Merge tag 'pwm/for-4.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[cascardo/linux.git] / drivers / block / rbd.c
1
2 /*
3    rbd.c -- Export ceph rados objects as a Linux block device
4
5
6    based on drivers/block/osdblk.c:
7
8    Copyright 2009 Red Hat, Inc.
9
10    This program is free software; you can redistribute it and/or modify
11    it under the terms of the GNU General Public License as published by
12    the Free Software Foundation.
13
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18
19    You should have received a copy of the GNU General Public License
20    along with this program; see the file COPYING.  If not, write to
21    the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25    For usage instructions, please refer to:
26
27                  Documentation/ABI/testing/sysfs-bus-rbd
28
29  */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/blk-mq.h>
42 #include <linux/fs.h>
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/idr.h>
46 #include <linux/workqueue.h>
47
48 #include "rbd_types.h"
49
50 #define RBD_DEBUG       /* Activate rbd_assert() calls */
51
52 /*
53  * The basic unit of block I/O is a sector.  It is interpreted in a
54  * number of contexts in Linux (blk, bio, genhd), but the default is
55  * universally 512 bytes.  These symbols are just slightly more
56  * meaningful than the bare numbers they represent.
57  */
58 #define SECTOR_SHIFT    9
59 #define SECTOR_SIZE     (1ULL << SECTOR_SHIFT)
60
61 /*
62  * Increment the given counter and return its updated value.
63  * If the counter is already 0 it will not be incremented.
64  * If the counter is already at its maximum value returns
65  * -EINVAL without updating it.
66  */
67 static int atomic_inc_return_safe(atomic_t *v)
68 {
69         unsigned int counter;
70
71         counter = (unsigned int)__atomic_add_unless(v, 1, 0);
72         if (counter <= (unsigned int)INT_MAX)
73                 return (int)counter;
74
75         atomic_dec(v);
76
77         return -EINVAL;
78 }
79
80 /* Decrement the counter.  Return the resulting value, or -EINVAL */
81 static int atomic_dec_return_safe(atomic_t *v)
82 {
83         int counter;
84
85         counter = atomic_dec_return(v);
86         if (counter >= 0)
87                 return counter;
88
89         atomic_inc(v);
90
91         return -EINVAL;
92 }
93
94 #define RBD_DRV_NAME "rbd"
95
96 #define RBD_MINORS_PER_MAJOR            256
97 #define RBD_SINGLE_MAJOR_PART_SHIFT     4
98
99 #define RBD_MAX_PARENT_CHAIN_LEN        16
100
101 #define RBD_SNAP_DEV_NAME_PREFIX        "snap_"
102 #define RBD_MAX_SNAP_NAME_LEN   \
103                         (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
104
105 #define RBD_MAX_SNAP_COUNT      510     /* allows max snapc to fit in 4KB */
106
107 #define RBD_SNAP_HEAD_NAME      "-"
108
109 #define BAD_SNAP_INDEX  U32_MAX         /* invalid index into snap array */
110
111 /* This allows a single page to hold an image name sent by OSD */
112 #define RBD_IMAGE_NAME_LEN_MAX  (PAGE_SIZE - sizeof (__le32) - 1)
113 #define RBD_IMAGE_ID_LEN_MAX    64
114
115 #define RBD_OBJ_PREFIX_LEN_MAX  64
116
117 /* Feature bits */
118
119 #define RBD_FEATURE_LAYERING    (1<<0)
120 #define RBD_FEATURE_STRIPINGV2  (1<<1)
121 #define RBD_FEATURES_ALL \
122             (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
123
124 /* Features supported by this (client software) implementation. */
125
126 #define RBD_FEATURES_SUPPORTED  (RBD_FEATURES_ALL)
127
128 /*
129  * An RBD device name will be "rbd#", where the "rbd" comes from
130  * RBD_DRV_NAME above, and # is a unique integer identifier.
131  * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
132  * enough to hold all possible device names.
133  */
134 #define DEV_NAME_LEN            32
135 #define MAX_INT_FORMAT_WIDTH    ((5 * sizeof (int)) / 2 + 1)
136
137 /*
138  * block device image metadata (in-memory version)
139  */
140 struct rbd_image_header {
141         /* These six fields never change for a given rbd image */
142         char *object_prefix;
143         __u8 obj_order;
144         __u8 crypt_type;
145         __u8 comp_type;
146         u64 stripe_unit;
147         u64 stripe_count;
148         u64 features;           /* Might be changeable someday? */
149
150         /* The remaining fields need to be updated occasionally */
151         u64 image_size;
152         struct ceph_snap_context *snapc;
153         char *snap_names;       /* format 1 only */
154         u64 *snap_sizes;        /* format 1 only */
155 };
156
157 /*
158  * An rbd image specification.
159  *
160  * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
161  * identify an image.  Each rbd_dev structure includes a pointer to
162  * an rbd_spec structure that encapsulates this identity.
163  *
164  * Each of the id's in an rbd_spec has an associated name.  For a
165  * user-mapped image, the names are supplied and the id's associated
166  * with them are looked up.  For a layered image, a parent image is
167  * defined by the tuple, and the names are looked up.
168  *
169  * An rbd_dev structure contains a parent_spec pointer which is
170  * non-null if the image it represents is a child in a layered
171  * image.  This pointer will refer to the rbd_spec structure used
172  * by the parent rbd_dev for its own identity (i.e., the structure
173  * is shared between the parent and child).
174  *
175  * Since these structures are populated once, during the discovery
176  * phase of image construction, they are effectively immutable so
177  * we make no effort to synchronize access to them.
178  *
179  * Note that code herein does not assume the image name is known (it
180  * could be a null pointer).
181  */
182 struct rbd_spec {
183         u64             pool_id;
184         const char      *pool_name;
185
186         const char      *image_id;
187         const char      *image_name;
188
189         u64             snap_id;
190         const char      *snap_name;
191
192         struct kref     kref;
193 };
194
195 /*
196  * an instance of the client.  multiple devices may share an rbd client.
197  */
198 struct rbd_client {
199         struct ceph_client      *client;
200         struct kref             kref;
201         struct list_head        node;
202 };
203
204 struct rbd_img_request;
205 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
206
207 #define BAD_WHICH       U32_MAX         /* Good which or bad which, which? */
208
209 struct rbd_obj_request;
210 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
211
212 enum obj_request_type {
213         OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
214 };
215
216 enum obj_operation_type {
217         OBJ_OP_WRITE,
218         OBJ_OP_READ,
219         OBJ_OP_DISCARD,
220 };
221
222 enum obj_req_flags {
223         OBJ_REQ_DONE,           /* completion flag: not done = 0, done = 1 */
224         OBJ_REQ_IMG_DATA,       /* object usage: standalone = 0, image = 1 */
225         OBJ_REQ_KNOWN,          /* EXISTS flag valid: no = 0, yes = 1 */
226         OBJ_REQ_EXISTS,         /* target exists: no = 0, yes = 1 */
227 };
228
229 struct rbd_obj_request {
230         const char              *object_name;
231         u64                     offset;         /* object start byte */
232         u64                     length;         /* bytes from offset */
233         unsigned long           flags;
234
235         /*
236          * An object request associated with an image will have its
237          * img_data flag set; a standalone object request will not.
238          *
239          * A standalone object request will have which == BAD_WHICH
240          * and a null obj_request pointer.
241          *
242          * An object request initiated in support of a layered image
243          * object (to check for its existence before a write) will
244          * have which == BAD_WHICH and a non-null obj_request pointer.
245          *
246          * Finally, an object request for rbd image data will have
247          * which != BAD_WHICH, and will have a non-null img_request
248          * pointer.  The value of which will be in the range
249          * 0..(img_request->obj_request_count-1).
250          */
251         union {
252                 struct rbd_obj_request  *obj_request;   /* STAT op */
253                 struct {
254                         struct rbd_img_request  *img_request;
255                         u64                     img_offset;
256                         /* links for img_request->obj_requests list */
257                         struct list_head        links;
258                 };
259         };
260         u32                     which;          /* posn image request list */
261
262         enum obj_request_type   type;
263         union {
264                 struct bio      *bio_list;
265                 struct {
266                         struct page     **pages;
267                         u32             page_count;
268                 };
269         };
270         struct page             **copyup_pages;
271         u32                     copyup_page_count;
272
273         struct ceph_osd_request *osd_req;
274
275         u64                     xferred;        /* bytes transferred */
276         int                     result;
277
278         rbd_obj_callback_t      callback;
279         struct completion       completion;
280
281         struct kref             kref;
282 };
283
284 enum img_req_flags {
285         IMG_REQ_WRITE,          /* I/O direction: read = 0, write = 1 */
286         IMG_REQ_CHILD,          /* initiator: block = 0, child image = 1 */
287         IMG_REQ_LAYERED,        /* ENOENT handling: normal = 0, layered = 1 */
288         IMG_REQ_DISCARD,        /* discard: normal = 0, discard request = 1 */
289 };
290
291 struct rbd_img_request {
292         struct rbd_device       *rbd_dev;
293         u64                     offset; /* starting image byte offset */
294         u64                     length; /* byte count from offset */
295         unsigned long           flags;
296         union {
297                 u64                     snap_id;        /* for reads */
298                 struct ceph_snap_context *snapc;        /* for writes */
299         };
300         union {
301                 struct request          *rq;            /* block request */
302                 struct rbd_obj_request  *obj_request;   /* obj req initiator */
303         };
304         struct page             **copyup_pages;
305         u32                     copyup_page_count;
306         spinlock_t              completion_lock;/* protects next_completion */
307         u32                     next_completion;
308         rbd_img_callback_t      callback;
309         u64                     xferred;/* aggregate bytes transferred */
310         int                     result; /* first nonzero obj_request result */
311
312         u32                     obj_request_count;
313         struct list_head        obj_requests;   /* rbd_obj_request structs */
314
315         struct kref             kref;
316 };
317
318 #define for_each_obj_request(ireq, oreq) \
319         list_for_each_entry(oreq, &(ireq)->obj_requests, links)
320 #define for_each_obj_request_from(ireq, oreq) \
321         list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
322 #define for_each_obj_request_safe(ireq, oreq, n) \
323         list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
324
325 struct rbd_mapping {
326         u64                     size;
327         u64                     features;
328         bool                    read_only;
329 };
330
331 /*
332  * a single device
333  */
334 struct rbd_device {
335         int                     dev_id;         /* blkdev unique id */
336
337         int                     major;          /* blkdev assigned major */
338         int                     minor;
339         struct gendisk          *disk;          /* blkdev's gendisk and rq */
340
341         u32                     image_format;   /* Either 1 or 2 */
342         struct rbd_client       *rbd_client;
343
344         char                    name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
345
346         spinlock_t              lock;           /* queue, flags, open_count */
347
348         struct rbd_image_header header;
349         unsigned long           flags;          /* possibly lock protected */
350         struct rbd_spec         *spec;
351         struct rbd_options      *opts;
352
353         char                    *header_name;
354
355         struct ceph_file_layout layout;
356
357         struct ceph_osd_event   *watch_event;
358         struct rbd_obj_request  *watch_request;
359
360         struct rbd_spec         *parent_spec;
361         u64                     parent_overlap;
362         atomic_t                parent_ref;
363         struct rbd_device       *parent;
364
365         /* Block layer tags. */
366         struct blk_mq_tag_set   tag_set;
367
368         /* protects updating the header */
369         struct rw_semaphore     header_rwsem;
370
371         struct rbd_mapping      mapping;
372
373         struct list_head        node;
374
375         /* sysfs related */
376         struct device           dev;
377         unsigned long           open_count;     /* protected by lock */
378 };
379
380 /*
381  * Flag bits for rbd_dev->flags.  If atomicity is required,
382  * rbd_dev->lock is used to protect access.
383  *
384  * Currently, only the "removing" flag (which is coupled with the
385  * "open_count" field) requires atomic access.
386  */
387 enum rbd_dev_flags {
388         RBD_DEV_FLAG_EXISTS,    /* mapped snapshot has not been deleted */
389         RBD_DEV_FLAG_REMOVING,  /* this mapping is being removed */
390 };
391
392 static DEFINE_MUTEX(client_mutex);      /* Serialize client creation */
393
394 static LIST_HEAD(rbd_dev_list);    /* devices */
395 static DEFINE_SPINLOCK(rbd_dev_list_lock);
396
397 static LIST_HEAD(rbd_client_list);              /* clients */
398 static DEFINE_SPINLOCK(rbd_client_list_lock);
399
400 /* Slab caches for frequently-allocated structures */
401
402 static struct kmem_cache        *rbd_img_request_cache;
403 static struct kmem_cache        *rbd_obj_request_cache;
404 static struct kmem_cache        *rbd_segment_name_cache;
405
406 static int rbd_major;
407 static DEFINE_IDA(rbd_dev_id_ida);
408
409 static struct workqueue_struct *rbd_wq;
410
411 /*
412  * Default to false for now, as single-major requires >= 0.75 version of
413  * userspace rbd utility.
414  */
415 static bool single_major = false;
416 module_param(single_major, bool, S_IRUGO);
417 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: false)");
418
419 static int rbd_img_request_submit(struct rbd_img_request *img_request);
420
421 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
422                        size_t count);
423 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
424                           size_t count);
425 static ssize_t rbd_add_single_major(struct bus_type *bus, const char *buf,
426                                     size_t count);
427 static ssize_t rbd_remove_single_major(struct bus_type *bus, const char *buf,
428                                        size_t count);
429 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
430 static void rbd_spec_put(struct rbd_spec *spec);
431
432 static int rbd_dev_id_to_minor(int dev_id)
433 {
434         return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
435 }
436
437 static int minor_to_rbd_dev_id(int minor)
438 {
439         return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
440 }
441
442 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
443 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
444 static BUS_ATTR(add_single_major, S_IWUSR, NULL, rbd_add_single_major);
445 static BUS_ATTR(remove_single_major, S_IWUSR, NULL, rbd_remove_single_major);
446
447 static struct attribute *rbd_bus_attrs[] = {
448         &bus_attr_add.attr,
449         &bus_attr_remove.attr,
450         &bus_attr_add_single_major.attr,
451         &bus_attr_remove_single_major.attr,
452         NULL,
453 };
454
455 static umode_t rbd_bus_is_visible(struct kobject *kobj,
456                                   struct attribute *attr, int index)
457 {
458         if (!single_major &&
459             (attr == &bus_attr_add_single_major.attr ||
460              attr == &bus_attr_remove_single_major.attr))
461                 return 0;
462
463         return attr->mode;
464 }
465
466 static const struct attribute_group rbd_bus_group = {
467         .attrs = rbd_bus_attrs,
468         .is_visible = rbd_bus_is_visible,
469 };
470 __ATTRIBUTE_GROUPS(rbd_bus);
471
472 static struct bus_type rbd_bus_type = {
473         .name           = "rbd",
474         .bus_groups     = rbd_bus_groups,
475 };
476
477 static void rbd_root_dev_release(struct device *dev)
478 {
479 }
480
481 static struct device rbd_root_dev = {
482         .init_name =    "rbd",
483         .release =      rbd_root_dev_release,
484 };
485
486 static __printf(2, 3)
487 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
488 {
489         struct va_format vaf;
490         va_list args;
491
492         va_start(args, fmt);
493         vaf.fmt = fmt;
494         vaf.va = &args;
495
496         if (!rbd_dev)
497                 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
498         else if (rbd_dev->disk)
499                 printk(KERN_WARNING "%s: %s: %pV\n",
500                         RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
501         else if (rbd_dev->spec && rbd_dev->spec->image_name)
502                 printk(KERN_WARNING "%s: image %s: %pV\n",
503                         RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
504         else if (rbd_dev->spec && rbd_dev->spec->image_id)
505                 printk(KERN_WARNING "%s: id %s: %pV\n",
506                         RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
507         else    /* punt */
508                 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
509                         RBD_DRV_NAME, rbd_dev, &vaf);
510         va_end(args);
511 }
512
513 #ifdef RBD_DEBUG
514 #define rbd_assert(expr)                                                \
515                 if (unlikely(!(expr))) {                                \
516                         printk(KERN_ERR "\nAssertion failure in %s() "  \
517                                                 "at line %d:\n\n"       \
518                                         "\trbd_assert(%s);\n\n",        \
519                                         __func__, __LINE__, #expr);     \
520                         BUG();                                          \
521                 }
522 #else /* !RBD_DEBUG */
523 #  define rbd_assert(expr)      ((void) 0)
524 #endif /* !RBD_DEBUG */
525
526 static void rbd_osd_copyup_callback(struct rbd_obj_request *obj_request);
527 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
528 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
529 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
530
531 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
532 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
533 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
534 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
535 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
536                                         u64 snap_id);
537 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
538                                 u8 *order, u64 *snap_size);
539 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
540                 u64 *snap_features);
541
542 static int rbd_open(struct block_device *bdev, fmode_t mode)
543 {
544         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
545         bool removing = false;
546
547         if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
548                 return -EROFS;
549
550         spin_lock_irq(&rbd_dev->lock);
551         if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
552                 removing = true;
553         else
554                 rbd_dev->open_count++;
555         spin_unlock_irq(&rbd_dev->lock);
556         if (removing)
557                 return -ENOENT;
558
559         (void) get_device(&rbd_dev->dev);
560
561         return 0;
562 }
563
564 static void rbd_release(struct gendisk *disk, fmode_t mode)
565 {
566         struct rbd_device *rbd_dev = disk->private_data;
567         unsigned long open_count_before;
568
569         spin_lock_irq(&rbd_dev->lock);
570         open_count_before = rbd_dev->open_count--;
571         spin_unlock_irq(&rbd_dev->lock);
572         rbd_assert(open_count_before > 0);
573
574         put_device(&rbd_dev->dev);
575 }
576
577 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
578 {
579         int ret = 0;
580         int val;
581         bool ro;
582         bool ro_changed = false;
583
584         /* get_user() may sleep, so call it before taking rbd_dev->lock */
585         if (get_user(val, (int __user *)(arg)))
586                 return -EFAULT;
587
588         ro = val ? true : false;
589         /* Snapshot doesn't allow to write*/
590         if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
591                 return -EROFS;
592
593         spin_lock_irq(&rbd_dev->lock);
594         /* prevent others open this device */
595         if (rbd_dev->open_count > 1) {
596                 ret = -EBUSY;
597                 goto out;
598         }
599
600         if (rbd_dev->mapping.read_only != ro) {
601                 rbd_dev->mapping.read_only = ro;
602                 ro_changed = true;
603         }
604
605 out:
606         spin_unlock_irq(&rbd_dev->lock);
607         /* set_disk_ro() may sleep, so call it after releasing rbd_dev->lock */
608         if (ret == 0 && ro_changed)
609                 set_disk_ro(rbd_dev->disk, ro ? 1 : 0);
610
611         return ret;
612 }
613
614 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
615                         unsigned int cmd, unsigned long arg)
616 {
617         struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
618         int ret = 0;
619
620         switch (cmd) {
621         case BLKROSET:
622                 ret = rbd_ioctl_set_ro(rbd_dev, arg);
623                 break;
624         default:
625                 ret = -ENOTTY;
626         }
627
628         return ret;
629 }
630
631 #ifdef CONFIG_COMPAT
632 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
633                                 unsigned int cmd, unsigned long arg)
634 {
635         return rbd_ioctl(bdev, mode, cmd, arg);
636 }
637 #endif /* CONFIG_COMPAT */
638
639 static const struct block_device_operations rbd_bd_ops = {
640         .owner                  = THIS_MODULE,
641         .open                   = rbd_open,
642         .release                = rbd_release,
643         .ioctl                  = rbd_ioctl,
644 #ifdef CONFIG_COMPAT
645         .compat_ioctl           = rbd_compat_ioctl,
646 #endif
647 };
648
649 /*
650  * Initialize an rbd client instance.  Success or not, this function
651  * consumes ceph_opts.  Caller holds client_mutex.
652  */
653 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
654 {
655         struct rbd_client *rbdc;
656         int ret = -ENOMEM;
657
658         dout("%s:\n", __func__);
659         rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
660         if (!rbdc)
661                 goto out_opt;
662
663         kref_init(&rbdc->kref);
664         INIT_LIST_HEAD(&rbdc->node);
665
666         rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
667         if (IS_ERR(rbdc->client))
668                 goto out_rbdc;
669         ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
670
671         ret = ceph_open_session(rbdc->client);
672         if (ret < 0)
673                 goto out_client;
674
675         spin_lock(&rbd_client_list_lock);
676         list_add_tail(&rbdc->node, &rbd_client_list);
677         spin_unlock(&rbd_client_list_lock);
678
679         dout("%s: rbdc %p\n", __func__, rbdc);
680
681         return rbdc;
682 out_client:
683         ceph_destroy_client(rbdc->client);
684 out_rbdc:
685         kfree(rbdc);
686 out_opt:
687         if (ceph_opts)
688                 ceph_destroy_options(ceph_opts);
689         dout("%s: error %d\n", __func__, ret);
690
691         return ERR_PTR(ret);
692 }
693
694 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
695 {
696         kref_get(&rbdc->kref);
697
698         return rbdc;
699 }
700
701 /*
702  * Find a ceph client with specific addr and configuration.  If
703  * found, bump its reference count.
704  */
705 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
706 {
707         struct rbd_client *client_node;
708         bool found = false;
709
710         if (ceph_opts->flags & CEPH_OPT_NOSHARE)
711                 return NULL;
712
713         spin_lock(&rbd_client_list_lock);
714         list_for_each_entry(client_node, &rbd_client_list, node) {
715                 if (!ceph_compare_options(ceph_opts, client_node->client)) {
716                         __rbd_get_client(client_node);
717
718                         found = true;
719                         break;
720                 }
721         }
722         spin_unlock(&rbd_client_list_lock);
723
724         return found ? client_node : NULL;
725 }
726
727 /*
728  * (Per device) rbd map options
729  */
730 enum {
731         Opt_queue_depth,
732         Opt_last_int,
733         /* int args above */
734         Opt_last_string,
735         /* string args above */
736         Opt_read_only,
737         Opt_read_write,
738         Opt_err
739 };
740
741 static match_table_t rbd_opts_tokens = {
742         {Opt_queue_depth, "queue_depth=%d"},
743         /* int args above */
744         /* string args above */
745         {Opt_read_only, "read_only"},
746         {Opt_read_only, "ro"},          /* Alternate spelling */
747         {Opt_read_write, "read_write"},
748         {Opt_read_write, "rw"},         /* Alternate spelling */
749         {Opt_err, NULL}
750 };
751
752 struct rbd_options {
753         int     queue_depth;
754         bool    read_only;
755 };
756
757 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
758 #define RBD_READ_ONLY_DEFAULT   false
759
760 static int parse_rbd_opts_token(char *c, void *private)
761 {
762         struct rbd_options *rbd_opts = private;
763         substring_t argstr[MAX_OPT_ARGS];
764         int token, intval, ret;
765
766         token = match_token(c, rbd_opts_tokens, argstr);
767         if (token < Opt_last_int) {
768                 ret = match_int(&argstr[0], &intval);
769                 if (ret < 0) {
770                         pr_err("bad mount option arg (not int) at '%s'\n", c);
771                         return ret;
772                 }
773                 dout("got int token %d val %d\n", token, intval);
774         } else if (token > Opt_last_int && token < Opt_last_string) {
775                 dout("got string token %d val %s\n", token, argstr[0].from);
776         } else {
777                 dout("got token %d\n", token);
778         }
779
780         switch (token) {
781         case Opt_queue_depth:
782                 if (intval < 1) {
783                         pr_err("queue_depth out of range\n");
784                         return -EINVAL;
785                 }
786                 rbd_opts->queue_depth = intval;
787                 break;
788         case Opt_read_only:
789                 rbd_opts->read_only = true;
790                 break;
791         case Opt_read_write:
792                 rbd_opts->read_only = false;
793                 break;
794         default:
795                 /* libceph prints "bad option" msg */
796                 return -EINVAL;
797         }
798
799         return 0;
800 }
801
802 static char* obj_op_name(enum obj_operation_type op_type)
803 {
804         switch (op_type) {
805         case OBJ_OP_READ:
806                 return "read";
807         case OBJ_OP_WRITE:
808                 return "write";
809         case OBJ_OP_DISCARD:
810                 return "discard";
811         default:
812                 return "???";
813         }
814 }
815
816 /*
817  * Get a ceph client with specific addr and configuration, if one does
818  * not exist create it.  Either way, ceph_opts is consumed by this
819  * function.
820  */
821 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
822 {
823         struct rbd_client *rbdc;
824
825         mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
826         rbdc = rbd_client_find(ceph_opts);
827         if (rbdc)       /* using an existing client */
828                 ceph_destroy_options(ceph_opts);
829         else
830                 rbdc = rbd_client_create(ceph_opts);
831         mutex_unlock(&client_mutex);
832
833         return rbdc;
834 }
835
836 /*
837  * Destroy ceph client
838  *
839  * Caller must hold rbd_client_list_lock.
840  */
841 static void rbd_client_release(struct kref *kref)
842 {
843         struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
844
845         dout("%s: rbdc %p\n", __func__, rbdc);
846         spin_lock(&rbd_client_list_lock);
847         list_del(&rbdc->node);
848         spin_unlock(&rbd_client_list_lock);
849
850         ceph_destroy_client(rbdc->client);
851         kfree(rbdc);
852 }
853
854 /*
855  * Drop reference to ceph client node. If it's not referenced anymore, release
856  * it.
857  */
858 static void rbd_put_client(struct rbd_client *rbdc)
859 {
860         if (rbdc)
861                 kref_put(&rbdc->kref, rbd_client_release);
862 }
863
864 static bool rbd_image_format_valid(u32 image_format)
865 {
866         return image_format == 1 || image_format == 2;
867 }
868
869 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
870 {
871         size_t size;
872         u32 snap_count;
873
874         /* The header has to start with the magic rbd header text */
875         if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
876                 return false;
877
878         /* The bio layer requires at least sector-sized I/O */
879
880         if (ondisk->options.order < SECTOR_SHIFT)
881                 return false;
882
883         /* If we use u64 in a few spots we may be able to loosen this */
884
885         if (ondisk->options.order > 8 * sizeof (int) - 1)
886                 return false;
887
888         /*
889          * The size of a snapshot header has to fit in a size_t, and
890          * that limits the number of snapshots.
891          */
892         snap_count = le32_to_cpu(ondisk->snap_count);
893         size = SIZE_MAX - sizeof (struct ceph_snap_context);
894         if (snap_count > size / sizeof (__le64))
895                 return false;
896
897         /*
898          * Not only that, but the size of the entire the snapshot
899          * header must also be representable in a size_t.
900          */
901         size -= snap_count * sizeof (__le64);
902         if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
903                 return false;
904
905         return true;
906 }
907
908 /*
909  * Fill an rbd image header with information from the given format 1
910  * on-disk header.
911  */
912 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
913                                  struct rbd_image_header_ondisk *ondisk)
914 {
915         struct rbd_image_header *header = &rbd_dev->header;
916         bool first_time = header->object_prefix == NULL;
917         struct ceph_snap_context *snapc;
918         char *object_prefix = NULL;
919         char *snap_names = NULL;
920         u64 *snap_sizes = NULL;
921         u32 snap_count;
922         size_t size;
923         int ret = -ENOMEM;
924         u32 i;
925
926         /* Allocate this now to avoid having to handle failure below */
927
928         if (first_time) {
929                 size_t len;
930
931                 len = strnlen(ondisk->object_prefix,
932                                 sizeof (ondisk->object_prefix));
933                 object_prefix = kmalloc(len + 1, GFP_KERNEL);
934                 if (!object_prefix)
935                         return -ENOMEM;
936                 memcpy(object_prefix, ondisk->object_prefix, len);
937                 object_prefix[len] = '\0';
938         }
939
940         /* Allocate the snapshot context and fill it in */
941
942         snap_count = le32_to_cpu(ondisk->snap_count);
943         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
944         if (!snapc)
945                 goto out_err;
946         snapc->seq = le64_to_cpu(ondisk->snap_seq);
947         if (snap_count) {
948                 struct rbd_image_snap_ondisk *snaps;
949                 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
950
951                 /* We'll keep a copy of the snapshot names... */
952
953                 if (snap_names_len > (u64)SIZE_MAX)
954                         goto out_2big;
955                 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
956                 if (!snap_names)
957                         goto out_err;
958
959                 /* ...as well as the array of their sizes. */
960
961                 size = snap_count * sizeof (*header->snap_sizes);
962                 snap_sizes = kmalloc(size, GFP_KERNEL);
963                 if (!snap_sizes)
964                         goto out_err;
965
966                 /*
967                  * Copy the names, and fill in each snapshot's id
968                  * and size.
969                  *
970                  * Note that rbd_dev_v1_header_info() guarantees the
971                  * ondisk buffer we're working with has
972                  * snap_names_len bytes beyond the end of the
973                  * snapshot id array, this memcpy() is safe.
974                  */
975                 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
976                 snaps = ondisk->snaps;
977                 for (i = 0; i < snap_count; i++) {
978                         snapc->snaps[i] = le64_to_cpu(snaps[i].id);
979                         snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
980                 }
981         }
982
983         /* We won't fail any more, fill in the header */
984
985         if (first_time) {
986                 header->object_prefix = object_prefix;
987                 header->obj_order = ondisk->options.order;
988                 header->crypt_type = ondisk->options.crypt_type;
989                 header->comp_type = ondisk->options.comp_type;
990                 /* The rest aren't used for format 1 images */
991                 header->stripe_unit = 0;
992                 header->stripe_count = 0;
993                 header->features = 0;
994         } else {
995                 ceph_put_snap_context(header->snapc);
996                 kfree(header->snap_names);
997                 kfree(header->snap_sizes);
998         }
999
1000         /* The remaining fields always get updated (when we refresh) */
1001
1002         header->image_size = le64_to_cpu(ondisk->image_size);
1003         header->snapc = snapc;
1004         header->snap_names = snap_names;
1005         header->snap_sizes = snap_sizes;
1006
1007         return 0;
1008 out_2big:
1009         ret = -EIO;
1010 out_err:
1011         kfree(snap_sizes);
1012         kfree(snap_names);
1013         ceph_put_snap_context(snapc);
1014         kfree(object_prefix);
1015
1016         return ret;
1017 }
1018
1019 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1020 {
1021         const char *snap_name;
1022
1023         rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1024
1025         /* Skip over names until we find the one we are looking for */
1026
1027         snap_name = rbd_dev->header.snap_names;
1028         while (which--)
1029                 snap_name += strlen(snap_name) + 1;
1030
1031         return kstrdup(snap_name, GFP_KERNEL);
1032 }
1033
1034 /*
1035  * Snapshot id comparison function for use with qsort()/bsearch().
1036  * Note that result is for snapshots in *descending* order.
1037  */
1038 static int snapid_compare_reverse(const void *s1, const void *s2)
1039 {
1040         u64 snap_id1 = *(u64 *)s1;
1041         u64 snap_id2 = *(u64 *)s2;
1042
1043         if (snap_id1 < snap_id2)
1044                 return 1;
1045         return snap_id1 == snap_id2 ? 0 : -1;
1046 }
1047
1048 /*
1049  * Search a snapshot context to see if the given snapshot id is
1050  * present.
1051  *
1052  * Returns the position of the snapshot id in the array if it's found,
1053  * or BAD_SNAP_INDEX otherwise.
1054  *
1055  * Note: The snapshot array is in kept sorted (by the osd) in
1056  * reverse order, highest snapshot id first.
1057  */
1058 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1059 {
1060         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1061         u64 *found;
1062
1063         found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1064                                 sizeof (snap_id), snapid_compare_reverse);
1065
1066         return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1067 }
1068
1069 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1070                                         u64 snap_id)
1071 {
1072         u32 which;
1073         const char *snap_name;
1074
1075         which = rbd_dev_snap_index(rbd_dev, snap_id);
1076         if (which == BAD_SNAP_INDEX)
1077                 return ERR_PTR(-ENOENT);
1078
1079         snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1080         return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1081 }
1082
1083 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1084 {
1085         if (snap_id == CEPH_NOSNAP)
1086                 return RBD_SNAP_HEAD_NAME;
1087
1088         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1089         if (rbd_dev->image_format == 1)
1090                 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1091
1092         return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1093 }
1094
1095 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1096                                 u64 *snap_size)
1097 {
1098         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1099         if (snap_id == CEPH_NOSNAP) {
1100                 *snap_size = rbd_dev->header.image_size;
1101         } else if (rbd_dev->image_format == 1) {
1102                 u32 which;
1103
1104                 which = rbd_dev_snap_index(rbd_dev, snap_id);
1105                 if (which == BAD_SNAP_INDEX)
1106                         return -ENOENT;
1107
1108                 *snap_size = rbd_dev->header.snap_sizes[which];
1109         } else {
1110                 u64 size = 0;
1111                 int ret;
1112
1113                 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1114                 if (ret)
1115                         return ret;
1116
1117                 *snap_size = size;
1118         }
1119         return 0;
1120 }
1121
1122 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1123                         u64 *snap_features)
1124 {
1125         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1126         if (snap_id == CEPH_NOSNAP) {
1127                 *snap_features = rbd_dev->header.features;
1128         } else if (rbd_dev->image_format == 1) {
1129                 *snap_features = 0;     /* No features for format 1 */
1130         } else {
1131                 u64 features = 0;
1132                 int ret;
1133
1134                 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1135                 if (ret)
1136                         return ret;
1137
1138                 *snap_features = features;
1139         }
1140         return 0;
1141 }
1142
1143 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1144 {
1145         u64 snap_id = rbd_dev->spec->snap_id;
1146         u64 size = 0;
1147         u64 features = 0;
1148         int ret;
1149
1150         ret = rbd_snap_size(rbd_dev, snap_id, &size);
1151         if (ret)
1152                 return ret;
1153         ret = rbd_snap_features(rbd_dev, snap_id, &features);
1154         if (ret)
1155                 return ret;
1156
1157         rbd_dev->mapping.size = size;
1158         rbd_dev->mapping.features = features;
1159
1160         return 0;
1161 }
1162
1163 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1164 {
1165         rbd_dev->mapping.size = 0;
1166         rbd_dev->mapping.features = 0;
1167 }
1168
1169 static void rbd_segment_name_free(const char *name)
1170 {
1171         /* The explicit cast here is needed to drop the const qualifier */
1172
1173         kmem_cache_free(rbd_segment_name_cache, (void *)name);
1174 }
1175
1176 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1177 {
1178         char *name;
1179         u64 segment;
1180         int ret;
1181         char *name_format;
1182
1183         name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1184         if (!name)
1185                 return NULL;
1186         segment = offset >> rbd_dev->header.obj_order;
1187         name_format = "%s.%012llx";
1188         if (rbd_dev->image_format == 2)
1189                 name_format = "%s.%016llx";
1190         ret = snprintf(name, CEPH_MAX_OID_NAME_LEN + 1, name_format,
1191                         rbd_dev->header.object_prefix, segment);
1192         if (ret < 0 || ret > CEPH_MAX_OID_NAME_LEN) {
1193                 pr_err("error formatting segment name for #%llu (%d)\n",
1194                         segment, ret);
1195                 rbd_segment_name_free(name);
1196                 name = NULL;
1197         }
1198
1199         return name;
1200 }
1201
1202 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1203 {
1204         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1205
1206         return offset & (segment_size - 1);
1207 }
1208
1209 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1210                                 u64 offset, u64 length)
1211 {
1212         u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1213
1214         offset &= segment_size - 1;
1215
1216         rbd_assert(length <= U64_MAX - offset);
1217         if (offset + length > segment_size)
1218                 length = segment_size - offset;
1219
1220         return length;
1221 }
1222
1223 /*
1224  * returns the size of an object in the image
1225  */
1226 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1227 {
1228         return 1 << header->obj_order;
1229 }
1230
1231 /*
1232  * bio helpers
1233  */
1234
1235 static void bio_chain_put(struct bio *chain)
1236 {
1237         struct bio *tmp;
1238
1239         while (chain) {
1240                 tmp = chain;
1241                 chain = chain->bi_next;
1242                 bio_put(tmp);
1243         }
1244 }
1245
1246 /*
1247  * zeros a bio chain, starting at specific offset
1248  */
1249 static void zero_bio_chain(struct bio *chain, int start_ofs)
1250 {
1251         struct bio_vec bv;
1252         struct bvec_iter iter;
1253         unsigned long flags;
1254         void *buf;
1255         int pos = 0;
1256
1257         while (chain) {
1258                 bio_for_each_segment(bv, chain, iter) {
1259                         if (pos + bv.bv_len > start_ofs) {
1260                                 int remainder = max(start_ofs - pos, 0);
1261                                 buf = bvec_kmap_irq(&bv, &flags);
1262                                 memset(buf + remainder, 0,
1263                                        bv.bv_len - remainder);
1264                                 flush_dcache_page(bv.bv_page);
1265                                 bvec_kunmap_irq(buf, &flags);
1266                         }
1267                         pos += bv.bv_len;
1268                 }
1269
1270                 chain = chain->bi_next;
1271         }
1272 }
1273
1274 /*
1275  * similar to zero_bio_chain(), zeros data defined by a page array,
1276  * starting at the given byte offset from the start of the array and
1277  * continuing up to the given end offset.  The pages array is
1278  * assumed to be big enough to hold all bytes up to the end.
1279  */
1280 static void zero_pages(struct page **pages, u64 offset, u64 end)
1281 {
1282         struct page **page = &pages[offset >> PAGE_SHIFT];
1283
1284         rbd_assert(end > offset);
1285         rbd_assert(end - offset <= (u64)SIZE_MAX);
1286         while (offset < end) {
1287                 size_t page_offset;
1288                 size_t length;
1289                 unsigned long flags;
1290                 void *kaddr;
1291
1292                 page_offset = offset & ~PAGE_MASK;
1293                 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1294                 local_irq_save(flags);
1295                 kaddr = kmap_atomic(*page);
1296                 memset(kaddr + page_offset, 0, length);
1297                 flush_dcache_page(*page);
1298                 kunmap_atomic(kaddr);
1299                 local_irq_restore(flags);
1300
1301                 offset += length;
1302                 page++;
1303         }
1304 }
1305
1306 /*
1307  * Clone a portion of a bio, starting at the given byte offset
1308  * and continuing for the number of bytes indicated.
1309  */
1310 static struct bio *bio_clone_range(struct bio *bio_src,
1311                                         unsigned int offset,
1312                                         unsigned int len,
1313                                         gfp_t gfpmask)
1314 {
1315         struct bio *bio;
1316
1317         bio = bio_clone(bio_src, gfpmask);
1318         if (!bio)
1319                 return NULL;    /* ENOMEM */
1320
1321         bio_advance(bio, offset);
1322         bio->bi_iter.bi_size = len;
1323
1324         return bio;
1325 }
1326
1327 /*
1328  * Clone a portion of a bio chain, starting at the given byte offset
1329  * into the first bio in the source chain and continuing for the
1330  * number of bytes indicated.  The result is another bio chain of
1331  * exactly the given length, or a null pointer on error.
1332  *
1333  * The bio_src and offset parameters are both in-out.  On entry they
1334  * refer to the first source bio and the offset into that bio where
1335  * the start of data to be cloned is located.
1336  *
1337  * On return, bio_src is updated to refer to the bio in the source
1338  * chain that contains first un-cloned byte, and *offset will
1339  * contain the offset of that byte within that bio.
1340  */
1341 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1342                                         unsigned int *offset,
1343                                         unsigned int len,
1344                                         gfp_t gfpmask)
1345 {
1346         struct bio *bi = *bio_src;
1347         unsigned int off = *offset;
1348         struct bio *chain = NULL;
1349         struct bio **end;
1350
1351         /* Build up a chain of clone bios up to the limit */
1352
1353         if (!bi || off >= bi->bi_iter.bi_size || !len)
1354                 return NULL;            /* Nothing to clone */
1355
1356         end = &chain;
1357         while (len) {
1358                 unsigned int bi_size;
1359                 struct bio *bio;
1360
1361                 if (!bi) {
1362                         rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1363                         goto out_err;   /* EINVAL; ran out of bio's */
1364                 }
1365                 bi_size = min_t(unsigned int, bi->bi_iter.bi_size - off, len);
1366                 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1367                 if (!bio)
1368                         goto out_err;   /* ENOMEM */
1369
1370                 *end = bio;
1371                 end = &bio->bi_next;
1372
1373                 off += bi_size;
1374                 if (off == bi->bi_iter.bi_size) {
1375                         bi = bi->bi_next;
1376                         off = 0;
1377                 }
1378                 len -= bi_size;
1379         }
1380         *bio_src = bi;
1381         *offset = off;
1382
1383         return chain;
1384 out_err:
1385         bio_chain_put(chain);
1386
1387         return NULL;
1388 }
1389
1390 /*
1391  * The default/initial value for all object request flags is 0.  For
1392  * each flag, once its value is set to 1 it is never reset to 0
1393  * again.
1394  */
1395 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1396 {
1397         if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1398                 struct rbd_device *rbd_dev;
1399
1400                 rbd_dev = obj_request->img_request->rbd_dev;
1401                 rbd_warn(rbd_dev, "obj_request %p already marked img_data",
1402                         obj_request);
1403         }
1404 }
1405
1406 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1407 {
1408         smp_mb();
1409         return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1410 }
1411
1412 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1413 {
1414         if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1415                 struct rbd_device *rbd_dev = NULL;
1416
1417                 if (obj_request_img_data_test(obj_request))
1418                         rbd_dev = obj_request->img_request->rbd_dev;
1419                 rbd_warn(rbd_dev, "obj_request %p already marked done",
1420                         obj_request);
1421         }
1422 }
1423
1424 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1425 {
1426         smp_mb();
1427         return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1428 }
1429
1430 /*
1431  * This sets the KNOWN flag after (possibly) setting the EXISTS
1432  * flag.  The latter is set based on the "exists" value provided.
1433  *
1434  * Note that for our purposes once an object exists it never goes
1435  * away again.  It's possible that the response from two existence
1436  * checks are separated by the creation of the target object, and
1437  * the first ("doesn't exist") response arrives *after* the second
1438  * ("does exist").  In that case we ignore the second one.
1439  */
1440 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1441                                 bool exists)
1442 {
1443         if (exists)
1444                 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1445         set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1446         smp_mb();
1447 }
1448
1449 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1450 {
1451         smp_mb();
1452         return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1453 }
1454
1455 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1456 {
1457         smp_mb();
1458         return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1459 }
1460
1461 static bool obj_request_overlaps_parent(struct rbd_obj_request *obj_request)
1462 {
1463         struct rbd_device *rbd_dev = obj_request->img_request->rbd_dev;
1464
1465         return obj_request->img_offset <
1466             round_up(rbd_dev->parent_overlap, rbd_obj_bytes(&rbd_dev->header));
1467 }
1468
1469 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1470 {
1471         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1472                 atomic_read(&obj_request->kref.refcount));
1473         kref_get(&obj_request->kref);
1474 }
1475
1476 static void rbd_obj_request_destroy(struct kref *kref);
1477 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1478 {
1479         rbd_assert(obj_request != NULL);
1480         dout("%s: obj %p (was %d)\n", __func__, obj_request,
1481                 atomic_read(&obj_request->kref.refcount));
1482         kref_put(&obj_request->kref, rbd_obj_request_destroy);
1483 }
1484
1485 static void rbd_img_request_get(struct rbd_img_request *img_request)
1486 {
1487         dout("%s: img %p (was %d)\n", __func__, img_request,
1488              atomic_read(&img_request->kref.refcount));
1489         kref_get(&img_request->kref);
1490 }
1491
1492 static bool img_request_child_test(struct rbd_img_request *img_request);
1493 static void rbd_parent_request_destroy(struct kref *kref);
1494 static void rbd_img_request_destroy(struct kref *kref);
1495 static void rbd_img_request_put(struct rbd_img_request *img_request)
1496 {
1497         rbd_assert(img_request != NULL);
1498         dout("%s: img %p (was %d)\n", __func__, img_request,
1499                 atomic_read(&img_request->kref.refcount));
1500         if (img_request_child_test(img_request))
1501                 kref_put(&img_request->kref, rbd_parent_request_destroy);
1502         else
1503                 kref_put(&img_request->kref, rbd_img_request_destroy);
1504 }
1505
1506 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1507                                         struct rbd_obj_request *obj_request)
1508 {
1509         rbd_assert(obj_request->img_request == NULL);
1510
1511         /* Image request now owns object's original reference */
1512         obj_request->img_request = img_request;
1513         obj_request->which = img_request->obj_request_count;
1514         rbd_assert(!obj_request_img_data_test(obj_request));
1515         obj_request_img_data_set(obj_request);
1516         rbd_assert(obj_request->which != BAD_WHICH);
1517         img_request->obj_request_count++;
1518         list_add_tail(&obj_request->links, &img_request->obj_requests);
1519         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1520                 obj_request->which);
1521 }
1522
1523 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1524                                         struct rbd_obj_request *obj_request)
1525 {
1526         rbd_assert(obj_request->which != BAD_WHICH);
1527
1528         dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1529                 obj_request->which);
1530         list_del(&obj_request->links);
1531         rbd_assert(img_request->obj_request_count > 0);
1532         img_request->obj_request_count--;
1533         rbd_assert(obj_request->which == img_request->obj_request_count);
1534         obj_request->which = BAD_WHICH;
1535         rbd_assert(obj_request_img_data_test(obj_request));
1536         rbd_assert(obj_request->img_request == img_request);
1537         obj_request->img_request = NULL;
1538         obj_request->callback = NULL;
1539         rbd_obj_request_put(obj_request);
1540 }
1541
1542 static bool obj_request_type_valid(enum obj_request_type type)
1543 {
1544         switch (type) {
1545         case OBJ_REQUEST_NODATA:
1546         case OBJ_REQUEST_BIO:
1547         case OBJ_REQUEST_PAGES:
1548                 return true;
1549         default:
1550                 return false;
1551         }
1552 }
1553
1554 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1555                                 struct rbd_obj_request *obj_request)
1556 {
1557         dout("%s %p\n", __func__, obj_request);
1558         return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1559 }
1560
1561 static void rbd_obj_request_end(struct rbd_obj_request *obj_request)
1562 {
1563         dout("%s %p\n", __func__, obj_request);
1564         ceph_osdc_cancel_request(obj_request->osd_req);
1565 }
1566
1567 /*
1568  * Wait for an object request to complete.  If interrupted, cancel the
1569  * underlying osd request.
1570  *
1571  * @timeout: in jiffies, 0 means "wait forever"
1572  */
1573 static int __rbd_obj_request_wait(struct rbd_obj_request *obj_request,
1574                                   unsigned long timeout)
1575 {
1576         long ret;
1577
1578         dout("%s %p\n", __func__, obj_request);
1579         ret = wait_for_completion_interruptible_timeout(
1580                                         &obj_request->completion,
1581                                         ceph_timeout_jiffies(timeout));
1582         if (ret <= 0) {
1583                 if (ret == 0)
1584                         ret = -ETIMEDOUT;
1585                 rbd_obj_request_end(obj_request);
1586         } else {
1587                 ret = 0;
1588         }
1589
1590         dout("%s %p ret %d\n", __func__, obj_request, (int)ret);
1591         return ret;
1592 }
1593
1594 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1595 {
1596         return __rbd_obj_request_wait(obj_request, 0);
1597 }
1598
1599 static int rbd_obj_request_wait_timeout(struct rbd_obj_request *obj_request,
1600                                         unsigned long timeout)
1601 {
1602         return __rbd_obj_request_wait(obj_request, timeout);
1603 }
1604
1605 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1606 {
1607
1608         dout("%s: img %p\n", __func__, img_request);
1609
1610         /*
1611          * If no error occurred, compute the aggregate transfer
1612          * count for the image request.  We could instead use
1613          * atomic64_cmpxchg() to update it as each object request
1614          * completes; not clear which way is better off hand.
1615          */
1616         if (!img_request->result) {
1617                 struct rbd_obj_request *obj_request;
1618                 u64 xferred = 0;
1619
1620                 for_each_obj_request(img_request, obj_request)
1621                         xferred += obj_request->xferred;
1622                 img_request->xferred = xferred;
1623         }
1624
1625         if (img_request->callback)
1626                 img_request->callback(img_request);
1627         else
1628                 rbd_img_request_put(img_request);
1629 }
1630
1631 /*
1632  * The default/initial value for all image request flags is 0.  Each
1633  * is conditionally set to 1 at image request initialization time
1634  * and currently never change thereafter.
1635  */
1636 static void img_request_write_set(struct rbd_img_request *img_request)
1637 {
1638         set_bit(IMG_REQ_WRITE, &img_request->flags);
1639         smp_mb();
1640 }
1641
1642 static bool img_request_write_test(struct rbd_img_request *img_request)
1643 {
1644         smp_mb();
1645         return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1646 }
1647
1648 /*
1649  * Set the discard flag when the img_request is an discard request
1650  */
1651 static void img_request_discard_set(struct rbd_img_request *img_request)
1652 {
1653         set_bit(IMG_REQ_DISCARD, &img_request->flags);
1654         smp_mb();
1655 }
1656
1657 static bool img_request_discard_test(struct rbd_img_request *img_request)
1658 {
1659         smp_mb();
1660         return test_bit(IMG_REQ_DISCARD, &img_request->flags) != 0;
1661 }
1662
1663 static void img_request_child_set(struct rbd_img_request *img_request)
1664 {
1665         set_bit(IMG_REQ_CHILD, &img_request->flags);
1666         smp_mb();
1667 }
1668
1669 static void img_request_child_clear(struct rbd_img_request *img_request)
1670 {
1671         clear_bit(IMG_REQ_CHILD, &img_request->flags);
1672         smp_mb();
1673 }
1674
1675 static bool img_request_child_test(struct rbd_img_request *img_request)
1676 {
1677         smp_mb();
1678         return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1679 }
1680
1681 static void img_request_layered_set(struct rbd_img_request *img_request)
1682 {
1683         set_bit(IMG_REQ_LAYERED, &img_request->flags);
1684         smp_mb();
1685 }
1686
1687 static void img_request_layered_clear(struct rbd_img_request *img_request)
1688 {
1689         clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1690         smp_mb();
1691 }
1692
1693 static bool img_request_layered_test(struct rbd_img_request *img_request)
1694 {
1695         smp_mb();
1696         return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1697 }
1698
1699 static enum obj_operation_type
1700 rbd_img_request_op_type(struct rbd_img_request *img_request)
1701 {
1702         if (img_request_write_test(img_request))
1703                 return OBJ_OP_WRITE;
1704         else if (img_request_discard_test(img_request))
1705                 return OBJ_OP_DISCARD;
1706         else
1707                 return OBJ_OP_READ;
1708 }
1709
1710 static void
1711 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1712 {
1713         u64 xferred = obj_request->xferred;
1714         u64 length = obj_request->length;
1715
1716         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1717                 obj_request, obj_request->img_request, obj_request->result,
1718                 xferred, length);
1719         /*
1720          * ENOENT means a hole in the image.  We zero-fill the entire
1721          * length of the request.  A short read also implies zero-fill
1722          * to the end of the request.  An error requires the whole
1723          * length of the request to be reported finished with an error
1724          * to the block layer.  In each case we update the xferred
1725          * count to indicate the whole request was satisfied.
1726          */
1727         rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1728         if (obj_request->result == -ENOENT) {
1729                 if (obj_request->type == OBJ_REQUEST_BIO)
1730                         zero_bio_chain(obj_request->bio_list, 0);
1731                 else
1732                         zero_pages(obj_request->pages, 0, length);
1733                 obj_request->result = 0;
1734         } else if (xferred < length && !obj_request->result) {
1735                 if (obj_request->type == OBJ_REQUEST_BIO)
1736                         zero_bio_chain(obj_request->bio_list, xferred);
1737                 else
1738                         zero_pages(obj_request->pages, xferred, length);
1739         }
1740         obj_request->xferred = length;
1741         obj_request_done_set(obj_request);
1742 }
1743
1744 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1745 {
1746         dout("%s: obj %p cb %p\n", __func__, obj_request,
1747                 obj_request->callback);
1748         if (obj_request->callback)
1749                 obj_request->callback(obj_request);
1750         else
1751                 complete_all(&obj_request->completion);
1752 }
1753
1754 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1755 {
1756         dout("%s: obj %p\n", __func__, obj_request);
1757         obj_request_done_set(obj_request);
1758 }
1759
1760 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1761 {
1762         struct rbd_img_request *img_request = NULL;
1763         struct rbd_device *rbd_dev = NULL;
1764         bool layered = false;
1765
1766         if (obj_request_img_data_test(obj_request)) {
1767                 img_request = obj_request->img_request;
1768                 layered = img_request && img_request_layered_test(img_request);
1769                 rbd_dev = img_request->rbd_dev;
1770         }
1771
1772         dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1773                 obj_request, img_request, obj_request->result,
1774                 obj_request->xferred, obj_request->length);
1775         if (layered && obj_request->result == -ENOENT &&
1776                         obj_request->img_offset < rbd_dev->parent_overlap)
1777                 rbd_img_parent_read(obj_request);
1778         else if (img_request)
1779                 rbd_img_obj_request_read_callback(obj_request);
1780         else
1781                 obj_request_done_set(obj_request);
1782 }
1783
1784 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1785 {
1786         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1787                 obj_request->result, obj_request->length);
1788         /*
1789          * There is no such thing as a successful short write.  Set
1790          * it to our originally-requested length.
1791          */
1792         obj_request->xferred = obj_request->length;
1793         obj_request_done_set(obj_request);
1794 }
1795
1796 static void rbd_osd_discard_callback(struct rbd_obj_request *obj_request)
1797 {
1798         dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1799                 obj_request->result, obj_request->length);
1800         /*
1801          * There is no such thing as a successful short discard.  Set
1802          * it to our originally-requested length.
1803          */
1804         obj_request->xferred = obj_request->length;
1805         /* discarding a non-existent object is not a problem */
1806         if (obj_request->result == -ENOENT)
1807                 obj_request->result = 0;
1808         obj_request_done_set(obj_request);
1809 }
1810
1811 /*
1812  * For a simple stat call there's nothing to do.  We'll do more if
1813  * this is part of a write sequence for a layered image.
1814  */
1815 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1816 {
1817         dout("%s: obj %p\n", __func__, obj_request);
1818         obj_request_done_set(obj_request);
1819 }
1820
1821 static void rbd_osd_call_callback(struct rbd_obj_request *obj_request)
1822 {
1823         dout("%s: obj %p\n", __func__, obj_request);
1824
1825         if (obj_request_img_data_test(obj_request))
1826                 rbd_osd_copyup_callback(obj_request);
1827         else
1828                 obj_request_done_set(obj_request);
1829 }
1830
1831 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1832                                 struct ceph_msg *msg)
1833 {
1834         struct rbd_obj_request *obj_request = osd_req->r_priv;
1835         u16 opcode;
1836
1837         dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1838         rbd_assert(osd_req == obj_request->osd_req);
1839         if (obj_request_img_data_test(obj_request)) {
1840                 rbd_assert(obj_request->img_request);
1841                 rbd_assert(obj_request->which != BAD_WHICH);
1842         } else {
1843                 rbd_assert(obj_request->which == BAD_WHICH);
1844         }
1845
1846         if (osd_req->r_result < 0)
1847                 obj_request->result = osd_req->r_result;
1848
1849         /*
1850          * We support a 64-bit length, but ultimately it has to be
1851          * passed to the block layer, which just supports a 32-bit
1852          * length field.
1853          */
1854         obj_request->xferred = osd_req->r_ops[0].outdata_len;
1855         rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1856
1857         opcode = osd_req->r_ops[0].op;
1858         switch (opcode) {
1859         case CEPH_OSD_OP_READ:
1860                 rbd_osd_read_callback(obj_request);
1861                 break;
1862         case CEPH_OSD_OP_SETALLOCHINT:
1863                 rbd_assert(osd_req->r_ops[1].op == CEPH_OSD_OP_WRITE ||
1864                            osd_req->r_ops[1].op == CEPH_OSD_OP_WRITEFULL);
1865                 /* fall through */
1866         case CEPH_OSD_OP_WRITE:
1867         case CEPH_OSD_OP_WRITEFULL:
1868                 rbd_osd_write_callback(obj_request);
1869                 break;
1870         case CEPH_OSD_OP_STAT:
1871                 rbd_osd_stat_callback(obj_request);
1872                 break;
1873         case CEPH_OSD_OP_DELETE:
1874         case CEPH_OSD_OP_TRUNCATE:
1875         case CEPH_OSD_OP_ZERO:
1876                 rbd_osd_discard_callback(obj_request);
1877                 break;
1878         case CEPH_OSD_OP_CALL:
1879                 rbd_osd_call_callback(obj_request);
1880                 break;
1881         case CEPH_OSD_OP_NOTIFY_ACK:
1882         case CEPH_OSD_OP_WATCH:
1883                 rbd_osd_trivial_callback(obj_request);
1884                 break;
1885         default:
1886                 rbd_warn(NULL, "%s: unsupported op %hu",
1887                         obj_request->object_name, (unsigned short) opcode);
1888                 break;
1889         }
1890
1891         if (obj_request_done_test(obj_request))
1892                 rbd_obj_request_complete(obj_request);
1893 }
1894
1895 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1896 {
1897         struct rbd_img_request *img_request = obj_request->img_request;
1898         struct ceph_osd_request *osd_req = obj_request->osd_req;
1899         u64 snap_id;
1900
1901         rbd_assert(osd_req != NULL);
1902
1903         snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1904         ceph_osdc_build_request(osd_req, obj_request->offset,
1905                         NULL, snap_id, NULL);
1906 }
1907
1908 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1909 {
1910         struct rbd_img_request *img_request = obj_request->img_request;
1911         struct ceph_osd_request *osd_req = obj_request->osd_req;
1912         struct ceph_snap_context *snapc;
1913         struct timespec mtime = CURRENT_TIME;
1914
1915         rbd_assert(osd_req != NULL);
1916
1917         snapc = img_request ? img_request->snapc : NULL;
1918         ceph_osdc_build_request(osd_req, obj_request->offset,
1919                         snapc, CEPH_NOSNAP, &mtime);
1920 }
1921
1922 /*
1923  * Create an osd request.  A read request has one osd op (read).
1924  * A write request has either one (watch) or two (hint+write) osd ops.
1925  * (All rbd data writes are prefixed with an allocation hint op, but
1926  * technically osd watch is a write request, hence this distinction.)
1927  */
1928 static struct ceph_osd_request *rbd_osd_req_create(
1929                                         struct rbd_device *rbd_dev,
1930                                         enum obj_operation_type op_type,
1931                                         unsigned int num_ops,
1932                                         struct rbd_obj_request *obj_request)
1933 {
1934         struct ceph_snap_context *snapc = NULL;
1935         struct ceph_osd_client *osdc;
1936         struct ceph_osd_request *osd_req;
1937
1938         if (obj_request_img_data_test(obj_request) &&
1939                 (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_WRITE)) {
1940                 struct rbd_img_request *img_request = obj_request->img_request;
1941                 if (op_type == OBJ_OP_WRITE) {
1942                         rbd_assert(img_request_write_test(img_request));
1943                 } else {
1944                         rbd_assert(img_request_discard_test(img_request));
1945                 }
1946                 snapc = img_request->snapc;
1947         }
1948
1949         rbd_assert(num_ops == 1 || ((op_type == OBJ_OP_WRITE) && num_ops == 2));
1950
1951         /* Allocate and initialize the request, for the num_ops ops */
1952
1953         osdc = &rbd_dev->rbd_client->client->osdc;
1954         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false,
1955                                           GFP_NOIO);
1956         if (!osd_req)
1957                 return NULL;    /* ENOMEM */
1958
1959         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
1960                 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1961         else
1962                 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1963
1964         osd_req->r_callback = rbd_osd_req_callback;
1965         osd_req->r_priv = obj_request;
1966
1967         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
1968         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
1969
1970         return osd_req;
1971 }
1972
1973 /*
1974  * Create a copyup osd request based on the information in the object
1975  * request supplied.  A copyup request has two or three osd ops, a
1976  * copyup method call, potentially a hint op, and a write or truncate
1977  * or zero op.
1978  */
1979 static struct ceph_osd_request *
1980 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1981 {
1982         struct rbd_img_request *img_request;
1983         struct ceph_snap_context *snapc;
1984         struct rbd_device *rbd_dev;
1985         struct ceph_osd_client *osdc;
1986         struct ceph_osd_request *osd_req;
1987         int num_osd_ops = 3;
1988
1989         rbd_assert(obj_request_img_data_test(obj_request));
1990         img_request = obj_request->img_request;
1991         rbd_assert(img_request);
1992         rbd_assert(img_request_write_test(img_request) ||
1993                         img_request_discard_test(img_request));
1994
1995         if (img_request_discard_test(img_request))
1996                 num_osd_ops = 2;
1997
1998         /* Allocate and initialize the request, for all the ops */
1999
2000         snapc = img_request->snapc;
2001         rbd_dev = img_request->rbd_dev;
2002         osdc = &rbd_dev->rbd_client->client->osdc;
2003         osd_req = ceph_osdc_alloc_request(osdc, snapc, num_osd_ops,
2004                                                 false, GFP_NOIO);
2005         if (!osd_req)
2006                 return NULL;    /* ENOMEM */
2007
2008         osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
2009         osd_req->r_callback = rbd_osd_req_callback;
2010         osd_req->r_priv = obj_request;
2011
2012         osd_req->r_base_oloc.pool = ceph_file_layout_pg_pool(rbd_dev->layout);
2013         ceph_oid_set_name(&osd_req->r_base_oid, obj_request->object_name);
2014
2015         return osd_req;
2016 }
2017
2018
2019 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
2020 {
2021         ceph_osdc_put_request(osd_req);
2022 }
2023
2024 /* object_name is assumed to be a non-null pointer and NUL-terminated */
2025
2026 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
2027                                                 u64 offset, u64 length,
2028                                                 enum obj_request_type type)
2029 {
2030         struct rbd_obj_request *obj_request;
2031         size_t size;
2032         char *name;
2033
2034         rbd_assert(obj_request_type_valid(type));
2035
2036         size = strlen(object_name) + 1;
2037         name = kmalloc(size, GFP_NOIO);
2038         if (!name)
2039                 return NULL;
2040
2041         obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
2042         if (!obj_request) {
2043                 kfree(name);
2044                 return NULL;
2045         }
2046
2047         obj_request->object_name = memcpy(name, object_name, size);
2048         obj_request->offset = offset;
2049         obj_request->length = length;
2050         obj_request->flags = 0;
2051         obj_request->which = BAD_WHICH;
2052         obj_request->type = type;
2053         INIT_LIST_HEAD(&obj_request->links);
2054         init_completion(&obj_request->completion);
2055         kref_init(&obj_request->kref);
2056
2057         dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
2058                 offset, length, (int)type, obj_request);
2059
2060         return obj_request;
2061 }
2062
2063 static void rbd_obj_request_destroy(struct kref *kref)
2064 {
2065         struct rbd_obj_request *obj_request;
2066
2067         obj_request = container_of(kref, struct rbd_obj_request, kref);
2068
2069         dout("%s: obj %p\n", __func__, obj_request);
2070
2071         rbd_assert(obj_request->img_request == NULL);
2072         rbd_assert(obj_request->which == BAD_WHICH);
2073
2074         if (obj_request->osd_req)
2075                 rbd_osd_req_destroy(obj_request->osd_req);
2076
2077         rbd_assert(obj_request_type_valid(obj_request->type));
2078         switch (obj_request->type) {
2079         case OBJ_REQUEST_NODATA:
2080                 break;          /* Nothing to do */
2081         case OBJ_REQUEST_BIO:
2082                 if (obj_request->bio_list)
2083                         bio_chain_put(obj_request->bio_list);
2084                 break;
2085         case OBJ_REQUEST_PAGES:
2086                 if (obj_request->pages)
2087                         ceph_release_page_vector(obj_request->pages,
2088                                                 obj_request->page_count);
2089                 break;
2090         }
2091
2092         kfree(obj_request->object_name);
2093         obj_request->object_name = NULL;
2094         kmem_cache_free(rbd_obj_request_cache, obj_request);
2095 }
2096
2097 /* It's OK to call this for a device with no parent */
2098
2099 static void rbd_spec_put(struct rbd_spec *spec);
2100 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
2101 {
2102         rbd_dev_remove_parent(rbd_dev);
2103         rbd_spec_put(rbd_dev->parent_spec);
2104         rbd_dev->parent_spec = NULL;
2105         rbd_dev->parent_overlap = 0;
2106 }
2107
2108 /*
2109  * Parent image reference counting is used to determine when an
2110  * image's parent fields can be safely torn down--after there are no
2111  * more in-flight requests to the parent image.  When the last
2112  * reference is dropped, cleaning them up is safe.
2113  */
2114 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
2115 {
2116         int counter;
2117
2118         if (!rbd_dev->parent_spec)
2119                 return;
2120
2121         counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
2122         if (counter > 0)
2123                 return;
2124
2125         /* Last reference; clean up parent data structures */
2126
2127         if (!counter)
2128                 rbd_dev_unparent(rbd_dev);
2129         else
2130                 rbd_warn(rbd_dev, "parent reference underflow");
2131 }
2132
2133 /*
2134  * If an image has a non-zero parent overlap, get a reference to its
2135  * parent.
2136  *
2137  * Returns true if the rbd device has a parent with a non-zero
2138  * overlap and a reference for it was successfully taken, or
2139  * false otherwise.
2140  */
2141 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
2142 {
2143         int counter = 0;
2144
2145         if (!rbd_dev->parent_spec)
2146                 return false;
2147
2148         down_read(&rbd_dev->header_rwsem);
2149         if (rbd_dev->parent_overlap)
2150                 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
2151         up_read(&rbd_dev->header_rwsem);
2152
2153         if (counter < 0)
2154                 rbd_warn(rbd_dev, "parent reference overflow");
2155
2156         return counter > 0;
2157 }
2158
2159 /*
2160  * Caller is responsible for filling in the list of object requests
2161  * that comprises the image request, and the Linux request pointer
2162  * (if there is one).
2163  */
2164 static struct rbd_img_request *rbd_img_request_create(
2165                                         struct rbd_device *rbd_dev,
2166                                         u64 offset, u64 length,
2167                                         enum obj_operation_type op_type,
2168                                         struct ceph_snap_context *snapc)
2169 {
2170         struct rbd_img_request *img_request;
2171
2172         img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_NOIO);
2173         if (!img_request)
2174                 return NULL;
2175
2176         img_request->rq = NULL;
2177         img_request->rbd_dev = rbd_dev;
2178         img_request->offset = offset;
2179         img_request->length = length;
2180         img_request->flags = 0;
2181         if (op_type == OBJ_OP_DISCARD) {
2182                 img_request_discard_set(img_request);
2183                 img_request->snapc = snapc;
2184         } else if (op_type == OBJ_OP_WRITE) {
2185                 img_request_write_set(img_request);
2186                 img_request->snapc = snapc;
2187         } else {
2188                 img_request->snap_id = rbd_dev->spec->snap_id;
2189         }
2190         if (rbd_dev_parent_get(rbd_dev))
2191                 img_request_layered_set(img_request);
2192         spin_lock_init(&img_request->completion_lock);
2193         img_request->next_completion = 0;
2194         img_request->callback = NULL;
2195         img_request->result = 0;
2196         img_request->obj_request_count = 0;
2197         INIT_LIST_HEAD(&img_request->obj_requests);
2198         kref_init(&img_request->kref);
2199
2200         dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2201                 obj_op_name(op_type), offset, length, img_request);
2202
2203         return img_request;
2204 }
2205
2206 static void rbd_img_request_destroy(struct kref *kref)
2207 {
2208         struct rbd_img_request *img_request;
2209         struct rbd_obj_request *obj_request;
2210         struct rbd_obj_request *next_obj_request;
2211
2212         img_request = container_of(kref, struct rbd_img_request, kref);
2213
2214         dout("%s: img %p\n", __func__, img_request);
2215
2216         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2217                 rbd_img_obj_request_del(img_request, obj_request);
2218         rbd_assert(img_request->obj_request_count == 0);
2219
2220         if (img_request_layered_test(img_request)) {
2221                 img_request_layered_clear(img_request);
2222                 rbd_dev_parent_put(img_request->rbd_dev);
2223         }
2224
2225         if (img_request_write_test(img_request) ||
2226                 img_request_discard_test(img_request))
2227                 ceph_put_snap_context(img_request->snapc);
2228
2229         kmem_cache_free(rbd_img_request_cache, img_request);
2230 }
2231
2232 static struct rbd_img_request *rbd_parent_request_create(
2233                                         struct rbd_obj_request *obj_request,
2234                                         u64 img_offset, u64 length)
2235 {
2236         struct rbd_img_request *parent_request;
2237         struct rbd_device *rbd_dev;
2238
2239         rbd_assert(obj_request->img_request);
2240         rbd_dev = obj_request->img_request->rbd_dev;
2241
2242         parent_request = rbd_img_request_create(rbd_dev->parent, img_offset,
2243                                                 length, OBJ_OP_READ, NULL);
2244         if (!parent_request)
2245                 return NULL;
2246
2247         img_request_child_set(parent_request);
2248         rbd_obj_request_get(obj_request);
2249         parent_request->obj_request = obj_request;
2250
2251         return parent_request;
2252 }
2253
2254 static void rbd_parent_request_destroy(struct kref *kref)
2255 {
2256         struct rbd_img_request *parent_request;
2257         struct rbd_obj_request *orig_request;
2258
2259         parent_request = container_of(kref, struct rbd_img_request, kref);
2260         orig_request = parent_request->obj_request;
2261
2262         parent_request->obj_request = NULL;
2263         rbd_obj_request_put(orig_request);
2264         img_request_child_clear(parent_request);
2265
2266         rbd_img_request_destroy(kref);
2267 }
2268
2269 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2270 {
2271         struct rbd_img_request *img_request;
2272         unsigned int xferred;
2273         int result;
2274         bool more;
2275
2276         rbd_assert(obj_request_img_data_test(obj_request));
2277         img_request = obj_request->img_request;
2278
2279         rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2280         xferred = (unsigned int)obj_request->xferred;
2281         result = obj_request->result;
2282         if (result) {
2283                 struct rbd_device *rbd_dev = img_request->rbd_dev;
2284                 enum obj_operation_type op_type;
2285
2286                 if (img_request_discard_test(img_request))
2287                         op_type = OBJ_OP_DISCARD;
2288                 else if (img_request_write_test(img_request))
2289                         op_type = OBJ_OP_WRITE;
2290                 else
2291                         op_type = OBJ_OP_READ;
2292
2293                 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)",
2294                         obj_op_name(op_type), obj_request->length,
2295                         obj_request->img_offset, obj_request->offset);
2296                 rbd_warn(rbd_dev, "  result %d xferred %x",
2297                         result, xferred);
2298                 if (!img_request->result)
2299                         img_request->result = result;
2300                 /*
2301                  * Need to end I/O on the entire obj_request worth of
2302                  * bytes in case of error.
2303                  */
2304                 xferred = obj_request->length;
2305         }
2306
2307         /* Image object requests don't own their page array */
2308
2309         if (obj_request->type == OBJ_REQUEST_PAGES) {
2310                 obj_request->pages = NULL;
2311                 obj_request->page_count = 0;
2312         }
2313
2314         if (img_request_child_test(img_request)) {
2315                 rbd_assert(img_request->obj_request != NULL);
2316                 more = obj_request->which < img_request->obj_request_count - 1;
2317         } else {
2318                 rbd_assert(img_request->rq != NULL);
2319
2320                 more = blk_update_request(img_request->rq, result, xferred);
2321                 if (!more)
2322                         __blk_mq_end_request(img_request->rq, result);
2323         }
2324
2325         return more;
2326 }
2327
2328 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2329 {
2330         struct rbd_img_request *img_request;
2331         u32 which = obj_request->which;
2332         bool more = true;
2333
2334         rbd_assert(obj_request_img_data_test(obj_request));
2335         img_request = obj_request->img_request;
2336
2337         dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2338         rbd_assert(img_request != NULL);
2339         rbd_assert(img_request->obj_request_count > 0);
2340         rbd_assert(which != BAD_WHICH);
2341         rbd_assert(which < img_request->obj_request_count);
2342
2343         spin_lock_irq(&img_request->completion_lock);
2344         if (which != img_request->next_completion)
2345                 goto out;
2346
2347         for_each_obj_request_from(img_request, obj_request) {
2348                 rbd_assert(more);
2349                 rbd_assert(which < img_request->obj_request_count);
2350
2351                 if (!obj_request_done_test(obj_request))
2352                         break;
2353                 more = rbd_img_obj_end_request(obj_request);
2354                 which++;
2355         }
2356
2357         rbd_assert(more ^ (which == img_request->obj_request_count));
2358         img_request->next_completion = which;
2359 out:
2360         spin_unlock_irq(&img_request->completion_lock);
2361         rbd_img_request_put(img_request);
2362
2363         if (!more)
2364                 rbd_img_request_complete(img_request);
2365 }
2366
2367 /*
2368  * Add individual osd ops to the given ceph_osd_request and prepare
2369  * them for submission. num_ops is the current number of
2370  * osd operations already to the object request.
2371  */
2372 static void rbd_img_obj_request_fill(struct rbd_obj_request *obj_request,
2373                                 struct ceph_osd_request *osd_request,
2374                                 enum obj_operation_type op_type,
2375                                 unsigned int num_ops)
2376 {
2377         struct rbd_img_request *img_request = obj_request->img_request;
2378         struct rbd_device *rbd_dev = img_request->rbd_dev;
2379         u64 object_size = rbd_obj_bytes(&rbd_dev->header);
2380         u64 offset = obj_request->offset;
2381         u64 length = obj_request->length;
2382         u64 img_end;
2383         u16 opcode;
2384
2385         if (op_type == OBJ_OP_DISCARD) {
2386                 if (!offset && length == object_size &&
2387                     (!img_request_layered_test(img_request) ||
2388                      !obj_request_overlaps_parent(obj_request))) {
2389                         opcode = CEPH_OSD_OP_DELETE;
2390                 } else if ((offset + length == object_size)) {
2391                         opcode = CEPH_OSD_OP_TRUNCATE;
2392                 } else {
2393                         down_read(&rbd_dev->header_rwsem);
2394                         img_end = rbd_dev->header.image_size;
2395                         up_read(&rbd_dev->header_rwsem);
2396
2397                         if (obj_request->img_offset + length == img_end)
2398                                 opcode = CEPH_OSD_OP_TRUNCATE;
2399                         else
2400                                 opcode = CEPH_OSD_OP_ZERO;
2401                 }
2402         } else if (op_type == OBJ_OP_WRITE) {
2403                 if (!offset && length == object_size)
2404                         opcode = CEPH_OSD_OP_WRITEFULL;
2405                 else
2406                         opcode = CEPH_OSD_OP_WRITE;
2407                 osd_req_op_alloc_hint_init(osd_request, num_ops,
2408                                         object_size, object_size);
2409                 num_ops++;
2410         } else {
2411                 opcode = CEPH_OSD_OP_READ;
2412         }
2413
2414         if (opcode == CEPH_OSD_OP_DELETE)
2415                 osd_req_op_init(osd_request, num_ops, opcode, 0);
2416         else
2417                 osd_req_op_extent_init(osd_request, num_ops, opcode,
2418                                        offset, length, 0, 0);
2419
2420         if (obj_request->type == OBJ_REQUEST_BIO)
2421                 osd_req_op_extent_osd_data_bio(osd_request, num_ops,
2422                                         obj_request->bio_list, length);
2423         else if (obj_request->type == OBJ_REQUEST_PAGES)
2424                 osd_req_op_extent_osd_data_pages(osd_request, num_ops,
2425                                         obj_request->pages, length,
2426                                         offset & ~PAGE_MASK, false, false);
2427
2428         /* Discards are also writes */
2429         if (op_type == OBJ_OP_WRITE || op_type == OBJ_OP_DISCARD)
2430                 rbd_osd_req_format_write(obj_request);
2431         else
2432                 rbd_osd_req_format_read(obj_request);
2433 }
2434
2435 /*
2436  * Split up an image request into one or more object requests, each
2437  * to a different object.  The "type" parameter indicates whether
2438  * "data_desc" is the pointer to the head of a list of bio
2439  * structures, or the base of a page array.  In either case this
2440  * function assumes data_desc describes memory sufficient to hold
2441  * all data described by the image request.
2442  */
2443 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2444                                         enum obj_request_type type,
2445                                         void *data_desc)
2446 {
2447         struct rbd_device *rbd_dev = img_request->rbd_dev;
2448         struct rbd_obj_request *obj_request = NULL;
2449         struct rbd_obj_request *next_obj_request;
2450         struct bio *bio_list = NULL;
2451         unsigned int bio_offset = 0;
2452         struct page **pages = NULL;
2453         enum obj_operation_type op_type;
2454         u64 img_offset;
2455         u64 resid;
2456
2457         dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2458                 (int)type, data_desc);
2459
2460         img_offset = img_request->offset;
2461         resid = img_request->length;
2462         rbd_assert(resid > 0);
2463         op_type = rbd_img_request_op_type(img_request);
2464
2465         if (type == OBJ_REQUEST_BIO) {
2466                 bio_list = data_desc;
2467                 rbd_assert(img_offset ==
2468                            bio_list->bi_iter.bi_sector << SECTOR_SHIFT);
2469         } else if (type == OBJ_REQUEST_PAGES) {
2470                 pages = data_desc;
2471         }
2472
2473         while (resid) {
2474                 struct ceph_osd_request *osd_req;
2475                 const char *object_name;
2476                 u64 offset;
2477                 u64 length;
2478
2479                 object_name = rbd_segment_name(rbd_dev, img_offset);
2480                 if (!object_name)
2481                         goto out_unwind;
2482                 offset = rbd_segment_offset(rbd_dev, img_offset);
2483                 length = rbd_segment_length(rbd_dev, img_offset, resid);
2484                 obj_request = rbd_obj_request_create(object_name,
2485                                                 offset, length, type);
2486                 /* object request has its own copy of the object name */
2487                 rbd_segment_name_free(object_name);
2488                 if (!obj_request)
2489                         goto out_unwind;
2490
2491                 /*
2492                  * set obj_request->img_request before creating the
2493                  * osd_request so that it gets the right snapc
2494                  */
2495                 rbd_img_obj_request_add(img_request, obj_request);
2496
2497                 if (type == OBJ_REQUEST_BIO) {
2498                         unsigned int clone_size;
2499
2500                         rbd_assert(length <= (u64)UINT_MAX);
2501                         clone_size = (unsigned int)length;
2502                         obj_request->bio_list =
2503                                         bio_chain_clone_range(&bio_list,
2504                                                                 &bio_offset,
2505                                                                 clone_size,
2506                                                                 GFP_NOIO);
2507                         if (!obj_request->bio_list)
2508                                 goto out_unwind;
2509                 } else if (type == OBJ_REQUEST_PAGES) {
2510                         unsigned int page_count;
2511
2512                         obj_request->pages = pages;
2513                         page_count = (u32)calc_pages_for(offset, length);
2514                         obj_request->page_count = page_count;
2515                         if ((offset + length) & ~PAGE_MASK)
2516                                 page_count--;   /* more on last page */
2517                         pages += page_count;
2518                 }
2519
2520                 osd_req = rbd_osd_req_create(rbd_dev, op_type,
2521                                         (op_type == OBJ_OP_WRITE) ? 2 : 1,
2522                                         obj_request);
2523                 if (!osd_req)
2524                         goto out_unwind;
2525
2526                 obj_request->osd_req = osd_req;
2527                 obj_request->callback = rbd_img_obj_callback;
2528                 obj_request->img_offset = img_offset;
2529
2530                 rbd_img_obj_request_fill(obj_request, osd_req, op_type, 0);
2531
2532                 rbd_img_request_get(img_request);
2533
2534                 img_offset += length;
2535                 resid -= length;
2536         }
2537
2538         return 0;
2539
2540 out_unwind:
2541         for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2542                 rbd_img_obj_request_del(img_request, obj_request);
2543
2544         return -ENOMEM;
2545 }
2546
2547 static void
2548 rbd_osd_copyup_callback(struct rbd_obj_request *obj_request)
2549 {
2550         struct rbd_img_request *img_request;
2551         struct rbd_device *rbd_dev;
2552         struct page **pages;
2553         u32 page_count;
2554
2555         dout("%s: obj %p\n", __func__, obj_request);
2556
2557         rbd_assert(obj_request->type == OBJ_REQUEST_BIO ||
2558                 obj_request->type == OBJ_REQUEST_NODATA);
2559         rbd_assert(obj_request_img_data_test(obj_request));
2560         img_request = obj_request->img_request;
2561         rbd_assert(img_request);
2562
2563         rbd_dev = img_request->rbd_dev;
2564         rbd_assert(rbd_dev);
2565
2566         pages = obj_request->copyup_pages;
2567         rbd_assert(pages != NULL);
2568         obj_request->copyup_pages = NULL;
2569         page_count = obj_request->copyup_page_count;
2570         rbd_assert(page_count);
2571         obj_request->copyup_page_count = 0;
2572         ceph_release_page_vector(pages, page_count);
2573
2574         /*
2575          * We want the transfer count to reflect the size of the
2576          * original write request.  There is no such thing as a
2577          * successful short write, so if the request was successful
2578          * we can just set it to the originally-requested length.
2579          */
2580         if (!obj_request->result)
2581                 obj_request->xferred = obj_request->length;
2582
2583         obj_request_done_set(obj_request);
2584 }
2585
2586 static void
2587 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2588 {
2589         struct rbd_obj_request *orig_request;
2590         struct ceph_osd_request *osd_req;
2591         struct ceph_osd_client *osdc;
2592         struct rbd_device *rbd_dev;
2593         struct page **pages;
2594         enum obj_operation_type op_type;
2595         u32 page_count;
2596         int img_result;
2597         u64 parent_length;
2598
2599         rbd_assert(img_request_child_test(img_request));
2600
2601         /* First get what we need from the image request */
2602
2603         pages = img_request->copyup_pages;
2604         rbd_assert(pages != NULL);
2605         img_request->copyup_pages = NULL;
2606         page_count = img_request->copyup_page_count;
2607         rbd_assert(page_count);
2608         img_request->copyup_page_count = 0;
2609
2610         orig_request = img_request->obj_request;
2611         rbd_assert(orig_request != NULL);
2612         rbd_assert(obj_request_type_valid(orig_request->type));
2613         img_result = img_request->result;
2614         parent_length = img_request->length;
2615         rbd_assert(parent_length == img_request->xferred);
2616         rbd_img_request_put(img_request);
2617
2618         rbd_assert(orig_request->img_request);
2619         rbd_dev = orig_request->img_request->rbd_dev;
2620         rbd_assert(rbd_dev);
2621
2622         /*
2623          * If the overlap has become 0 (most likely because the
2624          * image has been flattened) we need to free the pages
2625          * and re-submit the original write request.
2626          */
2627         if (!rbd_dev->parent_overlap) {
2628                 struct ceph_osd_client *osdc;
2629
2630                 ceph_release_page_vector(pages, page_count);
2631                 osdc = &rbd_dev->rbd_client->client->osdc;
2632                 img_result = rbd_obj_request_submit(osdc, orig_request);
2633                 if (!img_result)
2634                         return;
2635         }
2636
2637         if (img_result)
2638                 goto out_err;
2639
2640         /*
2641          * The original osd request is of no use to use any more.
2642          * We need a new one that can hold the three ops in a copyup
2643          * request.  Allocate the new copyup osd request for the
2644          * original request, and release the old one.
2645          */
2646         img_result = -ENOMEM;
2647         osd_req = rbd_osd_req_create_copyup(orig_request);
2648         if (!osd_req)
2649                 goto out_err;
2650         rbd_osd_req_destroy(orig_request->osd_req);
2651         orig_request->osd_req = osd_req;
2652         orig_request->copyup_pages = pages;
2653         orig_request->copyup_page_count = page_count;
2654
2655         /* Initialize the copyup op */
2656
2657         osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2658         osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2659                                                 false, false);
2660
2661         /* Add the other op(s) */
2662
2663         op_type = rbd_img_request_op_type(orig_request->img_request);
2664         rbd_img_obj_request_fill(orig_request, osd_req, op_type, 1);
2665
2666         /* All set, send it off. */
2667
2668         osdc = &rbd_dev->rbd_client->client->osdc;
2669         img_result = rbd_obj_request_submit(osdc, orig_request);
2670         if (!img_result)
2671                 return;
2672 out_err:
2673         /* Record the error code and complete the request */
2674
2675         orig_request->result = img_result;
2676         orig_request->xferred = 0;
2677         obj_request_done_set(orig_request);
2678         rbd_obj_request_complete(orig_request);
2679 }
2680
2681 /*
2682  * Read from the parent image the range of data that covers the
2683  * entire target of the given object request.  This is used for
2684  * satisfying a layered image write request when the target of an
2685  * object request from the image request does not exist.
2686  *
2687  * A page array big enough to hold the returned data is allocated
2688  * and supplied to rbd_img_request_fill() as the "data descriptor."
2689  * When the read completes, this page array will be transferred to
2690  * the original object request for the copyup operation.
2691  *
2692  * If an error occurs, record it as the result of the original
2693  * object request and mark it done so it gets completed.
2694  */
2695 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2696 {
2697         struct rbd_img_request *img_request = NULL;
2698         struct rbd_img_request *parent_request = NULL;
2699         struct rbd_device *rbd_dev;
2700         u64 img_offset;
2701         u64 length;
2702         struct page **pages = NULL;
2703         u32 page_count;
2704         int result;
2705
2706         rbd_assert(obj_request_img_data_test(obj_request));
2707         rbd_assert(obj_request_type_valid(obj_request->type));
2708
2709         img_request = obj_request->img_request;
2710         rbd_assert(img_request != NULL);
2711         rbd_dev = img_request->rbd_dev;
2712         rbd_assert(rbd_dev->parent != NULL);
2713
2714         /*
2715          * Determine the byte range covered by the object in the
2716          * child image to which the original request was to be sent.
2717          */
2718         img_offset = obj_request->img_offset - obj_request->offset;
2719         length = (u64)1 << rbd_dev->header.obj_order;
2720
2721         /*
2722          * There is no defined parent data beyond the parent
2723          * overlap, so limit what we read at that boundary if
2724          * necessary.
2725          */
2726         if (img_offset + length > rbd_dev->parent_overlap) {
2727                 rbd_assert(img_offset < rbd_dev->parent_overlap);
2728                 length = rbd_dev->parent_overlap - img_offset;
2729         }
2730
2731         /*
2732          * Allocate a page array big enough to receive the data read
2733          * from the parent.
2734          */
2735         page_count = (u32)calc_pages_for(0, length);
2736         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2737         if (IS_ERR(pages)) {
2738                 result = PTR_ERR(pages);
2739                 pages = NULL;
2740                 goto out_err;
2741         }
2742
2743         result = -ENOMEM;
2744         parent_request = rbd_parent_request_create(obj_request,
2745                                                 img_offset, length);
2746         if (!parent_request)
2747                 goto out_err;
2748
2749         result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2750         if (result)
2751                 goto out_err;
2752         parent_request->copyup_pages = pages;
2753         parent_request->copyup_page_count = page_count;
2754
2755         parent_request->callback = rbd_img_obj_parent_read_full_callback;
2756         result = rbd_img_request_submit(parent_request);
2757         if (!result)
2758                 return 0;
2759
2760         parent_request->copyup_pages = NULL;
2761         parent_request->copyup_page_count = 0;
2762         parent_request->obj_request = NULL;
2763         rbd_obj_request_put(obj_request);
2764 out_err:
2765         if (pages)
2766                 ceph_release_page_vector(pages, page_count);
2767         if (parent_request)
2768                 rbd_img_request_put(parent_request);
2769         obj_request->result = result;
2770         obj_request->xferred = 0;
2771         obj_request_done_set(obj_request);
2772
2773         return result;
2774 }
2775
2776 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2777 {
2778         struct rbd_obj_request *orig_request;
2779         struct rbd_device *rbd_dev;
2780         int result;
2781
2782         rbd_assert(!obj_request_img_data_test(obj_request));
2783
2784         /*
2785          * All we need from the object request is the original
2786          * request and the result of the STAT op.  Grab those, then
2787          * we're done with the request.
2788          */
2789         orig_request = obj_request->obj_request;
2790         obj_request->obj_request = NULL;
2791         rbd_obj_request_put(orig_request);
2792         rbd_assert(orig_request);
2793         rbd_assert(orig_request->img_request);
2794
2795         result = obj_request->result;
2796         obj_request->result = 0;
2797
2798         dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2799                 obj_request, orig_request, result,
2800                 obj_request->xferred, obj_request->length);
2801         rbd_obj_request_put(obj_request);
2802
2803         /*
2804          * If the overlap has become 0 (most likely because the
2805          * image has been flattened) we need to free the pages
2806          * and re-submit the original write request.
2807          */
2808         rbd_dev = orig_request->img_request->rbd_dev;
2809         if (!rbd_dev->parent_overlap) {
2810                 struct ceph_osd_client *osdc;
2811
2812                 osdc = &rbd_dev->rbd_client->client->osdc;
2813                 result = rbd_obj_request_submit(osdc, orig_request);
2814                 if (!result)
2815                         return;
2816         }
2817
2818         /*
2819          * Our only purpose here is to determine whether the object
2820          * exists, and we don't want to treat the non-existence as
2821          * an error.  If something else comes back, transfer the
2822          * error to the original request and complete it now.
2823          */
2824         if (!result) {
2825                 obj_request_existence_set(orig_request, true);
2826         } else if (result == -ENOENT) {
2827                 obj_request_existence_set(orig_request, false);
2828         } else if (result) {
2829                 orig_request->result = result;
2830                 goto out;
2831         }
2832
2833         /*
2834          * Resubmit the original request now that we have recorded
2835          * whether the target object exists.
2836          */
2837         orig_request->result = rbd_img_obj_request_submit(orig_request);
2838 out:
2839         if (orig_request->result)
2840                 rbd_obj_request_complete(orig_request);
2841 }
2842
2843 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2844 {
2845         struct rbd_obj_request *stat_request;
2846         struct rbd_device *rbd_dev;
2847         struct ceph_osd_client *osdc;
2848         struct page **pages = NULL;
2849         u32 page_count;
2850         size_t size;
2851         int ret;
2852
2853         /*
2854          * The response data for a STAT call consists of:
2855          *     le64 length;
2856          *     struct {
2857          *         le32 tv_sec;
2858          *         le32 tv_nsec;
2859          *     } mtime;
2860          */
2861         size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2862         page_count = (u32)calc_pages_for(0, size);
2863         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2864         if (IS_ERR(pages))
2865                 return PTR_ERR(pages);
2866
2867         ret = -ENOMEM;
2868         stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2869                                                         OBJ_REQUEST_PAGES);
2870         if (!stat_request)
2871                 goto out;
2872
2873         rbd_obj_request_get(obj_request);
2874         stat_request->obj_request = obj_request;
2875         stat_request->pages = pages;
2876         stat_request->page_count = page_count;
2877
2878         rbd_assert(obj_request->img_request);
2879         rbd_dev = obj_request->img_request->rbd_dev;
2880         stat_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
2881                                                    stat_request);
2882         if (!stat_request->osd_req)
2883                 goto out;
2884         stat_request->callback = rbd_img_obj_exists_callback;
2885
2886         osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT, 0);
2887         osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2888                                         false, false);
2889         rbd_osd_req_format_read(stat_request);
2890
2891         osdc = &rbd_dev->rbd_client->client->osdc;
2892         ret = rbd_obj_request_submit(osdc, stat_request);
2893 out:
2894         if (ret)
2895                 rbd_obj_request_put(obj_request);
2896
2897         return ret;
2898 }
2899
2900 static bool img_obj_request_simple(struct rbd_obj_request *obj_request)
2901 {
2902         struct rbd_img_request *img_request;
2903         struct rbd_device *rbd_dev;
2904
2905         rbd_assert(obj_request_img_data_test(obj_request));
2906
2907         img_request = obj_request->img_request;
2908         rbd_assert(img_request);
2909         rbd_dev = img_request->rbd_dev;
2910
2911         /* Reads */
2912         if (!img_request_write_test(img_request) &&
2913             !img_request_discard_test(img_request))
2914                 return true;
2915
2916         /* Non-layered writes */
2917         if (!img_request_layered_test(img_request))
2918                 return true;
2919
2920         /*
2921          * Layered writes outside of the parent overlap range don't
2922          * share any data with the parent.
2923          */
2924         if (!obj_request_overlaps_parent(obj_request))
2925                 return true;
2926
2927         /*
2928          * Entire-object layered writes - we will overwrite whatever
2929          * parent data there is anyway.
2930          */
2931         if (!obj_request->offset &&
2932             obj_request->length == rbd_obj_bytes(&rbd_dev->header))
2933                 return true;
2934
2935         /*
2936          * If the object is known to already exist, its parent data has
2937          * already been copied.
2938          */
2939         if (obj_request_known_test(obj_request) &&
2940             obj_request_exists_test(obj_request))
2941                 return true;
2942
2943         return false;
2944 }
2945
2946 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2947 {
2948         if (img_obj_request_simple(obj_request)) {
2949                 struct rbd_device *rbd_dev;
2950                 struct ceph_osd_client *osdc;
2951
2952                 rbd_dev = obj_request->img_request->rbd_dev;
2953                 osdc = &rbd_dev->rbd_client->client->osdc;
2954
2955                 return rbd_obj_request_submit(osdc, obj_request);
2956         }
2957
2958         /*
2959          * It's a layered write.  The target object might exist but
2960          * we may not know that yet.  If we know it doesn't exist,
2961          * start by reading the data for the full target object from
2962          * the parent so we can use it for a copyup to the target.
2963          */
2964         if (obj_request_known_test(obj_request))
2965                 return rbd_img_obj_parent_read_full(obj_request);
2966
2967         /* We don't know whether the target exists.  Go find out. */
2968
2969         return rbd_img_obj_exists_submit(obj_request);
2970 }
2971
2972 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2973 {
2974         struct rbd_obj_request *obj_request;
2975         struct rbd_obj_request *next_obj_request;
2976
2977         dout("%s: img %p\n", __func__, img_request);
2978         for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2979                 int ret;
2980
2981                 ret = rbd_img_obj_request_submit(obj_request);
2982                 if (ret)
2983                         return ret;
2984         }
2985
2986         return 0;
2987 }
2988
2989 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2990 {
2991         struct rbd_obj_request *obj_request;
2992         struct rbd_device *rbd_dev;
2993         u64 obj_end;
2994         u64 img_xferred;
2995         int img_result;
2996
2997         rbd_assert(img_request_child_test(img_request));
2998
2999         /* First get what we need from the image request and release it */
3000
3001         obj_request = img_request->obj_request;
3002         img_xferred = img_request->xferred;
3003         img_result = img_request->result;
3004         rbd_img_request_put(img_request);
3005
3006         /*
3007          * If the overlap has become 0 (most likely because the
3008          * image has been flattened) we need to re-submit the
3009          * original request.
3010          */
3011         rbd_assert(obj_request);
3012         rbd_assert(obj_request->img_request);
3013         rbd_dev = obj_request->img_request->rbd_dev;
3014         if (!rbd_dev->parent_overlap) {
3015                 struct ceph_osd_client *osdc;
3016
3017                 osdc = &rbd_dev->rbd_client->client->osdc;
3018                 img_result = rbd_obj_request_submit(osdc, obj_request);
3019                 if (!img_result)
3020                         return;
3021         }
3022
3023         obj_request->result = img_result;
3024         if (obj_request->result)
3025                 goto out;
3026
3027         /*
3028          * We need to zero anything beyond the parent overlap
3029          * boundary.  Since rbd_img_obj_request_read_callback()
3030          * will zero anything beyond the end of a short read, an
3031          * easy way to do this is to pretend the data from the
3032          * parent came up short--ending at the overlap boundary.
3033          */
3034         rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
3035         obj_end = obj_request->img_offset + obj_request->length;
3036         if (obj_end > rbd_dev->parent_overlap) {
3037                 u64 xferred = 0;
3038
3039                 if (obj_request->img_offset < rbd_dev->parent_overlap)
3040                         xferred = rbd_dev->parent_overlap -
3041                                         obj_request->img_offset;
3042
3043                 obj_request->xferred = min(img_xferred, xferred);
3044         } else {
3045                 obj_request->xferred = img_xferred;
3046         }
3047 out:
3048         rbd_img_obj_request_read_callback(obj_request);
3049         rbd_obj_request_complete(obj_request);
3050 }
3051
3052 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
3053 {
3054         struct rbd_img_request *img_request;
3055         int result;
3056
3057         rbd_assert(obj_request_img_data_test(obj_request));
3058         rbd_assert(obj_request->img_request != NULL);
3059         rbd_assert(obj_request->result == (s32) -ENOENT);
3060         rbd_assert(obj_request_type_valid(obj_request->type));
3061
3062         /* rbd_read_finish(obj_request, obj_request->length); */
3063         img_request = rbd_parent_request_create(obj_request,
3064                                                 obj_request->img_offset,
3065                                                 obj_request->length);
3066         result = -ENOMEM;
3067         if (!img_request)
3068                 goto out_err;
3069
3070         if (obj_request->type == OBJ_REQUEST_BIO)
3071                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3072                                                 obj_request->bio_list);
3073         else
3074                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
3075                                                 obj_request->pages);
3076         if (result)
3077                 goto out_err;
3078
3079         img_request->callback = rbd_img_parent_read_callback;
3080         result = rbd_img_request_submit(img_request);
3081         if (result)
3082                 goto out_err;
3083
3084         return;
3085 out_err:
3086         if (img_request)
3087                 rbd_img_request_put(img_request);
3088         obj_request->result = result;
3089         obj_request->xferred = 0;
3090         obj_request_done_set(obj_request);
3091 }
3092
3093 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
3094 {
3095         struct rbd_obj_request *obj_request;
3096         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3097         int ret;
3098
3099         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3100                                                         OBJ_REQUEST_NODATA);
3101         if (!obj_request)
3102                 return -ENOMEM;
3103
3104         ret = -ENOMEM;
3105         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3106                                                   obj_request);
3107         if (!obj_request->osd_req)
3108                 goto out;
3109
3110         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
3111                                         notify_id, 0, 0);
3112         rbd_osd_req_format_read(obj_request);
3113
3114         ret = rbd_obj_request_submit(osdc, obj_request);
3115         if (ret)
3116                 goto out;
3117         ret = rbd_obj_request_wait(obj_request);
3118 out:
3119         rbd_obj_request_put(obj_request);
3120
3121         return ret;
3122 }
3123
3124 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
3125 {
3126         struct rbd_device *rbd_dev = (struct rbd_device *)data;
3127         int ret;
3128
3129         dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
3130                 rbd_dev->header_name, (unsigned long long)notify_id,
3131                 (unsigned int)opcode);
3132
3133         /*
3134          * Until adequate refresh error handling is in place, there is
3135          * not much we can do here, except warn.
3136          *
3137          * See http://tracker.ceph.com/issues/5040
3138          */
3139         ret = rbd_dev_refresh(rbd_dev);
3140         if (ret)
3141                 rbd_warn(rbd_dev, "refresh failed: %d", ret);
3142
3143         ret = rbd_obj_notify_ack_sync(rbd_dev, notify_id);
3144         if (ret)
3145                 rbd_warn(rbd_dev, "notify_ack ret %d", ret);
3146 }
3147
3148 /*
3149  * Send a (un)watch request and wait for the ack.  Return a request
3150  * with a ref held on success or error.
3151  */
3152 static struct rbd_obj_request *rbd_obj_watch_request_helper(
3153                                                 struct rbd_device *rbd_dev,
3154                                                 bool watch)
3155 {
3156         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3157         struct ceph_options *opts = osdc->client->options;
3158         struct rbd_obj_request *obj_request;
3159         int ret;
3160
3161         obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
3162                                              OBJ_REQUEST_NODATA);
3163         if (!obj_request)
3164                 return ERR_PTR(-ENOMEM);
3165
3166         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_WRITE, 1,
3167                                                   obj_request);
3168         if (!obj_request->osd_req) {
3169                 ret = -ENOMEM;
3170                 goto out;
3171         }
3172
3173         osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
3174                               rbd_dev->watch_event->cookie, 0, watch);
3175         rbd_osd_req_format_write(obj_request);
3176
3177         if (watch)
3178                 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
3179
3180         ret = rbd_obj_request_submit(osdc, obj_request);
3181         if (ret)
3182                 goto out;
3183
3184         ret = rbd_obj_request_wait_timeout(obj_request, opts->mount_timeout);
3185         if (ret)
3186                 goto out;
3187
3188         ret = obj_request->result;
3189         if (ret) {
3190                 if (watch)
3191                         rbd_obj_request_end(obj_request);
3192                 goto out;
3193         }
3194
3195         return obj_request;
3196
3197 out:
3198         rbd_obj_request_put(obj_request);
3199         return ERR_PTR(ret);
3200 }
3201
3202 /*
3203  * Initiate a watch request, synchronously.
3204  */
3205 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev)
3206 {
3207         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3208         struct rbd_obj_request *obj_request;
3209         int ret;
3210
3211         rbd_assert(!rbd_dev->watch_event);
3212         rbd_assert(!rbd_dev->watch_request);
3213
3214         ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
3215                                      &rbd_dev->watch_event);
3216         if (ret < 0)
3217                 return ret;
3218
3219         obj_request = rbd_obj_watch_request_helper(rbd_dev, true);
3220         if (IS_ERR(obj_request)) {
3221                 ceph_osdc_cancel_event(rbd_dev->watch_event);
3222                 rbd_dev->watch_event = NULL;
3223                 return PTR_ERR(obj_request);
3224         }
3225
3226         /*
3227          * A watch request is set to linger, so the underlying osd
3228          * request won't go away until we unregister it.  We retain
3229          * a pointer to the object request during that time (in
3230          * rbd_dev->watch_request), so we'll keep a reference to it.
3231          * We'll drop that reference after we've unregistered it in
3232          * rbd_dev_header_unwatch_sync().
3233          */
3234         rbd_dev->watch_request = obj_request;
3235
3236         return 0;
3237 }
3238
3239 /*
3240  * Tear down a watch request, synchronously.
3241  */
3242 static void rbd_dev_header_unwatch_sync(struct rbd_device *rbd_dev)
3243 {
3244         struct rbd_obj_request *obj_request;
3245
3246         rbd_assert(rbd_dev->watch_event);
3247         rbd_assert(rbd_dev->watch_request);
3248
3249         rbd_obj_request_end(rbd_dev->watch_request);
3250         rbd_obj_request_put(rbd_dev->watch_request);
3251         rbd_dev->watch_request = NULL;
3252
3253         obj_request = rbd_obj_watch_request_helper(rbd_dev, false);
3254         if (!IS_ERR(obj_request))
3255                 rbd_obj_request_put(obj_request);
3256         else
3257                 rbd_warn(rbd_dev, "unable to tear down watch request (%ld)",
3258                          PTR_ERR(obj_request));
3259
3260         ceph_osdc_cancel_event(rbd_dev->watch_event);
3261         rbd_dev->watch_event = NULL;
3262
3263         dout("%s flushing notifies\n", __func__);
3264         ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
3265 }
3266
3267 /*
3268  * Synchronous osd object method call.  Returns the number of bytes
3269  * returned in the outbound buffer, or a negative error code.
3270  */
3271 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
3272                              const char *object_name,
3273                              const char *class_name,
3274                              const char *method_name,
3275                              const void *outbound,
3276                              size_t outbound_size,
3277                              void *inbound,
3278                              size_t inbound_size)
3279 {
3280         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3281         struct rbd_obj_request *obj_request;
3282         struct page **pages;
3283         u32 page_count;
3284         int ret;
3285
3286         /*
3287          * Method calls are ultimately read operations.  The result
3288          * should placed into the inbound buffer provided.  They
3289          * also supply outbound data--parameters for the object
3290          * method.  Currently if this is present it will be a
3291          * snapshot id.
3292          */
3293         page_count = (u32)calc_pages_for(0, inbound_size);
3294         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3295         if (IS_ERR(pages))
3296                 return PTR_ERR(pages);
3297
3298         ret = -ENOMEM;
3299         obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
3300                                                         OBJ_REQUEST_PAGES);
3301         if (!obj_request)
3302                 goto out;
3303
3304         obj_request->pages = pages;
3305         obj_request->page_count = page_count;
3306
3307         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3308                                                   obj_request);
3309         if (!obj_request->osd_req)
3310                 goto out;
3311
3312         osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3313                                         class_name, method_name);
3314         if (outbound_size) {
3315                 struct ceph_pagelist *pagelist;
3316
3317                 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3318                 if (!pagelist)
3319                         goto out;
3320
3321                 ceph_pagelist_init(pagelist);
3322                 ceph_pagelist_append(pagelist, outbound, outbound_size);
3323                 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3324                                                 pagelist);
3325         }
3326         osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3327                                         obj_request->pages, inbound_size,
3328                                         0, false, false);
3329         rbd_osd_req_format_read(obj_request);
3330
3331         ret = rbd_obj_request_submit(osdc, obj_request);
3332         if (ret)
3333                 goto out;
3334         ret = rbd_obj_request_wait(obj_request);
3335         if (ret)
3336                 goto out;
3337
3338         ret = obj_request->result;
3339         if (ret < 0)
3340                 goto out;
3341
3342         rbd_assert(obj_request->xferred < (u64)INT_MAX);
3343         ret = (int)obj_request->xferred;
3344         ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3345 out:
3346         if (obj_request)
3347                 rbd_obj_request_put(obj_request);
3348         else
3349                 ceph_release_page_vector(pages, page_count);
3350
3351         return ret;
3352 }
3353
3354 static void rbd_queue_workfn(struct work_struct *work)
3355 {
3356         struct request *rq = blk_mq_rq_from_pdu(work);
3357         struct rbd_device *rbd_dev = rq->q->queuedata;
3358         struct rbd_img_request *img_request;
3359         struct ceph_snap_context *snapc = NULL;
3360         u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
3361         u64 length = blk_rq_bytes(rq);
3362         enum obj_operation_type op_type;
3363         u64 mapping_size;
3364         int result;
3365
3366         if (rq->cmd_type != REQ_TYPE_FS) {
3367                 dout("%s: non-fs request type %d\n", __func__,
3368                         (int) rq->cmd_type);
3369                 result = -EIO;
3370                 goto err;
3371         }
3372
3373         if (rq->cmd_flags & REQ_DISCARD)
3374                 op_type = OBJ_OP_DISCARD;
3375         else if (rq->cmd_flags & REQ_WRITE)
3376                 op_type = OBJ_OP_WRITE;
3377         else
3378                 op_type = OBJ_OP_READ;
3379
3380         /* Ignore/skip any zero-length requests */
3381
3382         if (!length) {
3383                 dout("%s: zero-length request\n", __func__);
3384                 result = 0;
3385                 goto err_rq;
3386         }
3387
3388         /* Only reads are allowed to a read-only device */
3389
3390         if (op_type != OBJ_OP_READ) {
3391                 if (rbd_dev->mapping.read_only) {
3392                         result = -EROFS;
3393                         goto err_rq;
3394                 }
3395                 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3396         }
3397
3398         /*
3399          * Quit early if the mapped snapshot no longer exists.  It's
3400          * still possible the snapshot will have disappeared by the
3401          * time our request arrives at the osd, but there's no sense in
3402          * sending it if we already know.
3403          */
3404         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3405                 dout("request for non-existent snapshot");
3406                 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3407                 result = -ENXIO;
3408                 goto err_rq;
3409         }
3410
3411         if (offset && length > U64_MAX - offset + 1) {
3412                 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
3413                          length);
3414                 result = -EINVAL;
3415                 goto err_rq;    /* Shouldn't happen */
3416         }
3417
3418         blk_mq_start_request(rq);
3419
3420         down_read(&rbd_dev->header_rwsem);
3421         mapping_size = rbd_dev->mapping.size;
3422         if (op_type != OBJ_OP_READ) {
3423                 snapc = rbd_dev->header.snapc;
3424                 ceph_get_snap_context(snapc);
3425         }
3426         up_read(&rbd_dev->header_rwsem);
3427
3428         if (offset + length > mapping_size) {
3429                 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
3430                          length, mapping_size);
3431                 result = -EIO;
3432                 goto err_rq;
3433         }
3434
3435         img_request = rbd_img_request_create(rbd_dev, offset, length, op_type,
3436                                              snapc);
3437         if (!img_request) {
3438                 result = -ENOMEM;
3439                 goto err_rq;
3440         }
3441         img_request->rq = rq;
3442         snapc = NULL; /* img_request consumes a ref */
3443
3444         if (op_type == OBJ_OP_DISCARD)
3445                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_NODATA,
3446                                               NULL);
3447         else
3448                 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3449                                               rq->bio);
3450         if (result)
3451                 goto err_img_request;
3452
3453         result = rbd_img_request_submit(img_request);
3454         if (result)
3455                 goto err_img_request;
3456
3457         return;
3458
3459 err_img_request:
3460         rbd_img_request_put(img_request);
3461 err_rq:
3462         if (result)
3463                 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
3464                          obj_op_name(op_type), length, offset, result);
3465         ceph_put_snap_context(snapc);
3466 err:
3467         blk_mq_end_request(rq, result);
3468 }
3469
3470 static int rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
3471                 const struct blk_mq_queue_data *bd)
3472 {
3473         struct request *rq = bd->rq;
3474         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3475
3476         queue_work(rbd_wq, work);
3477         return BLK_MQ_RQ_QUEUE_OK;
3478 }
3479
3480 static void rbd_free_disk(struct rbd_device *rbd_dev)
3481 {
3482         struct gendisk *disk = rbd_dev->disk;
3483
3484         if (!disk)
3485                 return;
3486
3487         rbd_dev->disk = NULL;
3488         if (disk->flags & GENHD_FL_UP) {
3489                 del_gendisk(disk);
3490                 if (disk->queue)
3491                         blk_cleanup_queue(disk->queue);
3492                 blk_mq_free_tag_set(&rbd_dev->tag_set);
3493         }
3494         put_disk(disk);
3495 }
3496
3497 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3498                                 const char *object_name,
3499                                 u64 offset, u64 length, void *buf)
3500
3501 {
3502         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3503         struct rbd_obj_request *obj_request;
3504         struct page **pages = NULL;
3505         u32 page_count;
3506         size_t size;
3507         int ret;
3508
3509         page_count = (u32) calc_pages_for(offset, length);
3510         pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3511         if (IS_ERR(pages))
3512                 return PTR_ERR(pages);
3513
3514         ret = -ENOMEM;
3515         obj_request = rbd_obj_request_create(object_name, offset, length,
3516                                                         OBJ_REQUEST_PAGES);
3517         if (!obj_request)
3518                 goto out;
3519
3520         obj_request->pages = pages;
3521         obj_request->page_count = page_count;
3522
3523         obj_request->osd_req = rbd_osd_req_create(rbd_dev, OBJ_OP_READ, 1,
3524                                                   obj_request);
3525         if (!obj_request->osd_req)
3526                 goto out;
3527
3528         osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3529                                         offset, length, 0, 0);
3530         osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3531                                         obj_request->pages,
3532                                         obj_request->length,
3533                                         obj_request->offset & ~PAGE_MASK,
3534                                         false, false);
3535         rbd_osd_req_format_read(obj_request);
3536
3537         ret = rbd_obj_request_submit(osdc, obj_request);
3538         if (ret)
3539                 goto out;
3540         ret = rbd_obj_request_wait(obj_request);
3541         if (ret)
3542                 goto out;
3543
3544         ret = obj_request->result;
3545         if (ret < 0)
3546                 goto out;
3547
3548         rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3549         size = (size_t) obj_request->xferred;
3550         ceph_copy_from_page_vector(pages, buf, 0, size);
3551         rbd_assert(size <= (size_t)INT_MAX);
3552         ret = (int)size;
3553 out:
3554         if (obj_request)
3555                 rbd_obj_request_put(obj_request);
3556         else
3557                 ceph_release_page_vector(pages, page_count);
3558
3559         return ret;
3560 }
3561
3562 /*
3563  * Read the complete header for the given rbd device.  On successful
3564  * return, the rbd_dev->header field will contain up-to-date
3565  * information about the image.
3566  */
3567 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3568 {
3569         struct rbd_image_header_ondisk *ondisk = NULL;
3570         u32 snap_count = 0;
3571         u64 names_size = 0;
3572         u32 want_count;
3573         int ret;
3574
3575         /*
3576          * The complete header will include an array of its 64-bit
3577          * snapshot ids, followed by the names of those snapshots as
3578          * a contiguous block of NUL-terminated strings.  Note that
3579          * the number of snapshots could change by the time we read
3580          * it in, in which case we re-read it.
3581          */
3582         do {
3583                 size_t size;
3584
3585                 kfree(ondisk);
3586
3587                 size = sizeof (*ondisk);
3588                 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3589                 size += names_size;
3590                 ondisk = kmalloc(size, GFP_KERNEL);
3591                 if (!ondisk)
3592                         return -ENOMEM;
3593
3594                 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3595                                        0, size, ondisk);
3596                 if (ret < 0)
3597                         goto out;
3598                 if ((size_t)ret < size) {
3599                         ret = -ENXIO;
3600                         rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3601                                 size, ret);
3602                         goto out;
3603                 }
3604                 if (!rbd_dev_ondisk_valid(ondisk)) {
3605                         ret = -ENXIO;
3606                         rbd_warn(rbd_dev, "invalid header");
3607                         goto out;
3608                 }
3609
3610                 names_size = le64_to_cpu(ondisk->snap_names_len);
3611                 want_count = snap_count;
3612                 snap_count = le32_to_cpu(ondisk->snap_count);
3613         } while (snap_count != want_count);
3614
3615         ret = rbd_header_from_disk(rbd_dev, ondisk);
3616 out:
3617         kfree(ondisk);
3618
3619         return ret;
3620 }
3621
3622 /*
3623  * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3624  * has disappeared from the (just updated) snapshot context.
3625  */
3626 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3627 {
3628         u64 snap_id;
3629
3630         if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3631                 return;
3632
3633         snap_id = rbd_dev->spec->snap_id;
3634         if (snap_id == CEPH_NOSNAP)
3635                 return;
3636
3637         if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3638                 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3639 }
3640
3641 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3642 {
3643         sector_t size;
3644
3645         /*
3646          * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
3647          * try to update its size.  If REMOVING is set, updating size
3648          * is just useless work since the device can't be opened.
3649          */
3650         if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
3651             !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
3652                 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3653                 dout("setting size to %llu sectors", (unsigned long long)size);
3654                 set_capacity(rbd_dev->disk, size);
3655                 revalidate_disk(rbd_dev->disk);
3656         }
3657 }
3658
3659 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3660 {
3661         u64 mapping_size;
3662         int ret;
3663
3664         down_write(&rbd_dev->header_rwsem);
3665         mapping_size = rbd_dev->mapping.size;
3666
3667         ret = rbd_dev_header_info(rbd_dev);
3668         if (ret)
3669                 goto out;
3670
3671         /*
3672          * If there is a parent, see if it has disappeared due to the
3673          * mapped image getting flattened.
3674          */
3675         if (rbd_dev->parent) {
3676                 ret = rbd_dev_v2_parent_info(rbd_dev);
3677                 if (ret)
3678                         goto out;
3679         }
3680
3681         if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
3682                 rbd_dev->mapping.size = rbd_dev->header.image_size;
3683         } else {
3684                 /* validate mapped snapshot's EXISTS flag */
3685                 rbd_exists_validate(rbd_dev);
3686         }
3687
3688 out:
3689         up_write(&rbd_dev->header_rwsem);
3690         if (!ret && mapping_size != rbd_dev->mapping.size)
3691                 rbd_dev_update_size(rbd_dev);
3692
3693         return ret;
3694 }
3695
3696 static int rbd_init_request(void *data, struct request *rq,
3697                 unsigned int hctx_idx, unsigned int request_idx,
3698                 unsigned int numa_node)
3699 {
3700         struct work_struct *work = blk_mq_rq_to_pdu(rq);
3701
3702         INIT_WORK(work, rbd_queue_workfn);
3703         return 0;
3704 }
3705
3706 static struct blk_mq_ops rbd_mq_ops = {
3707         .queue_rq       = rbd_queue_rq,
3708         .map_queue      = blk_mq_map_queue,
3709         .init_request   = rbd_init_request,
3710 };
3711
3712 static int rbd_init_disk(struct rbd_device *rbd_dev)
3713 {
3714         struct gendisk *disk;
3715         struct request_queue *q;
3716         u64 segment_size;
3717         int err;
3718
3719         /* create gendisk info */
3720         disk = alloc_disk(single_major ?
3721                           (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
3722                           RBD_MINORS_PER_MAJOR);
3723         if (!disk)
3724                 return -ENOMEM;
3725
3726         snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3727                  rbd_dev->dev_id);
3728         disk->major = rbd_dev->major;
3729         disk->first_minor = rbd_dev->minor;
3730         if (single_major)
3731                 disk->flags |= GENHD_FL_EXT_DEVT;
3732         disk->fops = &rbd_bd_ops;
3733         disk->private_data = rbd_dev;
3734
3735         memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
3736         rbd_dev->tag_set.ops = &rbd_mq_ops;
3737         rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
3738         rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
3739         rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
3740         rbd_dev->tag_set.nr_hw_queues = 1;
3741         rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
3742
3743         err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
3744         if (err)
3745                 goto out_disk;
3746
3747         q = blk_mq_init_queue(&rbd_dev->tag_set);
3748         if (IS_ERR(q)) {
3749                 err = PTR_ERR(q);
3750                 goto out_tag_set;
3751         }
3752
3753         queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
3754         /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
3755
3756         /* set io sizes to object size */
3757         segment_size = rbd_obj_bytes(&rbd_dev->header);
3758         blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3759         q->limits.max_sectors = queue_max_hw_sectors(q);
3760         blk_queue_max_segments(q, segment_size / SECTOR_SIZE);
3761         blk_queue_max_segment_size(q, segment_size);
3762         blk_queue_io_min(q, segment_size);
3763         blk_queue_io_opt(q, segment_size);
3764
3765         /* enable the discard support */
3766         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
3767         q->limits.discard_granularity = segment_size;
3768         q->limits.discard_alignment = segment_size;
3769         blk_queue_max_discard_sectors(q, segment_size / SECTOR_SIZE);
3770         q->limits.discard_zeroes_data = 1;
3771
3772         if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
3773                 q->backing_dev_info.capabilities |= BDI_CAP_STABLE_WRITES;
3774
3775         disk->queue = q;
3776
3777         q->queuedata = rbd_dev;
3778
3779         rbd_dev->disk = disk;
3780
3781         return 0;
3782 out_tag_set:
3783         blk_mq_free_tag_set(&rbd_dev->tag_set);
3784 out_disk:
3785         put_disk(disk);
3786         return err;
3787 }
3788
3789 /*
3790   sysfs
3791 */
3792
3793 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3794 {
3795         return container_of(dev, struct rbd_device, dev);
3796 }
3797
3798 static ssize_t rbd_size_show(struct device *dev,
3799                              struct device_attribute *attr, char *buf)
3800 {
3801         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3802
3803         return sprintf(buf, "%llu\n",
3804                 (unsigned long long)rbd_dev->mapping.size);
3805 }
3806
3807 /*
3808  * Note this shows the features for whatever's mapped, which is not
3809  * necessarily the base image.
3810  */
3811 static ssize_t rbd_features_show(struct device *dev,
3812                              struct device_attribute *attr, char *buf)
3813 {
3814         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3815
3816         return sprintf(buf, "0x%016llx\n",
3817                         (unsigned long long)rbd_dev->mapping.features);
3818 }
3819
3820 static ssize_t rbd_major_show(struct device *dev,
3821                               struct device_attribute *attr, char *buf)
3822 {
3823         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3824
3825         if (rbd_dev->major)
3826                 return sprintf(buf, "%d\n", rbd_dev->major);
3827
3828         return sprintf(buf, "(none)\n");
3829 }
3830
3831 static ssize_t rbd_minor_show(struct device *dev,
3832                               struct device_attribute *attr, char *buf)
3833 {
3834         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3835
3836         return sprintf(buf, "%d\n", rbd_dev->minor);
3837 }
3838
3839 static ssize_t rbd_client_id_show(struct device *dev,
3840                                   struct device_attribute *attr, char *buf)
3841 {
3842         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3843
3844         return sprintf(buf, "client%lld\n",
3845                         ceph_client_id(rbd_dev->rbd_client->client));
3846 }
3847
3848 static ssize_t rbd_pool_show(struct device *dev,
3849                              struct device_attribute *attr, char *buf)
3850 {
3851         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3852
3853         return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3854 }
3855
3856 static ssize_t rbd_pool_id_show(struct device *dev,
3857                              struct device_attribute *attr, char *buf)
3858 {
3859         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3860
3861         return sprintf(buf, "%llu\n",
3862                         (unsigned long long) rbd_dev->spec->pool_id);
3863 }
3864
3865 static ssize_t rbd_name_show(struct device *dev,
3866                              struct device_attribute *attr, char *buf)
3867 {
3868         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3869
3870         if (rbd_dev->spec->image_name)
3871                 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3872
3873         return sprintf(buf, "(unknown)\n");
3874 }
3875
3876 static ssize_t rbd_image_id_show(struct device *dev,
3877                              struct device_attribute *attr, char *buf)
3878 {
3879         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3880
3881         return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3882 }
3883
3884 /*
3885  * Shows the name of the currently-mapped snapshot (or
3886  * RBD_SNAP_HEAD_NAME for the base image).
3887  */
3888 static ssize_t rbd_snap_show(struct device *dev,
3889                              struct device_attribute *attr,
3890                              char *buf)
3891 {
3892         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3893
3894         return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3895 }
3896
3897 /*
3898  * For a v2 image, shows the chain of parent images, separated by empty
3899  * lines.  For v1 images or if there is no parent, shows "(no parent
3900  * image)".
3901  */
3902 static ssize_t rbd_parent_show(struct device *dev,
3903                                struct device_attribute *attr,
3904                                char *buf)
3905 {
3906         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3907         ssize_t count = 0;
3908
3909         if (!rbd_dev->parent)
3910                 return sprintf(buf, "(no parent image)\n");
3911
3912         for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
3913                 struct rbd_spec *spec = rbd_dev->parent_spec;
3914
3915                 count += sprintf(&buf[count], "%s"
3916                             "pool_id %llu\npool_name %s\n"
3917                             "image_id %s\nimage_name %s\n"
3918                             "snap_id %llu\nsnap_name %s\n"
3919                             "overlap %llu\n",
3920                             !count ? "" : "\n", /* first? */
3921                             spec->pool_id, spec->pool_name,
3922                             spec->image_id, spec->image_name ?: "(unknown)",
3923                             spec->snap_id, spec->snap_name,
3924                             rbd_dev->parent_overlap);
3925         }
3926
3927         return count;
3928 }
3929
3930 static ssize_t rbd_image_refresh(struct device *dev,
3931                                  struct device_attribute *attr,
3932                                  const char *buf,
3933                                  size_t size)
3934 {
3935         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3936         int ret;
3937
3938         ret = rbd_dev_refresh(rbd_dev);
3939         if (ret)
3940                 return ret;
3941
3942         return size;
3943 }
3944
3945 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3946 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3947 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3948 static DEVICE_ATTR(minor, S_IRUGO, rbd_minor_show, NULL);
3949 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3950 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3951 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3952 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3953 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3954 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3955 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3956 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3957
3958 static struct attribute *rbd_attrs[] = {
3959         &dev_attr_size.attr,
3960         &dev_attr_features.attr,
3961         &dev_attr_major.attr,
3962         &dev_attr_minor.attr,
3963         &dev_attr_client_id.attr,
3964         &dev_attr_pool.attr,
3965         &dev_attr_pool_id.attr,
3966         &dev_attr_name.attr,
3967         &dev_attr_image_id.attr,
3968         &dev_attr_current_snap.attr,
3969         &dev_attr_parent.attr,
3970         &dev_attr_refresh.attr,
3971         NULL
3972 };
3973
3974 static struct attribute_group rbd_attr_group = {
3975         .attrs = rbd_attrs,
3976 };
3977
3978 static const struct attribute_group *rbd_attr_groups[] = {
3979         &rbd_attr_group,
3980         NULL
3981 };
3982
3983 static void rbd_dev_release(struct device *dev);
3984
3985 static struct device_type rbd_device_type = {
3986         .name           = "rbd",
3987         .groups         = rbd_attr_groups,
3988         .release        = rbd_dev_release,
3989 };
3990
3991 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3992 {
3993         kref_get(&spec->kref);
3994
3995         return spec;
3996 }
3997
3998 static void rbd_spec_free(struct kref *kref);
3999 static void rbd_spec_put(struct rbd_spec *spec)
4000 {
4001         if (spec)
4002                 kref_put(&spec->kref, rbd_spec_free);
4003 }
4004
4005 static struct rbd_spec *rbd_spec_alloc(void)
4006 {
4007         struct rbd_spec *spec;
4008
4009         spec = kzalloc(sizeof (*spec), GFP_KERNEL);
4010         if (!spec)
4011                 return NULL;
4012
4013         spec->pool_id = CEPH_NOPOOL;
4014         spec->snap_id = CEPH_NOSNAP;
4015         kref_init(&spec->kref);
4016
4017         return spec;
4018 }
4019
4020 static void rbd_spec_free(struct kref *kref)
4021 {
4022         struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
4023
4024         kfree(spec->pool_name);
4025         kfree(spec->image_id);
4026         kfree(spec->image_name);
4027         kfree(spec->snap_name);
4028         kfree(spec);
4029 }
4030
4031 static void rbd_dev_release(struct device *dev)
4032 {
4033         struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4034         bool need_put = !!rbd_dev->opts;
4035
4036         rbd_put_client(rbd_dev->rbd_client);
4037         rbd_spec_put(rbd_dev->spec);
4038         kfree(rbd_dev->opts);
4039         kfree(rbd_dev);
4040
4041         /*
4042          * This is racy, but way better than putting module outside of
4043          * the release callback.  The race window is pretty small, so
4044          * doing something similar to dm (dm-builtin.c) is overkill.
4045          */
4046         if (need_put)
4047                 module_put(THIS_MODULE);
4048 }
4049
4050 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
4051                                          struct rbd_spec *spec,
4052                                          struct rbd_options *opts)
4053 {
4054         struct rbd_device *rbd_dev;
4055
4056         rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
4057         if (!rbd_dev)
4058                 return NULL;
4059
4060         spin_lock_init(&rbd_dev->lock);
4061         rbd_dev->flags = 0;
4062         atomic_set(&rbd_dev->parent_ref, 0);
4063         INIT_LIST_HEAD(&rbd_dev->node);
4064         init_rwsem(&rbd_dev->header_rwsem);
4065
4066         rbd_dev->dev.bus = &rbd_bus_type;
4067         rbd_dev->dev.type = &rbd_device_type;
4068         rbd_dev->dev.parent = &rbd_root_dev;
4069         device_initialize(&rbd_dev->dev);
4070
4071         rbd_dev->rbd_client = rbdc;
4072         rbd_dev->spec = spec;
4073         rbd_dev->opts = opts;
4074
4075         /* Initialize the layout used for all rbd requests */
4076
4077         rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4078         rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
4079         rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
4080         rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
4081
4082         /*
4083          * If this is a mapping rbd_dev (as opposed to a parent one),
4084          * pin our module.  We have a ref from do_rbd_add(), so use
4085          * __module_get().
4086          */
4087         if (rbd_dev->opts)
4088                 __module_get(THIS_MODULE);
4089
4090         return rbd_dev;
4091 }
4092
4093 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
4094 {
4095         if (rbd_dev)
4096                 put_device(&rbd_dev->dev);
4097 }
4098
4099 /*
4100  * Get the size and object order for an image snapshot, or if
4101  * snap_id is CEPH_NOSNAP, gets this information for the base
4102  * image.
4103  */
4104 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
4105                                 u8 *order, u64 *snap_size)
4106 {
4107         __le64 snapid = cpu_to_le64(snap_id);
4108         int ret;
4109         struct {
4110                 u8 order;
4111                 __le64 size;
4112         } __attribute__ ((packed)) size_buf = { 0 };
4113
4114         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4115                                 "rbd", "get_size",
4116                                 &snapid, sizeof (snapid),
4117                                 &size_buf, sizeof (size_buf));
4118         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4119         if (ret < 0)
4120                 return ret;
4121         if (ret < sizeof (size_buf))
4122                 return -ERANGE;
4123
4124         if (order) {
4125                 *order = size_buf.order;
4126                 dout("  order %u", (unsigned int)*order);
4127         }
4128         *snap_size = le64_to_cpu(size_buf.size);
4129
4130         dout("  snap_id 0x%016llx snap_size = %llu\n",
4131                 (unsigned long long)snap_id,
4132                 (unsigned long long)*snap_size);
4133
4134         return 0;
4135 }
4136
4137 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
4138 {
4139         return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
4140                                         &rbd_dev->header.obj_order,
4141                                         &rbd_dev->header.image_size);
4142 }
4143
4144 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
4145 {
4146         void *reply_buf;
4147         int ret;
4148         void *p;
4149
4150         reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
4151         if (!reply_buf)
4152                 return -ENOMEM;
4153
4154         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4155                                 "rbd", "get_object_prefix", NULL, 0,
4156                                 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
4157         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4158         if (ret < 0)
4159                 goto out;
4160
4161         p = reply_buf;
4162         rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
4163                                                 p + ret, NULL, GFP_NOIO);
4164         ret = 0;
4165
4166         if (IS_ERR(rbd_dev->header.object_prefix)) {
4167                 ret = PTR_ERR(rbd_dev->header.object_prefix);
4168                 rbd_dev->header.object_prefix = NULL;
4169         } else {
4170                 dout("  object_prefix = %s\n", rbd_dev->header.object_prefix);
4171         }
4172 out:
4173         kfree(reply_buf);
4174
4175         return ret;
4176 }
4177
4178 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
4179                 u64 *snap_features)
4180 {
4181         __le64 snapid = cpu_to_le64(snap_id);
4182         struct {
4183                 __le64 features;
4184                 __le64 incompat;
4185         } __attribute__ ((packed)) features_buf = { 0 };
4186         u64 unsup;
4187         int ret;
4188
4189         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4190                                 "rbd", "get_features",
4191                                 &snapid, sizeof (snapid),
4192                                 &features_buf, sizeof (features_buf));
4193         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4194         if (ret < 0)
4195                 return ret;
4196         if (ret < sizeof (features_buf))
4197                 return -ERANGE;
4198
4199         unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
4200         if (unsup) {
4201                 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
4202                          unsup);
4203                 return -ENXIO;
4204         }
4205
4206         *snap_features = le64_to_cpu(features_buf.features);
4207
4208         dout("  snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
4209                 (unsigned long long)snap_id,
4210                 (unsigned long long)*snap_features,
4211                 (unsigned long long)le64_to_cpu(features_buf.incompat));
4212
4213         return 0;
4214 }
4215
4216 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
4217 {
4218         return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
4219                                                 &rbd_dev->header.features);
4220 }
4221
4222 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
4223 {
4224         struct rbd_spec *parent_spec;
4225         size_t size;
4226         void *reply_buf = NULL;
4227         __le64 snapid;
4228         void *p;
4229         void *end;
4230         u64 pool_id;
4231         char *image_id;
4232         u64 snap_id;
4233         u64 overlap;
4234         int ret;
4235
4236         parent_spec = rbd_spec_alloc();
4237         if (!parent_spec)
4238                 return -ENOMEM;
4239
4240         size = sizeof (__le64) +                                /* pool_id */
4241                 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX +        /* image_id */
4242                 sizeof (__le64) +                               /* snap_id */
4243                 sizeof (__le64);                                /* overlap */
4244         reply_buf = kmalloc(size, GFP_KERNEL);
4245         if (!reply_buf) {
4246                 ret = -ENOMEM;
4247                 goto out_err;
4248         }
4249
4250         snapid = cpu_to_le64(rbd_dev->spec->snap_id);
4251         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4252                                 "rbd", "get_parent",
4253                                 &snapid, sizeof (snapid),
4254                                 reply_buf, size);
4255         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4256         if (ret < 0)
4257                 goto out_err;
4258
4259         p = reply_buf;
4260         end = reply_buf + ret;
4261         ret = -ERANGE;
4262         ceph_decode_64_safe(&p, end, pool_id, out_err);
4263         if (pool_id == CEPH_NOPOOL) {
4264                 /*
4265                  * Either the parent never existed, or we have
4266                  * record of it but the image got flattened so it no
4267                  * longer has a parent.  When the parent of a
4268                  * layered image disappears we immediately set the
4269                  * overlap to 0.  The effect of this is that all new
4270                  * requests will be treated as if the image had no
4271                  * parent.
4272                  */
4273                 if (rbd_dev->parent_overlap) {
4274                         rbd_dev->parent_overlap = 0;
4275                         rbd_dev_parent_put(rbd_dev);
4276                         pr_info("%s: clone image has been flattened\n",
4277                                 rbd_dev->disk->disk_name);
4278                 }
4279
4280                 goto out;       /* No parent?  No problem. */
4281         }
4282
4283         /* The ceph file layout needs to fit pool id in 32 bits */
4284
4285         ret = -EIO;
4286         if (pool_id > (u64)U32_MAX) {
4287                 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
4288                         (unsigned long long)pool_id, U32_MAX);
4289                 goto out_err;
4290         }
4291
4292         image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4293         if (IS_ERR(image_id)) {
4294                 ret = PTR_ERR(image_id);
4295                 goto out_err;
4296         }
4297         ceph_decode_64_safe(&p, end, snap_id, out_err);
4298         ceph_decode_64_safe(&p, end, overlap, out_err);
4299
4300         /*
4301          * The parent won't change (except when the clone is
4302          * flattened, already handled that).  So we only need to
4303          * record the parent spec we have not already done so.
4304          */
4305         if (!rbd_dev->parent_spec) {
4306                 parent_spec->pool_id = pool_id;
4307                 parent_spec->image_id = image_id;
4308                 parent_spec->snap_id = snap_id;
4309                 rbd_dev->parent_spec = parent_spec;
4310                 parent_spec = NULL;     /* rbd_dev now owns this */
4311         } else {
4312                 kfree(image_id);
4313         }
4314
4315         /*
4316          * We always update the parent overlap.  If it's zero we issue
4317          * a warning, as we will proceed as if there was no parent.
4318          */
4319         if (!overlap) {
4320                 if (parent_spec) {
4321                         /* refresh, careful to warn just once */
4322                         if (rbd_dev->parent_overlap)
4323                                 rbd_warn(rbd_dev,
4324                                     "clone now standalone (overlap became 0)");
4325                 } else {
4326                         /* initial probe */
4327                         rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
4328                 }
4329         }
4330         rbd_dev->parent_overlap = overlap;
4331
4332 out:
4333         ret = 0;
4334 out_err:
4335         kfree(reply_buf);
4336         rbd_spec_put(parent_spec);
4337
4338         return ret;
4339 }
4340
4341 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
4342 {
4343         struct {
4344                 __le64 stripe_unit;
4345                 __le64 stripe_count;
4346         } __attribute__ ((packed)) striping_info_buf = { 0 };
4347         size_t size = sizeof (striping_info_buf);
4348         void *p;
4349         u64 obj_size;
4350         u64 stripe_unit;
4351         u64 stripe_count;
4352         int ret;
4353
4354         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4355                                 "rbd", "get_stripe_unit_count", NULL, 0,
4356                                 (char *)&striping_info_buf, size);
4357         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4358         if (ret < 0)
4359                 return ret;
4360         if (ret < size)
4361                 return -ERANGE;
4362
4363         /*
4364          * We don't actually support the "fancy striping" feature
4365          * (STRIPINGV2) yet, but if the striping sizes are the
4366          * defaults the behavior is the same as before.  So find
4367          * out, and only fail if the image has non-default values.
4368          */
4369         ret = -EINVAL;
4370         obj_size = (u64)1 << rbd_dev->header.obj_order;
4371         p = &striping_info_buf;
4372         stripe_unit = ceph_decode_64(&p);
4373         if (stripe_unit != obj_size) {
4374                 rbd_warn(rbd_dev, "unsupported stripe unit "
4375                                 "(got %llu want %llu)",
4376                                 stripe_unit, obj_size);
4377                 return -EINVAL;
4378         }
4379         stripe_count = ceph_decode_64(&p);
4380         if (stripe_count != 1) {
4381                 rbd_warn(rbd_dev, "unsupported stripe count "
4382                                 "(got %llu want 1)", stripe_count);
4383                 return -EINVAL;
4384         }
4385         rbd_dev->header.stripe_unit = stripe_unit;
4386         rbd_dev->header.stripe_count = stripe_count;
4387
4388         return 0;
4389 }
4390
4391 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4392 {
4393         size_t image_id_size;
4394         char *image_id;
4395         void *p;
4396         void *end;
4397         size_t size;
4398         void *reply_buf = NULL;
4399         size_t len = 0;
4400         char *image_name = NULL;
4401         int ret;
4402
4403         rbd_assert(!rbd_dev->spec->image_name);
4404
4405         len = strlen(rbd_dev->spec->image_id);
4406         image_id_size = sizeof (__le32) + len;
4407         image_id = kmalloc(image_id_size, GFP_KERNEL);
4408         if (!image_id)
4409                 return NULL;
4410
4411         p = image_id;
4412         end = image_id + image_id_size;
4413         ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4414
4415         size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4416         reply_buf = kmalloc(size, GFP_KERNEL);
4417         if (!reply_buf)
4418                 goto out;
4419
4420         ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4421                                 "rbd", "dir_get_name",
4422                                 image_id, image_id_size,
4423                                 reply_buf, size);
4424         if (ret < 0)
4425                 goto out;
4426         p = reply_buf;
4427         end = reply_buf + ret;
4428
4429         image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4430         if (IS_ERR(image_name))
4431                 image_name = NULL;
4432         else
4433                 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4434 out:
4435         kfree(reply_buf);
4436         kfree(image_id);
4437
4438         return image_name;
4439 }
4440
4441 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4442 {
4443         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4444         const char *snap_name;
4445         u32 which = 0;
4446
4447         /* Skip over names until we find the one we are looking for */
4448
4449         snap_name = rbd_dev->header.snap_names;
4450         while (which < snapc->num_snaps) {
4451                 if (!strcmp(name, snap_name))
4452                         return snapc->snaps[which];
4453                 snap_name += strlen(snap_name) + 1;
4454                 which++;
4455         }
4456         return CEPH_NOSNAP;
4457 }
4458
4459 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4460 {
4461         struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4462         u32 which;
4463         bool found = false;
4464         u64 snap_id;
4465
4466         for (which = 0; !found && which < snapc->num_snaps; which++) {
4467                 const char *snap_name;
4468
4469                 snap_id = snapc->snaps[which];
4470                 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4471                 if (IS_ERR(snap_name)) {
4472                         /* ignore no-longer existing snapshots */
4473                         if (PTR_ERR(snap_name) == -ENOENT)
4474                                 continue;
4475                         else
4476                                 break;
4477                 }
4478                 found = !strcmp(name, snap_name);
4479                 kfree(snap_name);
4480         }
4481         return found ? snap_id : CEPH_NOSNAP;
4482 }
4483
4484 /*
4485  * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4486  * no snapshot by that name is found, or if an error occurs.
4487  */
4488 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4489 {
4490         if (rbd_dev->image_format == 1)
4491                 return rbd_v1_snap_id_by_name(rbd_dev, name);
4492
4493         return rbd_v2_snap_id_by_name(rbd_dev, name);
4494 }
4495
4496 /*
4497  * An image being mapped will have everything but the snap id.
4498  */
4499 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
4500 {
4501         struct rbd_spec *spec = rbd_dev->spec;
4502
4503         rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
4504         rbd_assert(spec->image_id && spec->image_name);
4505         rbd_assert(spec->snap_name);
4506
4507         if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4508                 u64 snap_id;
4509
4510                 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4511                 if (snap_id == CEPH_NOSNAP)
4512                         return -ENOENT;
4513
4514                 spec->snap_id = snap_id;
4515         } else {
4516                 spec->snap_id = CEPH_NOSNAP;
4517         }
4518
4519         return 0;
4520 }
4521
4522 /*
4523  * A parent image will have all ids but none of the names.
4524  *
4525  * All names in an rbd spec are dynamically allocated.  It's OK if we
4526  * can't figure out the name for an image id.
4527  */
4528 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
4529 {
4530         struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4531         struct rbd_spec *spec = rbd_dev->spec;
4532         const char *pool_name;
4533         const char *image_name;
4534         const char *snap_name;
4535         int ret;
4536
4537         rbd_assert(spec->pool_id != CEPH_NOPOOL);
4538         rbd_assert(spec->image_id);
4539         rbd_assert(spec->snap_id != CEPH_NOSNAP);
4540
4541         /* Get the pool name; we have to make our own copy of this */
4542
4543         pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4544         if (!pool_name) {
4545                 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4546                 return -EIO;
4547         }
4548         pool_name = kstrdup(pool_name, GFP_KERNEL);
4549         if (!pool_name)
4550                 return -ENOMEM;
4551
4552         /* Fetch the image name; tolerate failure here */
4553
4554         image_name = rbd_dev_image_name(rbd_dev);
4555         if (!image_name)
4556                 rbd_warn(rbd_dev, "unable to get image name");
4557
4558         /* Fetch the snapshot name */
4559
4560         snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4561         if (IS_ERR(snap_name)) {
4562                 ret = PTR_ERR(snap_name);
4563                 goto out_err;
4564         }
4565
4566         spec->pool_name = pool_name;
4567         spec->image_name = image_name;
4568         spec->snap_name = snap_name;
4569
4570         return 0;
4571
4572 out_err:
4573         kfree(image_name);
4574         kfree(pool_name);
4575         return ret;
4576 }
4577
4578 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4579 {
4580         size_t size;
4581         int ret;
4582         void *reply_buf;
4583         void *p;
4584         void *end;
4585         u64 seq;
4586         u32 snap_count;
4587         struct ceph_snap_context *snapc;
4588         u32 i;
4589
4590         /*
4591          * We'll need room for the seq value (maximum snapshot id),
4592          * snapshot count, and array of that many snapshot ids.
4593          * For now we have a fixed upper limit on the number we're
4594          * prepared to receive.
4595          */
4596         size = sizeof (__le64) + sizeof (__le32) +
4597                         RBD_MAX_SNAP_COUNT * sizeof (__le64);
4598         reply_buf = kzalloc(size, GFP_KERNEL);
4599         if (!reply_buf)
4600                 return -ENOMEM;
4601
4602         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4603                                 "rbd", "get_snapcontext", NULL, 0,
4604                                 reply_buf, size);
4605         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4606         if (ret < 0)
4607                 goto out;
4608
4609         p = reply_buf;
4610         end = reply_buf + ret;
4611         ret = -ERANGE;
4612         ceph_decode_64_safe(&p, end, seq, out);
4613         ceph_decode_32_safe(&p, end, snap_count, out);
4614
4615         /*
4616          * Make sure the reported number of snapshot ids wouldn't go
4617          * beyond the end of our buffer.  But before checking that,
4618          * make sure the computed size of the snapshot context we
4619          * allocate is representable in a size_t.
4620          */
4621         if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4622                                  / sizeof (u64)) {
4623                 ret = -EINVAL;
4624                 goto out;
4625         }
4626         if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4627                 goto out;
4628         ret = 0;
4629
4630         snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4631         if (!snapc) {
4632                 ret = -ENOMEM;
4633                 goto out;
4634         }
4635         snapc->seq = seq;
4636         for (i = 0; i < snap_count; i++)
4637                 snapc->snaps[i] = ceph_decode_64(&p);
4638
4639         ceph_put_snap_context(rbd_dev->header.snapc);
4640         rbd_dev->header.snapc = snapc;
4641
4642         dout("  snap context seq = %llu, snap_count = %u\n",
4643                 (unsigned long long)seq, (unsigned int)snap_count);
4644 out:
4645         kfree(reply_buf);
4646
4647         return ret;
4648 }
4649
4650 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4651                                         u64 snap_id)
4652 {
4653         size_t size;
4654         void *reply_buf;
4655         __le64 snapid;
4656         int ret;
4657         void *p;
4658         void *end;
4659         char *snap_name;
4660
4661         size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4662         reply_buf = kmalloc(size, GFP_KERNEL);
4663         if (!reply_buf)
4664                 return ERR_PTR(-ENOMEM);
4665
4666         snapid = cpu_to_le64(snap_id);
4667         ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4668                                 "rbd", "get_snapshot_name",
4669                                 &snapid, sizeof (snapid),
4670                                 reply_buf, size);
4671         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4672         if (ret < 0) {
4673                 snap_name = ERR_PTR(ret);
4674                 goto out;
4675         }
4676
4677         p = reply_buf;
4678         end = reply_buf + ret;
4679         snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4680         if (IS_ERR(snap_name))
4681                 goto out;
4682
4683         dout("  snap_id 0x%016llx snap_name = %s\n",
4684                 (unsigned long long)snap_id, snap_name);
4685 out:
4686         kfree(reply_buf);
4687
4688         return snap_name;
4689 }
4690
4691 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4692 {
4693         bool first_time = rbd_dev->header.object_prefix == NULL;
4694         int ret;
4695
4696         ret = rbd_dev_v2_image_size(rbd_dev);
4697         if (ret)
4698                 return ret;
4699
4700         if (first_time) {
4701                 ret = rbd_dev_v2_header_onetime(rbd_dev);
4702                 if (ret)
4703                         return ret;
4704         }
4705
4706         ret = rbd_dev_v2_snap_context(rbd_dev);
4707         if (ret && first_time) {
4708                 kfree(rbd_dev->header.object_prefix);
4709                 rbd_dev->header.object_prefix = NULL;
4710         }
4711
4712         return ret;
4713 }
4714
4715 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
4716 {
4717         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4718
4719         if (rbd_dev->image_format == 1)
4720                 return rbd_dev_v1_header_info(rbd_dev);
4721
4722         return rbd_dev_v2_header_info(rbd_dev);
4723 }
4724
4725 /*
4726  * Get a unique rbd identifier for the given new rbd_dev, and add
4727  * the rbd_dev to the global list.
4728  */
4729 static int rbd_dev_id_get(struct rbd_device *rbd_dev)
4730 {
4731         int new_dev_id;
4732
4733         new_dev_id = ida_simple_get(&rbd_dev_id_ida,
4734                                     0, minor_to_rbd_dev_id(1 << MINORBITS),
4735                                     GFP_KERNEL);
4736         if (new_dev_id < 0)
4737                 return new_dev_id;
4738
4739         rbd_dev->dev_id = new_dev_id;
4740
4741         spin_lock(&rbd_dev_list_lock);
4742         list_add_tail(&rbd_dev->node, &rbd_dev_list);
4743         spin_unlock(&rbd_dev_list_lock);
4744
4745         dout("rbd_dev %p given dev id %d\n", rbd_dev, rbd_dev->dev_id);
4746
4747         return 0;
4748 }
4749
4750 /*
4751  * Remove an rbd_dev from the global list, and record that its
4752  * identifier is no longer in use.
4753  */
4754 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4755 {
4756         spin_lock(&rbd_dev_list_lock);
4757         list_del_init(&rbd_dev->node);
4758         spin_unlock(&rbd_dev_list_lock);
4759
4760         ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
4761
4762         dout("rbd_dev %p released dev id %d\n", rbd_dev, rbd_dev->dev_id);
4763 }
4764
4765 /*
4766  * Skips over white space at *buf, and updates *buf to point to the
4767  * first found non-space character (if any). Returns the length of
4768  * the token (string of non-white space characters) found.  Note
4769  * that *buf must be terminated with '\0'.
4770  */
4771 static inline size_t next_token(const char **buf)
4772 {
4773         /*
4774         * These are the characters that produce nonzero for
4775         * isspace() in the "C" and "POSIX" locales.
4776         */
4777         const char *spaces = " \f\n\r\t\v";
4778
4779         *buf += strspn(*buf, spaces);   /* Find start of token */
4780
4781         return strcspn(*buf, spaces);   /* Return token length */
4782 }
4783
4784 /*
4785  * Finds the next token in *buf, dynamically allocates a buffer big
4786  * enough to hold a copy of it, and copies the token into the new
4787  * buffer.  The copy is guaranteed to be terminated with '\0'.  Note
4788  * that a duplicate buffer is created even for a zero-length token.
4789  *
4790  * Returns a pointer to the newly-allocated duplicate, or a null
4791  * pointer if memory for the duplicate was not available.  If
4792  * the lenp argument is a non-null pointer, the length of the token
4793  * (not including the '\0') is returned in *lenp.
4794  *
4795  * If successful, the *buf pointer will be updated to point beyond
4796  * the end of the found token.
4797  *
4798  * Note: uses GFP_KERNEL for allocation.
4799  */
4800 static inline char *dup_token(const char **buf, size_t *lenp)
4801 {
4802         char *dup;
4803         size_t len;
4804
4805         len = next_token(buf);
4806         dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4807         if (!dup)
4808                 return NULL;
4809         *(dup + len) = '\0';
4810         *buf += len;
4811
4812         if (lenp)
4813                 *lenp = len;
4814
4815         return dup;
4816 }
4817
4818 /*
4819  * Parse the options provided for an "rbd add" (i.e., rbd image
4820  * mapping) request.  These arrive via a write to /sys/bus/rbd/add,
4821  * and the data written is passed here via a NUL-terminated buffer.
4822  * Returns 0 if successful or an error code otherwise.
4823  *
4824  * The information extracted from these options is recorded in
4825  * the other parameters which return dynamically-allocated
4826  * structures:
4827  *  ceph_opts
4828  *      The address of a pointer that will refer to a ceph options
4829  *      structure.  Caller must release the returned pointer using
4830  *      ceph_destroy_options() when it is no longer needed.
4831  *  rbd_opts
4832  *      Address of an rbd options pointer.  Fully initialized by
4833  *      this function; caller must release with kfree().
4834  *  spec
4835  *      Address of an rbd image specification pointer.  Fully
4836  *      initialized by this function based on parsed options.
4837  *      Caller must release with rbd_spec_put().
4838  *
4839  * The options passed take this form:
4840  *  <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4841  * where:
4842  *  <mon_addrs>
4843  *      A comma-separated list of one or more monitor addresses.
4844  *      A monitor address is an ip address, optionally followed
4845  *      by a port number (separated by a colon).
4846  *        I.e.:  ip1[:port1][,ip2[:port2]...]
4847  *  <options>
4848  *      A comma-separated list of ceph and/or rbd options.
4849  *  <pool_name>
4850  *      The name of the rados pool containing the rbd image.
4851  *  <image_name>
4852  *      The name of the image in that pool to map.
4853  *  <snap_id>
4854  *      An optional snapshot id.  If provided, the mapping will
4855  *      present data from the image at the time that snapshot was
4856  *      created.  The image head is used if no snapshot id is
4857  *      provided.  Snapshot mappings are always read-only.
4858  */
4859 static int rbd_add_parse_args(const char *buf,
4860                                 struct ceph_options **ceph_opts,
4861                                 struct rbd_options **opts,
4862                                 struct rbd_spec **rbd_spec)
4863 {
4864         size_t len;
4865         char *options;
4866         const char *mon_addrs;
4867         char *snap_name;
4868         size_t mon_addrs_size;
4869         struct rbd_spec *spec = NULL;
4870         struct rbd_options *rbd_opts = NULL;
4871         struct ceph_options *copts;
4872         int ret;
4873
4874         /* The first four tokens are required */
4875
4876         len = next_token(&buf);
4877         if (!len) {
4878                 rbd_warn(NULL, "no monitor address(es) provided");
4879                 return -EINVAL;
4880         }
4881         mon_addrs = buf;
4882         mon_addrs_size = len + 1;
4883         buf += len;
4884
4885         ret = -EINVAL;
4886         options = dup_token(&buf, NULL);
4887         if (!options)
4888                 return -ENOMEM;
4889         if (!*options) {
4890                 rbd_warn(NULL, "no options provided");
4891                 goto out_err;
4892         }
4893
4894         spec = rbd_spec_alloc();
4895         if (!spec)
4896                 goto out_mem;
4897
4898         spec->pool_name = dup_token(&buf, NULL);
4899         if (!spec->pool_name)
4900                 goto out_mem;
4901         if (!*spec->pool_name) {
4902                 rbd_warn(NULL, "no pool name provided");
4903                 goto out_err;
4904         }
4905
4906         spec->image_name = dup_token(&buf, NULL);
4907         if (!spec->image_name)
4908                 goto out_mem;
4909         if (!*spec->image_name) {
4910                 rbd_warn(NULL, "no image name provided");
4911                 goto out_err;
4912         }
4913
4914         /*
4915          * Snapshot name is optional; default is to use "-"
4916          * (indicating the head/no snapshot).
4917          */
4918         len = next_token(&buf);
4919         if (!len) {
4920                 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4921                 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4922         } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4923                 ret = -ENAMETOOLONG;
4924                 goto out_err;
4925         }
4926         snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4927         if (!snap_name)
4928                 goto out_mem;
4929         *(snap_name + len) = '\0';
4930         spec->snap_name = snap_name;
4931
4932         /* Initialize all rbd options to the defaults */
4933
4934         rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4935         if (!rbd_opts)
4936                 goto out_mem;
4937
4938         rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4939         rbd_opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
4940
4941         copts = ceph_parse_options(options, mon_addrs,
4942                                         mon_addrs + mon_addrs_size - 1,
4943                                         parse_rbd_opts_token, rbd_opts);
4944         if (IS_ERR(copts)) {
4945                 ret = PTR_ERR(copts);
4946                 goto out_err;
4947         }
4948         kfree(options);
4949
4950         *ceph_opts = copts;
4951         *opts = rbd_opts;
4952         *rbd_spec = spec;
4953
4954         return 0;
4955 out_mem:
4956         ret = -ENOMEM;
4957 out_err:
4958         kfree(rbd_opts);
4959         rbd_spec_put(spec);
4960         kfree(options);
4961
4962         return ret;
4963 }
4964
4965 /*
4966  * Return pool id (>= 0) or a negative error code.
4967  */
4968 static int rbd_add_get_pool_id(struct rbd_client *rbdc, const char *pool_name)
4969 {
4970         struct ceph_options *opts = rbdc->client->options;
4971         u64 newest_epoch;
4972         int tries = 0;
4973         int ret;
4974
4975 again:
4976         ret = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, pool_name);
4977         if (ret == -ENOENT && tries++ < 1) {
4978                 ret = ceph_monc_do_get_version(&rbdc->client->monc, "osdmap",
4979                                                &newest_epoch);
4980                 if (ret < 0)
4981                         return ret;
4982
4983                 if (rbdc->client->osdc.osdmap->epoch < newest_epoch) {
4984                         ceph_monc_request_next_osdmap(&rbdc->client->monc);
4985                         (void) ceph_monc_wait_osdmap(&rbdc->client->monc,
4986                                                      newest_epoch,
4987                                                      opts->mount_timeout);
4988                         goto again;
4989                 } else {
4990                         /* the osdmap we have is new enough */
4991                         return -ENOENT;
4992                 }
4993         }
4994
4995         return ret;
4996 }
4997
4998 /*
4999  * An rbd format 2 image has a unique identifier, distinct from the
5000  * name given to it by the user.  Internally, that identifier is
5001  * what's used to specify the names of objects related to the image.
5002  *
5003  * A special "rbd id" object is used to map an rbd image name to its
5004  * id.  If that object doesn't exist, then there is no v2 rbd image
5005  * with the supplied name.
5006  *
5007  * This function will record the given rbd_dev's image_id field if
5008  * it can be determined, and in that case will return 0.  If any
5009  * errors occur a negative errno will be returned and the rbd_dev's
5010  * image_id field will be unchanged (and should be NULL).
5011  */
5012 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
5013 {
5014         int ret;
5015         size_t size;
5016         char *object_name;
5017         void *response;
5018         char *image_id;
5019
5020         /*
5021          * When probing a parent image, the image id is already
5022          * known (and the image name likely is not).  There's no
5023          * need to fetch the image id again in this case.  We
5024          * do still need to set the image format though.
5025          */
5026         if (rbd_dev->spec->image_id) {
5027                 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
5028
5029                 return 0;
5030         }
5031
5032         /*
5033          * First, see if the format 2 image id file exists, and if
5034          * so, get the image's persistent id from it.
5035          */
5036         size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
5037         object_name = kmalloc(size, GFP_NOIO);
5038         if (!object_name)
5039                 return -ENOMEM;
5040         sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
5041         dout("rbd id object name is %s\n", object_name);
5042
5043         /* Response will be an encoded string, which includes a length */
5044
5045         size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
5046         response = kzalloc(size, GFP_NOIO);
5047         if (!response) {
5048                 ret = -ENOMEM;
5049                 goto out;
5050         }
5051
5052         /* If it doesn't exist we'll assume it's a format 1 image */
5053
5054         ret = rbd_obj_method_sync(rbd_dev, object_name,
5055                                 "rbd", "get_id", NULL, 0,
5056                                 response, RBD_IMAGE_ID_LEN_MAX);
5057         dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5058         if (ret == -ENOENT) {
5059                 image_id = kstrdup("", GFP_KERNEL);
5060                 ret = image_id ? 0 : -ENOMEM;
5061                 if (!ret)
5062                         rbd_dev->image_format = 1;
5063         } else if (ret >= 0) {
5064                 void *p = response;
5065
5066                 image_id = ceph_extract_encoded_string(&p, p + ret,
5067                                                 NULL, GFP_NOIO);
5068                 ret = PTR_ERR_OR_ZERO(image_id);
5069                 if (!ret)
5070                         rbd_dev->image_format = 2;
5071         }
5072
5073         if (!ret) {
5074                 rbd_dev->spec->image_id = image_id;
5075                 dout("image_id is %s\n", image_id);
5076         }
5077 out:
5078         kfree(response);
5079         kfree(object_name);
5080
5081         return ret;
5082 }
5083
5084 /*
5085  * Undo whatever state changes are made by v1 or v2 header info
5086  * call.
5087  */
5088 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
5089 {
5090         struct rbd_image_header *header;
5091
5092         rbd_dev_parent_put(rbd_dev);
5093
5094         /* Free dynamic fields from the header, then zero it out */
5095
5096         header = &rbd_dev->header;
5097         ceph_put_snap_context(header->snapc);
5098         kfree(header->snap_sizes);
5099         kfree(header->snap_names);
5100         kfree(header->object_prefix);
5101         memset(header, 0, sizeof (*header));
5102 }
5103
5104 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
5105 {
5106         int ret;
5107
5108         ret = rbd_dev_v2_object_prefix(rbd_dev);
5109         if (ret)
5110                 goto out_err;
5111
5112         /*
5113          * Get the and check features for the image.  Currently the
5114          * features are assumed to never change.
5115          */
5116         ret = rbd_dev_v2_features(rbd_dev);
5117         if (ret)
5118                 goto out_err;
5119
5120         /* If the image supports fancy striping, get its parameters */
5121
5122         if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
5123                 ret = rbd_dev_v2_striping_info(rbd_dev);
5124                 if (ret < 0)
5125                         goto out_err;
5126         }
5127         /* No support for crypto and compression type format 2 images */
5128
5129         return 0;
5130 out_err:
5131         rbd_dev->header.features = 0;
5132         kfree(rbd_dev->header.object_prefix);
5133         rbd_dev->header.object_prefix = NULL;
5134
5135         return ret;
5136 }
5137
5138 /*
5139  * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
5140  * rbd_dev_image_probe() recursion depth, which means it's also the
5141  * length of the already discovered part of the parent chain.
5142  */
5143 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
5144 {
5145         struct rbd_device *parent = NULL;
5146         int ret;
5147
5148         if (!rbd_dev->parent_spec)
5149                 return 0;
5150
5151         if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
5152                 pr_info("parent chain is too long (%d)\n", depth);
5153                 ret = -EINVAL;
5154                 goto out_err;
5155         }
5156
5157         parent = rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec,
5158                                 NULL);
5159         if (!parent) {
5160                 ret = -ENOMEM;
5161                 goto out_err;
5162         }
5163
5164         /*
5165          * Images related by parent/child relationships always share
5166          * rbd_client and spec/parent_spec, so bump their refcounts.
5167          */
5168         __rbd_get_client(rbd_dev->rbd_client);
5169         rbd_spec_get(rbd_dev->parent_spec);
5170
5171         ret = rbd_dev_image_probe(parent, depth);
5172         if (ret < 0)
5173                 goto out_err;
5174
5175         rbd_dev->parent = parent;
5176         atomic_set(&rbd_dev->parent_ref, 1);
5177         return 0;
5178
5179 out_err:
5180         rbd_dev_unparent(rbd_dev);
5181         rbd_dev_destroy(parent);
5182         return ret;
5183 }
5184
5185 /*
5186  * rbd_dev->header_rwsem must be locked for write and will be unlocked
5187  * upon return.
5188  */
5189 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
5190 {
5191         int ret;
5192
5193         /* Get an id and fill in device name. */
5194
5195         ret = rbd_dev_id_get(rbd_dev);
5196         if (ret)
5197                 goto err_out_unlock;
5198
5199         BUILD_BUG_ON(DEV_NAME_LEN
5200                         < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
5201         sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
5202
5203         /* Record our major and minor device numbers. */
5204
5205         if (!single_major) {
5206                 ret = register_blkdev(0, rbd_dev->name);
5207                 if (ret < 0)
5208                         goto err_out_id;
5209
5210                 rbd_dev->major = ret;
5211                 rbd_dev->minor = 0;
5212         } else {
5213                 rbd_dev->major = rbd_major;
5214                 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
5215         }
5216
5217         /* Set up the blkdev mapping. */
5218
5219         ret = rbd_init_disk(rbd_dev);
5220         if (ret)
5221                 goto err_out_blkdev;
5222
5223         ret = rbd_dev_mapping_set(rbd_dev);
5224         if (ret)
5225                 goto err_out_disk;
5226
5227         set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
5228         set_disk_ro(rbd_dev->disk, rbd_dev->mapping.read_only);
5229
5230         dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
5231         ret = device_add(&rbd_dev->dev);
5232         if (ret)
5233                 goto err_out_mapping;
5234
5235         /* Everything's ready.  Announce the disk to the world. */
5236
5237         set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5238         up_write(&rbd_dev->header_rwsem);
5239
5240         add_disk(rbd_dev->disk);
5241         pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
5242                 (unsigned long long) rbd_dev->mapping.size);
5243
5244         return ret;
5245
5246 err_out_mapping:
5247         rbd_dev_mapping_clear(rbd_dev);
5248 err_out_disk:
5249         rbd_free_disk(rbd_dev);
5250 err_out_blkdev:
5251         if (!single_major)
5252                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5253 err_out_id:
5254         rbd_dev_id_put(rbd_dev);
5255 err_out_unlock:
5256         up_write(&rbd_dev->header_rwsem);
5257         return ret;
5258 }
5259
5260 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
5261 {
5262         struct rbd_spec *spec = rbd_dev->spec;
5263         size_t size;
5264
5265         /* Record the header object name for this rbd image. */
5266
5267         rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
5268
5269         if (rbd_dev->image_format == 1)
5270                 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
5271         else
5272                 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
5273
5274         rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
5275         if (!rbd_dev->header_name)
5276                 return -ENOMEM;
5277
5278         if (rbd_dev->image_format == 1)
5279                 sprintf(rbd_dev->header_name, "%s%s",
5280                         spec->image_name, RBD_SUFFIX);
5281         else
5282                 sprintf(rbd_dev->header_name, "%s%s",
5283                         RBD_HEADER_PREFIX, spec->image_id);
5284         return 0;
5285 }
5286
5287 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
5288 {
5289         rbd_dev_unprobe(rbd_dev);
5290         kfree(rbd_dev->header_name);
5291         rbd_dev->header_name = NULL;
5292         rbd_dev->image_format = 0;
5293         kfree(rbd_dev->spec->image_id);
5294         rbd_dev->spec->image_id = NULL;
5295
5296         rbd_dev_destroy(rbd_dev);
5297 }
5298
5299 /*
5300  * Probe for the existence of the header object for the given rbd
5301  * device.  If this image is the one being mapped (i.e., not a
5302  * parent), initiate a watch on its header object before using that
5303  * object to get detailed information about the rbd image.
5304  */
5305 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
5306 {
5307         int ret;
5308
5309         /*
5310          * Get the id from the image id object.  Unless there's an
5311          * error, rbd_dev->spec->image_id will be filled in with
5312          * a dynamically-allocated string, and rbd_dev->image_format
5313          * will be set to either 1 or 2.
5314          */
5315         ret = rbd_dev_image_id(rbd_dev);
5316         if (ret)
5317                 return ret;
5318
5319         ret = rbd_dev_header_name(rbd_dev);
5320         if (ret)
5321                 goto err_out_format;
5322
5323         if (!depth) {
5324                 ret = rbd_dev_header_watch_sync(rbd_dev);
5325                 if (ret) {
5326                         if (ret == -ENOENT)
5327                                 pr_info("image %s/%s does not exist\n",
5328                                         rbd_dev->spec->pool_name,
5329                                         rbd_dev->spec->image_name);
5330                         goto out_header_name;
5331                 }
5332         }
5333
5334         ret = rbd_dev_header_info(rbd_dev);
5335         if (ret)
5336                 goto err_out_watch;
5337
5338         /*
5339          * If this image is the one being mapped, we have pool name and
5340          * id, image name and id, and snap name - need to fill snap id.
5341          * Otherwise this is a parent image, identified by pool, image
5342          * and snap ids - need to fill in names for those ids.
5343          */
5344         if (!depth)
5345                 ret = rbd_spec_fill_snap_id(rbd_dev);
5346         else
5347                 ret = rbd_spec_fill_names(rbd_dev);
5348         if (ret) {
5349                 if (ret == -ENOENT)
5350                         pr_info("snap %s/%s@%s does not exist\n",
5351                                 rbd_dev->spec->pool_name,
5352                                 rbd_dev->spec->image_name,
5353                                 rbd_dev->spec->snap_name);
5354                 goto err_out_probe;
5355         }
5356
5357         if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
5358                 ret = rbd_dev_v2_parent_info(rbd_dev);
5359                 if (ret)
5360                         goto err_out_probe;
5361
5362                 /*
5363                  * Need to warn users if this image is the one being
5364                  * mapped and has a parent.
5365                  */
5366                 if (!depth && rbd_dev->parent_spec)
5367                         rbd_warn(rbd_dev,
5368                                  "WARNING: kernel layering is EXPERIMENTAL!");
5369         }
5370
5371         ret = rbd_dev_probe_parent(rbd_dev, depth);
5372         if (ret)
5373                 goto err_out_probe;
5374
5375         dout("discovered format %u image, header name is %s\n",
5376                 rbd_dev->image_format, rbd_dev->header_name);
5377         return 0;
5378
5379 err_out_probe:
5380         rbd_dev_unprobe(rbd_dev);
5381 err_out_watch:
5382         if (!depth)
5383                 rbd_dev_header_unwatch_sync(rbd_dev);
5384 out_header_name:
5385         kfree(rbd_dev->header_name);
5386         rbd_dev->header_name = NULL;
5387 err_out_format:
5388         rbd_dev->image_format = 0;
5389         kfree(rbd_dev->spec->image_id);
5390         rbd_dev->spec->image_id = NULL;
5391         return ret;
5392 }
5393
5394 static ssize_t do_rbd_add(struct bus_type *bus,
5395                           const char *buf,
5396                           size_t count)
5397 {
5398         struct rbd_device *rbd_dev = NULL;
5399         struct ceph_options *ceph_opts = NULL;
5400         struct rbd_options *rbd_opts = NULL;
5401         struct rbd_spec *spec = NULL;
5402         struct rbd_client *rbdc;
5403         bool read_only;
5404         int rc;
5405
5406         if (!try_module_get(THIS_MODULE))
5407                 return -ENODEV;
5408
5409         /* parse add command */
5410         rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5411         if (rc < 0)
5412                 goto out;
5413
5414         rbdc = rbd_get_client(ceph_opts);
5415         if (IS_ERR(rbdc)) {
5416                 rc = PTR_ERR(rbdc);
5417                 goto err_out_args;
5418         }
5419
5420         /* pick the pool */
5421         rc = rbd_add_get_pool_id(rbdc, spec->pool_name);
5422         if (rc < 0) {
5423                 if (rc == -ENOENT)
5424                         pr_info("pool %s does not exist\n", spec->pool_name);
5425                 goto err_out_client;
5426         }
5427         spec->pool_id = (u64)rc;
5428
5429         /* The ceph file layout needs to fit pool id in 32 bits */
5430
5431         if (spec->pool_id > (u64)U32_MAX) {
5432                 rbd_warn(NULL, "pool id too large (%llu > %u)",
5433                                 (unsigned long long)spec->pool_id, U32_MAX);
5434                 rc = -EIO;
5435                 goto err_out_client;
5436         }
5437
5438         rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
5439         if (!rbd_dev) {
5440                 rc = -ENOMEM;
5441                 goto err_out_client;
5442         }
5443         rbdc = NULL;            /* rbd_dev now owns this */
5444         spec = NULL;            /* rbd_dev now owns this */
5445         rbd_opts = NULL;        /* rbd_dev now owns this */
5446
5447         down_write(&rbd_dev->header_rwsem);
5448         rc = rbd_dev_image_probe(rbd_dev, 0);
5449         if (rc < 0)
5450                 goto err_out_rbd_dev;
5451
5452         /* If we are mapping a snapshot it must be marked read-only */
5453
5454         read_only = rbd_dev->opts->read_only;
5455         if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5456                 read_only = true;
5457         rbd_dev->mapping.read_only = read_only;
5458
5459         rc = rbd_dev_device_setup(rbd_dev);
5460         if (rc) {
5461                 /*
5462                  * rbd_dev_header_unwatch_sync() can't be moved into
5463                  * rbd_dev_image_release() without refactoring, see
5464                  * commit 1f3ef78861ac.
5465                  */
5466                 rbd_dev_header_unwatch_sync(rbd_dev);
5467                 rbd_dev_image_release(rbd_dev);
5468                 goto out;
5469         }
5470
5471         rc = count;
5472 out:
5473         module_put(THIS_MODULE);
5474         return rc;
5475
5476 err_out_rbd_dev:
5477         up_write(&rbd_dev->header_rwsem);
5478         rbd_dev_destroy(rbd_dev);
5479 err_out_client:
5480         rbd_put_client(rbdc);
5481 err_out_args:
5482         rbd_spec_put(spec);
5483         kfree(rbd_opts);
5484         goto out;
5485 }
5486
5487 static ssize_t rbd_add(struct bus_type *bus,
5488                        const char *buf,
5489                        size_t count)
5490 {
5491         if (single_major)
5492                 return -EINVAL;
5493
5494         return do_rbd_add(bus, buf, count);
5495 }
5496
5497 static ssize_t rbd_add_single_major(struct bus_type *bus,
5498                                     const char *buf,
5499                                     size_t count)
5500 {
5501         return do_rbd_add(bus, buf, count);
5502 }
5503
5504 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
5505 {
5506         rbd_free_disk(rbd_dev);
5507         clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5508         device_del(&rbd_dev->dev);
5509         rbd_dev_mapping_clear(rbd_dev);
5510         if (!single_major)
5511                 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5512         rbd_dev_id_put(rbd_dev);
5513 }
5514
5515 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5516 {
5517         while (rbd_dev->parent) {
5518                 struct rbd_device *first = rbd_dev;
5519                 struct rbd_device *second = first->parent;
5520                 struct rbd_device *third;
5521
5522                 /*
5523                  * Follow to the parent with no grandparent and
5524                  * remove it.
5525                  */
5526                 while (second && (third = second->parent)) {
5527                         first = second;
5528                         second = third;
5529                 }
5530                 rbd_assert(second);
5531                 rbd_dev_image_release(second);
5532                 first->parent = NULL;
5533                 first->parent_overlap = 0;
5534
5535                 rbd_assert(first->parent_spec);
5536                 rbd_spec_put(first->parent_spec);
5537                 first->parent_spec = NULL;
5538         }
5539 }
5540
5541 static ssize_t do_rbd_remove(struct bus_type *bus,
5542                              const char *buf,
5543                              size_t count)
5544 {
5545         struct rbd_device *rbd_dev = NULL;
5546         struct list_head *tmp;
5547         int dev_id;
5548         unsigned long ul;
5549         bool already = false;
5550         int ret;
5551
5552         ret = kstrtoul(buf, 10, &ul);
5553         if (ret)
5554                 return ret;
5555
5556         /* convert to int; abort if we lost anything in the conversion */
5557         dev_id = (int)ul;
5558         if (dev_id != ul)
5559                 return -EINVAL;
5560
5561         ret = -ENOENT;
5562         spin_lock(&rbd_dev_list_lock);
5563         list_for_each(tmp, &rbd_dev_list) {
5564                 rbd_dev = list_entry(tmp, struct rbd_device, node);
5565                 if (rbd_dev->dev_id == dev_id) {
5566                         ret = 0;
5567                         break;
5568                 }
5569         }
5570         if (!ret) {
5571                 spin_lock_irq(&rbd_dev->lock);
5572                 if (rbd_dev->open_count)
5573                         ret = -EBUSY;
5574                 else
5575                         already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5576                                                         &rbd_dev->flags);
5577                 spin_unlock_irq(&rbd_dev->lock);
5578         }
5579         spin_unlock(&rbd_dev_list_lock);
5580         if (ret < 0 || already)
5581                 return ret;
5582
5583         rbd_dev_header_unwatch_sync(rbd_dev);
5584
5585         /*
5586          * Don't free anything from rbd_dev->disk until after all
5587          * notifies are completely processed. Otherwise
5588          * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5589          * in a potential use after free of rbd_dev->disk or rbd_dev.
5590          */
5591         rbd_dev_device_release(rbd_dev);
5592         rbd_dev_image_release(rbd_dev);
5593
5594         return count;
5595 }
5596
5597 static ssize_t rbd_remove(struct bus_type *bus,
5598                           const char *buf,
5599                           size_t count)
5600 {
5601         if (single_major)
5602                 return -EINVAL;
5603
5604         return do_rbd_remove(bus, buf, count);
5605 }
5606
5607 static ssize_t rbd_remove_single_major(struct bus_type *bus,
5608                                        const char *buf,
5609                                        size_t count)
5610 {
5611         return do_rbd_remove(bus, buf, count);
5612 }
5613
5614 /*
5615  * create control files in sysfs
5616  * /sys/bus/rbd/...
5617  */
5618 static int rbd_sysfs_init(void)
5619 {
5620         int ret;
5621
5622         ret = device_register(&rbd_root_dev);
5623         if (ret < 0)
5624                 return ret;
5625
5626         ret = bus_register(&rbd_bus_type);
5627         if (ret < 0)
5628                 device_unregister(&rbd_root_dev);
5629
5630         return ret;
5631 }
5632
5633 static void rbd_sysfs_cleanup(void)
5634 {
5635         bus_unregister(&rbd_bus_type);
5636         device_unregister(&rbd_root_dev);
5637 }
5638
5639 static int rbd_slab_init(void)
5640 {
5641         rbd_assert(!rbd_img_request_cache);
5642         rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
5643         if (!rbd_img_request_cache)
5644                 return -ENOMEM;
5645
5646         rbd_assert(!rbd_obj_request_cache);
5647         rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
5648         if (!rbd_obj_request_cache)
5649                 goto out_err;
5650
5651         rbd_assert(!rbd_segment_name_cache);
5652         rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5653                                         CEPH_MAX_OID_NAME_LEN + 1, 1, 0, NULL);
5654         if (rbd_segment_name_cache)
5655                 return 0;
5656 out_err:
5657         kmem_cache_destroy(rbd_obj_request_cache);
5658         rbd_obj_request_cache = NULL;
5659
5660         kmem_cache_destroy(rbd_img_request_cache);
5661         rbd_img_request_cache = NULL;
5662
5663         return -ENOMEM;
5664 }
5665
5666 static void rbd_slab_exit(void)
5667 {
5668         rbd_assert(rbd_segment_name_cache);
5669         kmem_cache_destroy(rbd_segment_name_cache);
5670         rbd_segment_name_cache = NULL;
5671
5672         rbd_assert(rbd_obj_request_cache);
5673         kmem_cache_destroy(rbd_obj_request_cache);
5674         rbd_obj_request_cache = NULL;
5675
5676         rbd_assert(rbd_img_request_cache);
5677         kmem_cache_destroy(rbd_img_request_cache);
5678         rbd_img_request_cache = NULL;
5679 }
5680
5681 static int __init rbd_init(void)
5682 {
5683         int rc;
5684
5685         if (!libceph_compatible(NULL)) {
5686                 rbd_warn(NULL, "libceph incompatibility (quitting)");
5687                 return -EINVAL;
5688         }
5689
5690         rc = rbd_slab_init();
5691         if (rc)
5692                 return rc;
5693
5694         /*
5695          * The number of active work items is limited by the number of
5696          * rbd devices * queue depth, so leave @max_active at default.
5697          */
5698         rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
5699         if (!rbd_wq) {
5700                 rc = -ENOMEM;
5701                 goto err_out_slab;
5702         }
5703
5704         if (single_major) {
5705                 rbd_major = register_blkdev(0, RBD_DRV_NAME);
5706                 if (rbd_major < 0) {
5707                         rc = rbd_major;
5708                         goto err_out_wq;
5709                 }
5710         }
5711
5712         rc = rbd_sysfs_init();
5713         if (rc)
5714                 goto err_out_blkdev;
5715
5716         if (single_major)
5717                 pr_info("loaded (major %d)\n", rbd_major);
5718         else
5719                 pr_info("loaded\n");
5720
5721         return 0;
5722
5723 err_out_blkdev:
5724         if (single_major)
5725                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5726 err_out_wq:
5727         destroy_workqueue(rbd_wq);
5728 err_out_slab:
5729         rbd_slab_exit();
5730         return rc;
5731 }
5732
5733 static void __exit rbd_exit(void)
5734 {
5735         ida_destroy(&rbd_dev_id_ida);
5736         rbd_sysfs_cleanup();
5737         if (single_major)
5738                 unregister_blkdev(rbd_major, RBD_DRV_NAME);
5739         destroy_workqueue(rbd_wq);
5740         rbd_slab_exit();
5741 }
5742
5743 module_init(rbd_init);
5744 module_exit(rbd_exit);
5745
5746 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5747 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5748 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5749 /* following authorship retained from original osdblk.c */
5750 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5751
5752 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
5753 MODULE_LICENSE("GPL");