ASoC: fsl_ssi: remove explicit register defaults
[cascardo/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC    10000
84 #define SI_USEC_PER_JIFFY       (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87                                       short timeout */
88
89 enum si_intf_state {
90         SI_NORMAL,
91         SI_GETTING_FLAGS,
92         SI_GETTING_EVENTS,
93         SI_CLEARING_FLAGS,
94         SI_GETTING_MESSAGES,
95         SI_CHECKING_ENABLES,
96         SI_SETTING_ENABLES
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108
109 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
110
111 #define DEVICE_NAME "ipmi_si"
112
113 static struct platform_driver ipmi_driver;
114
115 /*
116  * Indexes into stats[] in smi_info below.
117  */
118 enum si_stat_indexes {
119         /*
120          * Number of times the driver requested a timer while an operation
121          * was in progress.
122          */
123         SI_STAT_short_timeouts = 0,
124
125         /*
126          * Number of times the driver requested a timer while nothing was in
127          * progress.
128          */
129         SI_STAT_long_timeouts,
130
131         /* Number of times the interface was idle while being polled. */
132         SI_STAT_idles,
133
134         /* Number of interrupts the driver handled. */
135         SI_STAT_interrupts,
136
137         /* Number of time the driver got an ATTN from the hardware. */
138         SI_STAT_attentions,
139
140         /* Number of times the driver requested flags from the hardware. */
141         SI_STAT_flag_fetches,
142
143         /* Number of times the hardware didn't follow the state machine. */
144         SI_STAT_hosed_count,
145
146         /* Number of completed messages. */
147         SI_STAT_complete_transactions,
148
149         /* Number of IPMI events received from the hardware. */
150         SI_STAT_events,
151
152         /* Number of watchdog pretimeouts. */
153         SI_STAT_watchdog_pretimeouts,
154
155         /* Number of asynchronous messages received. */
156         SI_STAT_incoming_messages,
157
158
159         /* This *must* remain last, add new values above this. */
160         SI_NUM_STATS
161 };
162
163 struct smi_info {
164         int                    intf_num;
165         ipmi_smi_t             intf;
166         struct si_sm_data      *si_sm;
167         const struct si_sm_handlers *handlers;
168         enum si_type           si_type;
169         spinlock_t             si_lock;
170         struct ipmi_smi_msg    *waiting_msg;
171         struct ipmi_smi_msg    *curr_msg;
172         enum si_intf_state     si_state;
173
174         /*
175          * Used to handle the various types of I/O that can occur with
176          * IPMI
177          */
178         struct si_sm_io io;
179         int (*io_setup)(struct smi_info *info);
180         void (*io_cleanup)(struct smi_info *info);
181         int (*irq_setup)(struct smi_info *info);
182         void (*irq_cleanup)(struct smi_info *info);
183         unsigned int io_size;
184         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185         void (*addr_source_cleanup)(struct smi_info *info);
186         void *addr_source_data;
187
188         /*
189          * Per-OEM handler, called from handle_flags().  Returns 1
190          * when handle_flags() needs to be re-run or 0 indicating it
191          * set si_state itself.
192          */
193         int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195         /*
196          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197          * is set to hold the flags until we are done handling everything
198          * from the flags.
199          */
200 #define RECEIVE_MSG_AVAIL       0x01
201 #define EVENT_MSG_BUFFER_FULL   0x02
202 #define WDT_PRE_TIMEOUT_INT     0x08
203 #define OEM0_DATA_AVAIL     0x20
204 #define OEM1_DATA_AVAIL     0x40
205 #define OEM2_DATA_AVAIL     0x80
206 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
207                              OEM1_DATA_AVAIL | \
208                              OEM2_DATA_AVAIL)
209         unsigned char       msg_flags;
210
211         /* Does the BMC have an event buffer? */
212         bool                has_event_buffer;
213
214         /*
215          * If set to true, this will request events the next time the
216          * state machine is idle.
217          */
218         atomic_t            req_events;
219
220         /*
221          * If true, run the state machine to completion on every send
222          * call.  Generally used after a panic to make sure stuff goes
223          * out.
224          */
225         bool                run_to_completion;
226
227         /* The I/O port of an SI interface. */
228         int                 port;
229
230         /*
231          * The space between start addresses of the two ports.  For
232          * instance, if the first port is 0xca2 and the spacing is 4, then
233          * the second port is 0xca6.
234          */
235         unsigned int        spacing;
236
237         /* zero if no irq; */
238         int                 irq;
239
240         /* The timer for this si. */
241         struct timer_list   si_timer;
242
243         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244         bool                timer_running;
245
246         /* The time (in jiffies) the last timeout occurred at. */
247         unsigned long       last_timeout_jiffies;
248
249         /* Are we waiting for the events, pretimeouts, received msgs? */
250         atomic_t            need_watch;
251
252         /*
253          * The driver will disable interrupts when it gets into a
254          * situation where it cannot handle messages due to lack of
255          * memory.  Once that situation clears up, it will re-enable
256          * interrupts.
257          */
258         bool interrupt_disabled;
259
260         /*
261          * Does the BMC support events?
262          */
263         bool supports_event_msg_buff;
264
265         /*
266          * Can we disable interrupts the global enables receive irq
267          * bit?  There are currently two forms of brokenness, some
268          * systems cannot disable the bit (which is technically within
269          * the spec but a bad idea) and some systems have the bit
270          * forced to zero even though interrupts work (which is
271          * clearly outside the spec).  The next bool tells which form
272          * of brokenness is present.
273          */
274         bool cannot_disable_irq;
275
276         /*
277          * Some systems are broken and cannot set the irq enable
278          * bit, even if they support interrupts.
279          */
280         bool irq_enable_broken;
281
282         /*
283          * Did we get an attention that we did not handle?
284          */
285         bool got_attn;
286
287         /* From the get device id response... */
288         struct ipmi_device_id device_id;
289
290         /* Driver model stuff. */
291         struct device *dev;
292         struct platform_device *pdev;
293
294         /*
295          * True if we allocated the device, false if it came from
296          * someplace else (like PCI).
297          */
298         bool dev_registered;
299
300         /* Slave address, could be reported from DMI. */
301         unsigned char slave_addr;
302
303         /* Counters and things for the proc filesystem. */
304         atomic_t stats[SI_NUM_STATS];
305
306         struct task_struct *thread;
307
308         struct list_head link;
309         union ipmi_smi_info_union addr_info;
310 };
311
312 #define smi_inc_stat(smi, stat) \
313         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
314 #define smi_get_stat(smi, stat) \
315         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
316
317 #define SI_MAX_PARMS 4
318
319 static int force_kipmid[SI_MAX_PARMS];
320 static int num_force_kipmid;
321 #ifdef CONFIG_PCI
322 static bool pci_registered;
323 #endif
324 #ifdef CONFIG_PARISC
325 static bool parisc_registered;
326 #endif
327
328 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
329 static int num_max_busy_us;
330
331 static bool unload_when_empty = true;
332
333 static int add_smi(struct smi_info *smi);
334 static int try_smi_init(struct smi_info *smi);
335 static void cleanup_one_si(struct smi_info *to_clean);
336 static void cleanup_ipmi_si(void);
337
338 #ifdef DEBUG_TIMING
339 void debug_timestamp(char *msg)
340 {
341         struct timespec64 t;
342
343         getnstimeofday64(&t);
344         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
345 }
346 #else
347 #define debug_timestamp(x)
348 #endif
349
350 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
351 static int register_xaction_notifier(struct notifier_block *nb)
352 {
353         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
354 }
355
356 static void deliver_recv_msg(struct smi_info *smi_info,
357                              struct ipmi_smi_msg *msg)
358 {
359         /* Deliver the message to the upper layer. */
360         if (smi_info->intf)
361                 ipmi_smi_msg_received(smi_info->intf, msg);
362         else
363                 ipmi_free_smi_msg(msg);
364 }
365
366 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
367 {
368         struct ipmi_smi_msg *msg = smi_info->curr_msg;
369
370         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
371                 cCode = IPMI_ERR_UNSPECIFIED;
372         /* else use it as is */
373
374         /* Make it a response */
375         msg->rsp[0] = msg->data[0] | 4;
376         msg->rsp[1] = msg->data[1];
377         msg->rsp[2] = cCode;
378         msg->rsp_size = 3;
379
380         smi_info->curr_msg = NULL;
381         deliver_recv_msg(smi_info, msg);
382 }
383
384 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
385 {
386         int              rv;
387
388         if (!smi_info->waiting_msg) {
389                 smi_info->curr_msg = NULL;
390                 rv = SI_SM_IDLE;
391         } else {
392                 int err;
393
394                 smi_info->curr_msg = smi_info->waiting_msg;
395                 smi_info->waiting_msg = NULL;
396                 debug_timestamp("Start2");
397                 err = atomic_notifier_call_chain(&xaction_notifier_list,
398                                 0, smi_info);
399                 if (err & NOTIFY_STOP_MASK) {
400                         rv = SI_SM_CALL_WITHOUT_DELAY;
401                         goto out;
402                 }
403                 err = smi_info->handlers->start_transaction(
404                         smi_info->si_sm,
405                         smi_info->curr_msg->data,
406                         smi_info->curr_msg->data_size);
407                 if (err)
408                         return_hosed_msg(smi_info, err);
409
410                 rv = SI_SM_CALL_WITHOUT_DELAY;
411         }
412  out:
413         return rv;
414 }
415
416 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
417 {
418         smi_info->last_timeout_jiffies = jiffies;
419         mod_timer(&smi_info->si_timer, new_val);
420         smi_info->timer_running = true;
421 }
422
423 /*
424  * Start a new message and (re)start the timer and thread.
425  */
426 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
427                           unsigned int size)
428 {
429         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
430
431         if (smi_info->thread)
432                 wake_up_process(smi_info->thread);
433
434         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
435 }
436
437 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
438 {
439         unsigned char msg[2];
440
441         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
442         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
443
444         if (start_timer)
445                 start_new_msg(smi_info, msg, 2);
446         else
447                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
448         smi_info->si_state = SI_CHECKING_ENABLES;
449 }
450
451 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
452 {
453         unsigned char msg[3];
454
455         /* Make sure the watchdog pre-timeout flag is not set at startup. */
456         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
457         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
458         msg[2] = WDT_PRE_TIMEOUT_INT;
459
460         if (start_timer)
461                 start_new_msg(smi_info, msg, 3);
462         else
463                 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
464         smi_info->si_state = SI_CLEARING_FLAGS;
465 }
466
467 static void start_getting_msg_queue(struct smi_info *smi_info)
468 {
469         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
470         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
471         smi_info->curr_msg->data_size = 2;
472
473         start_new_msg(smi_info, smi_info->curr_msg->data,
474                       smi_info->curr_msg->data_size);
475         smi_info->si_state = SI_GETTING_MESSAGES;
476 }
477
478 static void start_getting_events(struct smi_info *smi_info)
479 {
480         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
481         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
482         smi_info->curr_msg->data_size = 2;
483
484         start_new_msg(smi_info, smi_info->curr_msg->data,
485                       smi_info->curr_msg->data_size);
486         smi_info->si_state = SI_GETTING_EVENTS;
487 }
488
489 /*
490  * When we have a situtaion where we run out of memory and cannot
491  * allocate messages, we just leave them in the BMC and run the system
492  * polled until we can allocate some memory.  Once we have some
493  * memory, we will re-enable the interrupt.
494  *
495  * Note that we cannot just use disable_irq(), since the interrupt may
496  * be shared.
497  */
498 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
499 {
500         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
501                 smi_info->interrupt_disabled = true;
502                 start_check_enables(smi_info, start_timer);
503                 return true;
504         }
505         return false;
506 }
507
508 static inline bool enable_si_irq(struct smi_info *smi_info)
509 {
510         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
511                 smi_info->interrupt_disabled = false;
512                 start_check_enables(smi_info, true);
513                 return true;
514         }
515         return false;
516 }
517
518 /*
519  * Allocate a message.  If unable to allocate, start the interrupt
520  * disable process and return NULL.  If able to allocate but
521  * interrupts are disabled, free the message and return NULL after
522  * starting the interrupt enable process.
523  */
524 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
525 {
526         struct ipmi_smi_msg *msg;
527
528         msg = ipmi_alloc_smi_msg();
529         if (!msg) {
530                 if (!disable_si_irq(smi_info, true))
531                         smi_info->si_state = SI_NORMAL;
532         } else if (enable_si_irq(smi_info)) {
533                 ipmi_free_smi_msg(msg);
534                 msg = NULL;
535         }
536         return msg;
537 }
538
539 static void handle_flags(struct smi_info *smi_info)
540 {
541  retry:
542         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
543                 /* Watchdog pre-timeout */
544                 smi_inc_stat(smi_info, watchdog_pretimeouts);
545
546                 start_clear_flags(smi_info, true);
547                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
548                 if (smi_info->intf)
549                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
550         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
551                 /* Messages available. */
552                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
553                 if (!smi_info->curr_msg)
554                         return;
555
556                 start_getting_msg_queue(smi_info);
557         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
558                 /* Events available. */
559                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
560                 if (!smi_info->curr_msg)
561                         return;
562
563                 start_getting_events(smi_info);
564         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
565                    smi_info->oem_data_avail_handler) {
566                 if (smi_info->oem_data_avail_handler(smi_info))
567                         goto retry;
568         } else
569                 smi_info->si_state = SI_NORMAL;
570 }
571
572 /*
573  * Global enables we care about.
574  */
575 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
576                              IPMI_BMC_EVT_MSG_INTR)
577
578 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
579                                  bool *irq_on)
580 {
581         u8 enables = 0;
582
583         if (smi_info->supports_event_msg_buff)
584                 enables |= IPMI_BMC_EVT_MSG_BUFF;
585
586         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
587              smi_info->cannot_disable_irq) &&
588             !smi_info->irq_enable_broken)
589                 enables |= IPMI_BMC_RCV_MSG_INTR;
590
591         if (smi_info->supports_event_msg_buff &&
592             smi_info->irq && !smi_info->interrupt_disabled &&
593             !smi_info->irq_enable_broken)
594                 enables |= IPMI_BMC_EVT_MSG_INTR;
595
596         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
597
598         return enables;
599 }
600
601 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
602 {
603         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
604
605         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
606
607         if ((bool)irqstate == irq_on)
608                 return;
609
610         if (irq_on)
611                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
612                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
613         else
614                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
615 }
616
617 static void handle_transaction_done(struct smi_info *smi_info)
618 {
619         struct ipmi_smi_msg *msg;
620
621         debug_timestamp("Done");
622         switch (smi_info->si_state) {
623         case SI_NORMAL:
624                 if (!smi_info->curr_msg)
625                         break;
626
627                 smi_info->curr_msg->rsp_size
628                         = smi_info->handlers->get_result(
629                                 smi_info->si_sm,
630                                 smi_info->curr_msg->rsp,
631                                 IPMI_MAX_MSG_LENGTH);
632
633                 /*
634                  * Do this here becase deliver_recv_msg() releases the
635                  * lock, and a new message can be put in during the
636                  * time the lock is released.
637                  */
638                 msg = smi_info->curr_msg;
639                 smi_info->curr_msg = NULL;
640                 deliver_recv_msg(smi_info, msg);
641                 break;
642
643         case SI_GETTING_FLAGS:
644         {
645                 unsigned char msg[4];
646                 unsigned int  len;
647
648                 /* We got the flags from the SMI, now handle them. */
649                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
650                 if (msg[2] != 0) {
651                         /* Error fetching flags, just give up for now. */
652                         smi_info->si_state = SI_NORMAL;
653                 } else if (len < 4) {
654                         /*
655                          * Hmm, no flags.  That's technically illegal, but
656                          * don't use uninitialized data.
657                          */
658                         smi_info->si_state = SI_NORMAL;
659                 } else {
660                         smi_info->msg_flags = msg[3];
661                         handle_flags(smi_info);
662                 }
663                 break;
664         }
665
666         case SI_CLEARING_FLAGS:
667         {
668                 unsigned char msg[3];
669
670                 /* We cleared the flags. */
671                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
672                 if (msg[2] != 0) {
673                         /* Error clearing flags */
674                         dev_warn(smi_info->dev,
675                                  "Error clearing flags: %2.2x\n", msg[2]);
676                 }
677                 smi_info->si_state = SI_NORMAL;
678                 break;
679         }
680
681         case SI_GETTING_EVENTS:
682         {
683                 smi_info->curr_msg->rsp_size
684                         = smi_info->handlers->get_result(
685                                 smi_info->si_sm,
686                                 smi_info->curr_msg->rsp,
687                                 IPMI_MAX_MSG_LENGTH);
688
689                 /*
690                  * Do this here becase deliver_recv_msg() releases the
691                  * lock, and a new message can be put in during the
692                  * time the lock is released.
693                  */
694                 msg = smi_info->curr_msg;
695                 smi_info->curr_msg = NULL;
696                 if (msg->rsp[2] != 0) {
697                         /* Error getting event, probably done. */
698                         msg->done(msg);
699
700                         /* Take off the event flag. */
701                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
702                         handle_flags(smi_info);
703                 } else {
704                         smi_inc_stat(smi_info, events);
705
706                         /*
707                          * Do this before we deliver the message
708                          * because delivering the message releases the
709                          * lock and something else can mess with the
710                          * state.
711                          */
712                         handle_flags(smi_info);
713
714                         deliver_recv_msg(smi_info, msg);
715                 }
716                 break;
717         }
718
719         case SI_GETTING_MESSAGES:
720         {
721                 smi_info->curr_msg->rsp_size
722                         = smi_info->handlers->get_result(
723                                 smi_info->si_sm,
724                                 smi_info->curr_msg->rsp,
725                                 IPMI_MAX_MSG_LENGTH);
726
727                 /*
728                  * Do this here becase deliver_recv_msg() releases the
729                  * lock, and a new message can be put in during the
730                  * time the lock is released.
731                  */
732                 msg = smi_info->curr_msg;
733                 smi_info->curr_msg = NULL;
734                 if (msg->rsp[2] != 0) {
735                         /* Error getting event, probably done. */
736                         msg->done(msg);
737
738                         /* Take off the msg flag. */
739                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
740                         handle_flags(smi_info);
741                 } else {
742                         smi_inc_stat(smi_info, incoming_messages);
743
744                         /*
745                          * Do this before we deliver the message
746                          * because delivering the message releases the
747                          * lock and something else can mess with the
748                          * state.
749                          */
750                         handle_flags(smi_info);
751
752                         deliver_recv_msg(smi_info, msg);
753                 }
754                 break;
755         }
756
757         case SI_CHECKING_ENABLES:
758         {
759                 unsigned char msg[4];
760                 u8 enables;
761                 bool irq_on;
762
763                 /* We got the flags from the SMI, now handle them. */
764                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
765                 if (msg[2] != 0) {
766                         dev_warn(smi_info->dev,
767                                  "Couldn't get irq info: %x.\n", msg[2]);
768                         dev_warn(smi_info->dev,
769                                  "Maybe ok, but ipmi might run very slowly.\n");
770                         smi_info->si_state = SI_NORMAL;
771                         break;
772                 }
773                 enables = current_global_enables(smi_info, 0, &irq_on);
774                 if (smi_info->si_type == SI_BT)
775                         /* BT has its own interrupt enable bit. */
776                         check_bt_irq(smi_info, irq_on);
777                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
778                         /* Enables are not correct, fix them. */
779                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
780                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
781                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
782                         smi_info->handlers->start_transaction(
783                                 smi_info->si_sm, msg, 3);
784                         smi_info->si_state = SI_SETTING_ENABLES;
785                 } else if (smi_info->supports_event_msg_buff) {
786                         smi_info->curr_msg = ipmi_alloc_smi_msg();
787                         if (!smi_info->curr_msg) {
788                                 smi_info->si_state = SI_NORMAL;
789                                 break;
790                         }
791                         start_getting_msg_queue(smi_info);
792                 } else {
793                         smi_info->si_state = SI_NORMAL;
794                 }
795                 break;
796         }
797
798         case SI_SETTING_ENABLES:
799         {
800                 unsigned char msg[4];
801
802                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
803                 if (msg[2] != 0)
804                         dev_warn(smi_info->dev,
805                                  "Could not set the global enables: 0x%x.\n",
806                                  msg[2]);
807
808                 if (smi_info->supports_event_msg_buff) {
809                         smi_info->curr_msg = ipmi_alloc_smi_msg();
810                         if (!smi_info->curr_msg) {
811                                 smi_info->si_state = SI_NORMAL;
812                                 break;
813                         }
814                         start_getting_msg_queue(smi_info);
815                 } else {
816                         smi_info->si_state = SI_NORMAL;
817                 }
818                 break;
819         }
820         }
821 }
822
823 /*
824  * Called on timeouts and events.  Timeouts should pass the elapsed
825  * time, interrupts should pass in zero.  Must be called with
826  * si_lock held and interrupts disabled.
827  */
828 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
829                                            int time)
830 {
831         enum si_sm_result si_sm_result;
832
833  restart:
834         /*
835          * There used to be a loop here that waited a little while
836          * (around 25us) before giving up.  That turned out to be
837          * pointless, the minimum delays I was seeing were in the 300us
838          * range, which is far too long to wait in an interrupt.  So
839          * we just run until the state machine tells us something
840          * happened or it needs a delay.
841          */
842         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
843         time = 0;
844         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
845                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
846
847         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
848                 smi_inc_stat(smi_info, complete_transactions);
849
850                 handle_transaction_done(smi_info);
851                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
852         } else if (si_sm_result == SI_SM_HOSED) {
853                 smi_inc_stat(smi_info, hosed_count);
854
855                 /*
856                  * Do the before return_hosed_msg, because that
857                  * releases the lock.
858                  */
859                 smi_info->si_state = SI_NORMAL;
860                 if (smi_info->curr_msg != NULL) {
861                         /*
862                          * If we were handling a user message, format
863                          * a response to send to the upper layer to
864                          * tell it about the error.
865                          */
866                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
867                 }
868                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
869         }
870
871         /*
872          * We prefer handling attn over new messages.  But don't do
873          * this if there is not yet an upper layer to handle anything.
874          */
875         if (likely(smi_info->intf) &&
876             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
877                 unsigned char msg[2];
878
879                 if (smi_info->si_state != SI_NORMAL) {
880                         /*
881                          * We got an ATTN, but we are doing something else.
882                          * Handle the ATTN later.
883                          */
884                         smi_info->got_attn = true;
885                 } else {
886                         smi_info->got_attn = false;
887                         smi_inc_stat(smi_info, attentions);
888
889                         /*
890                          * Got a attn, send down a get message flags to see
891                          * what's causing it.  It would be better to handle
892                          * this in the upper layer, but due to the way
893                          * interrupts work with the SMI, that's not really
894                          * possible.
895                          */
896                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
897                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
898
899                         start_new_msg(smi_info, msg, 2);
900                         smi_info->si_state = SI_GETTING_FLAGS;
901                         goto restart;
902                 }
903         }
904
905         /* If we are currently idle, try to start the next message. */
906         if (si_sm_result == SI_SM_IDLE) {
907                 smi_inc_stat(smi_info, idles);
908
909                 si_sm_result = start_next_msg(smi_info);
910                 if (si_sm_result != SI_SM_IDLE)
911                         goto restart;
912         }
913
914         if ((si_sm_result == SI_SM_IDLE)
915             && (atomic_read(&smi_info->req_events))) {
916                 /*
917                  * We are idle and the upper layer requested that I fetch
918                  * events, so do so.
919                  */
920                 atomic_set(&smi_info->req_events, 0);
921
922                 /*
923                  * Take this opportunity to check the interrupt and
924                  * message enable state for the BMC.  The BMC can be
925                  * asynchronously reset, and may thus get interrupts
926                  * disable and messages disabled.
927                  */
928                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
929                         start_check_enables(smi_info, true);
930                 } else {
931                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
932                         if (!smi_info->curr_msg)
933                                 goto out;
934
935                         start_getting_events(smi_info);
936                 }
937                 goto restart;
938         }
939
940         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
941                 /* Ok it if fails, the timer will just go off. */
942                 if (del_timer(&smi_info->si_timer))
943                         smi_info->timer_running = false;
944         }
945
946  out:
947         return si_sm_result;
948 }
949
950 static void check_start_timer_thread(struct smi_info *smi_info)
951 {
952         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
953                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
954
955                 if (smi_info->thread)
956                         wake_up_process(smi_info->thread);
957
958                 start_next_msg(smi_info);
959                 smi_event_handler(smi_info, 0);
960         }
961 }
962
963 static void flush_messages(void *send_info)
964 {
965         struct smi_info *smi_info = send_info;
966         enum si_sm_result result;
967
968         /*
969          * Currently, this function is called only in run-to-completion
970          * mode.  This means we are single-threaded, no need for locks.
971          */
972         result = smi_event_handler(smi_info, 0);
973         while (result != SI_SM_IDLE) {
974                 udelay(SI_SHORT_TIMEOUT_USEC);
975                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
976         }
977 }
978
979 static void sender(void                *send_info,
980                    struct ipmi_smi_msg *msg)
981 {
982         struct smi_info   *smi_info = send_info;
983         unsigned long     flags;
984
985         debug_timestamp("Enqueue");
986
987         if (smi_info->run_to_completion) {
988                 /*
989                  * If we are running to completion, start it.  Upper
990                  * layer will call flush_messages to clear it out.
991                  */
992                 smi_info->waiting_msg = msg;
993                 return;
994         }
995
996         spin_lock_irqsave(&smi_info->si_lock, flags);
997         /*
998          * The following two lines don't need to be under the lock for
999          * the lock's sake, but they do need SMP memory barriers to
1000          * avoid getting things out of order.  We are already claiming
1001          * the lock, anyway, so just do it under the lock to avoid the
1002          * ordering problem.
1003          */
1004         BUG_ON(smi_info->waiting_msg);
1005         smi_info->waiting_msg = msg;
1006         check_start_timer_thread(smi_info);
1007         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1008 }
1009
1010 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1011 {
1012         struct smi_info   *smi_info = send_info;
1013
1014         smi_info->run_to_completion = i_run_to_completion;
1015         if (i_run_to_completion)
1016                 flush_messages(smi_info);
1017 }
1018
1019 /*
1020  * Use -1 in the nsec value of the busy waiting timespec to tell that
1021  * we are spinning in kipmid looking for something and not delaying
1022  * between checks
1023  */
1024 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1025 {
1026         ts->tv_nsec = -1;
1027 }
1028 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1029 {
1030         return ts->tv_nsec != -1;
1031 }
1032
1033 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1034                                         const struct smi_info *smi_info,
1035                                         struct timespec64 *busy_until)
1036 {
1037         unsigned int max_busy_us = 0;
1038
1039         if (smi_info->intf_num < num_max_busy_us)
1040                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1041         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1042                 ipmi_si_set_not_busy(busy_until);
1043         else if (!ipmi_si_is_busy(busy_until)) {
1044                 getnstimeofday64(busy_until);
1045                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1046         } else {
1047                 struct timespec64 now;
1048
1049                 getnstimeofday64(&now);
1050                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1051                         ipmi_si_set_not_busy(busy_until);
1052                         return 0;
1053                 }
1054         }
1055         return 1;
1056 }
1057
1058
1059 /*
1060  * A busy-waiting loop for speeding up IPMI operation.
1061  *
1062  * Lousy hardware makes this hard.  This is only enabled for systems
1063  * that are not BT and do not have interrupts.  It starts spinning
1064  * when an operation is complete or until max_busy tells it to stop
1065  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1066  * Documentation/IPMI.txt for details.
1067  */
1068 static int ipmi_thread(void *data)
1069 {
1070         struct smi_info *smi_info = data;
1071         unsigned long flags;
1072         enum si_sm_result smi_result;
1073         struct timespec64 busy_until;
1074
1075         ipmi_si_set_not_busy(&busy_until);
1076         set_user_nice(current, MAX_NICE);
1077         while (!kthread_should_stop()) {
1078                 int busy_wait;
1079
1080                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1081                 smi_result = smi_event_handler(smi_info, 0);
1082
1083                 /*
1084                  * If the driver is doing something, there is a possible
1085                  * race with the timer.  If the timer handler see idle,
1086                  * and the thread here sees something else, the timer
1087                  * handler won't restart the timer even though it is
1088                  * required.  So start it here if necessary.
1089                  */
1090                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1091                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1092
1093                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1094                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1095                                                   &busy_until);
1096                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1097                         ; /* do nothing */
1098                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1099                         schedule();
1100                 else if (smi_result == SI_SM_IDLE) {
1101                         if (atomic_read(&smi_info->need_watch)) {
1102                                 schedule_timeout_interruptible(100);
1103                         } else {
1104                                 /* Wait to be woken up when we are needed. */
1105                                 __set_current_state(TASK_INTERRUPTIBLE);
1106                                 schedule();
1107                         }
1108                 } else
1109                         schedule_timeout_interruptible(1);
1110         }
1111         return 0;
1112 }
1113
1114
1115 static void poll(void *send_info)
1116 {
1117         struct smi_info *smi_info = send_info;
1118         unsigned long flags = 0;
1119         bool run_to_completion = smi_info->run_to_completion;
1120
1121         /*
1122          * Make sure there is some delay in the poll loop so we can
1123          * drive time forward and timeout things.
1124          */
1125         udelay(10);
1126         if (!run_to_completion)
1127                 spin_lock_irqsave(&smi_info->si_lock, flags);
1128         smi_event_handler(smi_info, 10);
1129         if (!run_to_completion)
1130                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1131 }
1132
1133 static void request_events(void *send_info)
1134 {
1135         struct smi_info *smi_info = send_info;
1136
1137         if (!smi_info->has_event_buffer)
1138                 return;
1139
1140         atomic_set(&smi_info->req_events, 1);
1141 }
1142
1143 static void set_need_watch(void *send_info, bool enable)
1144 {
1145         struct smi_info *smi_info = send_info;
1146         unsigned long flags;
1147
1148         atomic_set(&smi_info->need_watch, enable);
1149         spin_lock_irqsave(&smi_info->si_lock, flags);
1150         check_start_timer_thread(smi_info);
1151         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1152 }
1153
1154 static int initialized;
1155
1156 static void smi_timeout(unsigned long data)
1157 {
1158         struct smi_info   *smi_info = (struct smi_info *) data;
1159         enum si_sm_result smi_result;
1160         unsigned long     flags;
1161         unsigned long     jiffies_now;
1162         long              time_diff;
1163         long              timeout;
1164
1165         spin_lock_irqsave(&(smi_info->si_lock), flags);
1166         debug_timestamp("Timer");
1167
1168         jiffies_now = jiffies;
1169         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1170                      * SI_USEC_PER_JIFFY);
1171         smi_result = smi_event_handler(smi_info, time_diff);
1172
1173         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1174                 /* Running with interrupts, only do long timeouts. */
1175                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1176                 smi_inc_stat(smi_info, long_timeouts);
1177                 goto do_mod_timer;
1178         }
1179
1180         /*
1181          * If the state machine asks for a short delay, then shorten
1182          * the timer timeout.
1183          */
1184         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1185                 smi_inc_stat(smi_info, short_timeouts);
1186                 timeout = jiffies + 1;
1187         } else {
1188                 smi_inc_stat(smi_info, long_timeouts);
1189                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1190         }
1191
1192  do_mod_timer:
1193         if (smi_result != SI_SM_IDLE)
1194                 smi_mod_timer(smi_info, timeout);
1195         else
1196                 smi_info->timer_running = false;
1197         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1198 }
1199
1200 static irqreturn_t si_irq_handler(int irq, void *data)
1201 {
1202         struct smi_info *smi_info = data;
1203         unsigned long   flags;
1204
1205         spin_lock_irqsave(&(smi_info->si_lock), flags);
1206
1207         smi_inc_stat(smi_info, interrupts);
1208
1209         debug_timestamp("Interrupt");
1210
1211         smi_event_handler(smi_info, 0);
1212         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1213         return IRQ_HANDLED;
1214 }
1215
1216 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1217 {
1218         struct smi_info *smi_info = data;
1219         /* We need to clear the IRQ flag for the BT interface. */
1220         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1221                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1222                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1223         return si_irq_handler(irq, data);
1224 }
1225
1226 static int smi_start_processing(void       *send_info,
1227                                 ipmi_smi_t intf)
1228 {
1229         struct smi_info *new_smi = send_info;
1230         int             enable = 0;
1231
1232         new_smi->intf = intf;
1233
1234         /* Set up the timer that drives the interface. */
1235         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1236         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1237
1238         /* Try to claim any interrupts. */
1239         if (new_smi->irq_setup)
1240                 new_smi->irq_setup(new_smi);
1241
1242         /*
1243          * Check if the user forcefully enabled the daemon.
1244          */
1245         if (new_smi->intf_num < num_force_kipmid)
1246                 enable = force_kipmid[new_smi->intf_num];
1247         /*
1248          * The BT interface is efficient enough to not need a thread,
1249          * and there is no need for a thread if we have interrupts.
1250          */
1251         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1252                 enable = 1;
1253
1254         if (enable) {
1255                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1256                                               "kipmi%d", new_smi->intf_num);
1257                 if (IS_ERR(new_smi->thread)) {
1258                         dev_notice(new_smi->dev, "Could not start"
1259                                    " kernel thread due to error %ld, only using"
1260                                    " timers to drive the interface\n",
1261                                    PTR_ERR(new_smi->thread));
1262                         new_smi->thread = NULL;
1263                 }
1264         }
1265
1266         return 0;
1267 }
1268
1269 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1270 {
1271         struct smi_info *smi = send_info;
1272
1273         data->addr_src = smi->addr_source;
1274         data->dev = smi->dev;
1275         data->addr_info = smi->addr_info;
1276         get_device(smi->dev);
1277
1278         return 0;
1279 }
1280
1281 static void set_maintenance_mode(void *send_info, bool enable)
1282 {
1283         struct smi_info   *smi_info = send_info;
1284
1285         if (!enable)
1286                 atomic_set(&smi_info->req_events, 0);
1287 }
1288
1289 static const struct ipmi_smi_handlers handlers = {
1290         .owner                  = THIS_MODULE,
1291         .start_processing       = smi_start_processing,
1292         .get_smi_info           = get_smi_info,
1293         .sender                 = sender,
1294         .request_events         = request_events,
1295         .set_need_watch         = set_need_watch,
1296         .set_maintenance_mode   = set_maintenance_mode,
1297         .set_run_to_completion  = set_run_to_completion,
1298         .flush_messages         = flush_messages,
1299         .poll                   = poll,
1300 };
1301
1302 /*
1303  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1304  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1305  */
1306
1307 static LIST_HEAD(smi_infos);
1308 static DEFINE_MUTEX(smi_infos_lock);
1309 static int smi_num; /* Used to sequence the SMIs */
1310
1311 #define DEFAULT_REGSPACING      1
1312 #define DEFAULT_REGSIZE         1
1313
1314 #ifdef CONFIG_ACPI
1315 static bool          si_tryacpi = true;
1316 #endif
1317 #ifdef CONFIG_DMI
1318 static bool          si_trydmi = true;
1319 #endif
1320 static bool          si_tryplatform = true;
1321 #ifdef CONFIG_PCI
1322 static bool          si_trypci = true;
1323 #endif
1324 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1325 static char          *si_type[SI_MAX_PARMS];
1326 #define MAX_SI_TYPE_STR 30
1327 static char          si_type_str[MAX_SI_TYPE_STR];
1328 static unsigned long addrs[SI_MAX_PARMS];
1329 static unsigned int num_addrs;
1330 static unsigned int  ports[SI_MAX_PARMS];
1331 static unsigned int num_ports;
1332 static int           irqs[SI_MAX_PARMS];
1333 static unsigned int num_irqs;
1334 static int           regspacings[SI_MAX_PARMS];
1335 static unsigned int num_regspacings;
1336 static int           regsizes[SI_MAX_PARMS];
1337 static unsigned int num_regsizes;
1338 static int           regshifts[SI_MAX_PARMS];
1339 static unsigned int num_regshifts;
1340 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1341 static unsigned int num_slave_addrs;
1342
1343 #define IPMI_IO_ADDR_SPACE  0
1344 #define IPMI_MEM_ADDR_SPACE 1
1345 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1346
1347 static int hotmod_handler(const char *val, struct kernel_param *kp);
1348
1349 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1350 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1351                  " Documentation/IPMI.txt in the kernel sources for the"
1352                  " gory details.");
1353
1354 #ifdef CONFIG_ACPI
1355 module_param_named(tryacpi, si_tryacpi, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357                  " default scan of the interfaces identified via ACPI");
1358 #endif
1359 #ifdef CONFIG_DMI
1360 module_param_named(trydmi, si_trydmi, bool, 0);
1361 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1362                  " default scan of the interfaces identified via DMI");
1363 #endif
1364 module_param_named(tryplatform, si_tryplatform, bool, 0);
1365 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1366                  " default scan of the interfaces identified via platform"
1367                  " interfaces like openfirmware");
1368 #ifdef CONFIG_PCI
1369 module_param_named(trypci, si_trypci, bool, 0);
1370 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1371                  " default scan of the interfaces identified via pci");
1372 #endif
1373 module_param_named(trydefaults, si_trydefaults, bool, 0);
1374 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1375                  " default scan of the KCS and SMIC interface at the standard"
1376                  " address");
1377 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1378 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1379                  " interface separated by commas.  The types are 'kcs',"
1380                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1381                  " the first interface to kcs and the second to bt");
1382 module_param_array(addrs, ulong, &num_addrs, 0);
1383 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1384                  " addresses separated by commas.  Only use if an interface"
1385                  " is in memory.  Otherwise, set it to zero or leave"
1386                  " it blank.");
1387 module_param_array(ports, uint, &num_ports, 0);
1388 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1389                  " addresses separated by commas.  Only use if an interface"
1390                  " is a port.  Otherwise, set it to zero or leave"
1391                  " it blank.");
1392 module_param_array(irqs, int, &num_irqs, 0);
1393 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1394                  " addresses separated by commas.  Only use if an interface"
1395                  " has an interrupt.  Otherwise, set it to zero or leave"
1396                  " it blank.");
1397 module_param_array(regspacings, int, &num_regspacings, 0);
1398 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1399                  " and each successive register used by the interface.  For"
1400                  " instance, if the start address is 0xca2 and the spacing"
1401                  " is 2, then the second address is at 0xca4.  Defaults"
1402                  " to 1.");
1403 module_param_array(regsizes, int, &num_regsizes, 0);
1404 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1405                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1406                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1407                  " the 8-bit IPMI register has to be read from a larger"
1408                  " register.");
1409 module_param_array(regshifts, int, &num_regshifts, 0);
1410 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1411                  " IPMI register, in bits.  For instance, if the data"
1412                  " is read from a 32-bit word and the IPMI data is in"
1413                  " bit 8-15, then the shift would be 8");
1414 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1415 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1416                  " the controller.  Normally this is 0x20, but can be"
1417                  " overridden by this parm.  This is an array indexed"
1418                  " by interface number.");
1419 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1420 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1421                  " disabled(0).  Normally the IPMI driver auto-detects"
1422                  " this, but the value may be overridden by this parm.");
1423 module_param(unload_when_empty, bool, 0);
1424 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1425                  " specified or found, default is 1.  Setting to 0"
1426                  " is useful for hot add of devices using hotmod.");
1427 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1428 MODULE_PARM_DESC(kipmid_max_busy_us,
1429                  "Max time (in microseconds) to busy-wait for IPMI data before"
1430                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1431                  " if kipmid is using up a lot of CPU time.");
1432
1433
1434 static void std_irq_cleanup(struct smi_info *info)
1435 {
1436         if (info->si_type == SI_BT)
1437                 /* Disable the interrupt in the BT interface. */
1438                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1439         free_irq(info->irq, info);
1440 }
1441
1442 static int std_irq_setup(struct smi_info *info)
1443 {
1444         int rv;
1445
1446         if (!info->irq)
1447                 return 0;
1448
1449         if (info->si_type == SI_BT) {
1450                 rv = request_irq(info->irq,
1451                                  si_bt_irq_handler,
1452                                  IRQF_SHARED,
1453                                  DEVICE_NAME,
1454                                  info);
1455                 if (!rv)
1456                         /* Enable the interrupt in the BT interface. */
1457                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1458                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1459         } else
1460                 rv = request_irq(info->irq,
1461                                  si_irq_handler,
1462                                  IRQF_SHARED,
1463                                  DEVICE_NAME,
1464                                  info);
1465         if (rv) {
1466                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1467                          " running polled\n",
1468                          DEVICE_NAME, info->irq);
1469                 info->irq = 0;
1470         } else {
1471                 info->irq_cleanup = std_irq_cleanup;
1472                 dev_info(info->dev, "Using irq %d\n", info->irq);
1473         }
1474
1475         return rv;
1476 }
1477
1478 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1479 {
1480         unsigned int addr = io->addr_data;
1481
1482         return inb(addr + (offset * io->regspacing));
1483 }
1484
1485 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1486                       unsigned char b)
1487 {
1488         unsigned int addr = io->addr_data;
1489
1490         outb(b, addr + (offset * io->regspacing));
1491 }
1492
1493 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1494 {
1495         unsigned int addr = io->addr_data;
1496
1497         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1498 }
1499
1500 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1501                       unsigned char b)
1502 {
1503         unsigned int addr = io->addr_data;
1504
1505         outw(b << io->regshift, addr + (offset * io->regspacing));
1506 }
1507
1508 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1509 {
1510         unsigned int addr = io->addr_data;
1511
1512         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1513 }
1514
1515 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1516                       unsigned char b)
1517 {
1518         unsigned int addr = io->addr_data;
1519
1520         outl(b << io->regshift, addr+(offset * io->regspacing));
1521 }
1522
1523 static void port_cleanup(struct smi_info *info)
1524 {
1525         unsigned int addr = info->io.addr_data;
1526         int          idx;
1527
1528         if (addr) {
1529                 for (idx = 0; idx < info->io_size; idx++)
1530                         release_region(addr + idx * info->io.regspacing,
1531                                        info->io.regsize);
1532         }
1533 }
1534
1535 static int port_setup(struct smi_info *info)
1536 {
1537         unsigned int addr = info->io.addr_data;
1538         int          idx;
1539
1540         if (!addr)
1541                 return -ENODEV;
1542
1543         info->io_cleanup = port_cleanup;
1544
1545         /*
1546          * Figure out the actual inb/inw/inl/etc routine to use based
1547          * upon the register size.
1548          */
1549         switch (info->io.regsize) {
1550         case 1:
1551                 info->io.inputb = port_inb;
1552                 info->io.outputb = port_outb;
1553                 break;
1554         case 2:
1555                 info->io.inputb = port_inw;
1556                 info->io.outputb = port_outw;
1557                 break;
1558         case 4:
1559                 info->io.inputb = port_inl;
1560                 info->io.outputb = port_outl;
1561                 break;
1562         default:
1563                 dev_warn(info->dev, "Invalid register size: %d\n",
1564                          info->io.regsize);
1565                 return -EINVAL;
1566         }
1567
1568         /*
1569          * Some BIOSes reserve disjoint I/O regions in their ACPI
1570          * tables.  This causes problems when trying to register the
1571          * entire I/O region.  Therefore we must register each I/O
1572          * port separately.
1573          */
1574         for (idx = 0; idx < info->io_size; idx++) {
1575                 if (request_region(addr + idx * info->io.regspacing,
1576                                    info->io.regsize, DEVICE_NAME) == NULL) {
1577                         /* Undo allocations */
1578                         while (idx--) {
1579                                 release_region(addr + idx * info->io.regspacing,
1580                                                info->io.regsize);
1581                         }
1582                         return -EIO;
1583                 }
1584         }
1585         return 0;
1586 }
1587
1588 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1589                                   unsigned int offset)
1590 {
1591         return readb((io->addr)+(offset * io->regspacing));
1592 }
1593
1594 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1595                           unsigned char b)
1596 {
1597         writeb(b, (io->addr)+(offset * io->regspacing));
1598 }
1599
1600 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1601                                   unsigned int offset)
1602 {
1603         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1604                 & 0xff;
1605 }
1606
1607 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1608                           unsigned char b)
1609 {
1610         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1611 }
1612
1613 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1614                                   unsigned int offset)
1615 {
1616         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1617                 & 0xff;
1618 }
1619
1620 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1621                           unsigned char b)
1622 {
1623         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1624 }
1625
1626 #ifdef readq
1627 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1628 {
1629         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1630                 & 0xff;
1631 }
1632
1633 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1634                      unsigned char b)
1635 {
1636         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1637 }
1638 #endif
1639
1640 static void mem_cleanup(struct smi_info *info)
1641 {
1642         unsigned long addr = info->io.addr_data;
1643         int           mapsize;
1644
1645         if (info->io.addr) {
1646                 iounmap(info->io.addr);
1647
1648                 mapsize = ((info->io_size * info->io.regspacing)
1649                            - (info->io.regspacing - info->io.regsize));
1650
1651                 release_mem_region(addr, mapsize);
1652         }
1653 }
1654
1655 static int mem_setup(struct smi_info *info)
1656 {
1657         unsigned long addr = info->io.addr_data;
1658         int           mapsize;
1659
1660         if (!addr)
1661                 return -ENODEV;
1662
1663         info->io_cleanup = mem_cleanup;
1664
1665         /*
1666          * Figure out the actual readb/readw/readl/etc routine to use based
1667          * upon the register size.
1668          */
1669         switch (info->io.regsize) {
1670         case 1:
1671                 info->io.inputb = intf_mem_inb;
1672                 info->io.outputb = intf_mem_outb;
1673                 break;
1674         case 2:
1675                 info->io.inputb = intf_mem_inw;
1676                 info->io.outputb = intf_mem_outw;
1677                 break;
1678         case 4:
1679                 info->io.inputb = intf_mem_inl;
1680                 info->io.outputb = intf_mem_outl;
1681                 break;
1682 #ifdef readq
1683         case 8:
1684                 info->io.inputb = mem_inq;
1685                 info->io.outputb = mem_outq;
1686                 break;
1687 #endif
1688         default:
1689                 dev_warn(info->dev, "Invalid register size: %d\n",
1690                          info->io.regsize);
1691                 return -EINVAL;
1692         }
1693
1694         /*
1695          * Calculate the total amount of memory to claim.  This is an
1696          * unusual looking calculation, but it avoids claiming any
1697          * more memory than it has to.  It will claim everything
1698          * between the first address to the end of the last full
1699          * register.
1700          */
1701         mapsize = ((info->io_size * info->io.regspacing)
1702                    - (info->io.regspacing - info->io.regsize));
1703
1704         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1705                 return -EIO;
1706
1707         info->io.addr = ioremap(addr, mapsize);
1708         if (info->io.addr == NULL) {
1709                 release_mem_region(addr, mapsize);
1710                 return -EIO;
1711         }
1712         return 0;
1713 }
1714
1715 /*
1716  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1717  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1718  * Options are:
1719  *   rsp=<regspacing>
1720  *   rsi=<regsize>
1721  *   rsh=<regshift>
1722  *   irq=<irq>
1723  *   ipmb=<ipmb addr>
1724  */
1725 enum hotmod_op { HM_ADD, HM_REMOVE };
1726 struct hotmod_vals {
1727         const char *name;
1728         const int  val;
1729 };
1730
1731 static const struct hotmod_vals hotmod_ops[] = {
1732         { "add",        HM_ADD },
1733         { "remove",     HM_REMOVE },
1734         { NULL }
1735 };
1736
1737 static const struct hotmod_vals hotmod_si[] = {
1738         { "kcs",        SI_KCS },
1739         { "smic",       SI_SMIC },
1740         { "bt",         SI_BT },
1741         { NULL }
1742 };
1743
1744 static const struct hotmod_vals hotmod_as[] = {
1745         { "mem",        IPMI_MEM_ADDR_SPACE },
1746         { "i/o",        IPMI_IO_ADDR_SPACE },
1747         { NULL }
1748 };
1749
1750 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1751                      char **curr)
1752 {
1753         char *s;
1754         int  i;
1755
1756         s = strchr(*curr, ',');
1757         if (!s) {
1758                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1759                 return -EINVAL;
1760         }
1761         *s = '\0';
1762         s++;
1763         for (i = 0; v[i].name; i++) {
1764                 if (strcmp(*curr, v[i].name) == 0) {
1765                         *val = v[i].val;
1766                         *curr = s;
1767                         return 0;
1768                 }
1769         }
1770
1771         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1772         return -EINVAL;
1773 }
1774
1775 static int check_hotmod_int_op(const char *curr, const char *option,
1776                                const char *name, int *val)
1777 {
1778         char *n;
1779
1780         if (strcmp(curr, name) == 0) {
1781                 if (!option) {
1782                         printk(KERN_WARNING PFX
1783                                "No option given for '%s'\n",
1784                                curr);
1785                         return -EINVAL;
1786                 }
1787                 *val = simple_strtoul(option, &n, 0);
1788                 if ((*n != '\0') || (*option == '\0')) {
1789                         printk(KERN_WARNING PFX
1790                                "Bad option given for '%s'\n",
1791                                curr);
1792                         return -EINVAL;
1793                 }
1794                 return 1;
1795         }
1796         return 0;
1797 }
1798
1799 static struct smi_info *smi_info_alloc(void)
1800 {
1801         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1802
1803         if (info)
1804                 spin_lock_init(&info->si_lock);
1805         return info;
1806 }
1807
1808 static int hotmod_handler(const char *val, struct kernel_param *kp)
1809 {
1810         char *str = kstrdup(val, GFP_KERNEL);
1811         int  rv;
1812         char *next, *curr, *s, *n, *o;
1813         enum hotmod_op op;
1814         enum si_type si_type;
1815         int  addr_space;
1816         unsigned long addr;
1817         int regspacing;
1818         int regsize;
1819         int regshift;
1820         int irq;
1821         int ipmb;
1822         int ival;
1823         int len;
1824         struct smi_info *info;
1825
1826         if (!str)
1827                 return -ENOMEM;
1828
1829         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1830         len = strlen(str);
1831         ival = len - 1;
1832         while ((ival >= 0) && isspace(str[ival])) {
1833                 str[ival] = '\0';
1834                 ival--;
1835         }
1836
1837         for (curr = str; curr; curr = next) {
1838                 regspacing = 1;
1839                 regsize = 1;
1840                 regshift = 0;
1841                 irq = 0;
1842                 ipmb = 0; /* Choose the default if not specified */
1843
1844                 next = strchr(curr, ':');
1845                 if (next) {
1846                         *next = '\0';
1847                         next++;
1848                 }
1849
1850                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1851                 if (rv)
1852                         break;
1853                 op = ival;
1854
1855                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1856                 if (rv)
1857                         break;
1858                 si_type = ival;
1859
1860                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1861                 if (rv)
1862                         break;
1863
1864                 s = strchr(curr, ',');
1865                 if (s) {
1866                         *s = '\0';
1867                         s++;
1868                 }
1869                 addr = simple_strtoul(curr, &n, 0);
1870                 if ((*n != '\0') || (*curr == '\0')) {
1871                         printk(KERN_WARNING PFX "Invalid hotmod address"
1872                                " '%s'\n", curr);
1873                         break;
1874                 }
1875
1876                 while (s) {
1877                         curr = s;
1878                         s = strchr(curr, ',');
1879                         if (s) {
1880                                 *s = '\0';
1881                                 s++;
1882                         }
1883                         o = strchr(curr, '=');
1884                         if (o) {
1885                                 *o = '\0';
1886                                 o++;
1887                         }
1888                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1889                         if (rv < 0)
1890                                 goto out;
1891                         else if (rv)
1892                                 continue;
1893                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1894                         if (rv < 0)
1895                                 goto out;
1896                         else if (rv)
1897                                 continue;
1898                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1899                         if (rv < 0)
1900                                 goto out;
1901                         else if (rv)
1902                                 continue;
1903                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1904                         if (rv < 0)
1905                                 goto out;
1906                         else if (rv)
1907                                 continue;
1908                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1909                         if (rv < 0)
1910                                 goto out;
1911                         else if (rv)
1912                                 continue;
1913
1914                         rv = -EINVAL;
1915                         printk(KERN_WARNING PFX
1916                                "Invalid hotmod option '%s'\n",
1917                                curr);
1918                         goto out;
1919                 }
1920
1921                 if (op == HM_ADD) {
1922                         info = smi_info_alloc();
1923                         if (!info) {
1924                                 rv = -ENOMEM;
1925                                 goto out;
1926                         }
1927
1928                         info->addr_source = SI_HOTMOD;
1929                         info->si_type = si_type;
1930                         info->io.addr_data = addr;
1931                         info->io.addr_type = addr_space;
1932                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1933                                 info->io_setup = mem_setup;
1934                         else
1935                                 info->io_setup = port_setup;
1936
1937                         info->io.addr = NULL;
1938                         info->io.regspacing = regspacing;
1939                         if (!info->io.regspacing)
1940                                 info->io.regspacing = DEFAULT_REGSPACING;
1941                         info->io.regsize = regsize;
1942                         if (!info->io.regsize)
1943                                 info->io.regsize = DEFAULT_REGSPACING;
1944                         info->io.regshift = regshift;
1945                         info->irq = irq;
1946                         if (info->irq)
1947                                 info->irq_setup = std_irq_setup;
1948                         info->slave_addr = ipmb;
1949
1950                         rv = add_smi(info);
1951                         if (rv) {
1952                                 kfree(info);
1953                                 goto out;
1954                         }
1955                         rv = try_smi_init(info);
1956                         if (rv) {
1957                                 cleanup_one_si(info);
1958                                 goto out;
1959                         }
1960                 } else {
1961                         /* remove */
1962                         struct smi_info *e, *tmp_e;
1963
1964                         mutex_lock(&smi_infos_lock);
1965                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1966                                 if (e->io.addr_type != addr_space)
1967                                         continue;
1968                                 if (e->si_type != si_type)
1969                                         continue;
1970                                 if (e->io.addr_data == addr)
1971                                         cleanup_one_si(e);
1972                         }
1973                         mutex_unlock(&smi_infos_lock);
1974                 }
1975         }
1976         rv = len;
1977  out:
1978         kfree(str);
1979         return rv;
1980 }
1981
1982 static int hardcode_find_bmc(void)
1983 {
1984         int ret = -ENODEV;
1985         int             i;
1986         struct smi_info *info;
1987
1988         for (i = 0; i < SI_MAX_PARMS; i++) {
1989                 if (!ports[i] && !addrs[i])
1990                         continue;
1991
1992                 info = smi_info_alloc();
1993                 if (!info)
1994                         return -ENOMEM;
1995
1996                 info->addr_source = SI_HARDCODED;
1997                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1998
1999                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2000                         info->si_type = SI_KCS;
2001                 } else if (strcmp(si_type[i], "smic") == 0) {
2002                         info->si_type = SI_SMIC;
2003                 } else if (strcmp(si_type[i], "bt") == 0) {
2004                         info->si_type = SI_BT;
2005                 } else {
2006                         printk(KERN_WARNING PFX "Interface type specified "
2007                                "for interface %d, was invalid: %s\n",
2008                                i, si_type[i]);
2009                         kfree(info);
2010                         continue;
2011                 }
2012
2013                 if (ports[i]) {
2014                         /* An I/O port */
2015                         info->io_setup = port_setup;
2016                         info->io.addr_data = ports[i];
2017                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2018                 } else if (addrs[i]) {
2019                         /* A memory port */
2020                         info->io_setup = mem_setup;
2021                         info->io.addr_data = addrs[i];
2022                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2023                 } else {
2024                         printk(KERN_WARNING PFX "Interface type specified "
2025                                "for interface %d, but port and address were "
2026                                "not set or set to zero.\n", i);
2027                         kfree(info);
2028                         continue;
2029                 }
2030
2031                 info->io.addr = NULL;
2032                 info->io.regspacing = regspacings[i];
2033                 if (!info->io.regspacing)
2034                         info->io.regspacing = DEFAULT_REGSPACING;
2035                 info->io.regsize = regsizes[i];
2036                 if (!info->io.regsize)
2037                         info->io.regsize = DEFAULT_REGSPACING;
2038                 info->io.regshift = regshifts[i];
2039                 info->irq = irqs[i];
2040                 if (info->irq)
2041                         info->irq_setup = std_irq_setup;
2042                 info->slave_addr = slave_addrs[i];
2043
2044                 if (!add_smi(info)) {
2045                         if (try_smi_init(info))
2046                                 cleanup_one_si(info);
2047                         ret = 0;
2048                 } else {
2049                         kfree(info);
2050                 }
2051         }
2052         return ret;
2053 }
2054
2055 #ifdef CONFIG_ACPI
2056
2057 #include <linux/acpi.h>
2058
2059 /*
2060  * Once we get an ACPI failure, we don't try any more, because we go
2061  * through the tables sequentially.  Once we don't find a table, there
2062  * are no more.
2063  */
2064 static int acpi_failure;
2065
2066 /* For GPE-type interrupts. */
2067 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2068         u32 gpe_number, void *context)
2069 {
2070         struct smi_info *smi_info = context;
2071         unsigned long   flags;
2072
2073         spin_lock_irqsave(&(smi_info->si_lock), flags);
2074
2075         smi_inc_stat(smi_info, interrupts);
2076
2077         debug_timestamp("ACPI_GPE");
2078
2079         smi_event_handler(smi_info, 0);
2080         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2081
2082         return ACPI_INTERRUPT_HANDLED;
2083 }
2084
2085 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2086 {
2087         if (!info->irq)
2088                 return;
2089
2090         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2091 }
2092
2093 static int acpi_gpe_irq_setup(struct smi_info *info)
2094 {
2095         acpi_status status;
2096
2097         if (!info->irq)
2098                 return 0;
2099
2100         status = acpi_install_gpe_handler(NULL,
2101                                           info->irq,
2102                                           ACPI_GPE_LEVEL_TRIGGERED,
2103                                           &ipmi_acpi_gpe,
2104                                           info);
2105         if (status != AE_OK) {
2106                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2107                          " running polled\n", DEVICE_NAME, info->irq);
2108                 info->irq = 0;
2109                 return -EINVAL;
2110         } else {
2111                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2112                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2113                 return 0;
2114         }
2115 }
2116
2117 /*
2118  * Defined at
2119  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2120  */
2121 struct SPMITable {
2122         s8      Signature[4];
2123         u32     Length;
2124         u8      Revision;
2125         u8      Checksum;
2126         s8      OEMID[6];
2127         s8      OEMTableID[8];
2128         s8      OEMRevision[4];
2129         s8      CreatorID[4];
2130         s8      CreatorRevision[4];
2131         u8      InterfaceType;
2132         u8      IPMIlegacy;
2133         s16     SpecificationRevision;
2134
2135         /*
2136          * Bit 0 - SCI interrupt supported
2137          * Bit 1 - I/O APIC/SAPIC
2138          */
2139         u8      InterruptType;
2140
2141         /*
2142          * If bit 0 of InterruptType is set, then this is the SCI
2143          * interrupt in the GPEx_STS register.
2144          */
2145         u8      GPE;
2146
2147         s16     Reserved;
2148
2149         /*
2150          * If bit 1 of InterruptType is set, then this is the I/O
2151          * APIC/SAPIC interrupt.
2152          */
2153         u32     GlobalSystemInterrupt;
2154
2155         /* The actual register address. */
2156         struct acpi_generic_address addr;
2157
2158         u8      UID[4];
2159
2160         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2161 };
2162
2163 static int try_init_spmi(struct SPMITable *spmi)
2164 {
2165         struct smi_info  *info;
2166         int rv;
2167
2168         if (spmi->IPMIlegacy != 1) {
2169                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2170                 return -ENODEV;
2171         }
2172
2173         info = smi_info_alloc();
2174         if (!info) {
2175                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2176                 return -ENOMEM;
2177         }
2178
2179         info->addr_source = SI_SPMI;
2180         printk(KERN_INFO PFX "probing via SPMI\n");
2181
2182         /* Figure out the interface type. */
2183         switch (spmi->InterfaceType) {
2184         case 1: /* KCS */
2185                 info->si_type = SI_KCS;
2186                 break;
2187         case 2: /* SMIC */
2188                 info->si_type = SI_SMIC;
2189                 break;
2190         case 3: /* BT */
2191                 info->si_type = SI_BT;
2192                 break;
2193         case 4: /* SSIF, just ignore */
2194                 kfree(info);
2195                 return -EIO;
2196         default:
2197                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2198                        spmi->InterfaceType);
2199                 kfree(info);
2200                 return -EIO;
2201         }
2202
2203         if (spmi->InterruptType & 1) {
2204                 /* We've got a GPE interrupt. */
2205                 info->irq = spmi->GPE;
2206                 info->irq_setup = acpi_gpe_irq_setup;
2207         } else if (spmi->InterruptType & 2) {
2208                 /* We've got an APIC/SAPIC interrupt. */
2209                 info->irq = spmi->GlobalSystemInterrupt;
2210                 info->irq_setup = std_irq_setup;
2211         } else {
2212                 /* Use the default interrupt setting. */
2213                 info->irq = 0;
2214                 info->irq_setup = NULL;
2215         }
2216
2217         if (spmi->addr.bit_width) {
2218                 /* A (hopefully) properly formed register bit width. */
2219                 info->io.regspacing = spmi->addr.bit_width / 8;
2220         } else {
2221                 info->io.regspacing = DEFAULT_REGSPACING;
2222         }
2223         info->io.regsize = info->io.regspacing;
2224         info->io.regshift = spmi->addr.bit_offset;
2225
2226         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2227                 info->io_setup = mem_setup;
2228                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2229         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2230                 info->io_setup = port_setup;
2231                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2232         } else {
2233                 kfree(info);
2234                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2235                 return -EIO;
2236         }
2237         info->io.addr_data = spmi->addr.address;
2238
2239         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2240                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2241                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2242                  info->irq);
2243
2244         rv = add_smi(info);
2245         if (rv)
2246                 kfree(info);
2247
2248         return rv;
2249 }
2250
2251 static void spmi_find_bmc(void)
2252 {
2253         acpi_status      status;
2254         struct SPMITable *spmi;
2255         int              i;
2256
2257         if (acpi_disabled)
2258                 return;
2259
2260         if (acpi_failure)
2261                 return;
2262
2263         for (i = 0; ; i++) {
2264                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2265                                         (struct acpi_table_header **)&spmi);
2266                 if (status != AE_OK)
2267                         return;
2268
2269                 try_init_spmi(spmi);
2270         }
2271 }
2272 #endif
2273
2274 #ifdef CONFIG_DMI
2275 struct dmi_ipmi_data {
2276         u8              type;
2277         u8              addr_space;
2278         unsigned long   base_addr;
2279         u8              irq;
2280         u8              offset;
2281         u8              slave_addr;
2282 };
2283
2284 static int decode_dmi(const struct dmi_header *dm,
2285                                 struct dmi_ipmi_data *dmi)
2286 {
2287         const u8        *data = (const u8 *)dm;
2288         unsigned long   base_addr;
2289         u8              reg_spacing;
2290         u8              len = dm->length;
2291
2292         dmi->type = data[4];
2293
2294         memcpy(&base_addr, data+8, sizeof(unsigned long));
2295         if (len >= 0x11) {
2296                 if (base_addr & 1) {
2297                         /* I/O */
2298                         base_addr &= 0xFFFE;
2299                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2300                 } else
2301                         /* Memory */
2302                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2303
2304                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2305                    is odd. */
2306                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2307
2308                 dmi->irq = data[0x11];
2309
2310                 /* The top two bits of byte 0x10 hold the register spacing. */
2311                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2312                 switch (reg_spacing) {
2313                 case 0x00: /* Byte boundaries */
2314                     dmi->offset = 1;
2315                     break;
2316                 case 0x01: /* 32-bit boundaries */
2317                     dmi->offset = 4;
2318                     break;
2319                 case 0x02: /* 16-byte boundaries */
2320                     dmi->offset = 16;
2321                     break;
2322                 default:
2323                     /* Some other interface, just ignore it. */
2324                     return -EIO;
2325                 }
2326         } else {
2327                 /* Old DMI spec. */
2328                 /*
2329                  * Note that technically, the lower bit of the base
2330                  * address should be 1 if the address is I/O and 0 if
2331                  * the address is in memory.  So many systems get that
2332                  * wrong (and all that I have seen are I/O) so we just
2333                  * ignore that bit and assume I/O.  Systems that use
2334                  * memory should use the newer spec, anyway.
2335                  */
2336                 dmi->base_addr = base_addr & 0xfffe;
2337                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2338                 dmi->offset = 1;
2339         }
2340
2341         dmi->slave_addr = data[6];
2342
2343         return 0;
2344 }
2345
2346 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2347 {
2348         struct smi_info *info;
2349
2350         info = smi_info_alloc();
2351         if (!info) {
2352                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2353                 return;
2354         }
2355
2356         info->addr_source = SI_SMBIOS;
2357         printk(KERN_INFO PFX "probing via SMBIOS\n");
2358
2359         switch (ipmi_data->type) {
2360         case 0x01: /* KCS */
2361                 info->si_type = SI_KCS;
2362                 break;
2363         case 0x02: /* SMIC */
2364                 info->si_type = SI_SMIC;
2365                 break;
2366         case 0x03: /* BT */
2367                 info->si_type = SI_BT;
2368                 break;
2369         default:
2370                 kfree(info);
2371                 return;
2372         }
2373
2374         switch (ipmi_data->addr_space) {
2375         case IPMI_MEM_ADDR_SPACE:
2376                 info->io_setup = mem_setup;
2377                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2378                 break;
2379
2380         case IPMI_IO_ADDR_SPACE:
2381                 info->io_setup = port_setup;
2382                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2383                 break;
2384
2385         default:
2386                 kfree(info);
2387                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2388                        ipmi_data->addr_space);
2389                 return;
2390         }
2391         info->io.addr_data = ipmi_data->base_addr;
2392
2393         info->io.regspacing = ipmi_data->offset;
2394         if (!info->io.regspacing)
2395                 info->io.regspacing = DEFAULT_REGSPACING;
2396         info->io.regsize = DEFAULT_REGSPACING;
2397         info->io.regshift = 0;
2398
2399         info->slave_addr = ipmi_data->slave_addr;
2400
2401         info->irq = ipmi_data->irq;
2402         if (info->irq)
2403                 info->irq_setup = std_irq_setup;
2404
2405         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2406                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2407                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2408                  info->irq);
2409
2410         if (add_smi(info))
2411                 kfree(info);
2412 }
2413
2414 static void dmi_find_bmc(void)
2415 {
2416         const struct dmi_device *dev = NULL;
2417         struct dmi_ipmi_data data;
2418         int                  rv;
2419
2420         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2421                 memset(&data, 0, sizeof(data));
2422                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2423                                 &data);
2424                 if (!rv)
2425                         try_init_dmi(&data);
2426         }
2427 }
2428 #endif /* CONFIG_DMI */
2429
2430 #ifdef CONFIG_PCI
2431
2432 #define PCI_ERMC_CLASSCODE              0x0C0700
2433 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2434 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2435 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2436 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2437 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2438
2439 #define PCI_HP_VENDOR_ID    0x103C
2440 #define PCI_MMC_DEVICE_ID   0x121A
2441 #define PCI_MMC_ADDR_CW     0x10
2442
2443 static void ipmi_pci_cleanup(struct smi_info *info)
2444 {
2445         struct pci_dev *pdev = info->addr_source_data;
2446
2447         pci_disable_device(pdev);
2448 }
2449
2450 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2451 {
2452         if (info->si_type == SI_KCS) {
2453                 unsigned char   status;
2454                 int             regspacing;
2455
2456                 info->io.regsize = DEFAULT_REGSIZE;
2457                 info->io.regshift = 0;
2458                 info->io_size = 2;
2459                 info->handlers = &kcs_smi_handlers;
2460
2461                 /* detect 1, 4, 16byte spacing */
2462                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2463                         info->io.regspacing = regspacing;
2464                         if (info->io_setup(info)) {
2465                                 dev_err(info->dev,
2466                                         "Could not setup I/O space\n");
2467                                 return DEFAULT_REGSPACING;
2468                         }
2469                         /* write invalid cmd */
2470                         info->io.outputb(&info->io, 1, 0x10);
2471                         /* read status back */
2472                         status = info->io.inputb(&info->io, 1);
2473                         info->io_cleanup(info);
2474                         if (status)
2475                                 return regspacing;
2476                         regspacing *= 4;
2477                 }
2478         }
2479         return DEFAULT_REGSPACING;
2480 }
2481
2482 static int ipmi_pci_probe(struct pci_dev *pdev,
2483                                     const struct pci_device_id *ent)
2484 {
2485         int rv;
2486         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2487         struct smi_info *info;
2488
2489         info = smi_info_alloc();
2490         if (!info)
2491                 return -ENOMEM;
2492
2493         info->addr_source = SI_PCI;
2494         dev_info(&pdev->dev, "probing via PCI");
2495
2496         switch (class_type) {
2497         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2498                 info->si_type = SI_SMIC;
2499                 break;
2500
2501         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2502                 info->si_type = SI_KCS;
2503                 break;
2504
2505         case PCI_ERMC_CLASSCODE_TYPE_BT:
2506                 info->si_type = SI_BT;
2507                 break;
2508
2509         default:
2510                 kfree(info);
2511                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2512                 return -ENOMEM;
2513         }
2514
2515         rv = pci_enable_device(pdev);
2516         if (rv) {
2517                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2518                 kfree(info);
2519                 return rv;
2520         }
2521
2522         info->addr_source_cleanup = ipmi_pci_cleanup;
2523         info->addr_source_data = pdev;
2524
2525         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2526                 info->io_setup = port_setup;
2527                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2528         } else {
2529                 info->io_setup = mem_setup;
2530                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2531         }
2532         info->io.addr_data = pci_resource_start(pdev, 0);
2533
2534         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2535         info->io.regsize = DEFAULT_REGSIZE;
2536         info->io.regshift = 0;
2537
2538         info->irq = pdev->irq;
2539         if (info->irq)
2540                 info->irq_setup = std_irq_setup;
2541
2542         info->dev = &pdev->dev;
2543         pci_set_drvdata(pdev, info);
2544
2545         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2546                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2547                 info->irq);
2548
2549         rv = add_smi(info);
2550         if (rv) {
2551                 kfree(info);
2552                 pci_disable_device(pdev);
2553         }
2554
2555         return rv;
2556 }
2557
2558 static void ipmi_pci_remove(struct pci_dev *pdev)
2559 {
2560         struct smi_info *info = pci_get_drvdata(pdev);
2561         cleanup_one_si(info);
2562 }
2563
2564 static const struct pci_device_id ipmi_pci_devices[] = {
2565         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2566         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2567         { 0, }
2568 };
2569 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2570
2571 static struct pci_driver ipmi_pci_driver = {
2572         .name =         DEVICE_NAME,
2573         .id_table =     ipmi_pci_devices,
2574         .probe =        ipmi_pci_probe,
2575         .remove =       ipmi_pci_remove,
2576 };
2577 #endif /* CONFIG_PCI */
2578
2579 #ifdef CONFIG_OF
2580 static const struct of_device_id of_ipmi_match[] = {
2581         { .type = "ipmi", .compatible = "ipmi-kcs",
2582           .data = (void *)(unsigned long) SI_KCS },
2583         { .type = "ipmi", .compatible = "ipmi-smic",
2584           .data = (void *)(unsigned long) SI_SMIC },
2585         { .type = "ipmi", .compatible = "ipmi-bt",
2586           .data = (void *)(unsigned long) SI_BT },
2587         {},
2588 };
2589 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2590
2591 static int of_ipmi_probe(struct platform_device *dev)
2592 {
2593         const struct of_device_id *match;
2594         struct smi_info *info;
2595         struct resource resource;
2596         const __be32 *regsize, *regspacing, *regshift;
2597         struct device_node *np = dev->dev.of_node;
2598         int ret;
2599         int proplen;
2600
2601         dev_info(&dev->dev, "probing via device tree\n");
2602
2603         match = of_match_device(of_ipmi_match, &dev->dev);
2604         if (!match)
2605                 return -ENODEV;
2606
2607         if (!of_device_is_available(np))
2608                 return -EINVAL;
2609
2610         ret = of_address_to_resource(np, 0, &resource);
2611         if (ret) {
2612                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2613                 return ret;
2614         }
2615
2616         regsize = of_get_property(np, "reg-size", &proplen);
2617         if (regsize && proplen != 4) {
2618                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2619                 return -EINVAL;
2620         }
2621
2622         regspacing = of_get_property(np, "reg-spacing", &proplen);
2623         if (regspacing && proplen != 4) {
2624                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2625                 return -EINVAL;
2626         }
2627
2628         regshift = of_get_property(np, "reg-shift", &proplen);
2629         if (regshift && proplen != 4) {
2630                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2631                 return -EINVAL;
2632         }
2633
2634         info = smi_info_alloc();
2635
2636         if (!info) {
2637                 dev_err(&dev->dev,
2638                         "could not allocate memory for OF probe\n");
2639                 return -ENOMEM;
2640         }
2641
2642         info->si_type           = (enum si_type) match->data;
2643         info->addr_source       = SI_DEVICETREE;
2644         info->irq_setup         = std_irq_setup;
2645
2646         if (resource.flags & IORESOURCE_IO) {
2647                 info->io_setup          = port_setup;
2648                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2649         } else {
2650                 info->io_setup          = mem_setup;
2651                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2652         }
2653
2654         info->io.addr_data      = resource.start;
2655
2656         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2657         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2658         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2659
2660         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2661         info->dev               = &dev->dev;
2662
2663         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2664                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2665                 info->irq);
2666
2667         dev_set_drvdata(&dev->dev, info);
2668
2669         ret = add_smi(info);
2670         if (ret) {
2671                 kfree(info);
2672                 return ret;
2673         }
2674         return 0;
2675 }
2676 #else
2677 #define of_ipmi_match NULL
2678 static int of_ipmi_probe(struct platform_device *dev)
2679 {
2680         return -ENODEV;
2681 }
2682 #endif
2683
2684 #ifdef CONFIG_ACPI
2685 static int acpi_ipmi_probe(struct platform_device *dev)
2686 {
2687         struct smi_info *info;
2688         struct resource *res, *res_second;
2689         acpi_handle handle;
2690         acpi_status status;
2691         unsigned long long tmp;
2692         int rv = -EINVAL;
2693
2694         handle = ACPI_HANDLE(&dev->dev);
2695         if (!handle)
2696                 return -ENODEV;
2697
2698         info = smi_info_alloc();
2699         if (!info)
2700                 return -ENOMEM;
2701
2702         info->addr_source = SI_ACPI;
2703         dev_info(&dev->dev, PFX "probing via ACPI\n");
2704
2705         info->addr_info.acpi_info.acpi_handle = handle;
2706
2707         /* _IFT tells us the interface type: KCS, BT, etc */
2708         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2709         if (ACPI_FAILURE(status)) {
2710                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2711                 goto err_free;
2712         }
2713
2714         switch (tmp) {
2715         case 1:
2716                 info->si_type = SI_KCS;
2717                 break;
2718         case 2:
2719                 info->si_type = SI_SMIC;
2720                 break;
2721         case 3:
2722                 info->si_type = SI_BT;
2723                 break;
2724         case 4: /* SSIF, just ignore */
2725                 rv = -ENODEV;
2726                 goto err_free;
2727         default:
2728                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2729                 goto err_free;
2730         }
2731
2732         res = platform_get_resource(dev, IORESOURCE_IO, 0);
2733         if (res) {
2734                 info->io_setup = port_setup;
2735                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2736         } else {
2737                 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2738                 if (res) {
2739                         info->io_setup = mem_setup;
2740                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2741                 }
2742         }
2743         if (!res) {
2744                 dev_err(&dev->dev, "no I/O or memory address\n");
2745                 goto err_free;
2746         }
2747         info->io.addr_data = res->start;
2748
2749         info->io.regspacing = DEFAULT_REGSPACING;
2750         res_second = platform_get_resource(dev,
2751                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2752                                         IORESOURCE_IO : IORESOURCE_MEM,
2753                                1);
2754         if (res_second) {
2755                 if (res_second->start > info->io.addr_data)
2756                         info->io.regspacing =
2757                                 res_second->start - info->io.addr_data;
2758         }
2759         info->io.regsize = DEFAULT_REGSPACING;
2760         info->io.regshift = 0;
2761
2762         /* If _GPE exists, use it; otherwise use standard interrupts */
2763         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2764         if (ACPI_SUCCESS(status)) {
2765                 info->irq = tmp;
2766                 info->irq_setup = acpi_gpe_irq_setup;
2767         } else {
2768                 int irq = platform_get_irq(dev, 0);
2769
2770                 if (irq > 0) {
2771                         info->irq = irq;
2772                         info->irq_setup = std_irq_setup;
2773                 }
2774         }
2775
2776         info->dev = &dev->dev;
2777         platform_set_drvdata(dev, info);
2778
2779         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2780                  res, info->io.regsize, info->io.regspacing,
2781                  info->irq);
2782
2783         rv = add_smi(info);
2784         if (rv)
2785                 kfree(info);
2786
2787         return rv;
2788
2789 err_free:
2790         kfree(info);
2791         return rv;
2792 }
2793
2794 static const struct acpi_device_id acpi_ipmi_match[] = {
2795         { "IPI0001", 0 },
2796         { },
2797 };
2798 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2799 #else
2800 static int acpi_ipmi_probe(struct platform_device *dev)
2801 {
2802         return -ENODEV;
2803 }
2804 #endif
2805
2806 static int ipmi_probe(struct platform_device *dev)
2807 {
2808         if (of_ipmi_probe(dev) == 0)
2809                 return 0;
2810
2811         return acpi_ipmi_probe(dev);
2812 }
2813
2814 static int ipmi_remove(struct platform_device *dev)
2815 {
2816         struct smi_info *info = dev_get_drvdata(&dev->dev);
2817
2818         cleanup_one_si(info);
2819         return 0;
2820 }
2821
2822 static struct platform_driver ipmi_driver = {
2823         .driver = {
2824                 .name = DEVICE_NAME,
2825                 .of_match_table = of_ipmi_match,
2826                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2827         },
2828         .probe          = ipmi_probe,
2829         .remove         = ipmi_remove,
2830 };
2831
2832 #ifdef CONFIG_PARISC
2833 static int ipmi_parisc_probe(struct parisc_device *dev)
2834 {
2835         struct smi_info *info;
2836         int rv;
2837
2838         info = smi_info_alloc();
2839
2840         if (!info) {
2841                 dev_err(&dev->dev,
2842                         "could not allocate memory for PARISC probe\n");
2843                 return -ENOMEM;
2844         }
2845
2846         info->si_type           = SI_KCS;
2847         info->addr_source       = SI_DEVICETREE;
2848         info->io_setup          = mem_setup;
2849         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2850         info->io.addr_data      = dev->hpa.start;
2851         info->io.regsize        = 1;
2852         info->io.regspacing     = 1;
2853         info->io.regshift       = 0;
2854         info->irq               = 0; /* no interrupt */
2855         info->irq_setup         = NULL;
2856         info->dev               = &dev->dev;
2857
2858         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2859
2860         dev_set_drvdata(&dev->dev, info);
2861
2862         rv = add_smi(info);
2863         if (rv) {
2864                 kfree(info);
2865                 return rv;
2866         }
2867
2868         return 0;
2869 }
2870
2871 static int ipmi_parisc_remove(struct parisc_device *dev)
2872 {
2873         cleanup_one_si(dev_get_drvdata(&dev->dev));
2874         return 0;
2875 }
2876
2877 static const struct parisc_device_id ipmi_parisc_tbl[] = {
2878         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2879         { 0, }
2880 };
2881
2882 static struct parisc_driver ipmi_parisc_driver = {
2883         .name =         "ipmi",
2884         .id_table =     ipmi_parisc_tbl,
2885         .probe =        ipmi_parisc_probe,
2886         .remove =       ipmi_parisc_remove,
2887 };
2888 #endif /* CONFIG_PARISC */
2889
2890 static int wait_for_msg_done(struct smi_info *smi_info)
2891 {
2892         enum si_sm_result     smi_result;
2893
2894         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2895         for (;;) {
2896                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2897                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2898                         schedule_timeout_uninterruptible(1);
2899                         smi_result = smi_info->handlers->event(
2900                                 smi_info->si_sm, jiffies_to_usecs(1));
2901                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2902                         smi_result = smi_info->handlers->event(
2903                                 smi_info->si_sm, 0);
2904                 } else
2905                         break;
2906         }
2907         if (smi_result == SI_SM_HOSED)
2908                 /*
2909                  * We couldn't get the state machine to run, so whatever's at
2910                  * the port is probably not an IPMI SMI interface.
2911                  */
2912                 return -ENODEV;
2913
2914         return 0;
2915 }
2916
2917 static int try_get_dev_id(struct smi_info *smi_info)
2918 {
2919         unsigned char         msg[2];
2920         unsigned char         *resp;
2921         unsigned long         resp_len;
2922         int                   rv = 0;
2923
2924         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2925         if (!resp)
2926                 return -ENOMEM;
2927
2928         /*
2929          * Do a Get Device ID command, since it comes back with some
2930          * useful info.
2931          */
2932         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2933         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2934         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2935
2936         rv = wait_for_msg_done(smi_info);
2937         if (rv)
2938                 goto out;
2939
2940         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2941                                                   resp, IPMI_MAX_MSG_LENGTH);
2942
2943         /* Check and record info from the get device id, in case we need it. */
2944         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2945
2946  out:
2947         kfree(resp);
2948         return rv;
2949 }
2950
2951 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2952 {
2953         unsigned char         msg[3];
2954         unsigned char         *resp;
2955         unsigned long         resp_len;
2956         int                   rv;
2957
2958         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2959         if (!resp)
2960                 return -ENOMEM;
2961
2962         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2963         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2964         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2965
2966         rv = wait_for_msg_done(smi_info);
2967         if (rv) {
2968                 dev_warn(smi_info->dev,
2969                          "Error getting response from get global enables command: %d\n",
2970                          rv);
2971                 goto out;
2972         }
2973
2974         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2975                                                   resp, IPMI_MAX_MSG_LENGTH);
2976
2977         if (resp_len < 4 ||
2978                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2979                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2980                         resp[2] != 0) {
2981                 dev_warn(smi_info->dev,
2982                          "Invalid return from get global enables command: %ld %x %x %x\n",
2983                          resp_len, resp[0], resp[1], resp[2]);
2984                 rv = -EINVAL;
2985                 goto out;
2986         } else {
2987                 *enables = resp[3];
2988         }
2989
2990 out:
2991         kfree(resp);
2992         return rv;
2993 }
2994
2995 /*
2996  * Returns 1 if it gets an error from the command.
2997  */
2998 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2999 {
3000         unsigned char         msg[3];
3001         unsigned char         *resp;
3002         unsigned long         resp_len;
3003         int                   rv;
3004
3005         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3006         if (!resp)
3007                 return -ENOMEM;
3008
3009         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3010         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3011         msg[2] = enables;
3012         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3013
3014         rv = wait_for_msg_done(smi_info);
3015         if (rv) {
3016                 dev_warn(smi_info->dev,
3017                          "Error getting response from set global enables command: %d\n",
3018                          rv);
3019                 goto out;
3020         }
3021
3022         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3023                                                   resp, IPMI_MAX_MSG_LENGTH);
3024
3025         if (resp_len < 3 ||
3026                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3027                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3028                 dev_warn(smi_info->dev,
3029                          "Invalid return from set global enables command: %ld %x %x\n",
3030                          resp_len, resp[0], resp[1]);
3031                 rv = -EINVAL;
3032                 goto out;
3033         }
3034
3035         if (resp[2] != 0)
3036                 rv = 1;
3037
3038 out:
3039         kfree(resp);
3040         return rv;
3041 }
3042
3043 /*
3044  * Some BMCs do not support clearing the receive irq bit in the global
3045  * enables (even if they don't support interrupts on the BMC).  Check
3046  * for this and handle it properly.
3047  */
3048 static void check_clr_rcv_irq(struct smi_info *smi_info)
3049 {
3050         u8 enables = 0;
3051         int rv;
3052
3053         rv = get_global_enables(smi_info, &enables);
3054         if (!rv) {
3055                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3056                         /* Already clear, should work ok. */
3057                         return;
3058
3059                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3060                 rv = set_global_enables(smi_info, enables);
3061         }
3062
3063         if (rv < 0) {
3064                 dev_err(smi_info->dev,
3065                         "Cannot check clearing the rcv irq: %d\n", rv);
3066                 return;
3067         }
3068
3069         if (rv) {
3070                 /*
3071                  * An error when setting the event buffer bit means
3072                  * clearing the bit is not supported.
3073                  */
3074                 dev_warn(smi_info->dev,
3075                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3076                 smi_info->cannot_disable_irq = true;
3077         }
3078 }
3079
3080 /*
3081  * Some BMCs do not support setting the interrupt bits in the global
3082  * enables even if they support interrupts.  Clearly bad, but we can
3083  * compensate.
3084  */
3085 static void check_set_rcv_irq(struct smi_info *smi_info)
3086 {
3087         u8 enables = 0;
3088         int rv;
3089
3090         if (!smi_info->irq)
3091                 return;
3092
3093         rv = get_global_enables(smi_info, &enables);
3094         if (!rv) {
3095                 enables |= IPMI_BMC_RCV_MSG_INTR;
3096                 rv = set_global_enables(smi_info, enables);
3097         }
3098
3099         if (rv < 0) {
3100                 dev_err(smi_info->dev,
3101                         "Cannot check setting the rcv irq: %d\n", rv);
3102                 return;
3103         }
3104
3105         if (rv) {
3106                 /*
3107                  * An error when setting the event buffer bit means
3108                  * setting the bit is not supported.
3109                  */
3110                 dev_warn(smi_info->dev,
3111                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3112                 smi_info->cannot_disable_irq = true;
3113                 smi_info->irq_enable_broken = true;
3114         }
3115 }
3116
3117 static int try_enable_event_buffer(struct smi_info *smi_info)
3118 {
3119         unsigned char         msg[3];
3120         unsigned char         *resp;
3121         unsigned long         resp_len;
3122         int                   rv = 0;
3123
3124         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3125         if (!resp)
3126                 return -ENOMEM;
3127
3128         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3129         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3130         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3131
3132         rv = wait_for_msg_done(smi_info);
3133         if (rv) {
3134                 printk(KERN_WARNING PFX "Error getting response from get"
3135                        " global enables command, the event buffer is not"
3136                        " enabled.\n");
3137                 goto out;
3138         }
3139
3140         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3141                                                   resp, IPMI_MAX_MSG_LENGTH);
3142
3143         if (resp_len < 4 ||
3144                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3145                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3146                         resp[2] != 0) {
3147                 printk(KERN_WARNING PFX "Invalid return from get global"
3148                        " enables command, cannot enable the event buffer.\n");
3149                 rv = -EINVAL;
3150                 goto out;
3151         }
3152
3153         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3154                 /* buffer is already enabled, nothing to do. */
3155                 smi_info->supports_event_msg_buff = true;
3156                 goto out;
3157         }
3158
3159         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3160         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3161         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3162         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3163
3164         rv = wait_for_msg_done(smi_info);
3165         if (rv) {
3166                 printk(KERN_WARNING PFX "Error getting response from set"
3167                        " global, enables command, the event buffer is not"
3168                        " enabled.\n");
3169                 goto out;
3170         }
3171
3172         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3173                                                   resp, IPMI_MAX_MSG_LENGTH);
3174
3175         if (resp_len < 3 ||
3176                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3177                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3178                 printk(KERN_WARNING PFX "Invalid return from get global,"
3179                        "enables command, not enable the event buffer.\n");
3180                 rv = -EINVAL;
3181                 goto out;
3182         }
3183
3184         if (resp[2] != 0)
3185                 /*
3186                  * An error when setting the event buffer bit means
3187                  * that the event buffer is not supported.
3188                  */
3189                 rv = -ENOENT;
3190         else
3191                 smi_info->supports_event_msg_buff = true;
3192
3193  out:
3194         kfree(resp);
3195         return rv;
3196 }
3197
3198 static int smi_type_proc_show(struct seq_file *m, void *v)
3199 {
3200         struct smi_info *smi = m->private;
3201
3202         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3203
3204         return 0;
3205 }
3206
3207 static int smi_type_proc_open(struct inode *inode, struct file *file)
3208 {
3209         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3210 }
3211
3212 static const struct file_operations smi_type_proc_ops = {
3213         .open           = smi_type_proc_open,
3214         .read           = seq_read,
3215         .llseek         = seq_lseek,
3216         .release        = single_release,
3217 };
3218
3219 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3220 {
3221         struct smi_info *smi = m->private;
3222
3223         seq_printf(m, "interrupts_enabled:    %d\n",
3224                        smi->irq && !smi->interrupt_disabled);
3225         seq_printf(m, "short_timeouts:        %u\n",
3226                        smi_get_stat(smi, short_timeouts));
3227         seq_printf(m, "long_timeouts:         %u\n",
3228                        smi_get_stat(smi, long_timeouts));
3229         seq_printf(m, "idles:                 %u\n",
3230                        smi_get_stat(smi, idles));
3231         seq_printf(m, "interrupts:            %u\n",
3232                        smi_get_stat(smi, interrupts));
3233         seq_printf(m, "attentions:            %u\n",
3234                        smi_get_stat(smi, attentions));
3235         seq_printf(m, "flag_fetches:          %u\n",
3236                        smi_get_stat(smi, flag_fetches));
3237         seq_printf(m, "hosed_count:           %u\n",
3238                        smi_get_stat(smi, hosed_count));
3239         seq_printf(m, "complete_transactions: %u\n",
3240                        smi_get_stat(smi, complete_transactions));
3241         seq_printf(m, "events:                %u\n",
3242                        smi_get_stat(smi, events));
3243         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3244                        smi_get_stat(smi, watchdog_pretimeouts));
3245         seq_printf(m, "incoming_messages:     %u\n",
3246                        smi_get_stat(smi, incoming_messages));
3247         return 0;
3248 }
3249
3250 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3251 {
3252         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3253 }
3254
3255 static const struct file_operations smi_si_stats_proc_ops = {
3256         .open           = smi_si_stats_proc_open,
3257         .read           = seq_read,
3258         .llseek         = seq_lseek,
3259         .release        = single_release,
3260 };
3261
3262 static int smi_params_proc_show(struct seq_file *m, void *v)
3263 {
3264         struct smi_info *smi = m->private;
3265
3266         seq_printf(m,
3267                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3268                    si_to_str[smi->si_type],
3269                    addr_space_to_str[smi->io.addr_type],
3270                    smi->io.addr_data,
3271                    smi->io.regspacing,
3272                    smi->io.regsize,
3273                    smi->io.regshift,
3274                    smi->irq,
3275                    smi->slave_addr);
3276
3277         return 0;
3278 }
3279
3280 static int smi_params_proc_open(struct inode *inode, struct file *file)
3281 {
3282         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3283 }
3284
3285 static const struct file_operations smi_params_proc_ops = {
3286         .open           = smi_params_proc_open,
3287         .read           = seq_read,
3288         .llseek         = seq_lseek,
3289         .release        = single_release,
3290 };
3291
3292 /*
3293  * oem_data_avail_to_receive_msg_avail
3294  * @info - smi_info structure with msg_flags set
3295  *
3296  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3297  * Returns 1 indicating need to re-run handle_flags().
3298  */
3299 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3300 {
3301         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3302                                RECEIVE_MSG_AVAIL);
3303         return 1;
3304 }
3305
3306 /*
3307  * setup_dell_poweredge_oem_data_handler
3308  * @info - smi_info.device_id must be populated
3309  *
3310  * Systems that match, but have firmware version < 1.40 may assert
3311  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3312  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3313  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3314  * as RECEIVE_MSG_AVAIL instead.
3315  *
3316  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3317  * assert the OEM[012] bits, and if it did, the driver would have to
3318  * change to handle that properly, we don't actually check for the
3319  * firmware version.
3320  * Device ID = 0x20                BMC on PowerEdge 8G servers
3321  * Device Revision = 0x80
3322  * Firmware Revision1 = 0x01       BMC version 1.40
3323  * Firmware Revision2 = 0x40       BCD encoded
3324  * IPMI Version = 0x51             IPMI 1.5
3325  * Manufacturer ID = A2 02 00      Dell IANA
3326  *
3327  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3328  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3329  *
3330  */
3331 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3332 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3333 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3334 #define DELL_IANA_MFR_ID 0x0002a2
3335 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3336 {
3337         struct ipmi_device_id *id = &smi_info->device_id;
3338         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3339                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3340                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3341                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3342                         smi_info->oem_data_avail_handler =
3343                                 oem_data_avail_to_receive_msg_avail;
3344                 } else if (ipmi_version_major(id) < 1 ||
3345                            (ipmi_version_major(id) == 1 &&
3346                             ipmi_version_minor(id) < 5)) {
3347                         smi_info->oem_data_avail_handler =
3348                                 oem_data_avail_to_receive_msg_avail;
3349                 }
3350         }
3351 }
3352
3353 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3354 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3355 {
3356         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3357
3358         /* Make it a response */
3359         msg->rsp[0] = msg->data[0] | 4;
3360         msg->rsp[1] = msg->data[1];
3361         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3362         msg->rsp_size = 3;
3363         smi_info->curr_msg = NULL;
3364         deliver_recv_msg(smi_info, msg);
3365 }
3366
3367 /*
3368  * dell_poweredge_bt_xaction_handler
3369  * @info - smi_info.device_id must be populated
3370  *
3371  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3372  * not respond to a Get SDR command if the length of the data
3373  * requested is exactly 0x3A, which leads to command timeouts and no
3374  * data returned.  This intercepts such commands, and causes userspace
3375  * callers to try again with a different-sized buffer, which succeeds.
3376  */
3377
3378 #define STORAGE_NETFN 0x0A
3379 #define STORAGE_CMD_GET_SDR 0x23
3380 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3381                                              unsigned long unused,
3382                                              void *in)
3383 {
3384         struct smi_info *smi_info = in;
3385         unsigned char *data = smi_info->curr_msg->data;
3386         unsigned int size   = smi_info->curr_msg->data_size;
3387         if (size >= 8 &&
3388             (data[0]>>2) == STORAGE_NETFN &&
3389             data[1] == STORAGE_CMD_GET_SDR &&
3390             data[7] == 0x3A) {
3391                 return_hosed_msg_badsize(smi_info);
3392                 return NOTIFY_STOP;
3393         }
3394         return NOTIFY_DONE;
3395 }
3396
3397 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3398         .notifier_call  = dell_poweredge_bt_xaction_handler,
3399 };
3400
3401 /*
3402  * setup_dell_poweredge_bt_xaction_handler
3403  * @info - smi_info.device_id must be filled in already
3404  *
3405  * Fills in smi_info.device_id.start_transaction_pre_hook
3406  * when we know what function to use there.
3407  */
3408 static void
3409 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3410 {
3411         struct ipmi_device_id *id = &smi_info->device_id;
3412         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3413             smi_info->si_type == SI_BT)
3414                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3415 }
3416
3417 /*
3418  * setup_oem_data_handler
3419  * @info - smi_info.device_id must be filled in already
3420  *
3421  * Fills in smi_info.device_id.oem_data_available_handler
3422  * when we know what function to use there.
3423  */
3424
3425 static void setup_oem_data_handler(struct smi_info *smi_info)
3426 {
3427         setup_dell_poweredge_oem_data_handler(smi_info);
3428 }
3429
3430 static void setup_xaction_handlers(struct smi_info *smi_info)
3431 {
3432         setup_dell_poweredge_bt_xaction_handler(smi_info);
3433 }
3434
3435 static void check_for_broken_irqs(struct smi_info *smi_info)
3436 {
3437         check_clr_rcv_irq(smi_info);
3438         check_set_rcv_irq(smi_info);
3439 }
3440
3441 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3442 {
3443         if (smi_info->thread != NULL)
3444                 kthread_stop(smi_info->thread);
3445         if (smi_info->timer_running)
3446                 del_timer_sync(&smi_info->si_timer);
3447 }
3448
3449 static const struct ipmi_default_vals
3450 {
3451         const int type;
3452         const int port;
3453 } ipmi_defaults[] =
3454 {
3455         { .type = SI_KCS, .port = 0xca2 },
3456         { .type = SI_SMIC, .port = 0xca9 },
3457         { .type = SI_BT, .port = 0xe4 },
3458         { .port = 0 }
3459 };
3460
3461 static void default_find_bmc(void)
3462 {
3463         struct smi_info *info;
3464         int             i;
3465
3466         for (i = 0; ; i++) {
3467                 if (!ipmi_defaults[i].port)
3468                         break;
3469 #ifdef CONFIG_PPC
3470                 if (check_legacy_ioport(ipmi_defaults[i].port))
3471                         continue;
3472 #endif
3473                 info = smi_info_alloc();
3474                 if (!info)
3475                         return;
3476
3477                 info->addr_source = SI_DEFAULT;
3478
3479                 info->si_type = ipmi_defaults[i].type;
3480                 info->io_setup = port_setup;
3481                 info->io.addr_data = ipmi_defaults[i].port;
3482                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3483
3484                 info->io.addr = NULL;
3485                 info->io.regspacing = DEFAULT_REGSPACING;
3486                 info->io.regsize = DEFAULT_REGSPACING;
3487                 info->io.regshift = 0;
3488
3489                 if (add_smi(info) == 0) {
3490                         if ((try_smi_init(info)) == 0) {
3491                                 /* Found one... */
3492                                 printk(KERN_INFO PFX "Found default %s"
3493                                 " state machine at %s address 0x%lx\n",
3494                                 si_to_str[info->si_type],
3495                                 addr_space_to_str[info->io.addr_type],
3496                                 info->io.addr_data);
3497                         } else
3498                                 cleanup_one_si(info);
3499                 } else {
3500                         kfree(info);
3501                 }
3502         }
3503 }
3504
3505 static int is_new_interface(struct smi_info *info)
3506 {
3507         struct smi_info *e;
3508
3509         list_for_each_entry(e, &smi_infos, link) {
3510                 if (e->io.addr_type != info->io.addr_type)
3511                         continue;
3512                 if (e->io.addr_data == info->io.addr_data)
3513                         return 0;
3514         }
3515
3516         return 1;
3517 }
3518
3519 static int add_smi(struct smi_info *new_smi)
3520 {
3521         int rv = 0;
3522
3523         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3524                ipmi_addr_src_to_str(new_smi->addr_source),
3525                si_to_str[new_smi->si_type]);
3526         mutex_lock(&smi_infos_lock);
3527         if (!is_new_interface(new_smi)) {
3528                 printk(KERN_CONT " duplicate interface\n");
3529                 rv = -EBUSY;
3530                 goto out_err;
3531         }
3532
3533         printk(KERN_CONT "\n");
3534
3535         /* So we know not to free it unless we have allocated one. */
3536         new_smi->intf = NULL;
3537         new_smi->si_sm = NULL;
3538         new_smi->handlers = NULL;
3539
3540         list_add_tail(&new_smi->link, &smi_infos);
3541
3542 out_err:
3543         mutex_unlock(&smi_infos_lock);
3544         return rv;
3545 }
3546
3547 static int try_smi_init(struct smi_info *new_smi)
3548 {
3549         int rv = 0;
3550         int i;
3551
3552         printk(KERN_INFO PFX "Trying %s-specified %s state"
3553                " machine at %s address 0x%lx, slave address 0x%x,"
3554                " irq %d\n",
3555                ipmi_addr_src_to_str(new_smi->addr_source),
3556                si_to_str[new_smi->si_type],
3557                addr_space_to_str[new_smi->io.addr_type],
3558                new_smi->io.addr_data,
3559                new_smi->slave_addr, new_smi->irq);
3560
3561         switch (new_smi->si_type) {
3562         case SI_KCS:
3563                 new_smi->handlers = &kcs_smi_handlers;
3564                 break;
3565
3566         case SI_SMIC:
3567                 new_smi->handlers = &smic_smi_handlers;
3568                 break;
3569
3570         case SI_BT:
3571                 new_smi->handlers = &bt_smi_handlers;
3572                 break;
3573
3574         default:
3575                 /* No support for anything else yet. */
3576                 rv = -EIO;
3577                 goto out_err;
3578         }
3579
3580         /* Allocate the state machine's data and initialize it. */
3581         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3582         if (!new_smi->si_sm) {
3583                 printk(KERN_ERR PFX
3584                        "Could not allocate state machine memory\n");
3585                 rv = -ENOMEM;
3586                 goto out_err;
3587         }
3588         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3589                                                         &new_smi->io);
3590
3591         /* Now that we know the I/O size, we can set up the I/O. */
3592         rv = new_smi->io_setup(new_smi);
3593         if (rv) {
3594                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3595                 goto out_err;
3596         }
3597
3598         /* Do low-level detection first. */
3599         if (new_smi->handlers->detect(new_smi->si_sm)) {
3600                 if (new_smi->addr_source)
3601                         printk(KERN_INFO PFX "Interface detection failed\n");
3602                 rv = -ENODEV;
3603                 goto out_err;
3604         }
3605
3606         /*
3607          * Attempt a get device id command.  If it fails, we probably
3608          * don't have a BMC here.
3609          */
3610         rv = try_get_dev_id(new_smi);
3611         if (rv) {
3612                 if (new_smi->addr_source)
3613                         printk(KERN_INFO PFX "There appears to be no BMC"
3614                                " at this location\n");
3615                 goto out_err;
3616         }
3617
3618         setup_oem_data_handler(new_smi);
3619         setup_xaction_handlers(new_smi);
3620         check_for_broken_irqs(new_smi);
3621
3622         new_smi->waiting_msg = NULL;
3623         new_smi->curr_msg = NULL;
3624         atomic_set(&new_smi->req_events, 0);
3625         new_smi->run_to_completion = false;
3626         for (i = 0; i < SI_NUM_STATS; i++)
3627                 atomic_set(&new_smi->stats[i], 0);
3628
3629         new_smi->interrupt_disabled = true;
3630         atomic_set(&new_smi->need_watch, 0);
3631         new_smi->intf_num = smi_num;
3632         smi_num++;
3633
3634         rv = try_enable_event_buffer(new_smi);
3635         if (rv == 0)
3636                 new_smi->has_event_buffer = true;
3637
3638         /*
3639          * Start clearing the flags before we enable interrupts or the
3640          * timer to avoid racing with the timer.
3641          */
3642         start_clear_flags(new_smi, false);
3643
3644         /*
3645          * IRQ is defined to be set when non-zero.  req_events will
3646          * cause a global flags check that will enable interrupts.
3647          */
3648         if (new_smi->irq) {
3649                 new_smi->interrupt_disabled = false;
3650                 atomic_set(&new_smi->req_events, 1);
3651         }
3652
3653         if (!new_smi->dev) {
3654                 /*
3655                  * If we don't already have a device from something
3656                  * else (like PCI), then register a new one.
3657                  */
3658                 new_smi->pdev = platform_device_alloc("ipmi_si",
3659                                                       new_smi->intf_num);
3660                 if (!new_smi->pdev) {
3661                         printk(KERN_ERR PFX
3662                                "Unable to allocate platform device\n");
3663                         goto out_err;
3664                 }
3665                 new_smi->dev = &new_smi->pdev->dev;
3666                 new_smi->dev->driver = &ipmi_driver.driver;
3667
3668                 rv = platform_device_add(new_smi->pdev);
3669                 if (rv) {
3670                         printk(KERN_ERR PFX
3671                                "Unable to register system interface device:"
3672                                " %d\n",
3673                                rv);
3674                         goto out_err;
3675                 }
3676                 new_smi->dev_registered = true;
3677         }
3678
3679         rv = ipmi_register_smi(&handlers,
3680                                new_smi,
3681                                &new_smi->device_id,
3682                                new_smi->dev,
3683                                new_smi->slave_addr);
3684         if (rv) {
3685                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3686                         rv);
3687                 goto out_err_stop_timer;
3688         }
3689
3690         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3691                                      &smi_type_proc_ops,
3692                                      new_smi);
3693         if (rv) {
3694                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3695                 goto out_err_stop_timer;
3696         }
3697
3698         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3699                                      &smi_si_stats_proc_ops,
3700                                      new_smi);
3701         if (rv) {
3702                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3703                 goto out_err_stop_timer;
3704         }
3705
3706         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3707                                      &smi_params_proc_ops,
3708                                      new_smi);
3709         if (rv) {
3710                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3711                 goto out_err_stop_timer;
3712         }
3713
3714         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3715                  si_to_str[new_smi->si_type]);
3716
3717         return 0;
3718
3719  out_err_stop_timer:
3720         wait_for_timer_and_thread(new_smi);
3721
3722  out_err:
3723         new_smi->interrupt_disabled = true;
3724
3725         if (new_smi->intf) {
3726                 ipmi_smi_t intf = new_smi->intf;
3727                 new_smi->intf = NULL;
3728                 ipmi_unregister_smi(intf);
3729         }
3730
3731         if (new_smi->irq_cleanup) {
3732                 new_smi->irq_cleanup(new_smi);
3733                 new_smi->irq_cleanup = NULL;
3734         }
3735
3736         /*
3737          * Wait until we know that we are out of any interrupt
3738          * handlers might have been running before we freed the
3739          * interrupt.
3740          */
3741         synchronize_sched();
3742
3743         if (new_smi->si_sm) {
3744                 if (new_smi->handlers)
3745                         new_smi->handlers->cleanup(new_smi->si_sm);
3746                 kfree(new_smi->si_sm);
3747                 new_smi->si_sm = NULL;
3748         }
3749         if (new_smi->addr_source_cleanup) {
3750                 new_smi->addr_source_cleanup(new_smi);
3751                 new_smi->addr_source_cleanup = NULL;
3752         }
3753         if (new_smi->io_cleanup) {
3754                 new_smi->io_cleanup(new_smi);
3755                 new_smi->io_cleanup = NULL;
3756         }
3757
3758         if (new_smi->dev_registered) {
3759                 platform_device_unregister(new_smi->pdev);
3760                 new_smi->dev_registered = false;
3761         }
3762
3763         return rv;
3764 }
3765
3766 static int init_ipmi_si(void)
3767 {
3768         int  i;
3769         char *str;
3770         int  rv;
3771         struct smi_info *e;
3772         enum ipmi_addr_src type = SI_INVALID;
3773
3774         if (initialized)
3775                 return 0;
3776         initialized = 1;
3777
3778         if (si_tryplatform) {
3779                 rv = platform_driver_register(&ipmi_driver);
3780                 if (rv) {
3781                         printk(KERN_ERR PFX "Unable to register "
3782                                "driver: %d\n", rv);
3783                         return rv;
3784                 }
3785         }
3786
3787         /* Parse out the si_type string into its components. */
3788         str = si_type_str;
3789         if (*str != '\0') {
3790                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3791                         si_type[i] = str;
3792                         str = strchr(str, ',');
3793                         if (str) {
3794                                 *str = '\0';
3795                                 str++;
3796                         } else {
3797                                 break;
3798                         }
3799                 }
3800         }
3801
3802         printk(KERN_INFO "IPMI System Interface driver.\n");
3803
3804         /* If the user gave us a device, they presumably want us to use it */
3805         if (!hardcode_find_bmc())
3806                 return 0;
3807
3808 #ifdef CONFIG_PCI
3809         if (si_trypci) {
3810                 rv = pci_register_driver(&ipmi_pci_driver);
3811                 if (rv)
3812                         printk(KERN_ERR PFX "Unable to register "
3813                                "PCI driver: %d\n", rv);
3814                 else
3815                         pci_registered = true;
3816         }
3817 #endif
3818
3819 #ifdef CONFIG_DMI
3820         if (si_trydmi)
3821                 dmi_find_bmc();
3822 #endif
3823
3824 #ifdef CONFIG_ACPI
3825         if (si_tryacpi)
3826                 spmi_find_bmc();
3827 #endif
3828
3829 #ifdef CONFIG_PARISC
3830         register_parisc_driver(&ipmi_parisc_driver);
3831         parisc_registered = true;
3832         /* poking PC IO addresses will crash machine, don't do it */
3833         si_trydefaults = 0;
3834 #endif
3835
3836         /* We prefer devices with interrupts, but in the case of a machine
3837            with multiple BMCs we assume that there will be several instances
3838            of a given type so if we succeed in registering a type then also
3839            try to register everything else of the same type */
3840
3841         mutex_lock(&smi_infos_lock);
3842         list_for_each_entry(e, &smi_infos, link) {
3843                 /* Try to register a device if it has an IRQ and we either
3844                    haven't successfully registered a device yet or this
3845                    device has the same type as one we successfully registered */
3846                 if (e->irq && (!type || e->addr_source == type)) {
3847                         if (!try_smi_init(e)) {
3848                                 type = e->addr_source;
3849                         }
3850                 }
3851         }
3852
3853         /* type will only have been set if we successfully registered an si */
3854         if (type) {
3855                 mutex_unlock(&smi_infos_lock);
3856                 return 0;
3857         }
3858
3859         /* Fall back to the preferred device */
3860
3861         list_for_each_entry(e, &smi_infos, link) {
3862                 if (!e->irq && (!type || e->addr_source == type)) {
3863                         if (!try_smi_init(e)) {
3864                                 type = e->addr_source;
3865                         }
3866                 }
3867         }
3868         mutex_unlock(&smi_infos_lock);
3869
3870         if (type)
3871                 return 0;
3872
3873         if (si_trydefaults) {
3874                 mutex_lock(&smi_infos_lock);
3875                 if (list_empty(&smi_infos)) {
3876                         /* No BMC was found, try defaults. */
3877                         mutex_unlock(&smi_infos_lock);
3878                         default_find_bmc();
3879                 } else
3880                         mutex_unlock(&smi_infos_lock);
3881         }
3882
3883         mutex_lock(&smi_infos_lock);
3884         if (unload_when_empty && list_empty(&smi_infos)) {
3885                 mutex_unlock(&smi_infos_lock);
3886                 cleanup_ipmi_si();
3887                 printk(KERN_WARNING PFX
3888                        "Unable to find any System Interface(s)\n");
3889                 return -ENODEV;
3890         } else {
3891                 mutex_unlock(&smi_infos_lock);
3892                 return 0;
3893         }
3894 }
3895 module_init(init_ipmi_si);
3896
3897 static void cleanup_one_si(struct smi_info *to_clean)
3898 {
3899         int           rv = 0;
3900
3901         if (!to_clean)
3902                 return;
3903
3904         if (to_clean->intf) {
3905                 ipmi_smi_t intf = to_clean->intf;
3906
3907                 to_clean->intf = NULL;
3908                 rv = ipmi_unregister_smi(intf);
3909                 if (rv) {
3910                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3911                                rv);
3912                 }
3913         }
3914
3915         if (to_clean->dev)
3916                 dev_set_drvdata(to_clean->dev, NULL);
3917
3918         list_del(&to_clean->link);
3919
3920         /*
3921          * Make sure that interrupts, the timer and the thread are
3922          * stopped and will not run again.
3923          */
3924         if (to_clean->irq_cleanup)
3925                 to_clean->irq_cleanup(to_clean);
3926         wait_for_timer_and_thread(to_clean);
3927
3928         /*
3929          * Timeouts are stopped, now make sure the interrupts are off
3930          * in the BMC.  Note that timers and CPU interrupts are off,
3931          * so no need for locks.
3932          */
3933         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3934                 poll(to_clean);
3935                 schedule_timeout_uninterruptible(1);
3936         }
3937         disable_si_irq(to_clean, false);
3938         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3939                 poll(to_clean);
3940                 schedule_timeout_uninterruptible(1);
3941         }
3942
3943         if (to_clean->handlers)
3944                 to_clean->handlers->cleanup(to_clean->si_sm);
3945
3946         kfree(to_clean->si_sm);
3947
3948         if (to_clean->addr_source_cleanup)
3949                 to_clean->addr_source_cleanup(to_clean);
3950         if (to_clean->io_cleanup)
3951                 to_clean->io_cleanup(to_clean);
3952
3953         if (to_clean->dev_registered)
3954                 platform_device_unregister(to_clean->pdev);
3955
3956         kfree(to_clean);
3957 }
3958
3959 static void cleanup_ipmi_si(void)
3960 {
3961         struct smi_info *e, *tmp_e;
3962
3963         if (!initialized)
3964                 return;
3965
3966 #ifdef CONFIG_PCI
3967         if (pci_registered)
3968                 pci_unregister_driver(&ipmi_pci_driver);
3969 #endif
3970 #ifdef CONFIG_PARISC
3971         if (parisc_registered)
3972                 unregister_parisc_driver(&ipmi_parisc_driver);
3973 #endif
3974
3975         platform_driver_unregister(&ipmi_driver);
3976
3977         mutex_lock(&smi_infos_lock);
3978         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3979                 cleanup_one_si(e);
3980         mutex_unlock(&smi_infos_lock);
3981 }
3982 module_exit(cleanup_ipmi_si);
3983
3984 MODULE_LICENSE("GPL");
3985 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3986 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3987                    " system interfaces.");