arch_timer: Move to generic sched_clock framework
[cascardo/linux.git] / drivers / clocksource / arm_arch_timer.c
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/clockchips.h>
17 #include <linux/interrupt.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_address.h>
20 #include <linux/io.h>
21 #include <linux/slab.h>
22 #include <linux/sched_clock.h>
23
24 #include <asm/arch_timer.h>
25 #include <asm/virt.h>
26
27 #include <clocksource/arm_arch_timer.h>
28
29 #define CNTTIDR         0x08
30 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
31
32 #define CNTVCT_LO       0x08
33 #define CNTVCT_HI       0x0c
34 #define CNTFRQ          0x10
35 #define CNTP_TVAL       0x28
36 #define CNTP_CTL        0x2c
37 #define CNTV_TVAL       0x38
38 #define CNTV_CTL        0x3c
39
40 #define ARCH_CP15_TIMER BIT(0)
41 #define ARCH_MEM_TIMER  BIT(1)
42 static unsigned arch_timers_present __initdata;
43
44 static void __iomem *arch_counter_base;
45
46 struct arch_timer {
47         void __iomem *base;
48         struct clock_event_device evt;
49 };
50
51 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
52
53 static u32 arch_timer_rate;
54
55 enum ppi_nr {
56         PHYS_SECURE_PPI,
57         PHYS_NONSECURE_PPI,
58         VIRT_PPI,
59         HYP_PPI,
60         MAX_TIMER_PPI
61 };
62
63 static int arch_timer_ppi[MAX_TIMER_PPI];
64
65 static struct clock_event_device __percpu *arch_timer_evt;
66
67 static bool arch_timer_use_virtual = true;
68 static bool arch_timer_mem_use_virtual;
69
70 /*
71  * Architected system timer support.
72  */
73
74 static __always_inline
75 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
76                           struct clock_event_device *clk)
77 {
78         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
79                 struct arch_timer *timer = to_arch_timer(clk);
80                 switch (reg) {
81                 case ARCH_TIMER_REG_CTRL:
82                         writel_relaxed(val, timer->base + CNTP_CTL);
83                         break;
84                 case ARCH_TIMER_REG_TVAL:
85                         writel_relaxed(val, timer->base + CNTP_TVAL);
86                         break;
87                 }
88         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
89                 struct arch_timer *timer = to_arch_timer(clk);
90                 switch (reg) {
91                 case ARCH_TIMER_REG_CTRL:
92                         writel_relaxed(val, timer->base + CNTV_CTL);
93                         break;
94                 case ARCH_TIMER_REG_TVAL:
95                         writel_relaxed(val, timer->base + CNTV_TVAL);
96                         break;
97                 }
98         } else {
99                 arch_timer_reg_write_cp15(access, reg, val);
100         }
101 }
102
103 static __always_inline
104 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
105                         struct clock_event_device *clk)
106 {
107         u32 val;
108
109         if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
110                 struct arch_timer *timer = to_arch_timer(clk);
111                 switch (reg) {
112                 case ARCH_TIMER_REG_CTRL:
113                         val = readl_relaxed(timer->base + CNTP_CTL);
114                         break;
115                 case ARCH_TIMER_REG_TVAL:
116                         val = readl_relaxed(timer->base + CNTP_TVAL);
117                         break;
118                 }
119         } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
120                 struct arch_timer *timer = to_arch_timer(clk);
121                 switch (reg) {
122                 case ARCH_TIMER_REG_CTRL:
123                         val = readl_relaxed(timer->base + CNTV_CTL);
124                         break;
125                 case ARCH_TIMER_REG_TVAL:
126                         val = readl_relaxed(timer->base + CNTV_TVAL);
127                         break;
128                 }
129         } else {
130                 val = arch_timer_reg_read_cp15(access, reg);
131         }
132
133         return val;
134 }
135
136 static __always_inline irqreturn_t timer_handler(const int access,
137                                         struct clock_event_device *evt)
138 {
139         unsigned long ctrl;
140
141         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
142         if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
143                 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
144                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
145                 evt->event_handler(evt);
146                 return IRQ_HANDLED;
147         }
148
149         return IRQ_NONE;
150 }
151
152 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
153 {
154         struct clock_event_device *evt = dev_id;
155
156         return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
157 }
158
159 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
160 {
161         struct clock_event_device *evt = dev_id;
162
163         return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
164 }
165
166 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
167 {
168         struct clock_event_device *evt = dev_id;
169
170         return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
171 }
172
173 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
174 {
175         struct clock_event_device *evt = dev_id;
176
177         return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
178 }
179
180 static __always_inline void timer_set_mode(const int access, int mode,
181                                   struct clock_event_device *clk)
182 {
183         unsigned long ctrl;
184         switch (mode) {
185         case CLOCK_EVT_MODE_UNUSED:
186         case CLOCK_EVT_MODE_SHUTDOWN:
187                 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
188                 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
189                 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
190                 break;
191         default:
192                 break;
193         }
194 }
195
196 static void arch_timer_set_mode_virt(enum clock_event_mode mode,
197                                      struct clock_event_device *clk)
198 {
199         timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
200 }
201
202 static void arch_timer_set_mode_phys(enum clock_event_mode mode,
203                                      struct clock_event_device *clk)
204 {
205         timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
206 }
207
208 static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
209                                          struct clock_event_device *clk)
210 {
211         timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
212 }
213
214 static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
215                                          struct clock_event_device *clk)
216 {
217         timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
218 }
219
220 static __always_inline void set_next_event(const int access, unsigned long evt,
221                                            struct clock_event_device *clk)
222 {
223         unsigned long ctrl;
224         ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
225         ctrl |= ARCH_TIMER_CTRL_ENABLE;
226         ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
227         arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
228         arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
229 }
230
231 static int arch_timer_set_next_event_virt(unsigned long evt,
232                                           struct clock_event_device *clk)
233 {
234         set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
235         return 0;
236 }
237
238 static int arch_timer_set_next_event_phys(unsigned long evt,
239                                           struct clock_event_device *clk)
240 {
241         set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
242         return 0;
243 }
244
245 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
246                                               struct clock_event_device *clk)
247 {
248         set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
249         return 0;
250 }
251
252 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
253                                               struct clock_event_device *clk)
254 {
255         set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
256         return 0;
257 }
258
259 static void __arch_timer_setup(unsigned type,
260                                struct clock_event_device *clk)
261 {
262         clk->features = CLOCK_EVT_FEAT_ONESHOT;
263
264         if (type == ARCH_CP15_TIMER) {
265                 clk->features |= CLOCK_EVT_FEAT_C3STOP;
266                 clk->name = "arch_sys_timer";
267                 clk->rating = 450;
268                 clk->cpumask = cpumask_of(smp_processor_id());
269                 if (arch_timer_use_virtual) {
270                         clk->irq = arch_timer_ppi[VIRT_PPI];
271                         clk->set_mode = arch_timer_set_mode_virt;
272                         clk->set_next_event = arch_timer_set_next_event_virt;
273                 } else {
274                         clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
275                         clk->set_mode = arch_timer_set_mode_phys;
276                         clk->set_next_event = arch_timer_set_next_event_phys;
277                 }
278         } else {
279                 clk->name = "arch_mem_timer";
280                 clk->rating = 400;
281                 clk->cpumask = cpu_all_mask;
282                 if (arch_timer_mem_use_virtual) {
283                         clk->set_mode = arch_timer_set_mode_virt_mem;
284                         clk->set_next_event =
285                                 arch_timer_set_next_event_virt_mem;
286                 } else {
287                         clk->set_mode = arch_timer_set_mode_phys_mem;
288                         clk->set_next_event =
289                                 arch_timer_set_next_event_phys_mem;
290                 }
291         }
292
293         clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
294
295         clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
296 }
297
298 static int arch_timer_setup(struct clock_event_device *clk)
299 {
300         __arch_timer_setup(ARCH_CP15_TIMER, clk);
301
302         if (arch_timer_use_virtual)
303                 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
304         else {
305                 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
306                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
307                         enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
308         }
309
310         arch_counter_set_user_access();
311
312         return 0;
313 }
314
315 static void
316 arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
317 {
318         /* Who has more than one independent system counter? */
319         if (arch_timer_rate)
320                 return;
321
322         /* Try to determine the frequency from the device tree or CNTFRQ */
323         if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
324                 if (cntbase)
325                         arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
326                 else
327                         arch_timer_rate = arch_timer_get_cntfrq();
328         }
329
330         /* Check the timer frequency. */
331         if (arch_timer_rate == 0)
332                 pr_warn("Architected timer frequency not available\n");
333 }
334
335 static void arch_timer_banner(unsigned type)
336 {
337         pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
338                      type & ARCH_CP15_TIMER ? "cp15" : "",
339                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  " and " : "",
340                      type & ARCH_MEM_TIMER ? "mmio" : "",
341                      (unsigned long)arch_timer_rate / 1000000,
342                      (unsigned long)(arch_timer_rate / 10000) % 100,
343                      type & ARCH_CP15_TIMER ?
344                         arch_timer_use_virtual ? "virt" : "phys" :
345                         "",
346                      type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ?  "/" : "",
347                      type & ARCH_MEM_TIMER ?
348                         arch_timer_mem_use_virtual ? "virt" : "phys" :
349                         "");
350 }
351
352 u32 arch_timer_get_rate(void)
353 {
354         return arch_timer_rate;
355 }
356
357 static u64 arch_counter_get_cntvct_mem(void)
358 {
359         u32 vct_lo, vct_hi, tmp_hi;
360
361         do {
362                 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
363                 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
364                 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
365         } while (vct_hi != tmp_hi);
366
367         return ((u64) vct_hi << 32) | vct_lo;
368 }
369
370 /*
371  * Default to cp15 based access because arm64 uses this function for
372  * sched_clock() before DT is probed and the cp15 method is guaranteed
373  * to exist on arm64. arm doesn't use this before DT is probed so even
374  * if we don't have the cp15 accessors we won't have a problem.
375  */
376 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
377
378 static cycle_t arch_counter_read(struct clocksource *cs)
379 {
380         return arch_timer_read_counter();
381 }
382
383 static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
384 {
385         return arch_timer_read_counter();
386 }
387
388 static struct clocksource clocksource_counter = {
389         .name   = "arch_sys_counter",
390         .rating = 400,
391         .read   = arch_counter_read,
392         .mask   = CLOCKSOURCE_MASK(56),
393         .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
394 };
395
396 static struct cyclecounter cyclecounter = {
397         .read   = arch_counter_read_cc,
398         .mask   = CLOCKSOURCE_MASK(56),
399 };
400
401 static struct timecounter timecounter;
402
403 struct timecounter *arch_timer_get_timecounter(void)
404 {
405         return &timecounter;
406 }
407
408 static void __init arch_counter_register(unsigned type)
409 {
410         u64 start_count;
411
412         /* Register the CP15 based counter if we have one */
413         if (type & ARCH_CP15_TIMER)
414                 arch_timer_read_counter = arch_counter_get_cntvct;
415         else
416                 arch_timer_read_counter = arch_counter_get_cntvct_mem;
417
418         start_count = arch_timer_read_counter();
419         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
420         cyclecounter.mult = clocksource_counter.mult;
421         cyclecounter.shift = clocksource_counter.shift;
422         timecounter_init(&timecounter, &cyclecounter, start_count);
423 }
424
425 static void arch_timer_stop(struct clock_event_device *clk)
426 {
427         pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
428                  clk->irq, smp_processor_id());
429
430         if (arch_timer_use_virtual)
431                 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
432         else {
433                 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
434                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
435                         disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
436         }
437
438         clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
439 }
440
441 static int arch_timer_cpu_notify(struct notifier_block *self,
442                                            unsigned long action, void *hcpu)
443 {
444         /*
445          * Grab cpu pointer in each case to avoid spurious
446          * preemptible warnings
447          */
448         switch (action & ~CPU_TASKS_FROZEN) {
449         case CPU_STARTING:
450                 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
451                 break;
452         case CPU_DYING:
453                 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
454                 break;
455         }
456
457         return NOTIFY_OK;
458 }
459
460 static struct notifier_block arch_timer_cpu_nb = {
461         .notifier_call = arch_timer_cpu_notify,
462 };
463
464 static int __init arch_timer_register(void)
465 {
466         int err;
467         int ppi;
468
469         arch_timer_evt = alloc_percpu(struct clock_event_device);
470         if (!arch_timer_evt) {
471                 err = -ENOMEM;
472                 goto out;
473         }
474
475         clocksource_register_hz(&clocksource_counter, arch_timer_rate);
476         cyclecounter.mult = clocksource_counter.mult;
477         cyclecounter.shift = clocksource_counter.shift;
478         timecounter_init(&timecounter, &cyclecounter,
479                          arch_counter_get_cntvct());
480
481         /* 56 bits minimum, so we assume worst case rollover */
482         sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
483
484         if (arch_timer_use_virtual) {
485                 ppi = arch_timer_ppi[VIRT_PPI];
486                 err = request_percpu_irq(ppi, arch_timer_handler_virt,
487                                          "arch_timer", arch_timer_evt);
488         } else {
489                 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
490                 err = request_percpu_irq(ppi, arch_timer_handler_phys,
491                                          "arch_timer", arch_timer_evt);
492                 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
493                         ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
494                         err = request_percpu_irq(ppi, arch_timer_handler_phys,
495                                                  "arch_timer", arch_timer_evt);
496                         if (err)
497                                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
498                                                 arch_timer_evt);
499                 }
500         }
501
502         if (err) {
503                 pr_err("arch_timer: can't register interrupt %d (%d)\n",
504                        ppi, err);
505                 goto out_free;
506         }
507
508         err = register_cpu_notifier(&arch_timer_cpu_nb);
509         if (err)
510                 goto out_free_irq;
511
512         /* Immediately configure the timer on the boot CPU */
513         arch_timer_setup(this_cpu_ptr(arch_timer_evt));
514
515         return 0;
516
517 out_free_irq:
518         if (arch_timer_use_virtual)
519                 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
520         else {
521                 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
522                                 arch_timer_evt);
523                 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
524                         free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
525                                         arch_timer_evt);
526         }
527
528 out_free:
529         free_percpu(arch_timer_evt);
530 out:
531         return err;
532 }
533
534 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
535 {
536         int ret;
537         irq_handler_t func;
538         struct arch_timer *t;
539
540         t = kzalloc(sizeof(*t), GFP_KERNEL);
541         if (!t)
542                 return -ENOMEM;
543
544         t->base = base;
545         t->evt.irq = irq;
546         __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
547
548         if (arch_timer_mem_use_virtual)
549                 func = arch_timer_handler_virt_mem;
550         else
551                 func = arch_timer_handler_phys_mem;
552
553         ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
554         if (ret) {
555                 pr_err("arch_timer: Failed to request mem timer irq\n");
556                 kfree(t);
557         }
558
559         return ret;
560 }
561
562 static const struct of_device_id arch_timer_of_match[] __initconst = {
563         { .compatible   = "arm,armv7-timer",    },
564         { .compatible   = "arm,armv8-timer",    },
565         {},
566 };
567
568 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
569         { .compatible   = "arm,armv7-timer-mem", },
570         {},
571 };
572
573 static void __init arch_timer_common_init(void)
574 {
575         unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
576
577         /* Wait until both nodes are probed if we have two timers */
578         if ((arch_timers_present & mask) != mask) {
579                 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
580                                 !(arch_timers_present & ARCH_MEM_TIMER))
581                         return;
582                 if (of_find_matching_node(NULL, arch_timer_of_match) &&
583                                 !(arch_timers_present & ARCH_CP15_TIMER))
584                         return;
585         }
586
587         arch_timer_banner(arch_timers_present);
588         arch_counter_register(arch_timers_present);
589         arch_timer_arch_init();
590 }
591
592 static void __init arch_timer_init(struct device_node *np)
593 {
594         int i;
595
596         if (arch_timers_present & ARCH_CP15_TIMER) {
597                 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
598                 return;
599         }
600
601         arch_timers_present |= ARCH_CP15_TIMER;
602         for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
603                 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
604         arch_timer_detect_rate(NULL, np);
605
606         /*
607          * If HYP mode is available, we know that the physical timer
608          * has been configured to be accessible from PL1. Use it, so
609          * that a guest can use the virtual timer instead.
610          *
611          * If no interrupt provided for virtual timer, we'll have to
612          * stick to the physical timer. It'd better be accessible...
613          */
614         if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
615                 arch_timer_use_virtual = false;
616
617                 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
618                     !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
619                         pr_warn("arch_timer: No interrupt available, giving up\n");
620                         return;
621                 }
622         }
623
624         arch_timer_register();
625         arch_timer_common_init();
626 }
627 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
628 CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
629
630 static void __init arch_timer_mem_init(struct device_node *np)
631 {
632         struct device_node *frame, *best_frame = NULL;
633         void __iomem *cntctlbase, *base;
634         unsigned int irq;
635         u32 cnttidr;
636
637         arch_timers_present |= ARCH_MEM_TIMER;
638         cntctlbase = of_iomap(np, 0);
639         if (!cntctlbase) {
640                 pr_err("arch_timer: Can't find CNTCTLBase\n");
641                 return;
642         }
643
644         cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
645         iounmap(cntctlbase);
646
647         /*
648          * Try to find a virtual capable frame. Otherwise fall back to a
649          * physical capable frame.
650          */
651         for_each_available_child_of_node(np, frame) {
652                 int n;
653
654                 if (of_property_read_u32(frame, "frame-number", &n)) {
655                         pr_err("arch_timer: Missing frame-number\n");
656                         of_node_put(best_frame);
657                         of_node_put(frame);
658                         return;
659                 }
660
661                 if (cnttidr & CNTTIDR_VIRT(n)) {
662                         of_node_put(best_frame);
663                         best_frame = frame;
664                         arch_timer_mem_use_virtual = true;
665                         break;
666                 }
667                 of_node_put(best_frame);
668                 best_frame = of_node_get(frame);
669         }
670
671         base = arch_counter_base = of_iomap(best_frame, 0);
672         if (!base) {
673                 pr_err("arch_timer: Can't map frame's registers\n");
674                 of_node_put(best_frame);
675                 return;
676         }
677
678         if (arch_timer_mem_use_virtual)
679                 irq = irq_of_parse_and_map(best_frame, 1);
680         else
681                 irq = irq_of_parse_and_map(best_frame, 0);
682         of_node_put(best_frame);
683         if (!irq) {
684                 pr_err("arch_timer: Frame missing %s irq",
685                        arch_timer_mem_use_virtual ? "virt" : "phys");
686                 return;
687         }
688
689         arch_timer_detect_rate(base, np);
690         arch_timer_mem_register(base, irq);
691         arch_timer_common_init();
692 }
693 CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
694                        arch_timer_mem_init);