD_BUG_ON(DEV_NAME_LEN
5203                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5204         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5205
5206         /* Record our major and minor device numbers. */
5207
5208         if (!single_major) {
5209                 ret = register_blkdev(0, rbd_dev->name);
5210                 if (ret < 0)
5211                         goto err_out_id;
5212
5213                 rbd_dev->major = ret;
5214                 rbd_dev->minor = 0;
5215         } else {
5216                 rbd_dev->major = rbd_major;
5217                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5218         }
5219
5220         /* Set up the blkdev mapping. */
5221
5222         ret = rbd_init_disk(rbd_dev);
5223         if (ret)
5224                 goto err_out_blkdev;
5225
5226         ret = rbd_dev_mapping_set(rbd_dev);
5227         if (ret)
5228                 goto err_out_disk;
5229
5230         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5231         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5232
5233         dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5234         ret = device_add(&rbd_dev->dev);
5235         if (ret)
5236                 goto err_out_mapping;
5237
5238         /* Everything's ready.  Announce the disk to the world. */
5239
5240         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5241         up_write(&rbd_dev->header_rwsem);
5242
5243         add_disk(rbd_dev->disk);
5244         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5245                 (unsigned long long) rbd_dev->mapping.size);
5246
5247         return ret;
5248
5249 err_out_mapping:
5250         rbd_dev_mapping_clear(rbd_dev);
5251 err_out_disk:
5252         rbd_free_disk(rbd_dev);
5253 err_out_blkdev:
5254         if (!single_major)
5255                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5256 err_out_id:
5257         rbd_dev_id_put(rbd_dev);
5258 err_out_unlock:
5259         up_write(&rbd_dev->header_rwsem);
5260         return ret;
5261 }
5262
5263 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5264 {
5265         struct rbd_spec *spec = rbd_dev->spec;
5266         size_t size;
5267
5268         /* Record the header object name for this rbd image. */
5269
5270         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5271
5272         if (rbd_dev->image_format == 1)
5273                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5274         else
5275                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5276
5277         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5278         if (!rbd_dev->header_name)
5279                 return -ENOMEM;
5280
5281         if (rbd_dev->image_format == 1)
5282                 sprintf(rbd_dev->header_name, "%s%s",
5283                         spec->image_name, RBD_SUFFIX);
5284         else
5285                 sprintf(rbd_dev->header_name, "%s%s",
5286                         RBD_HEADER_PREFIX, spec->image_id);
5287         return 0;
5288 }
5289
5290 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5291 {
5292         rbd_dev_unprobe(rbd_dev);
5293         kfree(rbd_dev->header_name);
5294         rbd_dev->header_name = NULL;
5295         rbd_dev->image_format = 0;
5296         kfree(rbd_dev->spec->image_id);
5297         rbd_dev->spec->image_id = NULL;
5298
5299         rbd_dev_destroy(rbd_dev);
5300 }
5301
5302 /*
5303  * Probe for the existence of the header object for the given rbd
5304  * device.  If this image is the one being mapped (i.e., not a
5305  * parent), initiate a watch on its header object before using that
5306  * object to get detailed information about the rbd image.
5307  */
5308 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5309 {
5310         int ret;
5311
5312         /*
5313          * Get the id from the image id object.  Unless there's an
5314          * error, rbd_dev->spec->image_id will be filled in with
5315          * a dynamically-allocated string, and rbd_dev->image_format
5316          * will be set to either 1 or 2.
5317          */
5318         ret = rbd_dev_image_id(rbd_dev);
5319         if (ret)
5320                 return ret;
5321
5322         ret = rbd_dev_header_name(rbd_dev);
5323         if (ret)
5324                 goto err_out_format;
5325
5326         if (!depth) {
5327                 ret = rbd_dev_header_watch_sync(rbd_dev);
5328                 if (ret) {
5329                         if (ret == -ENOENT)
5330                                 pr_info("image %s/%s does not exist\n",
5331                                         rbd_dev->spec->pool_name,
5332                                         rbd_dev->spec->image_name);
5333                         goto out_header_name;
5334                 }
5335         }
5336
5337         ret = rbd_dev_header_info(rbd_dev);
5338         if (ret)
5339                 goto err_out_watch;
5340
5341         /*
5342          * If this image is the one being mapped, we have pool name and
5343          * id, image name and id, and snap name - need to fill snap id.
5344          * Otherwise this is a parent image, identified by pool, image
5345          * and snap ids - need to fill in names for those ids.
5346          */
5347         if (!depth)
5348                 ret = rbd_spec_fill_snap_id(rbd_dev);
5349         else
5350                 ret = rbd_spec_fill_names(rbd_dev);
5351         if (ret) {
5352                 if (ret == -ENOENT)
5353                         pr_info("snap %s/%s@%s does not exist\n",
5354                                 rbd_dev->spec->pool_name,
5355                                 rbd_dev->spec->image_name,
5356                                 rbd_dev->spec->snap_name);
5357                 goto err_out_probe;
5358         }
5359
5360         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5361                 ret = rbd_dev_v2_parent_info(rbd_dev);
5362                 if (ret)
5363                         goto err_out_probe;
5364
5365                 /*
5366                  * Need to warn users if this image is the one being
5367                  * mapped and has a parent.
5368                  */
5369                 if (!depth && rbd_dev->parent_spec)
5370                         rbd_warn(rbd_dev,
5371                                  "WARNING: kernel layering is EXPERIMENTAL!");
5372         }
5373
5374         ret = rbd_dev_probe_parent(rbd_dev, depth);
5375         if (ret)
5376                 goto err_out_probe;
5377
5378         dout("discovered format %u image, header name is %s\n",
5379                 rbd_dev->image_format, rbd_dev->header_name);
5380         return 0;
5381
5382 err_out_probe:
5383         rbd_dev_unprobe(rbd_dev);
5384 err_out_watch:
5385         if (!depth)
5386                 rbd_dev_header_unwatch_sync(rbd_dev);
5387 out_header_name:
5388         kfree(rbd_dev->header_name);
5389         rbd_dev->header_name = NULL;
5390 err_out_format:
5391         rbd_dev->image_format = 0;
5392         kfree(rbd_dev->spec->image_id);
5393         rbd_dev->spec->image_id = NULL;
5394         return ret;
5395 }
5396
5397 static ssize_t do_rbd_add(struct bus_type *bus,
5398                           const char *buf,
5399                           size_t count)
5400 {
5401         struct rbd_device *rbd_dev = NULL;
5402         struct ceph_options *ceph_opts = NULL;
5403         struct rbd_options *rbd_opts = NULL;
5404         struct rbd_spec *spec = NULL;
5405         struct rbd_client *rbdc;
5406         bool read_only;
5407         int rc;
5408
5409         if (!try_module_get(THIS_MODULE))
5410                 return -ENODEV;
5411
5412         /* parse add command */
5413         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5414         if (rc < 0)
5415                 goto out;
5416
5417         rbdc = rbd_get_client(ceph_opts);
5418         if (IS_ERR(rbdc)) {
5419                 rc = PTR_ERR(rbdc);
5420                 goto err_out_args;
5421         }
5422
5423         /* pick the pool */
5424         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5425         if (rc < 0) {
5426                 if (rc == -ENOENT)
5427                         pr_info("pool %s does not exist\n", spec->pool_name);
5428                 goto err_out_client;
5429         }
5430         spec->pool_id = (u64)rc;
5431
5432         /* The ceph file layout needs to fit pool id in 32 bits */
5433
5434         if (spec->pool_id > (u64)U32_MAX) {
5435                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5436                                 (unsigned long long)spec->pool_id, U32_MAX);
5437                 rc = -EIO;
5438                 goto err_out_client;
5439         }
5440
5441         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5442         if (!rbd_dev) {
5443                 rc = -ENOMEM;
5444                 goto err_out_client;
5445         }
5446         rbdc = NULL;            /* rbd_dev now owns this */
5447         spec = NULL;            /* rbd_dev now owns this */
5448         rbd_opts = NULL;        /* rbd_dev now owns this */
5449
5450         down_write(&rbd_dev->header_rwsem);
5451         rc = rbd_dev_image_probe(rbd_dev, 0);
5452         if (rc < 0)
5453                 goto err_out_rbd_dev;
5454
5455         /* If we are mapping a snapshot it must be marked read-only */
5456
5457         read_only = rbd_dev->opts->read_only;
5458         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5459                 read_only = true;
5460         rbd_dev->mapping.read_only = read_only;
5461
5462         rc = rbd_dev_device_setup(rbd_dev);
5463         if (rc) {
5464                 /*
5465                  * rbd_dev_header_unwatch_sync() can't be moved into
5466                  * rbd_dev_image_release() without refactoring, see
5467                  * commit 1f3ef78861ac.
5468                  */
5469                 rbd_dev_header_unwatch_sync(rbd_dev);
5470                 rbd_dev_image_release(rbd_dev);
5471                 goto out;
5472         }
5473
5474         rc = count;
5475 out:
5476         module_put(THIS_MODULE);
5477         return rc;
5478
5479 err_out_rbd_dev:
5480         up_write(&rbd_dev->header_rwsem);
5481         rbd_dev_destroy(rbd_dev);
5482 err_out_client:
5483         rbd_put_client(rbdc);
5484 err_out_args:
5485         rbd_spec_put(spec);
5486         kfree(rbd_opts);
5487         goto out;
5488 }
5489
5490 static ssize_t rbd_add(struct bus_type *bus,
5491                        const char *buf,
5492                        size_t count)
5493 {
5494         if (single_major)
5495                 return -EINVAL;
5496
5497         return do_rbd_add(bus, buf, count);
5498 }
5499
5500 static ssize_t rbd_add_single_major(struct bus_type *bus,
5501                                     const char *buf,
5502                                     size_t count)
5503 {
5504         return do_rbd_add(bus, buf, count);
5505 }
5506
5507 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5508 {
5509         rbd_free_disk(rbd_dev);
5510         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5511         device_del(&rbd_dev->dev);
5512         rbd_dev_mapping_clear(rbd_dev);
5513         if (!single_major)
5514                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5515         rbd_dev_id_put(rbd_dev);
5516 }
5517
5518 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5519 {
5520         while (rbd_dev->parent) {
5521                 struct rbd_device *first = rbd_dev;
5522                 struct rbd_device *second = first->parent;
5523                 struct rbd_device *third;
5524
5525                 /*
5526                  * Follow to the parent with no grandparent and
5527                  * remove it.
5528                  */
5529                 while (second && (third = second->parent)) {
5530                         first = second;
5531                         second = third;
5532                 }
5533                 rbd_assert(second);
5534                 rbd_dev_image_release(second);
5535                 first->parent = NULL;
5536                 first->parent_overlap = 0;
5537
5538                 rbd_assert(first->parent_spec);
5539                 rbd_spec_put(first->parent_spec);
5540                 first->parent_spec = NULL;
5541         }
5542 }
5543
5544 static ssize_t do_rbd_remove(struct bus_type *bus,
5545                              const char *buf,
5546                              size_t count)
5547 {
5548         struct rbd_device *rbd_dev = NULL;
5549         struct list_head *tmp;
5550         int dev_id;
5551         unsigned long ul;
5552         bool already = false;
5553         int ret;
5554
5555         ret = kstrtoul(buf, 10, &ul);
5556         if (ret)
5557                 return ret;
5558
5559         /* convert to int; abort if we lost anything in the conversion */
5560         dev_id = (int)ul;
5561         if (dev_id != ul)
5562                 return -EINVAL;
5563
5564         ret = -ENOENT;
5565         spin_lock(&rbd_dev_list_lock);
5566         list_for_each(tmp, &rbd_dev_list) {
5567                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5568                 if (rbd_dev->dev_id == dev_id) {
5569                         ret = 0;
5570                         break;
5571                 }
5572         }
5573         if (!ret) {
5574                 spin_lock_irq(&rbd_dev->lock);
5575                 if (rbd_dev->open_count)
5576                         ret = -EBUSY;
5577                 else
5578                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5579                                                         &rbd_dev->flags);
5580                 spin_unlock_irq(&rbd_dev->lock);
5581         }
5582         spin_unlock(&rbd_dev_list_lock);
5583         if (ret < 0 || already)
5584                 return ret;
5585
5586         rbd_dev_header_unwatch_sync(rbd_dev);
5587
5588         /*
5589          * Don't free anything from rbd_dev->disk until after all
5590          * notifies are completely processed. Otherwise
5591          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5592          * in a potential use after free of rbd_dev->disk or rbd_dev.
5593          */
5594         rbd_dev_device_release(rbd_dev);
5595         rbd_dev_image_release(rbd_dev);
5596
5597         return count;
5598 }
5599
5600 static ssize_t rbd_remove(struct bus_type *bus,
5601                           const char *buf,
5602                           size_t count)
5603 {
5604         if (single_major)
5605                 return -EINVAL;
5606
5607         return do_rbd_remove(bus, buf, count);
5608 }
5609
5610 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5611                                        const char *buf,
5612                                        size_t count)
5613 {
5614         return do_rbd_remove(bus, buf, count);
5615 }
5616
5617 /*
5618  * create control files in sysfs
5619  * /sys/bus/rbd/...
5620  */
5621 static int rbd_sysfs_init(void)
5622 {
5623         int ret;
5624
5625         ret = device_register(&rbd_root_dev);
5626         if (ret < 0)
5627                 return ret;
5628
5629         ret = bus_register(&rbd_bus_type);
5630         if (ret < 0)
5631                 device_unregister(&rbd_root_dev);
5632
5633         return ret;
5634 }
5635
5636 static void rbd_sysfs_cleanup(void)
5637 {
5638         bus_unregister(&rbd_bus_type);
5639         device_unregister(&rbd_root_dev);
5640 }
5641
5642 static int rbd_slab_init(void)
5643 {
5644         rbd_assert(!rbd_img_request_cache);
5645         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5646         if (!rbd_img_request_cache)
5647                 return -ENOMEM;
5648
5649         rbd_assert(!rbd_obj_request_cache);
5650         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5651         if (!rbd_obj_request_cache)
5652                 goto out_err;
5653
5654         rbd_assert(!rbd_segment_name_cache);
5655         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5656                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5657         if (rbd_segment_name_cache)
5658                 return 0;
5659 out_err:
5660         kmem_cache_destroy(rbd_obj_request_cache);
5661         rbd_obj_request_cache = NULL;
5662
5663         kmem_cache_destroy(rbd_img_request_cache);
5664         rbd_img_request_cache = NULL;
5665
5666         return -ENOMEM;
5667 }
5668
5669 static void rbd_slab_exit(void)
5670 {
5671         rbd_assert(rbd_segment_name_cache);
5672         kmem_cache_destroy(rbd_segment_name_cache);
5673         rbd_segment_name_cache = NULL;
5674
5675         rbd_assert(rbd_obj_request_cache);
5676         kmem_cache_destroy(rbd_obj_request_cache);
5677         rbd_obj_request_cache = NULL;
5678
5679         rbd_assert(rbd_img_request_cache);
5680         kmem_cache_destroy(rbd_img_request_cache);
5681         rbd_img_request_cache = NULL;
5682 }
5683
5684 static int __init rbd_init(void)
5685 {
5686         int rc;
5687
5688         if (!libceph_compatible(NULL)) {
5689                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5690                 return -EINVAL;
5691         }
5692
5693         rc = rbd_slab_init();
5694         if (rc)
5695                 return rc;
5696
5697         /*
5698          * The number of active work items is limited by the number of
5699          * rbd devices * queue depth, so leave @max_active at default.
5700          */
5701         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5702         if (!rbd_wq) {
5703                 rc = -ENOMEM;
5704                 goto err_out_slab;
5705         }
5706
5707         if (single_major) {
5708                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5709                 if (rbd_major < 0) {
5710                         rc = rbd_major;
5711                         goto err_out_wq;
5712                 }
5713         }
5714
5715         rc = rbd_sysfs_init();
5716         if (rc)
5717                 goto err_out_blkdev;
5718
5719         if (single_major)
5720                 pr_info("loaded (major %d)\n", rbd_major);
5721         else
5722                 pr_info("loaded\n");
5723
5724         return 0;
5725
5726 err_out_blkdev:
5727         if (single_major)
5728                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5729 err_out_wq:
5730         destroy_workqueue(rbd_wq);
5731 err_out_slab:
5732         rbd_slab_exit();
5733         return rc;
5734 }
5735
5736 static void __exit rbd_exit(void)
5737 {
5738         ida_destroy(&rbd_dev_id_ida);
5739         rbd_sysfs_cleanup();
5740         if (single_major)
5741                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5742         destroy_workqueue(rbd_wq);
5743         rbd_slab_exit();
5744 }
5745
5746 module_init(rbd_init);
5747 module_exit(rbd_exit);
5748
5749 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5750 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5751 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5752 /* following authorship retained from original osdblk.c */
5753 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5754
5755 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5756 MODULE_LICENSE("GPL");