x86/PCI: VMD: Fix infinite loop executing irq's
[cascardo/linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_address.h>
22 #include <linux/io.h>
23 #include <linux/slab.h>
24 #include <linux/sched_clock.h>
25 #include <linux/acpi.h>
26
27 #include <asm/arch_timer.h>
28 #include <asm/virt.h>
29
30 #include <clocksource/arm_arch_timer.h>
31
32 #define CNTTIDR         0x08
33 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
34
35 #define CNTACR(n)       (0x40 + ((n) * 4))
36 #define CNTACR_RPCT     BIT(0)
37 #define CNTACR_RVCT     BIT(1)
38 #define CNTACR_RFRQ     BIT(2)
39 #define CNTACR_RVOFF    BIT(3)
40 #define CNTACR_RWVT     BIT(4)
41 #define CNTACR_RWPT     BIT(5)
42
43 #define CNTVCT_LO       0x08
44 #define CNTVCT_HI       0x0c
45 #define CNTFRQ          0x10
46 #define CNTP_TVAL       0x28
47 #define CNTP_CTL        0x2c
48 #define CNTV_TVAL       0x38
49 #define CNTV_CTL        0x3c
50
51 #define ARCH_CP15_TIMER BIT(0)
52 #define ARCH_MEM_TIMER  BIT(1)
53 static unsigned arch_timers_present __initdata;
54
55 static void __iomem *arch_counter_base;
56
57 struct arch_timer {
58         void __iomem *base;
59         struct clock_event_device evt;
60 };
61
62 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63
64 static u32 arch_timer_rate;
65
66 enum ppi_nr {
67         PHYS_SECURE_PPI,
68         PHYS_NONSECURE_PPI,
69         VIRT_PPI,
70         HYP_PPI,
71         MAX_TIMER_PPI
72 };
73
74 static int arch_timer_ppi[MAX_TIMER_PPI];
75
76 static struct clock_event_device __percpu *arch_timer_evt;
77
78 static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79 static bool arch_timer_c3stop;
80 static bool arch_timer_mem_use_virtual;
81
82 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
83
84 static int __init early_evtstrm_cfg(char *buf)
85 {
86         return strtobool(buf, &evtstrm_enable);
87 }
88 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
89
90 /*
91  * Architected system timer support.
92  */
93
94 static __always_inline
95 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
96                           struct clock_event_device *clk)
97 {
98         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
99                 struct arch_timer *timer = to_arch_timer(clk);
100                 switch (reg) {
101                 case ARCH_TIMER_REG_CTRL:
102                         writel_relaxed(val, timer->base + CNTP_CTL);
103                         break;
104                 case ARCH_TIMER_REG_TVAL:
105                         writel_relaxed(val, timer->base + CNTP_TVAL);
106                         break;
107                 }
108         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
109                 struct arch_timer *timer = to_arch_timer(clk);
110                 switch (reg) {
111                 case ARCH_TIMER_REG_CTRL:
112                         writel_relaxed(val, timer->base + CNTV_CTL);
113                         break;
114                 case ARCH_TIMER_REG_TVAL:
115                         writel_relaxed(val, timer->base + CNTV_TVAL);
116                         break;
117                 }
118         } else {
119                 arch_timer_reg_write_cp15(access, reg, val);
120         }
121 }
122
123 static __always_inline
124 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
125                         struct clock_event_device *clk)
126 {
127         u32 val;
128
129         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
130                 struct arch_timer *timer = to_arch_timer(clk);
131                 switch (reg) {
132                 case ARCH_TIMER_REG_CTRL:
133                         val = readl_relaxed(timer->base + CNTP_CTL);
134                         break;
135                 case ARCH_TIMER_REG_TVAL:
136                         val = readl_relaxed(timer->base + CNTP_TVAL);
137                         break;
138                 }
139         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
140                 struct arch_timer *timer = to_arch_timer(clk);
141                 switch (reg) {
142                 case ARCH_TIMER_REG_CTRL:
143                         val = readl_relaxed(timer->base + CNTV_CTL);
144                         break;
145                 case ARCH_TIMER_REG_TVAL:
146                         val = readl_relaxed(timer->base + CNTV_TVAL);
147                         break;
148                 }
149         } else {
150                 val = arch_timer_reg_read_cp15(access, reg);
151         }
152
153         return val;
154 }
155
156 static __always_inline irqreturn_t timer_handler(const int access,
157                                         struct clock_event_device *evt)
158 {
159         unsigned long ctrl;
160
161         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
162         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
163                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
164                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
165                 evt->event_handler(evt);
166                 return IRQ_HANDLED;
167         }
168
169         return IRQ_NONE;
170 }
171
172 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
173 {
174         struct clock_event_device *evt = dev_id;
175
176         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
177 }
178
179 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
180 {
181         struct clock_event_device *evt = dev_id;
182
183         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
184 }
185
186 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
187 {
188         struct clock_event_device *evt = dev_id;
189
190         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
191 }
192
193 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
194 {
195         struct clock_event_device *evt = dev_id;
196
197         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
198 }
199
200 static __always_inline int timer_shutdown(const int access,
201                                           struct clock_event_device *clk)
202 {
203         unsigned long ctrl;
204
205         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
206         ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
207         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
208
209         return 0;
210 }
211
212 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
213 {
214         return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
215 }
216
217 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
218 {
219         return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
220 }
221
222 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
223 {
224         return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
225 }
226
227 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
228 {
229         return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
230 }
231
232 static __always_inline void set_next_event(const int access, unsigned long evt,
233                                            struct clock_event_device *clk)
234 {
235         unsigned long ctrl;
236         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
237         ctrl |= ARCH_TIMER_CTRL_ENABLE;
238         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
239         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
240         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
241 }
242
243 static int arch_timer_set_next_event_virt(unsigned long evt,
244                                           struct clock_event_device *clk)
245 {
246         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
247         return 0;
248 }
249
250 static int arch_timer_set_next_event_phys(unsigned long evt,
251                                           struct clock_event_device *clk)
252 {
253         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
254         return 0;
255 }
256
257 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
258                                               struct clock_event_device *clk)
259 {
260         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
261         return 0;
262 }
263
264 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
265                                               struct clock_event_device *clk)
266 {
267         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
268         return 0;
269 }
270
271 static void __arch_timer_setup(unsigned type,
272                                struct clock_event_device *clk)
273 {
274         clk->features = CLOCK_EVT_FEAT_ONESHOT;
275
276         if (type == ARCH_CP15_TIMER) {
277                 if (arch_timer_c3stop)
278                         clk->features |= CLOCK_EVT_FEAT_C3STOP;
279                 clk->name = "arch_sys_timer";
280                 clk->rating = 450;
281                 clk->cpumask = cpumask_of(smp_processor_id());
282                 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
283                 switch (arch_timer_uses_ppi) {
284                 case VIRT_PPI:
285                         clk->set_state_shutdown = arch_timer_shutdown_virt;
286                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
287                         clk->set_next_event = arch_timer_set_next_event_virt;
288                         break;
289                 case PHYS_SECURE_PPI:
290                 case PHYS_NONSECURE_PPI:
291                 case HYP_PPI:
292                         clk->set_state_shutdown = arch_timer_shutdown_phys;
293                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
294                         clk->set_next_event = arch_timer_set_next_event_phys;
295                         break;
296                 default:
297                         BUG();
298                 }
299         } else {
300                 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
301                 clk->name = "arch_mem_timer";
302                 clk->rating = 400;
303                 clk->cpumask = cpu_all_mask;
304                 if (arch_timer_mem_use_virtual) {
305                         clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
306                         clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
307                         clk->set_next_event =
308                                 arch_timer_set_next_event_virt_mem;
309                 } else {
310                         clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
311                         clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
312                         clk->set_next_event =
313                                 arch_timer_set_next_event_phys_mem;
314                 }
315         }
316
317         clk->set_state_shutdown(clk);
318
319         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
320 }
321
322 static void arch_timer_evtstrm_enable(int divider)
323 {
324         u32 cntkctl = arch_timer_get_cntkctl();
325
326         cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
327         /* Set the divider and enable virtual event stream */
328         cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
329                         | ARCH_TIMER_VIRT_EVT_EN;
330         arch_timer_set_cntkctl(cntkctl);
331         elf_hwcap |= HWCAP_EVTSTRM;
332 #ifdef CONFIG_COMPAT
333         compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
334 #endif
335 }
336
337 static void arch_timer_configure_evtstream(void)
338 {
339         int evt_stream_div, pos;
340
341         /* Find the closest power of two to the divisor */
342         evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
343         pos = fls(evt_stream_div);
344         if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
345                 pos--;
346         /* enable event stream */
347         arch_timer_evtstrm_enable(min(pos, 15));
348 }
349
350 static void arch_counter_set_user_access(void)
351 {
352         u32 cntkctl = arch_timer_get_cntkctl();
353
354         /* Disable user access to the timers and the physical counter */
355         /* Also disable virtual event stream */
356         cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
357                         | ARCH_TIMER_USR_VT_ACCESS_EN
358                         | ARCH_TIMER_VIRT_EVT_EN
359                         | ARCH_TIMER_USR_PCT_ACCESS_EN);
360
361         /* Enable user access to the virtual counter */
362         cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
363
364         arch_timer_set_cntkctl(cntkctl);
365 }
366
367 static bool arch_timer_has_nonsecure_ppi(void)
368 {
369         return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
370                 arch_timer_ppi[PHYS_NONSECURE_PPI]);
371 }
372
373 static int arch_timer_starting_cpu(unsigned int cpu)
374 {
375         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
376
377         __arch_timer_setup(ARCH_CP15_TIMER, clk);
378
379         enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);
380
381         if (arch_timer_has_nonsecure_ppi())
382                 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
383
384         arch_counter_set_user_access();
385         if (evtstrm_enable)
386                 arch_timer_configure_evtstream();
387
388         return 0;
389 }
390
391 static void
392 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
393 {
394         /* Who has more than one independent system counter? */
395         if (arch_timer_rate)
396                 return;
397
398         /*
399          * Try to determine the frequency from the device tree or CNTFRQ,
400          * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
401          */
402         if (!acpi_disabled ||
403             of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
404                 if (cntbase)
405                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
406                 else
407                         arch_timer_rate = arch_timer_get_cntfrq();
408         }
409
410         /* Check the timer frequency. */
411         if (arch_timer_rate == 0)
412                 pr_warn("Architected timer frequency not available\n");
413 }
414
415 static void arch_timer_banner(unsigned type)
416 {
417         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
418                      type & ARCH_CP15_TIMER ? "cp15" : "",
419                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
420                      type & ARCH_MEM_TIMER ? "mmio" : "",
421                      (unsigned long)arch_timer_rate / 1000000,
422                      (unsigned long)(arch_timer_rate / 10000) % 100,
423                      type & ARCH_CP15_TIMER ?
424                      (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
425                         "",
426                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
427                      type & ARCH_MEM_TIMER ?
428                         arch_timer_mem_use_virtual ? "virt" : "phys" :
429                         "");
430 }
431
432 u32 arch_timer_get_rate(void)
433 {
434         return arch_timer_rate;
435 }
436
437 static u64 arch_counter_get_cntvct_mem(void)
438 {
439         u32 vct_lo, vct_hi, tmp_hi;
440
441         do {
442                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
443                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
444                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
445         } while (vct_hi != tmp_hi);
446
447         return ((u64) vct_hi << 32) | vct_lo;
448 }
449
450 /*
451  * Default to cp15 based access because arm64 uses this function for
452  * sched_clock() before DT is probed and the cp15 method is guaranteed
453  * to exist on arm64. arm doesn't use this before DT is probed so even
454  * if we don't have the cp15 accessors we won't have a problem.
455  */
456 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
457
458 static cycle_t arch_counter_read(struct clocksource *cs)
459 {
460         return arch_timer_read_counter();
461 }
462
463 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
464 {
465         return arch_timer_read_counter();
466 }
467
468 static struct clocksource clocksource_counter = {
469         .name   = "arch_sys_counter",
470         .rating = 400,
471         .read   = arch_counter_read,
472         .mask   = CLOCKSOURCE_MASK(56),
473         .flags  = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
474 };
475
476 static struct cyclecounter cyclecounter = {
477         .read   = arch_counter_read_cc,
478         .mask   = CLOCKSOURCE_MASK(56),
479 };
480
481 static struct arch_timer_kvm_info arch_timer_kvm_info;
482
483 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
484 {
485         return &arch_timer_kvm_info;
486 }
487
488 static void __init arch_counter_register(unsigned type)
489 {
490         u64 start_count;
491
492         /* Register the CP15 based counter if we have one */
493         if (type & ARCH_CP15_TIMER) {
494                 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
495                         arch_timer_read_counter = arch_counter_get_cntvct;
496                 else
497                         arch_timer_read_counter = arch_counter_get_cntpct;
498         } else {
499                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
500
501                 /* If the clocksource name is "arch_sys_counter" the
502                  * VDSO will attempt to read the CP15-based counter.
503                  * Ensure this does not happen when CP15-based
504                  * counter is not available.
505                  */
506                 clocksource_counter.name = "arch_mem_counter";
507         }
508
509         start_count = arch_timer_read_counter();
510         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
511         cyclecounter.mult = clocksource_counter.mult;
512         cyclecounter.shift = clocksource_counter.shift;
513         timecounter_init(&arch_timer_kvm_info.timecounter,
514                          &cyclecounter, start_count);
515
516         /* 56 bits minimum, so we assume worst case rollover */
517         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
518 }
519
520 static void arch_timer_stop(struct clock_event_device *clk)
521 {
522         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
523                  clk->irq, smp_processor_id());
524
525         disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
526         if (arch_timer_has_nonsecure_ppi())
527                 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
528
529         clk->set_state_shutdown(clk);
530 }
531
532 static int arch_timer_dying_cpu(unsigned int cpu)
533 {
534         struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
535
536         arch_timer_stop(clk);
537         return 0;
538 }
539
540 #ifdef CONFIG_CPU_PM
541 static unsigned int saved_cntkctl;
542 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
543                                     unsigned long action, void *hcpu)
544 {
545         if (action == CPU_PM_ENTER)
546                 saved_cntkctl = arch_timer_get_cntkctl();
547         else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
548                 arch_timer_set_cntkctl(saved_cntkctl);
549         return NOTIFY_OK;
550 }
551
552 static struct notifier_block arch_timer_cpu_pm_notifier = {
553         .notifier_call = arch_timer_cpu_pm_notify,
554 };
555
556 static int __init arch_timer_cpu_pm_init(void)
557 {
558         return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
559 }
560
561 static void __init arch_timer_cpu_pm_deinit(void)
562 {
563         WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
564 }
565
566 #else
567 static int __init arch_timer_cpu_pm_init(void)
568 {
569         return 0;
570 }
571
572 static void __init arch_timer_cpu_pm_deinit(void)
573 {
574 }
575 #endif
576
577 static int __init arch_timer_register(void)
578 {
579         int err;
580         int ppi;
581
582         arch_timer_evt = alloc_percpu(struct clock_event_device);
583         if (!arch_timer_evt) {
584                 err = -ENOMEM;
585                 goto out;
586         }
587
588         ppi = arch_timer_ppi[arch_timer_uses_ppi];
589         switch (arch_timer_uses_ppi) {
590         case VIRT_PPI:
591                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
592                                          "arch_timer", arch_timer_evt);
593                 break;
594         case PHYS_SECURE_PPI:
595         case PHYS_NONSECURE_PPI:
596                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
597                                          "arch_timer", arch_timer_evt);
598                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
599                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
600                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
601                                                  "arch_timer", arch_timer_evt);
602                         if (err)
603                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
604                                                 arch_timer_evt);
605                 }
606                 break;
607         case HYP_PPI:
608                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
609                                          "arch_timer", arch_timer_evt);
610                 break;
611         default:
612                 BUG();
613         }
614
615         if (err) {
616                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
617                        ppi, err);
618                 goto out_free;
619         }
620
621         err = arch_timer_cpu_pm_init();
622         if (err)
623                 goto out_unreg_notify;
624
625
626         /* Register and immediately configure the timer on the boot CPU */
627         err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
628                                 "AP_ARM_ARCH_TIMER_STARTING",
629                                 arch_timer_starting_cpu, arch_timer_dying_cpu);
630         if (err)
631                 goto out_unreg_cpupm;
632         return 0;
633
634 out_unreg_cpupm:
635         arch_timer_cpu_pm_deinit();
636
637 out_unreg_notify:
638         free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
639         if (arch_timer_has_nonsecure_ppi())
640                 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
641                                 arch_timer_evt);
642
643 out_free:
644         free_percpu(arch_timer_evt);
645 out:
646         return err;
647 }
648
649 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
650 {
651         int ret;
652         irq_handler_t func;
653         struct arch_timer *t;
654
655         t = kzalloc(sizeof(*t), GFP_KERNEL);
656         if (!t)
657                 return -ENOMEM;
658
659         t->base = base;
660         t->evt.irq = irq;
661         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
662
663         if (arch_timer_mem_use_virtual)
664                 func = arch_timer_handler_virt_mem;
665         else
666                 func = arch_timer_handler_phys_mem;
667
668         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
669         if (ret) {
670                 pr_err("arch_timer: Failed to request mem timer irq\n");
671                 kfree(t);
672         }
673
674         return ret;
675 }
676
677 static const struct of_device_id arch_timer_of_match[] __initconst = {
678         { .compatible   = "arm,armv7-timer",    },
679         { .compatible   = "arm,armv8-timer",    },
680         {},
681 };
682
683 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
684         { .compatible   = "arm,armv7-timer-mem", },
685         {},
686 };
687
688 static bool __init
689 arch_timer_needs_probing(int type, const struct of_device_id *matches)
690 {
691         struct device_node *dn;
692         bool needs_probing = false;
693
694         dn = of_find_matching_node(NULL, matches);
695         if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
696                 needs_probing = true;
697         of_node_put(dn);
698
699         return needs_probing;
700 }
701
702 static int __init arch_timer_common_init(void)
703 {
704         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
705
706         /* Wait until both nodes are probed if we have two timers */
707         if ((arch_timers_present & mask) != mask) {
708                 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
709                         return 0;
710                 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
711                         return 0;
712         }
713
714         arch_timer_banner(arch_timers_present);
715         arch_counter_register(arch_timers_present);
716         return arch_timer_arch_init();
717 }
718
719 static int __init arch_timer_init(void)
720 {
721         int ret;
722         /*
723          * If HYP mode is available, we know that the physical timer
724          * has been configured to be accessible from PL1. Use it, so
725          * that a guest can use the virtual timer instead.
726          *
727          * If no interrupt provided for virtual timer, we'll have to
728          * stick to the physical timer. It'd better be accessible...
729          *
730          * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
731          * accesses to CNTP_*_EL1 registers are silently redirected to
732          * their CNTHP_*_EL2 counterparts, and use a different PPI
733          * number.
734          */
735         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
736                 bool has_ppi;
737
738                 if (is_kernel_in_hyp_mode()) {
739                         arch_timer_uses_ppi = HYP_PPI;
740                         has_ppi = !!arch_timer_ppi[HYP_PPI];
741                 } else {
742                         arch_timer_uses_ppi = PHYS_SECURE_PPI;
743                         has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
744                                    !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
745                 }
746
747                 if (!has_ppi) {
748                         pr_warn("arch_timer: No interrupt available, giving up\n");
749                         return -EINVAL;
750                 }
751         }
752
753         ret = arch_timer_register();
754         if (ret)
755                 return ret;
756
757         ret = arch_timer_common_init();
758         if (ret)
759                 return ret;
760
761         arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
762         
763         return 0;
764 }
765
766 static int __init arch_timer_of_init(struct device_node *np)
767 {
768         int i;
769
770         if (arch_timers_present & ARCH_CP15_TIMER) {
771                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
772                 return 0;
773         }
774
775         arch_timers_present |= ARCH_CP15_TIMER;
776         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
777                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
778
779         arch_timer_detect_rate(NULL, np);
780
781         arch_timer_c3stop = !of_property_read_bool(np, "always-on");
782
783         /*
784          * If we cannot rely on firmware initializing the timer registers then
785          * we should use the physical timers instead.
786          */
787         if (IS_ENABLED(CONFIG_ARM) &&
788             of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
789                 arch_timer_uses_ppi = PHYS_SECURE_PPI;
790
791         return arch_timer_init();
792 }
793 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
794 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
795
796 static int __init arch_timer_mem_init(struct device_node *np)
797 {
798         struct device_node *frame, *best_frame = NULL;
799         void __iomem *cntctlbase, *base;
800         unsigned int irq, ret = -EINVAL;
801         u32 cnttidr;
802
803         arch_timers_present |= ARCH_MEM_TIMER;
804         cntctlbase = of_iomap(np, 0);
805         if (!cntctlbase) {
806                 pr_err("arch_timer: Can't find CNTCTLBase\n");
807                 return -ENXIO;
808         }
809
810         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
811
812         /*
813          * Try to find a virtual capable frame. Otherwise fall back to a
814          * physical capable frame.
815          */
816         for_each_available_child_of_node(np, frame) {
817                 int n;
818                 u32 cntacr;
819
820                 if (of_property_read_u32(frame, "frame-number", &n)) {
821                         pr_err("arch_timer: Missing frame-number\n");
822                         of_node_put(frame);
823                         goto out;
824                 }
825
826                 /* Try enabling everything, and see what sticks */
827                 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
828                          CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
829                 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
830                 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
831
832                 if ((cnttidr & CNTTIDR_VIRT(n)) &&
833                     !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
834                         of_node_put(best_frame);
835                         best_frame = frame;
836                         arch_timer_mem_use_virtual = true;
837                         break;
838                 }
839
840                 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
841                         continue;
842
843                 of_node_put(best_frame);
844                 best_frame = of_node_get(frame);
845         }
846
847         ret= -ENXIO;
848         base = arch_counter_base = of_iomap(best_frame, 0);
849         if (!base) {
850                 pr_err("arch_timer: Can't map frame's registers\n");
851                 goto out;
852         }
853
854         if (arch_timer_mem_use_virtual)
855                 irq = irq_of_parse_and_map(best_frame, 1);
856         else
857                 irq = irq_of_parse_and_map(best_frame, 0);
858
859         ret = -EINVAL;
860         if (!irq) {
861                 pr_err("arch_timer: Frame missing %s irq",
862                        arch_timer_mem_use_virtual ? "virt" : "phys");
863                 goto out;
864         }
865
866         arch_timer_detect_rate(base, np);
867         ret = arch_timer_mem_register(base, irq);
868         if (ret)
869                 goto out;
870
871         return arch_timer_common_init();
872 out:
873         iounmap(cntctlbase);
874         of_node_put(best_frame);
875         return ret;
876 }
877 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
878                        arch_timer_mem_init);
879
880 #ifdef CONFIG_ACPI
881 static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
882 {
883         int trigger, polarity;
884
885         if (!interrupt)
886                 return 0;
887
888         trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
889                         : ACPI_LEVEL_SENSITIVE;
890
891         polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
892                         : ACPI_ACTIVE_HIGH;
893
894         return acpi_register_gsi(NULL, interrupt, trigger, polarity);
895 }
896
897 /* Initialize per-processor generic timer */
898 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
899 {
900         struct acpi_table_gtdt *gtdt;
901
902         if (arch_timers_present & ARCH_CP15_TIMER) {
903                 pr_warn("arch_timer: already initialized, skipping\n");
904                 return -EINVAL;
905         }
906
907         gtdt = container_of(table, struct acpi_table_gtdt, header);
908
909         arch_timers_present |= ARCH_CP15_TIMER;
910
911         arch_timer_ppi[PHYS_SECURE_PPI] =
912                 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
913                 gtdt->secure_el1_flags);
914
915         arch_timer_ppi[PHYS_NONSECURE_PPI] =
916                 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
917                 gtdt->non_secure_el1_flags);
918
919         arch_timer_ppi[VIRT_PPI] =
920                 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
921                 gtdt->virtual_timer_flags);
922
923         arch_timer_ppi[HYP_PPI] =
924                 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
925                 gtdt->non_secure_el2_flags);
926
927         /* Get the frequency from CNTFRQ */
928         arch_timer_detect_rate(NULL, NULL);
929
930         /* Always-on capability */
931         arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
932
933         arch_timer_init();
934         return 0;
935 }
936 CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
937 #endif