ipmi: Fix a bug in hot add/remove
[cascardo/linux.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC    10000
85 #define SI_USEC_PER_JIFFY       (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
88                                       short timeout */
89
90 enum si_intf_state {
91         SI_NORMAL,
92         SI_GETTING_FLAGS,
93         SI_GETTING_EVENTS,
94         SI_CLEARING_FLAGS,
95         SI_CLEARING_FLAGS_THEN_SET_IRQ,
96         SI_GETTING_MESSAGES,
97         SI_ENABLE_INTERRUPTS1,
98         SI_ENABLE_INTERRUPTS2,
99         SI_DISABLE_INTERRUPTS1,
100         SI_DISABLE_INTERRUPTS2
101         /* FIXME - add watchdog stuff. */
102 };
103
104 /* Some BT-specific defines we need here. */
105 #define IPMI_BT_INTMASK_REG             2
106 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
107 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
108
109 enum si_type {
110     SI_KCS, SI_SMIC, SI_BT
111 };
112 static char *si_to_str[] = { "kcs", "smic", "bt" };
113
114 #define DEVICE_NAME "ipmi_si"
115
116 static struct platform_driver ipmi_driver;
117
118 /*
119  * Indexes into stats[] in smi_info below.
120  */
121 enum si_stat_indexes {
122         /*
123          * Number of times the driver requested a timer while an operation
124          * was in progress.
125          */
126         SI_STAT_short_timeouts = 0,
127
128         /*
129          * Number of times the driver requested a timer while nothing was in
130          * progress.
131          */
132         SI_STAT_long_timeouts,
133
134         /* Number of times the interface was idle while being polled. */
135         SI_STAT_idles,
136
137         /* Number of interrupts the driver handled. */
138         SI_STAT_interrupts,
139
140         /* Number of time the driver got an ATTN from the hardware. */
141         SI_STAT_attentions,
142
143         /* Number of times the driver requested flags from the hardware. */
144         SI_STAT_flag_fetches,
145
146         /* Number of times the hardware didn't follow the state machine. */
147         SI_STAT_hosed_count,
148
149         /* Number of completed messages. */
150         SI_STAT_complete_transactions,
151
152         /* Number of IPMI events received from the hardware. */
153         SI_STAT_events,
154
155         /* Number of watchdog pretimeouts. */
156         SI_STAT_watchdog_pretimeouts,
157
158         /* Number of asynchronous messages received. */
159         SI_STAT_incoming_messages,
160
161
162         /* This *must* remain last, add new values above this. */
163         SI_NUM_STATS
164 };
165
166 struct smi_info {
167         int                    intf_num;
168         ipmi_smi_t             intf;
169         struct si_sm_data      *si_sm;
170         struct si_sm_handlers  *handlers;
171         enum si_type           si_type;
172         spinlock_t             si_lock;
173         struct list_head       xmit_msgs;
174         struct list_head       hp_xmit_msgs;
175         struct ipmi_smi_msg    *curr_msg;
176         enum si_intf_state     si_state;
177
178         /*
179          * Used to handle the various types of I/O that can occur with
180          * IPMI
181          */
182         struct si_sm_io io;
183         int (*io_setup)(struct smi_info *info);
184         void (*io_cleanup)(struct smi_info *info);
185         int (*irq_setup)(struct smi_info *info);
186         void (*irq_cleanup)(struct smi_info *info);
187         unsigned int io_size;
188         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
189         void (*addr_source_cleanup)(struct smi_info *info);
190         void *addr_source_data;
191
192         /*
193          * Per-OEM handler, called from handle_flags().  Returns 1
194          * when handle_flags() needs to be re-run or 0 indicating it
195          * set si_state itself.
196          */
197         int (*oem_data_avail_handler)(struct smi_info *smi_info);
198
199         /*
200          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
201          * is set to hold the flags until we are done handling everything
202          * from the flags.
203          */
204 #define RECEIVE_MSG_AVAIL       0x01
205 #define EVENT_MSG_BUFFER_FULL   0x02
206 #define WDT_PRE_TIMEOUT_INT     0x08
207 #define OEM0_DATA_AVAIL     0x20
208 #define OEM1_DATA_AVAIL     0x40
209 #define OEM2_DATA_AVAIL     0x80
210 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
211                              OEM1_DATA_AVAIL | \
212                              OEM2_DATA_AVAIL)
213         unsigned char       msg_flags;
214
215         /* Does the BMC have an event buffer? */
216         bool                has_event_buffer;
217
218         /*
219          * If set to true, this will request events the next time the
220          * state machine is idle.
221          */
222         atomic_t            req_events;
223
224         /*
225          * If true, run the state machine to completion on every send
226          * call.  Generally used after a panic to make sure stuff goes
227          * out.
228          */
229         bool                run_to_completion;
230
231         /* The I/O port of an SI interface. */
232         int                 port;
233
234         /*
235          * The space between start addresses of the two ports.  For
236          * instance, if the first port is 0xca2 and the spacing is 4, then
237          * the second port is 0xca6.
238          */
239         unsigned int        spacing;
240
241         /* zero if no irq; */
242         int                 irq;
243
244         /* The timer for this si. */
245         struct timer_list   si_timer;
246
247         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
248         bool                timer_running;
249
250         /* The time (in jiffies) the last timeout occurred at. */
251         unsigned long       last_timeout_jiffies;
252
253         /* Used to gracefully stop the timer without race conditions. */
254         atomic_t            stop_operation;
255
256         /* Are we waiting for the events, pretimeouts, received msgs? */
257         atomic_t            need_watch;
258
259         /*
260          * The driver will disable interrupts when it gets into a
261          * situation where it cannot handle messages due to lack of
262          * memory.  Once that situation clears up, it will re-enable
263          * interrupts.
264          */
265         bool interrupt_disabled;
266
267         /* From the get device id response... */
268         struct ipmi_device_id device_id;
269
270         /* Driver model stuff. */
271         struct device *dev;
272         struct platform_device *pdev;
273
274         /*
275          * True if we allocated the device, false if it came from
276          * someplace else (like PCI).
277          */
278         bool dev_registered;
279
280         /* Slave address, could be reported from DMI. */
281         unsigned char slave_addr;
282
283         /* Counters and things for the proc filesystem. */
284         atomic_t stats[SI_NUM_STATS];
285
286         struct task_struct *thread;
287
288         struct list_head link;
289         union ipmi_smi_info_union addr_info;
290 };
291
292 #define smi_inc_stat(smi, stat) \
293         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
294 #define smi_get_stat(smi, stat) \
295         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
296
297 #define SI_MAX_PARMS 4
298
299 static int force_kipmid[SI_MAX_PARMS];
300 static int num_force_kipmid;
301 #ifdef CONFIG_PCI
302 static bool pci_registered;
303 #endif
304 #ifdef CONFIG_ACPI
305 static bool pnp_registered;
306 #endif
307 #ifdef CONFIG_PARISC
308 static bool parisc_registered;
309 #endif
310
311 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
312 static int num_max_busy_us;
313
314 static bool unload_when_empty = true;
315
316 static int add_smi(struct smi_info *smi);
317 static int try_smi_init(struct smi_info *smi);
318 static void cleanup_one_si(struct smi_info *to_clean);
319 static void cleanup_ipmi_si(void);
320
321 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
322 static int register_xaction_notifier(struct notifier_block *nb)
323 {
324         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
325 }
326
327 static void deliver_recv_msg(struct smi_info *smi_info,
328                              struct ipmi_smi_msg *msg)
329 {
330         /* Deliver the message to the upper layer. */
331         ipmi_smi_msg_received(smi_info->intf, msg);
332 }
333
334 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
335 {
336         struct ipmi_smi_msg *msg = smi_info->curr_msg;
337
338         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
339                 cCode = IPMI_ERR_UNSPECIFIED;
340         /* else use it as is */
341
342         /* Make it a response */
343         msg->rsp[0] = msg->data[0] | 4;
344         msg->rsp[1] = msg->data[1];
345         msg->rsp[2] = cCode;
346         msg->rsp_size = 3;
347
348         smi_info->curr_msg = NULL;
349         deliver_recv_msg(smi_info, msg);
350 }
351
352 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
353 {
354         int              rv;
355         struct list_head *entry = NULL;
356 #ifdef DEBUG_TIMING
357         struct timeval t;
358 #endif
359
360         /* Pick the high priority queue first. */
361         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
362                 entry = smi_info->hp_xmit_msgs.next;
363         } else if (!list_empty(&(smi_info->xmit_msgs))) {
364                 entry = smi_info->xmit_msgs.next;
365         }
366
367         if (!entry) {
368                 smi_info->curr_msg = NULL;
369                 rv = SI_SM_IDLE;
370         } else {
371                 int err;
372
373                 list_del(entry);
374                 smi_info->curr_msg = list_entry(entry,
375                                                 struct ipmi_smi_msg,
376                                                 link);
377 #ifdef DEBUG_TIMING
378                 do_gettimeofday(&t);
379                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
380 #endif
381                 err = atomic_notifier_call_chain(&xaction_notifier_list,
382                                 0, smi_info);
383                 if (err & NOTIFY_STOP_MASK) {
384                         rv = SI_SM_CALL_WITHOUT_DELAY;
385                         goto out;
386                 }
387                 err = smi_info->handlers->start_transaction(
388                         smi_info->si_sm,
389                         smi_info->curr_msg->data,
390                         smi_info->curr_msg->data_size);
391                 if (err)
392                         return_hosed_msg(smi_info, err);
393
394                 rv = SI_SM_CALL_WITHOUT_DELAY;
395         }
396  out:
397         return rv;
398 }
399
400 static void start_enable_irq(struct smi_info *smi_info)
401 {
402         unsigned char msg[2];
403
404         /*
405          * If we are enabling interrupts, we have to tell the
406          * BMC to use them.
407          */
408         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
409         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
410
411         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
412         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
413 }
414
415 static void start_disable_irq(struct smi_info *smi_info)
416 {
417         unsigned char msg[2];
418
419         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
420         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
421
422         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
423         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
424 }
425
426 static void start_clear_flags(struct smi_info *smi_info)
427 {
428         unsigned char msg[3];
429
430         /* Make sure the watchdog pre-timeout flag is not set at startup. */
431         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
432         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
433         msg[2] = WDT_PRE_TIMEOUT_INT;
434
435         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
436         smi_info->si_state = SI_CLEARING_FLAGS;
437 }
438
439 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
440 {
441         smi_info->last_timeout_jiffies = jiffies;
442         mod_timer(&smi_info->si_timer, new_val);
443         smi_info->timer_running = true;
444 }
445
446 /*
447  * When we have a situtaion where we run out of memory and cannot
448  * allocate messages, we just leave them in the BMC and run the system
449  * polled until we can allocate some memory.  Once we have some
450  * memory, we will re-enable the interrupt.
451  */
452 static inline void disable_si_irq(struct smi_info *smi_info)
453 {
454         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
455                 start_disable_irq(smi_info);
456                 smi_info->interrupt_disabled = true;
457                 if (!atomic_read(&smi_info->stop_operation))
458                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
459         }
460 }
461
462 static inline void enable_si_irq(struct smi_info *smi_info)
463 {
464         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
465                 start_enable_irq(smi_info);
466                 smi_info->interrupt_disabled = false;
467         }
468 }
469
470 static void handle_flags(struct smi_info *smi_info)
471 {
472  retry:
473         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
474                 /* Watchdog pre-timeout */
475                 smi_inc_stat(smi_info, watchdog_pretimeouts);
476
477                 start_clear_flags(smi_info);
478                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
479                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
480         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
481                 /* Messages available. */
482                 smi_info->curr_msg = ipmi_alloc_smi_msg();
483                 if (!smi_info->curr_msg) {
484                         disable_si_irq(smi_info);
485                         smi_info->si_state = SI_NORMAL;
486                         return;
487                 }
488                 enable_si_irq(smi_info);
489
490                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
491                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
492                 smi_info->curr_msg->data_size = 2;
493
494                 smi_info->handlers->start_transaction(
495                         smi_info->si_sm,
496                         smi_info->curr_msg->data,
497                         smi_info->curr_msg->data_size);
498                 smi_info->si_state = SI_GETTING_MESSAGES;
499         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
500                 /* Events available. */
501                 smi_info->curr_msg = ipmi_alloc_smi_msg();
502                 if (!smi_info->curr_msg) {
503                         disable_si_irq(smi_info);
504                         smi_info->si_state = SI_NORMAL;
505                         return;
506                 }
507                 enable_si_irq(smi_info);
508
509                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
510                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
511                 smi_info->curr_msg->data_size = 2;
512
513                 smi_info->handlers->start_transaction(
514                         smi_info->si_sm,
515                         smi_info->curr_msg->data,
516                         smi_info->curr_msg->data_size);
517                 smi_info->si_state = SI_GETTING_EVENTS;
518         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
519                    smi_info->oem_data_avail_handler) {
520                 if (smi_info->oem_data_avail_handler(smi_info))
521                         goto retry;
522         } else
523                 smi_info->si_state = SI_NORMAL;
524 }
525
526 static void handle_transaction_done(struct smi_info *smi_info)
527 {
528         struct ipmi_smi_msg *msg;
529 #ifdef DEBUG_TIMING
530         struct timeval t;
531
532         do_gettimeofday(&t);
533         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
534 #endif
535         switch (smi_info->si_state) {
536         case SI_NORMAL:
537                 if (!smi_info->curr_msg)
538                         break;
539
540                 smi_info->curr_msg->rsp_size
541                         = smi_info->handlers->get_result(
542                                 smi_info->si_sm,
543                                 smi_info->curr_msg->rsp,
544                                 IPMI_MAX_MSG_LENGTH);
545
546                 /*
547                  * Do this here becase deliver_recv_msg() releases the
548                  * lock, and a new message can be put in during the
549                  * time the lock is released.
550                  */
551                 msg = smi_info->curr_msg;
552                 smi_info->curr_msg = NULL;
553                 deliver_recv_msg(smi_info, msg);
554                 break;
555
556         case SI_GETTING_FLAGS:
557         {
558                 unsigned char msg[4];
559                 unsigned int  len;
560
561                 /* We got the flags from the SMI, now handle them. */
562                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
563                 if (msg[2] != 0) {
564                         /* Error fetching flags, just give up for now. */
565                         smi_info->si_state = SI_NORMAL;
566                 } else if (len < 4) {
567                         /*
568                          * Hmm, no flags.  That's technically illegal, but
569                          * don't use uninitialized data.
570                          */
571                         smi_info->si_state = SI_NORMAL;
572                 } else {
573                         smi_info->msg_flags = msg[3];
574                         handle_flags(smi_info);
575                 }
576                 break;
577         }
578
579         case SI_CLEARING_FLAGS:
580         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
581         {
582                 unsigned char msg[3];
583
584                 /* We cleared the flags. */
585                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
586                 if (msg[2] != 0) {
587                         /* Error clearing flags */
588                         dev_warn(smi_info->dev,
589                                  "Error clearing flags: %2.2x\n", msg[2]);
590                 }
591                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
592                         start_enable_irq(smi_info);
593                 else
594                         smi_info->si_state = SI_NORMAL;
595                 break;
596         }
597
598         case SI_GETTING_EVENTS:
599         {
600                 smi_info->curr_msg->rsp_size
601                         = smi_info->handlers->get_result(
602                                 smi_info->si_sm,
603                                 smi_info->curr_msg->rsp,
604                                 IPMI_MAX_MSG_LENGTH);
605
606                 /*
607                  * Do this here becase deliver_recv_msg() releases the
608                  * lock, and a new message can be put in during the
609                  * time the lock is released.
610                  */
611                 msg = smi_info->curr_msg;
612                 smi_info->curr_msg = NULL;
613                 if (msg->rsp[2] != 0) {
614                         /* Error getting event, probably done. */
615                         msg->done(msg);
616
617                         /* Take off the event flag. */
618                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
619                         handle_flags(smi_info);
620                 } else {
621                         smi_inc_stat(smi_info, events);
622
623                         /*
624                          * Do this before we deliver the message
625                          * because delivering the message releases the
626                          * lock and something else can mess with the
627                          * state.
628                          */
629                         handle_flags(smi_info);
630
631                         deliver_recv_msg(smi_info, msg);
632                 }
633                 break;
634         }
635
636         case SI_GETTING_MESSAGES:
637         {
638                 smi_info->curr_msg->rsp_size
639                         = smi_info->handlers->get_result(
640                                 smi_info->si_sm,
641                                 smi_info->curr_msg->rsp,
642                                 IPMI_MAX_MSG_LENGTH);
643
644                 /*
645                  * Do this here becase deliver_recv_msg() releases the
646                  * lock, and a new message can be put in during the
647                  * time the lock is released.
648                  */
649                 msg = smi_info->curr_msg;
650                 smi_info->curr_msg = NULL;
651                 if (msg->rsp[2] != 0) {
652                         /* Error getting event, probably done. */
653                         msg->done(msg);
654
655                         /* Take off the msg flag. */
656                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
657                         handle_flags(smi_info);
658                 } else {
659                         smi_inc_stat(smi_info, incoming_messages);
660
661                         /*
662                          * Do this before we deliver the message
663                          * because delivering the message releases the
664                          * lock and something else can mess with the
665                          * state.
666                          */
667                         handle_flags(smi_info);
668
669                         deliver_recv_msg(smi_info, msg);
670                 }
671                 break;
672         }
673
674         case SI_ENABLE_INTERRUPTS1:
675         {
676                 unsigned char msg[4];
677
678                 /* We got the flags from the SMI, now handle them. */
679                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
680                 if (msg[2] != 0) {
681                         dev_warn(smi_info->dev,
682                                  "Couldn't get irq info: %x.\n", msg[2]);
683                         dev_warn(smi_info->dev,
684                                  "Maybe ok, but ipmi might run very slowly.\n");
685                         smi_info->si_state = SI_NORMAL;
686                 } else {
687                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
688                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
689                         msg[2] = (msg[3] |
690                                   IPMI_BMC_RCV_MSG_INTR |
691                                   IPMI_BMC_EVT_MSG_INTR);
692                         smi_info->handlers->start_transaction(
693                                 smi_info->si_sm, msg, 3);
694                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
695                 }
696                 break;
697         }
698
699         case SI_ENABLE_INTERRUPTS2:
700         {
701                 unsigned char msg[4];
702
703                 /* We got the flags from the SMI, now handle them. */
704                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
705                 if (msg[2] != 0) {
706                         dev_warn(smi_info->dev,
707                                  "Couldn't set irq info: %x.\n", msg[2]);
708                         dev_warn(smi_info->dev,
709                                  "Maybe ok, but ipmi might run very slowly.\n");
710                 } else
711                         smi_info->interrupt_disabled = false;
712                 smi_info->si_state = SI_NORMAL;
713                 break;
714         }
715
716         case SI_DISABLE_INTERRUPTS1:
717         {
718                 unsigned char msg[4];
719
720                 /* We got the flags from the SMI, now handle them. */
721                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
722                 if (msg[2] != 0) {
723                         dev_warn(smi_info->dev, "Could not disable interrupts"
724                                  ", failed get.\n");
725                         smi_info->si_state = SI_NORMAL;
726                 } else {
727                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
728                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
729                         msg[2] = (msg[3] &
730                                   ~(IPMI_BMC_RCV_MSG_INTR |
731                                     IPMI_BMC_EVT_MSG_INTR));
732                         smi_info->handlers->start_transaction(
733                                 smi_info->si_sm, msg, 3);
734                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
735                 }
736                 break;
737         }
738
739         case SI_DISABLE_INTERRUPTS2:
740         {
741                 unsigned char msg[4];
742
743                 /* We got the flags from the SMI, now handle them. */
744                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
745                 if (msg[2] != 0) {
746                         dev_warn(smi_info->dev, "Could not disable interrupts"
747                                  ", failed set.\n");
748                 }
749                 smi_info->si_state = SI_NORMAL;
750                 break;
751         }
752         }
753 }
754
755 /*
756  * Called on timeouts and events.  Timeouts should pass the elapsed
757  * time, interrupts should pass in zero.  Must be called with
758  * si_lock held and interrupts disabled.
759  */
760 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
761                                            int time)
762 {
763         enum si_sm_result si_sm_result;
764
765  restart:
766         /*
767          * There used to be a loop here that waited a little while
768          * (around 25us) before giving up.  That turned out to be
769          * pointless, the minimum delays I was seeing were in the 300us
770          * range, which is far too long to wait in an interrupt.  So
771          * we just run until the state machine tells us something
772          * happened or it needs a delay.
773          */
774         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
775         time = 0;
776         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
777                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
778
779         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
780                 smi_inc_stat(smi_info, complete_transactions);
781
782                 handle_transaction_done(smi_info);
783                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
784         } else if (si_sm_result == SI_SM_HOSED) {
785                 smi_inc_stat(smi_info, hosed_count);
786
787                 /*
788                  * Do the before return_hosed_msg, because that
789                  * releases the lock.
790                  */
791                 smi_info->si_state = SI_NORMAL;
792                 if (smi_info->curr_msg != NULL) {
793                         /*
794                          * If we were handling a user message, format
795                          * a response to send to the upper layer to
796                          * tell it about the error.
797                          */
798                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
799                 }
800                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
801         }
802
803         /*
804          * We prefer handling attn over new messages.  But don't do
805          * this if there is not yet an upper layer to handle anything.
806          */
807         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
808                 unsigned char msg[2];
809
810                 smi_inc_stat(smi_info, attentions);
811
812                 /*
813                  * Got a attn, send down a get message flags to see
814                  * what's causing it.  It would be better to handle
815                  * this in the upper layer, but due to the way
816                  * interrupts work with the SMI, that's not really
817                  * possible.
818                  */
819                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
820                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
821
822                 smi_info->handlers->start_transaction(
823                         smi_info->si_sm, msg, 2);
824                 smi_info->si_state = SI_GETTING_FLAGS;
825                 goto restart;
826         }
827
828         /* If we are currently idle, try to start the next message. */
829         if (si_sm_result == SI_SM_IDLE) {
830                 smi_inc_stat(smi_info, idles);
831
832                 si_sm_result = start_next_msg(smi_info);
833                 if (si_sm_result != SI_SM_IDLE)
834                         goto restart;
835         }
836
837         if ((si_sm_result == SI_SM_IDLE)
838             && (atomic_read(&smi_info->req_events))) {
839                 /*
840                  * We are idle and the upper layer requested that I fetch
841                  * events, so do so.
842                  */
843                 atomic_set(&smi_info->req_events, 0);
844
845                 smi_info->curr_msg = ipmi_alloc_smi_msg();
846                 if (!smi_info->curr_msg)
847                         goto out;
848
849                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
850                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
851                 smi_info->curr_msg->data_size = 2;
852
853                 smi_info->handlers->start_transaction(
854                         smi_info->si_sm,
855                         smi_info->curr_msg->data,
856                         smi_info->curr_msg->data_size);
857                 smi_info->si_state = SI_GETTING_EVENTS;
858                 goto restart;
859         }
860  out:
861         return si_sm_result;
862 }
863
864 static void check_start_timer_thread(struct smi_info *smi_info)
865 {
866         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
867                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
868
869                 if (smi_info->thread)
870                         wake_up_process(smi_info->thread);
871
872                 start_next_msg(smi_info);
873                 smi_event_handler(smi_info, 0);
874         }
875 }
876
877 static void sender(void                *send_info,
878                    struct ipmi_smi_msg *msg,
879                    int                 priority)
880 {
881         struct smi_info   *smi_info = send_info;
882         enum si_sm_result result;
883         unsigned long     flags;
884 #ifdef DEBUG_TIMING
885         struct timeval    t;
886 #endif
887
888         if (atomic_read(&smi_info->stop_operation)) {
889                 msg->rsp[0] = msg->data[0] | 4;
890                 msg->rsp[1] = msg->data[1];
891                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
892                 msg->rsp_size = 3;
893                 deliver_recv_msg(smi_info, msg);
894                 return;
895         }
896
897 #ifdef DEBUG_TIMING
898         do_gettimeofday(&t);
899         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
900 #endif
901
902         if (smi_info->run_to_completion) {
903                 /*
904                  * If we are running to completion, then throw it in
905                  * the list and run transactions until everything is
906                  * clear.  Priority doesn't matter here.
907                  */
908
909                 /*
910                  * Run to completion means we are single-threaded, no
911                  * need for locks.
912                  */
913                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
914
915                 result = smi_event_handler(smi_info, 0);
916                 while (result != SI_SM_IDLE) {
917                         udelay(SI_SHORT_TIMEOUT_USEC);
918                         result = smi_event_handler(smi_info,
919                                                    SI_SHORT_TIMEOUT_USEC);
920                 }
921                 return;
922         }
923
924         spin_lock_irqsave(&smi_info->si_lock, flags);
925         if (priority > 0)
926                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
927         else
928                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
929
930         check_start_timer_thread(smi_info);
931         spin_unlock_irqrestore(&smi_info->si_lock, flags);
932 }
933
934 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
935 {
936         struct smi_info   *smi_info = send_info;
937         enum si_sm_result result;
938
939         smi_info->run_to_completion = i_run_to_completion;
940         if (i_run_to_completion) {
941                 result = smi_event_handler(smi_info, 0);
942                 while (result != SI_SM_IDLE) {
943                         udelay(SI_SHORT_TIMEOUT_USEC);
944                         result = smi_event_handler(smi_info,
945                                                    SI_SHORT_TIMEOUT_USEC);
946                 }
947         }
948 }
949
950 /*
951  * Use -1 in the nsec value of the busy waiting timespec to tell that
952  * we are spinning in kipmid looking for something and not delaying
953  * between checks
954  */
955 static inline void ipmi_si_set_not_busy(struct timespec *ts)
956 {
957         ts->tv_nsec = -1;
958 }
959 static inline int ipmi_si_is_busy(struct timespec *ts)
960 {
961         return ts->tv_nsec != -1;
962 }
963
964 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
965                                         const struct smi_info *smi_info,
966                                         struct timespec *busy_until)
967 {
968         unsigned int max_busy_us = 0;
969
970         if (smi_info->intf_num < num_max_busy_us)
971                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
972         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
973                 ipmi_si_set_not_busy(busy_until);
974         else if (!ipmi_si_is_busy(busy_until)) {
975                 getnstimeofday(busy_until);
976                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
977         } else {
978                 struct timespec now;
979                 getnstimeofday(&now);
980                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
981                         ipmi_si_set_not_busy(busy_until);
982                         return 0;
983                 }
984         }
985         return 1;
986 }
987
988
989 /*
990  * A busy-waiting loop for speeding up IPMI operation.
991  *
992  * Lousy hardware makes this hard.  This is only enabled for systems
993  * that are not BT and do not have interrupts.  It starts spinning
994  * when an operation is complete or until max_busy tells it to stop
995  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
996  * Documentation/IPMI.txt for details.
997  */
998 static int ipmi_thread(void *data)
999 {
1000         struct smi_info *smi_info = data;
1001         unsigned long flags;
1002         enum si_sm_result smi_result;
1003         struct timespec busy_until;
1004
1005         ipmi_si_set_not_busy(&busy_until);
1006         set_user_nice(current, MAX_NICE);
1007         while (!kthread_should_stop()) {
1008                 int busy_wait;
1009
1010                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1011                 smi_result = smi_event_handler(smi_info, 0);
1012
1013                 /*
1014                  * If the driver is doing something, there is a possible
1015                  * race with the timer.  If the timer handler see idle,
1016                  * and the thread here sees something else, the timer
1017                  * handler won't restart the timer even though it is
1018                  * required.  So start it here if necessary.
1019                  */
1020                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1021                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1022
1023                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1024                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1025                                                   &busy_until);
1026                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1027                         ; /* do nothing */
1028                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1029                         schedule();
1030                 else if (smi_result == SI_SM_IDLE) {
1031                         if (atomic_read(&smi_info->need_watch)) {
1032                                 schedule_timeout_interruptible(100);
1033                         } else {
1034                                 /* Wait to be woken up when we are needed. */
1035                                 __set_current_state(TASK_INTERRUPTIBLE);
1036                                 schedule();
1037                         }
1038                 } else
1039                         schedule_timeout_interruptible(1);
1040         }
1041         return 0;
1042 }
1043
1044
1045 static void poll(void *send_info)
1046 {
1047         struct smi_info *smi_info = send_info;
1048         unsigned long flags = 0;
1049         bool run_to_completion = smi_info->run_to_completion;
1050
1051         /*
1052          * Make sure there is some delay in the poll loop so we can
1053          * drive time forward and timeout things.
1054          */
1055         udelay(10);
1056         if (!run_to_completion)
1057                 spin_lock_irqsave(&smi_info->si_lock, flags);
1058         smi_event_handler(smi_info, 10);
1059         if (!run_to_completion)
1060                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1061 }
1062
1063 static void request_events(void *send_info)
1064 {
1065         struct smi_info *smi_info = send_info;
1066
1067         if (atomic_read(&smi_info->stop_operation) ||
1068                                 !smi_info->has_event_buffer)
1069                 return;
1070
1071         atomic_set(&smi_info->req_events, 1);
1072 }
1073
1074 static void set_need_watch(void *send_info, bool enable)
1075 {
1076         struct smi_info *smi_info = send_info;
1077         unsigned long flags;
1078
1079         atomic_set(&smi_info->need_watch, enable);
1080         spin_lock_irqsave(&smi_info->si_lock, flags);
1081         check_start_timer_thread(smi_info);
1082         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1083 }
1084
1085 static int initialized;
1086
1087 static void smi_timeout(unsigned long data)
1088 {
1089         struct smi_info   *smi_info = (struct smi_info *) data;
1090         enum si_sm_result smi_result;
1091         unsigned long     flags;
1092         unsigned long     jiffies_now;
1093         long              time_diff;
1094         long              timeout;
1095 #ifdef DEBUG_TIMING
1096         struct timeval    t;
1097 #endif
1098
1099         spin_lock_irqsave(&(smi_info->si_lock), flags);
1100 #ifdef DEBUG_TIMING
1101         do_gettimeofday(&t);
1102         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1103 #endif
1104         jiffies_now = jiffies;
1105         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1106                      * SI_USEC_PER_JIFFY);
1107         smi_result = smi_event_handler(smi_info, time_diff);
1108
1109         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1110                 /* Running with interrupts, only do long timeouts. */
1111                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1112                 smi_inc_stat(smi_info, long_timeouts);
1113                 goto do_mod_timer;
1114         }
1115
1116         /*
1117          * If the state machine asks for a short delay, then shorten
1118          * the timer timeout.
1119          */
1120         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1121                 smi_inc_stat(smi_info, short_timeouts);
1122                 timeout = jiffies + 1;
1123         } else {
1124                 smi_inc_stat(smi_info, long_timeouts);
1125                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1126         }
1127
1128  do_mod_timer:
1129         if (smi_result != SI_SM_IDLE)
1130                 smi_mod_timer(smi_info, timeout);
1131         else
1132                 smi_info->timer_running = false;
1133         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1134 }
1135
1136 static irqreturn_t si_irq_handler(int irq, void *data)
1137 {
1138         struct smi_info *smi_info = data;
1139         unsigned long   flags;
1140 #ifdef DEBUG_TIMING
1141         struct timeval  t;
1142 #endif
1143
1144         spin_lock_irqsave(&(smi_info->si_lock), flags);
1145
1146         smi_inc_stat(smi_info, interrupts);
1147
1148 #ifdef DEBUG_TIMING
1149         do_gettimeofday(&t);
1150         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1151 #endif
1152         smi_event_handler(smi_info, 0);
1153         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1154         return IRQ_HANDLED;
1155 }
1156
1157 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1158 {
1159         struct smi_info *smi_info = data;
1160         /* We need to clear the IRQ flag for the BT interface. */
1161         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1162                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1163                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1164         return si_irq_handler(irq, data);
1165 }
1166
1167 static int smi_start_processing(void       *send_info,
1168                                 ipmi_smi_t intf)
1169 {
1170         struct smi_info *new_smi = send_info;
1171         int             enable = 0;
1172
1173         new_smi->intf = intf;
1174
1175         /* Try to claim any interrupts. */
1176         if (new_smi->irq_setup)
1177                 new_smi->irq_setup(new_smi);
1178
1179         /* Set up the timer that drives the interface. */
1180         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1181         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1182
1183         /*
1184          * Check if the user forcefully enabled the daemon.
1185          */
1186         if (new_smi->intf_num < num_force_kipmid)
1187                 enable = force_kipmid[new_smi->intf_num];
1188         /*
1189          * The BT interface is efficient enough to not need a thread,
1190          * and there is no need for a thread if we have interrupts.
1191          */
1192         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1193                 enable = 1;
1194
1195         if (enable) {
1196                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1197                                               "kipmi%d", new_smi->intf_num);
1198                 if (IS_ERR(new_smi->thread)) {
1199                         dev_notice(new_smi->dev, "Could not start"
1200                                    " kernel thread due to error %ld, only using"
1201                                    " timers to drive the interface\n",
1202                                    PTR_ERR(new_smi->thread));
1203                         new_smi->thread = NULL;
1204                 }
1205         }
1206
1207         return 0;
1208 }
1209
1210 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1211 {
1212         struct smi_info *smi = send_info;
1213
1214         data->addr_src = smi->addr_source;
1215         data->dev = smi->dev;
1216         data->addr_info = smi->addr_info;
1217         get_device(smi->dev);
1218
1219         return 0;
1220 }
1221
1222 static void set_maintenance_mode(void *send_info, bool enable)
1223 {
1224         struct smi_info   *smi_info = send_info;
1225
1226         if (!enable)
1227                 atomic_set(&smi_info->req_events, 0);
1228 }
1229
1230 static struct ipmi_smi_handlers handlers = {
1231         .owner                  = THIS_MODULE,
1232         .start_processing       = smi_start_processing,
1233         .get_smi_info           = get_smi_info,
1234         .sender                 = sender,
1235         .request_events         = request_events,
1236         .set_need_watch         = set_need_watch,
1237         .set_maintenance_mode   = set_maintenance_mode,
1238         .set_run_to_completion  = set_run_to_completion,
1239         .poll                   = poll,
1240 };
1241
1242 /*
1243  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1244  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1245  */
1246
1247 static LIST_HEAD(smi_infos);
1248 static DEFINE_MUTEX(smi_infos_lock);
1249 static int smi_num; /* Used to sequence the SMIs */
1250
1251 #define DEFAULT_REGSPACING      1
1252 #define DEFAULT_REGSIZE         1
1253
1254 #ifdef CONFIG_ACPI
1255 static bool          si_tryacpi = 1;
1256 #endif
1257 #ifdef CONFIG_DMI
1258 static bool          si_trydmi = 1;
1259 #endif
1260 static bool          si_tryplatform = 1;
1261 #ifdef CONFIG_PCI
1262 static bool          si_trypci = 1;
1263 #endif
1264 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1265 static char          *si_type[SI_MAX_PARMS];
1266 #define MAX_SI_TYPE_STR 30
1267 static char          si_type_str[MAX_SI_TYPE_STR];
1268 static unsigned long addrs[SI_MAX_PARMS];
1269 static unsigned int num_addrs;
1270 static unsigned int  ports[SI_MAX_PARMS];
1271 static unsigned int num_ports;
1272 static int           irqs[SI_MAX_PARMS];
1273 static unsigned int num_irqs;
1274 static int           regspacings[SI_MAX_PARMS];
1275 static unsigned int num_regspacings;
1276 static int           regsizes[SI_MAX_PARMS];
1277 static unsigned int num_regsizes;
1278 static int           regshifts[SI_MAX_PARMS];
1279 static unsigned int num_regshifts;
1280 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1281 static unsigned int num_slave_addrs;
1282
1283 #define IPMI_IO_ADDR_SPACE  0
1284 #define IPMI_MEM_ADDR_SPACE 1
1285 static char *addr_space_to_str[] = { "i/o", "mem" };
1286
1287 static int hotmod_handler(const char *val, struct kernel_param *kp);
1288
1289 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1290 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1291                  " Documentation/IPMI.txt in the kernel sources for the"
1292                  " gory details.");
1293
1294 #ifdef CONFIG_ACPI
1295 module_param_named(tryacpi, si_tryacpi, bool, 0);
1296 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1297                  " default scan of the interfaces identified via ACPI");
1298 #endif
1299 #ifdef CONFIG_DMI
1300 module_param_named(trydmi, si_trydmi, bool, 0);
1301 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1302                  " default scan of the interfaces identified via DMI");
1303 #endif
1304 module_param_named(tryplatform, si_tryplatform, bool, 0);
1305 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1306                  " default scan of the interfaces identified via platform"
1307                  " interfaces like openfirmware");
1308 #ifdef CONFIG_PCI
1309 module_param_named(trypci, si_trypci, bool, 0);
1310 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1311                  " default scan of the interfaces identified via pci");
1312 #endif
1313 module_param_named(trydefaults, si_trydefaults, bool, 0);
1314 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1315                  " default scan of the KCS and SMIC interface at the standard"
1316                  " address");
1317 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1318 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1319                  " interface separated by commas.  The types are 'kcs',"
1320                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1321                  " the first interface to kcs and the second to bt");
1322 module_param_array(addrs, ulong, &num_addrs, 0);
1323 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1324                  " addresses separated by commas.  Only use if an interface"
1325                  " is in memory.  Otherwise, set it to zero or leave"
1326                  " it blank.");
1327 module_param_array(ports, uint, &num_ports, 0);
1328 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1329                  " addresses separated by commas.  Only use if an interface"
1330                  " is a port.  Otherwise, set it to zero or leave"
1331                  " it blank.");
1332 module_param_array(irqs, int, &num_irqs, 0);
1333 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1334                  " addresses separated by commas.  Only use if an interface"
1335                  " has an interrupt.  Otherwise, set it to zero or leave"
1336                  " it blank.");
1337 module_param_array(regspacings, int, &num_regspacings, 0);
1338 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1339                  " and each successive register used by the interface.  For"
1340                  " instance, if the start address is 0xca2 and the spacing"
1341                  " is 2, then the second address is at 0xca4.  Defaults"
1342                  " to 1.");
1343 module_param_array(regsizes, int, &num_regsizes, 0);
1344 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1345                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1346                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1347                  " the 8-bit IPMI register has to be read from a larger"
1348                  " register.");
1349 module_param_array(regshifts, int, &num_regshifts, 0);
1350 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1351                  " IPMI register, in bits.  For instance, if the data"
1352                  " is read from a 32-bit word and the IPMI data is in"
1353                  " bit 8-15, then the shift would be 8");
1354 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1355 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1356                  " the controller.  Normally this is 0x20, but can be"
1357                  " overridden by this parm.  This is an array indexed"
1358                  " by interface number.");
1359 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1360 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1361                  " disabled(0).  Normally the IPMI driver auto-detects"
1362                  " this, but the value may be overridden by this parm.");
1363 module_param(unload_when_empty, bool, 0);
1364 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1365                  " specified or found, default is 1.  Setting to 0"
1366                  " is useful for hot add of devices using hotmod.");
1367 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1368 MODULE_PARM_DESC(kipmid_max_busy_us,
1369                  "Max time (in microseconds) to busy-wait for IPMI data before"
1370                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1371                  " if kipmid is using up a lot of CPU time.");
1372
1373
1374 static void std_irq_cleanup(struct smi_info *info)
1375 {
1376         if (info->si_type == SI_BT)
1377                 /* Disable the interrupt in the BT interface. */
1378                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1379         free_irq(info->irq, info);
1380 }
1381
1382 static int std_irq_setup(struct smi_info *info)
1383 {
1384         int rv;
1385
1386         if (!info->irq)
1387                 return 0;
1388
1389         if (info->si_type == SI_BT) {
1390                 rv = request_irq(info->irq,
1391                                  si_bt_irq_handler,
1392                                  IRQF_SHARED,
1393                                  DEVICE_NAME,
1394                                  info);
1395                 if (!rv)
1396                         /* Enable the interrupt in the BT interface. */
1397                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1398                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1399         } else
1400                 rv = request_irq(info->irq,
1401                                  si_irq_handler,
1402                                  IRQF_SHARED,
1403                                  DEVICE_NAME,
1404                                  info);
1405         if (rv) {
1406                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1407                          " running polled\n",
1408                          DEVICE_NAME, info->irq);
1409                 info->irq = 0;
1410         } else {
1411                 info->irq_cleanup = std_irq_cleanup;
1412                 dev_info(info->dev, "Using irq %d\n", info->irq);
1413         }
1414
1415         return rv;
1416 }
1417
1418 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1419 {
1420         unsigned int addr = io->addr_data;
1421
1422         return inb(addr + (offset * io->regspacing));
1423 }
1424
1425 static void port_outb(struct si_sm_io *io, unsigned int offset,
1426                       unsigned char b)
1427 {
1428         unsigned int addr = io->addr_data;
1429
1430         outb(b, addr + (offset * io->regspacing));
1431 }
1432
1433 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1434 {
1435         unsigned int addr = io->addr_data;
1436
1437         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1438 }
1439
1440 static void port_outw(struct si_sm_io *io, unsigned int offset,
1441                       unsigned char b)
1442 {
1443         unsigned int addr = io->addr_data;
1444
1445         outw(b << io->regshift, addr + (offset * io->regspacing));
1446 }
1447
1448 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1449 {
1450         unsigned int addr = io->addr_data;
1451
1452         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1453 }
1454
1455 static void port_outl(struct si_sm_io *io, unsigned int offset,
1456                       unsigned char b)
1457 {
1458         unsigned int addr = io->addr_data;
1459
1460         outl(b << io->regshift, addr+(offset * io->regspacing));
1461 }
1462
1463 static void port_cleanup(struct smi_info *info)
1464 {
1465         unsigned int addr = info->io.addr_data;
1466         int          idx;
1467
1468         if (addr) {
1469                 for (idx = 0; idx < info->io_size; idx++)
1470                         release_region(addr + idx * info->io.regspacing,
1471                                        info->io.regsize);
1472         }
1473 }
1474
1475 static int port_setup(struct smi_info *info)
1476 {
1477         unsigned int addr = info->io.addr_data;
1478         int          idx;
1479
1480         if (!addr)
1481                 return -ENODEV;
1482
1483         info->io_cleanup = port_cleanup;
1484
1485         /*
1486          * Figure out the actual inb/inw/inl/etc routine to use based
1487          * upon the register size.
1488          */
1489         switch (info->io.regsize) {
1490         case 1:
1491                 info->io.inputb = port_inb;
1492                 info->io.outputb = port_outb;
1493                 break;
1494         case 2:
1495                 info->io.inputb = port_inw;
1496                 info->io.outputb = port_outw;
1497                 break;
1498         case 4:
1499                 info->io.inputb = port_inl;
1500                 info->io.outputb = port_outl;
1501                 break;
1502         default:
1503                 dev_warn(info->dev, "Invalid register size: %d\n",
1504                          info->io.regsize);
1505                 return -EINVAL;
1506         }
1507
1508         /*
1509          * Some BIOSes reserve disjoint I/O regions in their ACPI
1510          * tables.  This causes problems when trying to register the
1511          * entire I/O region.  Therefore we must register each I/O
1512          * port separately.
1513          */
1514         for (idx = 0; idx < info->io_size; idx++) {
1515                 if (request_region(addr + idx * info->io.regspacing,
1516                                    info->io.regsize, DEVICE_NAME) == NULL) {
1517                         /* Undo allocations */
1518                         while (idx--) {
1519                                 release_region(addr + idx * info->io.regspacing,
1520                                                info->io.regsize);
1521                         }
1522                         return -EIO;
1523                 }
1524         }
1525         return 0;
1526 }
1527
1528 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1529 {
1530         return readb((io->addr)+(offset * io->regspacing));
1531 }
1532
1533 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1534                      unsigned char b)
1535 {
1536         writeb(b, (io->addr)+(offset * io->regspacing));
1537 }
1538
1539 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1540 {
1541         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1542                 & 0xff;
1543 }
1544
1545 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1546                      unsigned char b)
1547 {
1548         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1549 }
1550
1551 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1552 {
1553         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1554                 & 0xff;
1555 }
1556
1557 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1558                      unsigned char b)
1559 {
1560         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1561 }
1562
1563 #ifdef readq
1564 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1565 {
1566         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1567                 & 0xff;
1568 }
1569
1570 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1571                      unsigned char b)
1572 {
1573         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1574 }
1575 #endif
1576
1577 static void mem_cleanup(struct smi_info *info)
1578 {
1579         unsigned long addr = info->io.addr_data;
1580         int           mapsize;
1581
1582         if (info->io.addr) {
1583                 iounmap(info->io.addr);
1584
1585                 mapsize = ((info->io_size * info->io.regspacing)
1586                            - (info->io.regspacing - info->io.regsize));
1587
1588                 release_mem_region(addr, mapsize);
1589         }
1590 }
1591
1592 static int mem_setup(struct smi_info *info)
1593 {
1594         unsigned long addr = info->io.addr_data;
1595         int           mapsize;
1596
1597         if (!addr)
1598                 return -ENODEV;
1599
1600         info->io_cleanup = mem_cleanup;
1601
1602         /*
1603          * Figure out the actual readb/readw/readl/etc routine to use based
1604          * upon the register size.
1605          */
1606         switch (info->io.regsize) {
1607         case 1:
1608                 info->io.inputb = intf_mem_inb;
1609                 info->io.outputb = intf_mem_outb;
1610                 break;
1611         case 2:
1612                 info->io.inputb = intf_mem_inw;
1613                 info->io.outputb = intf_mem_outw;
1614                 break;
1615         case 4:
1616                 info->io.inputb = intf_mem_inl;
1617                 info->io.outputb = intf_mem_outl;
1618                 break;
1619 #ifdef readq
1620         case 8:
1621                 info->io.inputb = mem_inq;
1622                 info->io.outputb = mem_outq;
1623                 break;
1624 #endif
1625         default:
1626                 dev_warn(info->dev, "Invalid register size: %d\n",
1627                          info->io.regsize);
1628                 return -EINVAL;
1629         }
1630
1631         /*
1632          * Calculate the total amount of memory to claim.  This is an
1633          * unusual looking calculation, but it avoids claiming any
1634          * more memory than it has to.  It will claim everything
1635          * between the first address to the end of the last full
1636          * register.
1637          */
1638         mapsize = ((info->io_size * info->io.regspacing)
1639                    - (info->io.regspacing - info->io.regsize));
1640
1641         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1642                 return -EIO;
1643
1644         info->io.addr = ioremap(addr, mapsize);
1645         if (info->io.addr == NULL) {
1646                 release_mem_region(addr, mapsize);
1647                 return -EIO;
1648         }
1649         return 0;
1650 }
1651
1652 /*
1653  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1654  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1655  * Options are:
1656  *   rsp=<regspacing>
1657  *   rsi=<regsize>
1658  *   rsh=<regshift>
1659  *   irq=<irq>
1660  *   ipmb=<ipmb addr>
1661  */
1662 enum hotmod_op { HM_ADD, HM_REMOVE };
1663 struct hotmod_vals {
1664         char *name;
1665         int  val;
1666 };
1667 static struct hotmod_vals hotmod_ops[] = {
1668         { "add",        HM_ADD },
1669         { "remove",     HM_REMOVE },
1670         { NULL }
1671 };
1672 static struct hotmod_vals hotmod_si[] = {
1673         { "kcs",        SI_KCS },
1674         { "smic",       SI_SMIC },
1675         { "bt",         SI_BT },
1676         { NULL }
1677 };
1678 static struct hotmod_vals hotmod_as[] = {
1679         { "mem",        IPMI_MEM_ADDR_SPACE },
1680         { "i/o",        IPMI_IO_ADDR_SPACE },
1681         { NULL }
1682 };
1683
1684 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1685 {
1686         char *s;
1687         int  i;
1688
1689         s = strchr(*curr, ',');
1690         if (!s) {
1691                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1692                 return -EINVAL;
1693         }
1694         *s = '\0';
1695         s++;
1696         for (i = 0; v[i].name; i++) {
1697                 if (strcmp(*curr, v[i].name) == 0) {
1698                         *val = v[i].val;
1699                         *curr = s;
1700                         return 0;
1701                 }
1702         }
1703
1704         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1705         return -EINVAL;
1706 }
1707
1708 static int check_hotmod_int_op(const char *curr, const char *option,
1709                                const char *name, int *val)
1710 {
1711         char *n;
1712
1713         if (strcmp(curr, name) == 0) {
1714                 if (!option) {
1715                         printk(KERN_WARNING PFX
1716                                "No option given for '%s'\n",
1717                                curr);
1718                         return -EINVAL;
1719                 }
1720                 *val = simple_strtoul(option, &n, 0);
1721                 if ((*n != '\0') || (*option == '\0')) {
1722                         printk(KERN_WARNING PFX
1723                                "Bad option given for '%s'\n",
1724                                curr);
1725                         return -EINVAL;
1726                 }
1727                 return 1;
1728         }
1729         return 0;
1730 }
1731
1732 static struct smi_info *smi_info_alloc(void)
1733 {
1734         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1735
1736         if (info)
1737                 spin_lock_init(&info->si_lock);
1738         return info;
1739 }
1740
1741 static int hotmod_handler(const char *val, struct kernel_param *kp)
1742 {
1743         char *str = kstrdup(val, GFP_KERNEL);
1744         int  rv;
1745         char *next, *curr, *s, *n, *o;
1746         enum hotmod_op op;
1747         enum si_type si_type;
1748         int  addr_space;
1749         unsigned long addr;
1750         int regspacing;
1751         int regsize;
1752         int regshift;
1753         int irq;
1754         int ipmb;
1755         int ival;
1756         int len;
1757         struct smi_info *info;
1758
1759         if (!str)
1760                 return -ENOMEM;
1761
1762         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1763         len = strlen(str);
1764         ival = len - 1;
1765         while ((ival >= 0) && isspace(str[ival])) {
1766                 str[ival] = '\0';
1767                 ival--;
1768         }
1769
1770         for (curr = str; curr; curr = next) {
1771                 regspacing = 1;
1772                 regsize = 1;
1773                 regshift = 0;
1774                 irq = 0;
1775                 ipmb = 0; /* Choose the default if not specified */
1776
1777                 next = strchr(curr, ':');
1778                 if (next) {
1779                         *next = '\0';
1780                         next++;
1781                 }
1782
1783                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1784                 if (rv)
1785                         break;
1786                 op = ival;
1787
1788                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1789                 if (rv)
1790                         break;
1791                 si_type = ival;
1792
1793                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1794                 if (rv)
1795                         break;
1796
1797                 s = strchr(curr, ',');
1798                 if (s) {
1799                         *s = '\0';
1800                         s++;
1801                 }
1802                 addr = simple_strtoul(curr, &n, 0);
1803                 if ((*n != '\0') || (*curr == '\0')) {
1804                         printk(KERN_WARNING PFX "Invalid hotmod address"
1805                                " '%s'\n", curr);
1806                         break;
1807                 }
1808
1809                 while (s) {
1810                         curr = s;
1811                         s = strchr(curr, ',');
1812                         if (s) {
1813                                 *s = '\0';
1814                                 s++;
1815                         }
1816                         o = strchr(curr, '=');
1817                         if (o) {
1818                                 *o = '\0';
1819                                 o++;
1820                         }
1821                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1822                         if (rv < 0)
1823                                 goto out;
1824                         else if (rv)
1825                                 continue;
1826                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1827                         if (rv < 0)
1828                                 goto out;
1829                         else if (rv)
1830                                 continue;
1831                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1832                         if (rv < 0)
1833                                 goto out;
1834                         else if (rv)
1835                                 continue;
1836                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1837                         if (rv < 0)
1838                                 goto out;
1839                         else if (rv)
1840                                 continue;
1841                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1842                         if (rv < 0)
1843                                 goto out;
1844                         else if (rv)
1845                                 continue;
1846
1847                         rv = -EINVAL;
1848                         printk(KERN_WARNING PFX
1849                                "Invalid hotmod option '%s'\n",
1850                                curr);
1851                         goto out;
1852                 }
1853
1854                 if (op == HM_ADD) {
1855                         info = smi_info_alloc();
1856                         if (!info) {
1857                                 rv = -ENOMEM;
1858                                 goto out;
1859                         }
1860
1861                         info->addr_source = SI_HOTMOD;
1862                         info->si_type = si_type;
1863                         info->io.addr_data = addr;
1864                         info->io.addr_type = addr_space;
1865                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1866                                 info->io_setup = mem_setup;
1867                         else
1868                                 info->io_setup = port_setup;
1869
1870                         info->io.addr = NULL;
1871                         info->io.regspacing = regspacing;
1872                         if (!info->io.regspacing)
1873                                 info->io.regspacing = DEFAULT_REGSPACING;
1874                         info->io.regsize = regsize;
1875                         if (!info->io.regsize)
1876                                 info->io.regsize = DEFAULT_REGSPACING;
1877                         info->io.regshift = regshift;
1878                         info->irq = irq;
1879                         if (info->irq)
1880                                 info->irq_setup = std_irq_setup;
1881                         info->slave_addr = ipmb;
1882
1883                         rv = add_smi(info);
1884                         if (rv) {
1885                                 kfree(info);
1886                                 goto out;
1887                         }
1888                         rv = try_smi_init(info);
1889                         if (rv) {
1890                                 cleanup_one_si(info);
1891                                 goto out;
1892                         }
1893                 } else {
1894                         /* remove */
1895                         struct smi_info *e, *tmp_e;
1896
1897                         mutex_lock(&smi_infos_lock);
1898                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1899                                 if (e->io.addr_type != addr_space)
1900                                         continue;
1901                                 if (e->si_type != si_type)
1902                                         continue;
1903                                 if (e->io.addr_data == addr)
1904                                         cleanup_one_si(e);
1905                         }
1906                         mutex_unlock(&smi_infos_lock);
1907                 }
1908         }
1909         rv = len;
1910  out:
1911         kfree(str);
1912         return rv;
1913 }
1914
1915 static int hardcode_find_bmc(void)
1916 {
1917         int ret = -ENODEV;
1918         int             i;
1919         struct smi_info *info;
1920
1921         for (i = 0; i < SI_MAX_PARMS; i++) {
1922                 if (!ports[i] && !addrs[i])
1923                         continue;
1924
1925                 info = smi_info_alloc();
1926                 if (!info)
1927                         return -ENOMEM;
1928
1929                 info->addr_source = SI_HARDCODED;
1930                 printk(KERN_INFO PFX "probing via hardcoded address\n");
1931
1932                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1933                         info->si_type = SI_KCS;
1934                 } else if (strcmp(si_type[i], "smic") == 0) {
1935                         info->si_type = SI_SMIC;
1936                 } else if (strcmp(si_type[i], "bt") == 0) {
1937                         info->si_type = SI_BT;
1938                 } else {
1939                         printk(KERN_WARNING PFX "Interface type specified "
1940                                "for interface %d, was invalid: %s\n",
1941                                i, si_type[i]);
1942                         kfree(info);
1943                         continue;
1944                 }
1945
1946                 if (ports[i]) {
1947                         /* An I/O port */
1948                         info->io_setup = port_setup;
1949                         info->io.addr_data = ports[i];
1950                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1951                 } else if (addrs[i]) {
1952                         /* A memory port */
1953                         info->io_setup = mem_setup;
1954                         info->io.addr_data = addrs[i];
1955                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1956                 } else {
1957                         printk(KERN_WARNING PFX "Interface type specified "
1958                                "for interface %d, but port and address were "
1959                                "not set or set to zero.\n", i);
1960                         kfree(info);
1961                         continue;
1962                 }
1963
1964                 info->io.addr = NULL;
1965                 info->io.regspacing = regspacings[i];
1966                 if (!info->io.regspacing)
1967                         info->io.regspacing = DEFAULT_REGSPACING;
1968                 info->io.regsize = regsizes[i];
1969                 if (!info->io.regsize)
1970                         info->io.regsize = DEFAULT_REGSPACING;
1971                 info->io.regshift = regshifts[i];
1972                 info->irq = irqs[i];
1973                 if (info->irq)
1974                         info->irq_setup = std_irq_setup;
1975                 info->slave_addr = slave_addrs[i];
1976
1977                 if (!add_smi(info)) {
1978                         if (try_smi_init(info))
1979                                 cleanup_one_si(info);
1980                         ret = 0;
1981                 } else {
1982                         kfree(info);
1983                 }
1984         }
1985         return ret;
1986 }
1987
1988 #ifdef CONFIG_ACPI
1989
1990 #include <linux/acpi.h>
1991
1992 /*
1993  * Once we get an ACPI failure, we don't try any more, because we go
1994  * through the tables sequentially.  Once we don't find a table, there
1995  * are no more.
1996  */
1997 static int acpi_failure;
1998
1999 /* For GPE-type interrupts. */
2000 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2001         u32 gpe_number, void *context)
2002 {
2003         struct smi_info *smi_info = context;
2004         unsigned long   flags;
2005 #ifdef DEBUG_TIMING
2006         struct timeval t;
2007 #endif
2008
2009         spin_lock_irqsave(&(smi_info->si_lock), flags);
2010
2011         smi_inc_stat(smi_info, interrupts);
2012
2013 #ifdef DEBUG_TIMING
2014         do_gettimeofday(&t);
2015         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
2016 #endif
2017         smi_event_handler(smi_info, 0);
2018         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2019
2020         return ACPI_INTERRUPT_HANDLED;
2021 }
2022
2023 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2024 {
2025         if (!info->irq)
2026                 return;
2027
2028         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2029 }
2030
2031 static int acpi_gpe_irq_setup(struct smi_info *info)
2032 {
2033         acpi_status status;
2034
2035         if (!info->irq)
2036                 return 0;
2037
2038         /* FIXME - is level triggered right? */
2039         status = acpi_install_gpe_handler(NULL,
2040                                           info->irq,
2041                                           ACPI_GPE_LEVEL_TRIGGERED,
2042                                           &ipmi_acpi_gpe,
2043                                           info);
2044         if (status != AE_OK) {
2045                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2046                          " running polled\n", DEVICE_NAME, info->irq);
2047                 info->irq = 0;
2048                 return -EINVAL;
2049         } else {
2050                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2051                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2052                 return 0;
2053         }
2054 }
2055
2056 /*
2057  * Defined at
2058  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2059  */
2060 struct SPMITable {
2061         s8      Signature[4];
2062         u32     Length;
2063         u8      Revision;
2064         u8      Checksum;
2065         s8      OEMID[6];
2066         s8      OEMTableID[8];
2067         s8      OEMRevision[4];
2068         s8      CreatorID[4];
2069         s8      CreatorRevision[4];
2070         u8      InterfaceType;
2071         u8      IPMIlegacy;
2072         s16     SpecificationRevision;
2073
2074         /*
2075          * Bit 0 - SCI interrupt supported
2076          * Bit 1 - I/O APIC/SAPIC
2077          */
2078         u8      InterruptType;
2079
2080         /*
2081          * If bit 0 of InterruptType is set, then this is the SCI
2082          * interrupt in the GPEx_STS register.
2083          */
2084         u8      GPE;
2085
2086         s16     Reserved;
2087
2088         /*
2089          * If bit 1 of InterruptType is set, then this is the I/O
2090          * APIC/SAPIC interrupt.
2091          */
2092         u32     GlobalSystemInterrupt;
2093
2094         /* The actual register address. */
2095         struct acpi_generic_address addr;
2096
2097         u8      UID[4];
2098
2099         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2100 };
2101
2102 static int try_init_spmi(struct SPMITable *spmi)
2103 {
2104         struct smi_info  *info;
2105         int rv;
2106
2107         if (spmi->IPMIlegacy != 1) {
2108                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2109                 return -ENODEV;
2110         }
2111
2112         info = smi_info_alloc();
2113         if (!info) {
2114                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2115                 return -ENOMEM;
2116         }
2117
2118         info->addr_source = SI_SPMI;
2119         printk(KERN_INFO PFX "probing via SPMI\n");
2120
2121         /* Figure out the interface type. */
2122         switch (spmi->InterfaceType) {
2123         case 1: /* KCS */
2124                 info->si_type = SI_KCS;
2125                 break;
2126         case 2: /* SMIC */
2127                 info->si_type = SI_SMIC;
2128                 break;
2129         case 3: /* BT */
2130                 info->si_type = SI_BT;
2131                 break;
2132         case 4: /* SSIF, just ignore */
2133                 kfree(info);
2134                 return -EIO;
2135         default:
2136                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2137                        spmi->InterfaceType);
2138                 kfree(info);
2139                 return -EIO;
2140         }
2141
2142         if (spmi->InterruptType & 1) {
2143                 /* We've got a GPE interrupt. */
2144                 info->irq = spmi->GPE;
2145                 info->irq_setup = acpi_gpe_irq_setup;
2146         } else if (spmi->InterruptType & 2) {
2147                 /* We've got an APIC/SAPIC interrupt. */
2148                 info->irq = spmi->GlobalSystemInterrupt;
2149                 info->irq_setup = std_irq_setup;
2150         } else {
2151                 /* Use the default interrupt setting. */
2152                 info->irq = 0;
2153                 info->irq_setup = NULL;
2154         }
2155
2156         if (spmi->addr.bit_width) {
2157                 /* A (hopefully) properly formed register bit width. */
2158                 info->io.regspacing = spmi->addr.bit_width / 8;
2159         } else {
2160                 info->io.regspacing = DEFAULT_REGSPACING;
2161         }
2162         info->io.regsize = info->io.regspacing;
2163         info->io.regshift = spmi->addr.bit_offset;
2164
2165         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2166                 info->io_setup = mem_setup;
2167                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2168         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2169                 info->io_setup = port_setup;
2170                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2171         } else {
2172                 kfree(info);
2173                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2174                 return -EIO;
2175         }
2176         info->io.addr_data = spmi->addr.address;
2177
2178         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2179                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2180                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2181                  info->irq);
2182
2183         rv = add_smi(info);
2184         if (rv)
2185                 kfree(info);
2186
2187         return rv;
2188 }
2189
2190 static void spmi_find_bmc(void)
2191 {
2192         acpi_status      status;
2193         struct SPMITable *spmi;
2194         int              i;
2195
2196         if (acpi_disabled)
2197                 return;
2198
2199         if (acpi_failure)
2200                 return;
2201
2202         for (i = 0; ; i++) {
2203                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2204                                         (struct acpi_table_header **)&spmi);
2205                 if (status != AE_OK)
2206                         return;
2207
2208                 try_init_spmi(spmi);
2209         }
2210 }
2211
2212 static int ipmi_pnp_probe(struct pnp_dev *dev,
2213                                     const struct pnp_device_id *dev_id)
2214 {
2215         struct acpi_device *acpi_dev;
2216         struct smi_info *info;
2217         struct resource *res, *res_second;
2218         acpi_handle handle;
2219         acpi_status status;
2220         unsigned long long tmp;
2221         int rv;
2222
2223         acpi_dev = pnp_acpi_device(dev);
2224         if (!acpi_dev)
2225                 return -ENODEV;
2226
2227         info = smi_info_alloc();
2228         if (!info)
2229                 return -ENOMEM;
2230
2231         info->addr_source = SI_ACPI;
2232         printk(KERN_INFO PFX "probing via ACPI\n");
2233
2234         handle = acpi_dev->handle;
2235         info->addr_info.acpi_info.acpi_handle = handle;
2236
2237         /* _IFT tells us the interface type: KCS, BT, etc */
2238         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2239         if (ACPI_FAILURE(status))
2240                 goto err_free;
2241
2242         switch (tmp) {
2243         case 1:
2244                 info->si_type = SI_KCS;
2245                 break;
2246         case 2:
2247                 info->si_type = SI_SMIC;
2248                 break;
2249         case 3:
2250                 info->si_type = SI_BT;
2251                 break;
2252         case 4: /* SSIF, just ignore */
2253                 goto err_free;
2254         default:
2255                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2256                 goto err_free;
2257         }
2258
2259         res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2260         if (res) {
2261                 info->io_setup = port_setup;
2262                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2263         } else {
2264                 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2265                 if (res) {
2266                         info->io_setup = mem_setup;
2267                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2268                 }
2269         }
2270         if (!res) {
2271                 dev_err(&dev->dev, "no I/O or memory address\n");
2272                 goto err_free;
2273         }
2274         info->io.addr_data = res->start;
2275
2276         info->io.regspacing = DEFAULT_REGSPACING;
2277         res_second = pnp_get_resource(dev,
2278                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2279                                         IORESOURCE_IO : IORESOURCE_MEM,
2280                                1);
2281         if (res_second) {
2282                 if (res_second->start > info->io.addr_data)
2283                         info->io.regspacing = res_second->start - info->io.addr_data;
2284         }
2285         info->io.regsize = DEFAULT_REGSPACING;
2286         info->io.regshift = 0;
2287
2288         /* If _GPE exists, use it; otherwise use standard interrupts */
2289         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2290         if (ACPI_SUCCESS(status)) {
2291                 info->irq = tmp;
2292                 info->irq_setup = acpi_gpe_irq_setup;
2293         } else if (pnp_irq_valid(dev, 0)) {
2294                 info->irq = pnp_irq(dev, 0);
2295                 info->irq_setup = std_irq_setup;
2296         }
2297
2298         info->dev = &dev->dev;
2299         pnp_set_drvdata(dev, info);
2300
2301         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2302                  res, info->io.regsize, info->io.regspacing,
2303                  info->irq);
2304
2305         rv = add_smi(info);
2306         if (rv)
2307                 kfree(info);
2308
2309         return rv;
2310
2311 err_free:
2312         kfree(info);
2313         return -EINVAL;
2314 }
2315
2316 static void ipmi_pnp_remove(struct pnp_dev *dev)
2317 {
2318         struct smi_info *info = pnp_get_drvdata(dev);
2319
2320         cleanup_one_si(info);
2321 }
2322
2323 static const struct pnp_device_id pnp_dev_table[] = {
2324         {"IPI0001", 0},
2325         {"", 0},
2326 };
2327
2328 static struct pnp_driver ipmi_pnp_driver = {
2329         .name           = DEVICE_NAME,
2330         .probe          = ipmi_pnp_probe,
2331         .remove         = ipmi_pnp_remove,
2332         .id_table       = pnp_dev_table,
2333 };
2334
2335 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2336 #endif
2337
2338 #ifdef CONFIG_DMI
2339 struct dmi_ipmi_data {
2340         u8              type;
2341         u8              addr_space;
2342         unsigned long   base_addr;
2343         u8              irq;
2344         u8              offset;
2345         u8              slave_addr;
2346 };
2347
2348 static int decode_dmi(const struct dmi_header *dm,
2349                                 struct dmi_ipmi_data *dmi)
2350 {
2351         const u8        *data = (const u8 *)dm;
2352         unsigned long   base_addr;
2353         u8              reg_spacing;
2354         u8              len = dm->length;
2355
2356         dmi->type = data[4];
2357
2358         memcpy(&base_addr, data+8, sizeof(unsigned long));
2359         if (len >= 0x11) {
2360                 if (base_addr & 1) {
2361                         /* I/O */
2362                         base_addr &= 0xFFFE;
2363                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2364                 } else
2365                         /* Memory */
2366                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2367
2368                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2369                    is odd. */
2370                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2371
2372                 dmi->irq = data[0x11];
2373
2374                 /* The top two bits of byte 0x10 hold the register spacing. */
2375                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2376                 switch (reg_spacing) {
2377                 case 0x00: /* Byte boundaries */
2378                     dmi->offset = 1;
2379                     break;
2380                 case 0x01: /* 32-bit boundaries */
2381                     dmi->offset = 4;
2382                     break;
2383                 case 0x02: /* 16-byte boundaries */
2384                     dmi->offset = 16;
2385                     break;
2386                 default:
2387                     /* Some other interface, just ignore it. */
2388                     return -EIO;
2389                 }
2390         } else {
2391                 /* Old DMI spec. */
2392                 /*
2393                  * Note that technically, the lower bit of the base
2394                  * address should be 1 if the address is I/O and 0 if
2395                  * the address is in memory.  So many systems get that
2396                  * wrong (and all that I have seen are I/O) so we just
2397                  * ignore that bit and assume I/O.  Systems that use
2398                  * memory should use the newer spec, anyway.
2399                  */
2400                 dmi->base_addr = base_addr & 0xfffe;
2401                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2402                 dmi->offset = 1;
2403         }
2404
2405         dmi->slave_addr = data[6];
2406
2407         return 0;
2408 }
2409
2410 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2411 {
2412         struct smi_info *info;
2413
2414         info = smi_info_alloc();
2415         if (!info) {
2416                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2417                 return;
2418         }
2419
2420         info->addr_source = SI_SMBIOS;
2421         printk(KERN_INFO PFX "probing via SMBIOS\n");
2422
2423         switch (ipmi_data->type) {
2424         case 0x01: /* KCS */
2425                 info->si_type = SI_KCS;
2426                 break;
2427         case 0x02: /* SMIC */
2428                 info->si_type = SI_SMIC;
2429                 break;
2430         case 0x03: /* BT */
2431                 info->si_type = SI_BT;
2432                 break;
2433         default:
2434                 kfree(info);
2435                 return;
2436         }
2437
2438         switch (ipmi_data->addr_space) {
2439         case IPMI_MEM_ADDR_SPACE:
2440                 info->io_setup = mem_setup;
2441                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2442                 break;
2443
2444         case IPMI_IO_ADDR_SPACE:
2445                 info->io_setup = port_setup;
2446                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2447                 break;
2448
2449         default:
2450                 kfree(info);
2451                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2452                        ipmi_data->addr_space);
2453                 return;
2454         }
2455         info->io.addr_data = ipmi_data->base_addr;
2456
2457         info->io.regspacing = ipmi_data->offset;
2458         if (!info->io.regspacing)
2459                 info->io.regspacing = DEFAULT_REGSPACING;
2460         info->io.regsize = DEFAULT_REGSPACING;
2461         info->io.regshift = 0;
2462
2463         info->slave_addr = ipmi_data->slave_addr;
2464
2465         info->irq = ipmi_data->irq;
2466         if (info->irq)
2467                 info->irq_setup = std_irq_setup;
2468
2469         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2470                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2471                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2472                  info->irq);
2473
2474         if (add_smi(info))
2475                 kfree(info);
2476 }
2477
2478 static void dmi_find_bmc(void)
2479 {
2480         const struct dmi_device *dev = NULL;
2481         struct dmi_ipmi_data data;
2482         int                  rv;
2483
2484         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2485                 memset(&data, 0, sizeof(data));
2486                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2487                                 &data);
2488                 if (!rv)
2489                         try_init_dmi(&data);
2490         }
2491 }
2492 #endif /* CONFIG_DMI */
2493
2494 #ifdef CONFIG_PCI
2495
2496 #define PCI_ERMC_CLASSCODE              0x0C0700
2497 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2498 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2499 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2500 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2501 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2502
2503 #define PCI_HP_VENDOR_ID    0x103C
2504 #define PCI_MMC_DEVICE_ID   0x121A
2505 #define PCI_MMC_ADDR_CW     0x10
2506
2507 static void ipmi_pci_cleanup(struct smi_info *info)
2508 {
2509         struct pci_dev *pdev = info->addr_source_data;
2510
2511         pci_disable_device(pdev);
2512 }
2513
2514 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2515 {
2516         if (info->si_type == SI_KCS) {
2517                 unsigned char   status;
2518                 int             regspacing;
2519
2520                 info->io.regsize = DEFAULT_REGSIZE;
2521                 info->io.regshift = 0;
2522                 info->io_size = 2;
2523                 info->handlers = &kcs_smi_handlers;
2524
2525                 /* detect 1, 4, 16byte spacing */
2526                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2527                         info->io.regspacing = regspacing;
2528                         if (info->io_setup(info)) {
2529                                 dev_err(info->dev,
2530                                         "Could not setup I/O space\n");
2531                                 return DEFAULT_REGSPACING;
2532                         }
2533                         /* write invalid cmd */
2534                         info->io.outputb(&info->io, 1, 0x10);
2535                         /* read status back */
2536                         status = info->io.inputb(&info->io, 1);
2537                         info->io_cleanup(info);
2538                         if (status)
2539                                 return regspacing;
2540                         regspacing *= 4;
2541                 }
2542         }
2543         return DEFAULT_REGSPACING;
2544 }
2545
2546 static int ipmi_pci_probe(struct pci_dev *pdev,
2547                                     const struct pci_device_id *ent)
2548 {
2549         int rv;
2550         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2551         struct smi_info *info;
2552
2553         info = smi_info_alloc();
2554         if (!info)
2555                 return -ENOMEM;
2556
2557         info->addr_source = SI_PCI;
2558         dev_info(&pdev->dev, "probing via PCI");
2559
2560         switch (class_type) {
2561         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2562                 info->si_type = SI_SMIC;
2563                 break;
2564
2565         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2566                 info->si_type = SI_KCS;
2567                 break;
2568
2569         case PCI_ERMC_CLASSCODE_TYPE_BT:
2570                 info->si_type = SI_BT;
2571                 break;
2572
2573         default:
2574                 kfree(info);
2575                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2576                 return -ENOMEM;
2577         }
2578
2579         rv = pci_enable_device(pdev);
2580         if (rv) {
2581                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2582                 kfree(info);
2583                 return rv;
2584         }
2585
2586         info->addr_source_cleanup = ipmi_pci_cleanup;
2587         info->addr_source_data = pdev;
2588
2589         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2590                 info->io_setup = port_setup;
2591                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2592         } else {
2593                 info->io_setup = mem_setup;
2594                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2595         }
2596         info->io.addr_data = pci_resource_start(pdev, 0);
2597
2598         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2599         info->io.regsize = DEFAULT_REGSIZE;
2600         info->io.regshift = 0;
2601
2602         info->irq = pdev->irq;
2603         if (info->irq)
2604                 info->irq_setup = std_irq_setup;
2605
2606         info->dev = &pdev->dev;
2607         pci_set_drvdata(pdev, info);
2608
2609         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2610                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2611                 info->irq);
2612
2613         rv = add_smi(info);
2614         if (rv) {
2615                 kfree(info);
2616                 pci_disable_device(pdev);
2617         }
2618
2619         return rv;
2620 }
2621
2622 static void ipmi_pci_remove(struct pci_dev *pdev)
2623 {
2624         struct smi_info *info = pci_get_drvdata(pdev);
2625         cleanup_one_si(info);
2626         pci_disable_device(pdev);
2627 }
2628
2629 static struct pci_device_id ipmi_pci_devices[] = {
2630         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2631         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2632         { 0, }
2633 };
2634 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2635
2636 static struct pci_driver ipmi_pci_driver = {
2637         .name =         DEVICE_NAME,
2638         .id_table =     ipmi_pci_devices,
2639         .probe =        ipmi_pci_probe,
2640         .remove =       ipmi_pci_remove,
2641 };
2642 #endif /* CONFIG_PCI */
2643
2644 static struct of_device_id ipmi_match[];
2645 static int ipmi_probe(struct platform_device *dev)
2646 {
2647 #ifdef CONFIG_OF
2648         const struct of_device_id *match;
2649         struct smi_info *info;
2650         struct resource resource;
2651         const __be32 *regsize, *regspacing, *regshift;
2652         struct device_node *np = dev->dev.of_node;
2653         int ret;
2654         int proplen;
2655
2656         dev_info(&dev->dev, "probing via device tree\n");
2657
2658         match = of_match_device(ipmi_match, &dev->dev);
2659         if (!match)
2660                 return -EINVAL;
2661
2662         if (!of_device_is_available(np))
2663                 return -EINVAL;
2664
2665         ret = of_address_to_resource(np, 0, &resource);
2666         if (ret) {
2667                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2668                 return ret;
2669         }
2670
2671         regsize = of_get_property(np, "reg-size", &proplen);
2672         if (regsize && proplen != 4) {
2673                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2674                 return -EINVAL;
2675         }
2676
2677         regspacing = of_get_property(np, "reg-spacing", &proplen);
2678         if (regspacing && proplen != 4) {
2679                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2680                 return -EINVAL;
2681         }
2682
2683         regshift = of_get_property(np, "reg-shift", &proplen);
2684         if (regshift && proplen != 4) {
2685                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2686                 return -EINVAL;
2687         }
2688
2689         info = smi_info_alloc();
2690
2691         if (!info) {
2692                 dev_err(&dev->dev,
2693                         "could not allocate memory for OF probe\n");
2694                 return -ENOMEM;
2695         }
2696
2697         info->si_type           = (enum si_type) match->data;
2698         info->addr_source       = SI_DEVICETREE;
2699         info->irq_setup         = std_irq_setup;
2700
2701         if (resource.flags & IORESOURCE_IO) {
2702                 info->io_setup          = port_setup;
2703                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2704         } else {
2705                 info->io_setup          = mem_setup;
2706                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2707         }
2708
2709         info->io.addr_data      = resource.start;
2710
2711         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2712         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2713         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2714
2715         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2716         info->dev               = &dev->dev;
2717
2718         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2719                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2720                 info->irq);
2721
2722         dev_set_drvdata(&dev->dev, info);
2723
2724         ret = add_smi(info);
2725         if (ret) {
2726                 kfree(info);
2727                 return ret;
2728         }
2729 #endif
2730         return 0;
2731 }
2732
2733 static int ipmi_remove(struct platform_device *dev)
2734 {
2735 #ifdef CONFIG_OF
2736         cleanup_one_si(dev_get_drvdata(&dev->dev));
2737 #endif
2738         return 0;
2739 }
2740
2741 static struct of_device_id ipmi_match[] =
2742 {
2743         { .type = "ipmi", .compatible = "ipmi-kcs",
2744           .data = (void *)(unsigned long) SI_KCS },
2745         { .type = "ipmi", .compatible = "ipmi-smic",
2746           .data = (void *)(unsigned long) SI_SMIC },
2747         { .type = "ipmi", .compatible = "ipmi-bt",
2748           .data = (void *)(unsigned long) SI_BT },
2749         {},
2750 };
2751
2752 static struct platform_driver ipmi_driver = {
2753         .driver = {
2754                 .name = DEVICE_NAME,
2755                 .owner = THIS_MODULE,
2756                 .of_match_table = ipmi_match,
2757         },
2758         .probe          = ipmi_probe,
2759         .remove         = ipmi_remove,
2760 };
2761
2762 #ifdef CONFIG_PARISC
2763 static int ipmi_parisc_probe(struct parisc_device *dev)
2764 {
2765         struct smi_info *info;
2766         int rv;
2767
2768         info = smi_info_alloc();
2769
2770         if (!info) {
2771                 dev_err(&dev->dev,
2772                         "could not allocate memory for PARISC probe\n");
2773                 return -ENOMEM;
2774         }
2775
2776         info->si_type           = SI_KCS;
2777         info->addr_source       = SI_DEVICETREE;
2778         info->io_setup          = mem_setup;
2779         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2780         info->io.addr_data      = dev->hpa.start;
2781         info->io.regsize        = 1;
2782         info->io.regspacing     = 1;
2783         info->io.regshift       = 0;
2784         info->irq               = 0; /* no interrupt */
2785         info->irq_setup         = NULL;
2786         info->dev               = &dev->dev;
2787
2788         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2789
2790         dev_set_drvdata(&dev->dev, info);
2791
2792         rv = add_smi(info);
2793         if (rv) {
2794                 kfree(info);
2795                 return rv;
2796         }
2797
2798         return 0;
2799 }
2800
2801 static int ipmi_parisc_remove(struct parisc_device *dev)
2802 {
2803         cleanup_one_si(dev_get_drvdata(&dev->dev));
2804         return 0;
2805 }
2806
2807 static struct parisc_device_id ipmi_parisc_tbl[] = {
2808         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2809         { 0, }
2810 };
2811
2812 static struct parisc_driver ipmi_parisc_driver = {
2813         .name =         "ipmi",
2814         .id_table =     ipmi_parisc_tbl,
2815         .probe =        ipmi_parisc_probe,
2816         .remove =       ipmi_parisc_remove,
2817 };
2818 #endif /* CONFIG_PARISC */
2819
2820 static int wait_for_msg_done(struct smi_info *smi_info)
2821 {
2822         enum si_sm_result     smi_result;
2823
2824         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2825         for (;;) {
2826                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2827                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2828                         schedule_timeout_uninterruptible(1);
2829                         smi_result = smi_info->handlers->event(
2830                                 smi_info->si_sm, jiffies_to_usecs(1));
2831                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2832                         smi_result = smi_info->handlers->event(
2833                                 smi_info->si_sm, 0);
2834                 } else
2835                         break;
2836         }
2837         if (smi_result == SI_SM_HOSED)
2838                 /*
2839                  * We couldn't get the state machine to run, so whatever's at
2840                  * the port is probably not an IPMI SMI interface.
2841                  */
2842                 return -ENODEV;
2843
2844         return 0;
2845 }
2846
2847 static int try_get_dev_id(struct smi_info *smi_info)
2848 {
2849         unsigned char         msg[2];
2850         unsigned char         *resp;
2851         unsigned long         resp_len;
2852         int                   rv = 0;
2853
2854         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2855         if (!resp)
2856                 return -ENOMEM;
2857
2858         /*
2859          * Do a Get Device ID command, since it comes back with some
2860          * useful info.
2861          */
2862         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2863         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2864         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2865
2866         rv = wait_for_msg_done(smi_info);
2867         if (rv)
2868                 goto out;
2869
2870         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2871                                                   resp, IPMI_MAX_MSG_LENGTH);
2872
2873         /* Check and record info from the get device id, in case we need it. */
2874         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2875
2876  out:
2877         kfree(resp);
2878         return rv;
2879 }
2880
2881 static int try_enable_event_buffer(struct smi_info *smi_info)
2882 {
2883         unsigned char         msg[3];
2884         unsigned char         *resp;
2885         unsigned long         resp_len;
2886         int                   rv = 0;
2887
2888         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2889         if (!resp)
2890                 return -ENOMEM;
2891
2892         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2893         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2894         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2895
2896         rv = wait_for_msg_done(smi_info);
2897         if (rv) {
2898                 printk(KERN_WARNING PFX "Error getting response from get"
2899                        " global enables command, the event buffer is not"
2900                        " enabled.\n");
2901                 goto out;
2902         }
2903
2904         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2905                                                   resp, IPMI_MAX_MSG_LENGTH);
2906
2907         if (resp_len < 4 ||
2908                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2909                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2910                         resp[2] != 0) {
2911                 printk(KERN_WARNING PFX "Invalid return from get global"
2912                        " enables command, cannot enable the event buffer.\n");
2913                 rv = -EINVAL;
2914                 goto out;
2915         }
2916
2917         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2918                 /* buffer is already enabled, nothing to do. */
2919                 goto out;
2920
2921         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2922         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2923         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2924         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2925
2926         rv = wait_for_msg_done(smi_info);
2927         if (rv) {
2928                 printk(KERN_WARNING PFX "Error getting response from set"
2929                        " global, enables command, the event buffer is not"
2930                        " enabled.\n");
2931                 goto out;
2932         }
2933
2934         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2935                                                   resp, IPMI_MAX_MSG_LENGTH);
2936
2937         if (resp_len < 3 ||
2938                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2939                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2940                 printk(KERN_WARNING PFX "Invalid return from get global,"
2941                        "enables command, not enable the event buffer.\n");
2942                 rv = -EINVAL;
2943                 goto out;
2944         }
2945
2946         if (resp[2] != 0)
2947                 /*
2948                  * An error when setting the event buffer bit means
2949                  * that the event buffer is not supported.
2950                  */
2951                 rv = -ENOENT;
2952  out:
2953         kfree(resp);
2954         return rv;
2955 }
2956
2957 static int smi_type_proc_show(struct seq_file *m, void *v)
2958 {
2959         struct smi_info *smi = m->private;
2960
2961         return seq_printf(m, "%s\n", si_to_str[smi->si_type]);
2962 }
2963
2964 static int smi_type_proc_open(struct inode *inode, struct file *file)
2965 {
2966         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
2967 }
2968
2969 static const struct file_operations smi_type_proc_ops = {
2970         .open           = smi_type_proc_open,
2971         .read           = seq_read,
2972         .llseek         = seq_lseek,
2973         .release        = single_release,
2974 };
2975
2976 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
2977 {
2978         struct smi_info *smi = m->private;
2979
2980         seq_printf(m, "interrupts_enabled:    %d\n",
2981                        smi->irq && !smi->interrupt_disabled);
2982         seq_printf(m, "short_timeouts:        %u\n",
2983                        smi_get_stat(smi, short_timeouts));
2984         seq_printf(m, "long_timeouts:         %u\n",
2985                        smi_get_stat(smi, long_timeouts));
2986         seq_printf(m, "idles:                 %u\n",
2987                        smi_get_stat(smi, idles));
2988         seq_printf(m, "interrupts:            %u\n",
2989                        smi_get_stat(smi, interrupts));
2990         seq_printf(m, "attentions:            %u\n",
2991                        smi_get_stat(smi, attentions));
2992         seq_printf(m, "flag_fetches:          %u\n",
2993                        smi_get_stat(smi, flag_fetches));
2994         seq_printf(m, "hosed_count:           %u\n",
2995                        smi_get_stat(smi, hosed_count));
2996         seq_printf(m, "complete_transactions: %u\n",
2997                        smi_get_stat(smi, complete_transactions));
2998         seq_printf(m, "events:                %u\n",
2999                        smi_get_stat(smi, events));
3000         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3001                        smi_get_stat(smi, watchdog_pretimeouts));
3002         seq_printf(m, "incoming_messages:     %u\n",
3003                        smi_get_stat(smi, incoming_messages));
3004         return 0;
3005 }
3006
3007 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3008 {
3009         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3010 }
3011
3012 static const struct file_operations smi_si_stats_proc_ops = {
3013         .open           = smi_si_stats_proc_open,
3014         .read           = seq_read,
3015         .llseek         = seq_lseek,
3016         .release        = single_release,
3017 };
3018
3019 static int smi_params_proc_show(struct seq_file *m, void *v)
3020 {
3021         struct smi_info *smi = m->private;
3022
3023         return seq_printf(m,
3024                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3025                        si_to_str[smi->si_type],
3026                        addr_space_to_str[smi->io.addr_type],
3027                        smi->io.addr_data,
3028                        smi->io.regspacing,
3029                        smi->io.regsize,
3030                        smi->io.regshift,
3031                        smi->irq,
3032                        smi->slave_addr);
3033 }
3034
3035 static int smi_params_proc_open(struct inode *inode, struct file *file)
3036 {
3037         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3038 }
3039
3040 static const struct file_operations smi_params_proc_ops = {
3041         .open           = smi_params_proc_open,
3042         .read           = seq_read,
3043         .llseek         = seq_lseek,
3044         .release        = single_release,
3045 };
3046
3047 /*
3048  * oem_data_avail_to_receive_msg_avail
3049  * @info - smi_info structure with msg_flags set
3050  *
3051  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3052  * Returns 1 indicating need to re-run handle_flags().
3053  */
3054 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3055 {
3056         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3057                                RECEIVE_MSG_AVAIL);
3058         return 1;
3059 }
3060
3061 /*
3062  * setup_dell_poweredge_oem_data_handler
3063  * @info - smi_info.device_id must be populated
3064  *
3065  * Systems that match, but have firmware version < 1.40 may assert
3066  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3067  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3068  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3069  * as RECEIVE_MSG_AVAIL instead.
3070  *
3071  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3072  * assert the OEM[012] bits, and if it did, the driver would have to
3073  * change to handle that properly, we don't actually check for the
3074  * firmware version.
3075  * Device ID = 0x20                BMC on PowerEdge 8G servers
3076  * Device Revision = 0x80
3077  * Firmware Revision1 = 0x01       BMC version 1.40
3078  * Firmware Revision2 = 0x40       BCD encoded
3079  * IPMI Version = 0x51             IPMI 1.5
3080  * Manufacturer ID = A2 02 00      Dell IANA
3081  *
3082  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3083  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3084  *
3085  */
3086 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3087 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3088 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3089 #define DELL_IANA_MFR_ID 0x0002a2
3090 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3091 {
3092         struct ipmi_device_id *id = &smi_info->device_id;
3093         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3094                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3095                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3096                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3097                         smi_info->oem_data_avail_handler =
3098                                 oem_data_avail_to_receive_msg_avail;
3099                 } else if (ipmi_version_major(id) < 1 ||
3100                            (ipmi_version_major(id) == 1 &&
3101                             ipmi_version_minor(id) < 5)) {
3102                         smi_info->oem_data_avail_handler =
3103                                 oem_data_avail_to_receive_msg_avail;
3104                 }
3105         }
3106 }
3107
3108 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3109 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3110 {
3111         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3112
3113         /* Make it a response */
3114         msg->rsp[0] = msg->data[0] | 4;
3115         msg->rsp[1] = msg->data[1];
3116         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3117         msg->rsp_size = 3;
3118         smi_info->curr_msg = NULL;
3119         deliver_recv_msg(smi_info, msg);
3120 }
3121
3122 /*
3123  * dell_poweredge_bt_xaction_handler
3124  * @info - smi_info.device_id must be populated
3125  *
3126  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3127  * not respond to a Get SDR command if the length of the data
3128  * requested is exactly 0x3A, which leads to command timeouts and no
3129  * data returned.  This intercepts such commands, and causes userspace
3130  * callers to try again with a different-sized buffer, which succeeds.
3131  */
3132
3133 #define STORAGE_NETFN 0x0A
3134 #define STORAGE_CMD_GET_SDR 0x23
3135 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3136                                              unsigned long unused,
3137                                              void *in)
3138 {
3139         struct smi_info *smi_info = in;
3140         unsigned char *data = smi_info->curr_msg->data;
3141         unsigned int size   = smi_info->curr_msg->data_size;
3142         if (size >= 8 &&
3143             (data[0]>>2) == STORAGE_NETFN &&
3144             data[1] == STORAGE_CMD_GET_SDR &&
3145             data[7] == 0x3A) {
3146                 return_hosed_msg_badsize(smi_info);
3147                 return NOTIFY_STOP;
3148         }
3149         return NOTIFY_DONE;
3150 }
3151
3152 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3153         .notifier_call  = dell_poweredge_bt_xaction_handler,
3154 };
3155
3156 /*
3157  * setup_dell_poweredge_bt_xaction_handler
3158  * @info - smi_info.device_id must be filled in already
3159  *
3160  * Fills in smi_info.device_id.start_transaction_pre_hook
3161  * when we know what function to use there.
3162  */
3163 static void
3164 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3165 {
3166         struct ipmi_device_id *id = &smi_info->device_id;
3167         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3168             smi_info->si_type == SI_BT)
3169                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3170 }
3171
3172 /*
3173  * setup_oem_data_handler
3174  * @info - smi_info.device_id must be filled in already
3175  *
3176  * Fills in smi_info.device_id.oem_data_available_handler
3177  * when we know what function to use there.
3178  */
3179
3180 static void setup_oem_data_handler(struct smi_info *smi_info)
3181 {
3182         setup_dell_poweredge_oem_data_handler(smi_info);
3183 }
3184
3185 static void setup_xaction_handlers(struct smi_info *smi_info)
3186 {
3187         setup_dell_poweredge_bt_xaction_handler(smi_info);
3188 }
3189
3190 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3191 {
3192         if (smi_info->intf) {
3193                 /*
3194                  * The timer and thread are only running if the
3195                  * interface has been started up and registered.
3196                  */
3197                 if (smi_info->thread != NULL)
3198                         kthread_stop(smi_info->thread);
3199                 del_timer_sync(&smi_info->si_timer);
3200         }
3201 }
3202
3203 static struct ipmi_default_vals
3204 {
3205         int type;
3206         int port;
3207 } ipmi_defaults[] =
3208 {
3209         { .type = SI_KCS, .port = 0xca2 },
3210         { .type = SI_SMIC, .port = 0xca9 },
3211         { .type = SI_BT, .port = 0xe4 },
3212         { .port = 0 }
3213 };
3214
3215 static void default_find_bmc(void)
3216 {
3217         struct smi_info *info;
3218         int             i;
3219
3220         for (i = 0; ; i++) {
3221                 if (!ipmi_defaults[i].port)
3222                         break;
3223 #ifdef CONFIG_PPC
3224                 if (check_legacy_ioport(ipmi_defaults[i].port))
3225                         continue;
3226 #endif
3227                 info = smi_info_alloc();
3228                 if (!info)
3229                         return;
3230
3231                 info->addr_source = SI_DEFAULT;
3232
3233                 info->si_type = ipmi_defaults[i].type;
3234                 info->io_setup = port_setup;
3235                 info->io.addr_data = ipmi_defaults[i].port;
3236                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3237
3238                 info->io.addr = NULL;
3239                 info->io.regspacing = DEFAULT_REGSPACING;
3240                 info->io.regsize = DEFAULT_REGSPACING;
3241                 info->io.regshift = 0;
3242
3243                 if (add_smi(info) == 0) {
3244                         if ((try_smi_init(info)) == 0) {
3245                                 /* Found one... */
3246                                 printk(KERN_INFO PFX "Found default %s"
3247                                 " state machine at %s address 0x%lx\n",
3248                                 si_to_str[info->si_type],
3249                                 addr_space_to_str[info->io.addr_type],
3250                                 info->io.addr_data);
3251                         } else
3252                                 cleanup_one_si(info);
3253                 } else {
3254                         kfree(info);
3255                 }
3256         }
3257 }
3258
3259 static int is_new_interface(struct smi_info *info)
3260 {
3261         struct smi_info *e;
3262
3263         list_for_each_entry(e, &smi_infos, link) {
3264                 if (e->io.addr_type != info->io.addr_type)
3265                         continue;
3266                 if (e->io.addr_data == info->io.addr_data)
3267                         return 0;
3268         }
3269
3270         return 1;
3271 }
3272
3273 static int add_smi(struct smi_info *new_smi)
3274 {
3275         int rv = 0;
3276
3277         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3278                ipmi_addr_src_to_str(new_smi->addr_source),
3279                si_to_str[new_smi->si_type]);
3280         mutex_lock(&smi_infos_lock);
3281         if (!is_new_interface(new_smi)) {
3282                 printk(KERN_CONT " duplicate interface\n");
3283                 rv = -EBUSY;
3284                 goto out_err;
3285         }
3286
3287         printk(KERN_CONT "\n");
3288
3289         /* So we know not to free it unless we have allocated one. */
3290         new_smi->intf = NULL;
3291         new_smi->si_sm = NULL;
3292         new_smi->handlers = NULL;
3293
3294         list_add_tail(&new_smi->link, &smi_infos);
3295
3296 out_err:
3297         mutex_unlock(&smi_infos_lock);
3298         return rv;
3299 }
3300
3301 static int try_smi_init(struct smi_info *new_smi)
3302 {
3303         int rv = 0;
3304         int i;
3305
3306         printk(KERN_INFO PFX "Trying %s-specified %s state"
3307                " machine at %s address 0x%lx, slave address 0x%x,"
3308                " irq %d\n",
3309                ipmi_addr_src_to_str(new_smi->addr_source),
3310                si_to_str[new_smi->si_type],
3311                addr_space_to_str[new_smi->io.addr_type],
3312                new_smi->io.addr_data,
3313                new_smi->slave_addr, new_smi->irq);
3314
3315         switch (new_smi->si_type) {
3316         case SI_KCS:
3317                 new_smi->handlers = &kcs_smi_handlers;
3318                 break;
3319
3320         case SI_SMIC:
3321                 new_smi->handlers = &smic_smi_handlers;
3322                 break;
3323
3324         case SI_BT:
3325                 new_smi->handlers = &bt_smi_handlers;
3326                 break;
3327
3328         default:
3329                 /* No support for anything else yet. */
3330                 rv = -EIO;
3331                 goto out_err;
3332         }
3333
3334         /* Allocate the state machine's data and initialize it. */
3335         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3336         if (!new_smi->si_sm) {
3337                 printk(KERN_ERR PFX
3338                        "Could not allocate state machine memory\n");
3339                 rv = -ENOMEM;
3340                 goto out_err;
3341         }
3342         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3343                                                         &new_smi->io);
3344
3345         /* Now that we know the I/O size, we can set up the I/O. */
3346         rv = new_smi->io_setup(new_smi);
3347         if (rv) {
3348                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3349                 goto out_err;
3350         }
3351
3352         /* Do low-level detection first. */
3353         if (new_smi->handlers->detect(new_smi->si_sm)) {
3354                 if (new_smi->addr_source)
3355                         printk(KERN_INFO PFX "Interface detection failed\n");
3356                 rv = -ENODEV;
3357                 goto out_err;
3358         }
3359
3360         /*
3361          * Attempt a get device id command.  If it fails, we probably
3362          * don't have a BMC here.
3363          */
3364         rv = try_get_dev_id(new_smi);
3365         if (rv) {
3366                 if (new_smi->addr_source)
3367                         printk(KERN_INFO PFX "There appears to be no BMC"
3368                                " at this location\n");
3369                 goto out_err;
3370         }
3371
3372         setup_oem_data_handler(new_smi);
3373         setup_xaction_handlers(new_smi);
3374
3375         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3376         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3377         new_smi->curr_msg = NULL;
3378         atomic_set(&new_smi->req_events, 0);
3379         new_smi->run_to_completion = false;
3380         for (i = 0; i < SI_NUM_STATS; i++)
3381                 atomic_set(&new_smi->stats[i], 0);
3382
3383         new_smi->interrupt_disabled = true;
3384         atomic_set(&new_smi->stop_operation, 0);
3385         atomic_set(&new_smi->need_watch, 0);
3386         new_smi->intf_num = smi_num;
3387         smi_num++;
3388
3389         rv = try_enable_event_buffer(new_smi);
3390         if (rv == 0)
3391                 new_smi->has_event_buffer = true;
3392
3393         /*
3394          * Start clearing the flags before we enable interrupts or the
3395          * timer to avoid racing with the timer.
3396          */
3397         start_clear_flags(new_smi);
3398         /* IRQ is defined to be set when non-zero. */
3399         if (new_smi->irq)
3400                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3401
3402         if (!new_smi->dev) {
3403                 /*
3404                  * If we don't already have a device from something
3405                  * else (like PCI), then register a new one.
3406                  */
3407                 new_smi->pdev = platform_device_alloc("ipmi_si",
3408                                                       new_smi->intf_num);
3409                 if (!new_smi->pdev) {
3410                         printk(KERN_ERR PFX
3411                                "Unable to allocate platform device\n");
3412                         goto out_err;
3413                 }
3414                 new_smi->dev = &new_smi->pdev->dev;
3415                 new_smi->dev->driver = &ipmi_driver.driver;
3416
3417                 rv = platform_device_add(new_smi->pdev);
3418                 if (rv) {
3419                         printk(KERN_ERR PFX
3420                                "Unable to register system interface device:"
3421                                " %d\n",
3422                                rv);
3423                         goto out_err;
3424                 }
3425                 new_smi->dev_registered = true;
3426         }
3427
3428         rv = ipmi_register_smi(&handlers,
3429                                new_smi,
3430                                &new_smi->device_id,
3431                                new_smi->dev,
3432                                new_smi->slave_addr);
3433         if (rv) {
3434                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3435                         rv);
3436                 goto out_err_stop_timer;
3437         }
3438
3439         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3440                                      &smi_type_proc_ops,
3441                                      new_smi);
3442         if (rv) {
3443                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3444                 goto out_err_stop_timer;
3445         }
3446
3447         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3448                                      &smi_si_stats_proc_ops,
3449                                      new_smi);
3450         if (rv) {
3451                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3452                 goto out_err_stop_timer;
3453         }
3454
3455         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3456                                      &smi_params_proc_ops,
3457                                      new_smi);
3458         if (rv) {
3459                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3460                 goto out_err_stop_timer;
3461         }
3462
3463         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3464                  si_to_str[new_smi->si_type]);
3465
3466         return 0;
3467
3468  out_err_stop_timer:
3469         atomic_inc(&new_smi->stop_operation);
3470         wait_for_timer_and_thread(new_smi);
3471
3472  out_err:
3473         new_smi->interrupt_disabled = true;
3474
3475         if (new_smi->intf) {
3476                 ipmi_unregister_smi(new_smi->intf);
3477                 new_smi->intf = NULL;
3478         }
3479
3480         if (new_smi->irq_cleanup) {
3481                 new_smi->irq_cleanup(new_smi);
3482                 new_smi->irq_cleanup = NULL;
3483         }
3484
3485         /*
3486          * Wait until we know that we are out of any interrupt
3487          * handlers might have been running before we freed the
3488          * interrupt.
3489          */
3490         synchronize_sched();
3491
3492         if (new_smi->si_sm) {
3493                 if (new_smi->handlers)
3494                         new_smi->handlers->cleanup(new_smi->si_sm);
3495                 kfree(new_smi->si_sm);
3496                 new_smi->si_sm = NULL;
3497         }
3498         if (new_smi->addr_source_cleanup) {
3499                 new_smi->addr_source_cleanup(new_smi);
3500                 new_smi->addr_source_cleanup = NULL;
3501         }
3502         if (new_smi->io_cleanup) {
3503                 new_smi->io_cleanup(new_smi);
3504                 new_smi->io_cleanup = NULL;
3505         }
3506
3507         if (new_smi->dev_registered) {
3508                 platform_device_unregister(new_smi->pdev);
3509                 new_smi->dev_registered = false;
3510         }
3511
3512         return rv;
3513 }
3514
3515 static int init_ipmi_si(void)
3516 {
3517         int  i;
3518         char *str;
3519         int  rv;
3520         struct smi_info *e;
3521         enum ipmi_addr_src type = SI_INVALID;
3522
3523         if (initialized)
3524                 return 0;
3525         initialized = 1;
3526
3527         if (si_tryplatform) {
3528                 rv = platform_driver_register(&ipmi_driver);
3529                 if (rv) {
3530                         printk(KERN_ERR PFX "Unable to register "
3531                                "driver: %d\n", rv);
3532                         return rv;
3533                 }
3534         }
3535
3536         /* Parse out the si_type string into its components. */
3537         str = si_type_str;
3538         if (*str != '\0') {
3539                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3540                         si_type[i] = str;
3541                         str = strchr(str, ',');
3542                         if (str) {
3543                                 *str = '\0';
3544                                 str++;
3545                         } else {
3546                                 break;
3547                         }
3548                 }
3549         }
3550
3551         printk(KERN_INFO "IPMI System Interface driver.\n");
3552
3553         /* If the user gave us a device, they presumably want us to use it */
3554         if (!hardcode_find_bmc())
3555                 return 0;
3556
3557 #ifdef CONFIG_PCI
3558         if (si_trypci) {
3559                 rv = pci_register_driver(&ipmi_pci_driver);
3560                 if (rv)
3561                         printk(KERN_ERR PFX "Unable to register "
3562                                "PCI driver: %d\n", rv);
3563                 else
3564                         pci_registered = true;
3565         }
3566 #endif
3567
3568 #ifdef CONFIG_ACPI
3569         if (si_tryacpi) {
3570                 pnp_register_driver(&ipmi_pnp_driver);
3571                 pnp_registered = true;
3572         }
3573 #endif
3574
3575 #ifdef CONFIG_DMI
3576         if (si_trydmi)
3577                 dmi_find_bmc();
3578 #endif
3579
3580 #ifdef CONFIG_ACPI
3581         if (si_tryacpi)
3582                 spmi_find_bmc();
3583 #endif
3584
3585 #ifdef CONFIG_PARISC
3586         register_parisc_driver(&ipmi_parisc_driver);
3587         parisc_registered = true;
3588         /* poking PC IO addresses will crash machine, don't do it */
3589         si_trydefaults = 0;
3590 #endif
3591
3592         /* We prefer devices with interrupts, but in the case of a machine
3593            with multiple BMCs we assume that there will be several instances
3594            of a given type so if we succeed in registering a type then also
3595            try to register everything else of the same type */
3596
3597         mutex_lock(&smi_infos_lock);
3598         list_for_each_entry(e, &smi_infos, link) {
3599                 /* Try to register a device if it has an IRQ and we either
3600                    haven't successfully registered a device yet or this
3601                    device has the same type as one we successfully registered */
3602                 if (e->irq && (!type || e->addr_source == type)) {
3603                         if (!try_smi_init(e)) {
3604                                 type = e->addr_source;
3605                         }
3606                 }
3607         }
3608
3609         /* type will only have been set if we successfully registered an si */
3610         if (type) {
3611                 mutex_unlock(&smi_infos_lock);
3612                 return 0;
3613         }
3614
3615         /* Fall back to the preferred device */
3616
3617         list_for_each_entry(e, &smi_infos, link) {
3618                 if (!e->irq && (!type || e->addr_source == type)) {
3619                         if (!try_smi_init(e)) {
3620                                 type = e->addr_source;
3621                         }
3622                 }
3623         }
3624         mutex_unlock(&smi_infos_lock);
3625
3626         if (type)
3627                 return 0;
3628
3629         if (si_trydefaults) {
3630                 mutex_lock(&smi_infos_lock);
3631                 if (list_empty(&smi_infos)) {
3632                         /* No BMC was found, try defaults. */
3633                         mutex_unlock(&smi_infos_lock);
3634                         default_find_bmc();
3635                 } else
3636                         mutex_unlock(&smi_infos_lock);
3637         }
3638
3639         mutex_lock(&smi_infos_lock);
3640         if (unload_when_empty && list_empty(&smi_infos)) {
3641                 mutex_unlock(&smi_infos_lock);
3642                 cleanup_ipmi_si();
3643                 printk(KERN_WARNING PFX
3644                        "Unable to find any System Interface(s)\n");
3645                 return -ENODEV;
3646         } else {
3647                 mutex_unlock(&smi_infos_lock);
3648                 return 0;
3649         }
3650 }
3651 module_init(init_ipmi_si);
3652
3653 static void cleanup_one_si(struct smi_info *to_clean)
3654 {
3655         int           rv = 0;
3656         unsigned long flags;
3657
3658         if (!to_clean)
3659                 return;
3660
3661         if (to_clean->dev)
3662                 dev_set_drvdata(to_clean->dev, NULL);
3663
3664         list_del(&to_clean->link);
3665
3666         /* Tell the driver that we are shutting down. */
3667         atomic_inc(&to_clean->stop_operation);
3668
3669         /*
3670          * Make sure the timer and thread are stopped and will not run
3671          * again.
3672          */
3673         wait_for_timer_and_thread(to_clean);
3674
3675         /*
3676          * Timeouts are stopped, now make sure the interrupts are off
3677          * for the device.  A little tricky with locks to make sure
3678          * there are no races.
3679          */
3680         spin_lock_irqsave(&to_clean->si_lock, flags);
3681         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3682                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3683                 poll(to_clean);
3684                 schedule_timeout_uninterruptible(1);
3685                 spin_lock_irqsave(&to_clean->si_lock, flags);
3686         }
3687         disable_si_irq(to_clean);
3688         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3689         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3690                 poll(to_clean);
3691                 schedule_timeout_uninterruptible(1);
3692         }
3693
3694         /* Clean up interrupts and make sure that everything is done. */
3695         if (to_clean->irq_cleanup)
3696                 to_clean->irq_cleanup(to_clean);
3697         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3698                 poll(to_clean);
3699                 schedule_timeout_uninterruptible(1);
3700         }
3701
3702         if (to_clean->intf)
3703                 rv = ipmi_unregister_smi(to_clean->intf);
3704
3705         if (rv) {
3706                 printk(KERN_ERR PFX "Unable to unregister device: errno=%d\n",
3707                        rv);
3708         }
3709
3710         if (to_clean->handlers)
3711                 to_clean->handlers->cleanup(to_clean->si_sm);
3712
3713         kfree(to_clean->si_sm);
3714
3715         if (to_clean->addr_source_cleanup)
3716                 to_clean->addr_source_cleanup(to_clean);
3717         if (to_clean->io_cleanup)
3718                 to_clean->io_cleanup(to_clean);
3719
3720         if (to_clean->dev_registered)
3721                 platform_device_unregister(to_clean->pdev);
3722
3723         kfree(to_clean);
3724 }
3725
3726 static void cleanup_ipmi_si(void)
3727 {
3728         struct smi_info *e, *tmp_e;
3729
3730         if (!initialized)
3731                 return;
3732
3733 #ifdef CONFIG_PCI
3734         if (pci_registered)
3735                 pci_unregister_driver(&ipmi_pci_driver);
3736 #endif
3737 #ifdef CONFIG_ACPI
3738         if (pnp_registered)
3739                 pnp_unregister_driver(&ipmi_pnp_driver);
3740 #endif
3741 #ifdef CONFIG_PARISC
3742         if (parisc_registered)
3743                 unregister_parisc_driver(&ipmi_parisc_driver);
3744 #endif
3745
3746         platform_driver_unregister(&ipmi_driver);
3747
3748         mutex_lock(&smi_infos_lock);
3749         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3750                 cleanup_one_si(e);
3751         mutex_unlock(&smi_infos_lock);
3752 }
3753 module_exit(cleanup_ipmi_si);
3754
3755 MODULE_LICENSE("GPL");
3756 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3757 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3758                    " system interfaces.");