ACPI / button: remove pointer to old lid_sysfs on unbind
[cascardo/linux.git] / drivers / clocksource / exynos_mct.c
1 /* linux/arch/arm/mach-exynos4/mct.c
2  *
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *              http://www.samsung.com
5  *
6  * EXYNOS4 MCT(Multi-Core Timer) support
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11 */
12
13 #include <linux/sched.h>
14 #include <linux/interrupt.h>
15 #include <linux/irq.h>
16 #include <linux/err.h>
17 #include <linux/clk.h>
18 #include <linux/clockchips.h>
19 #include <linux/cpu.h>
20 #include <linux/platform_device.h>
21 #include <linux/delay.h>
22 #include <linux/percpu.h>
23 #include <linux/of.h>
24 #include <linux/of_irq.h>
25 #include <linux/of_address.h>
26 #include <linux/clocksource.h>
27 #include <linux/sched_clock.h>
28
29 #define EXYNOS4_MCTREG(x)               (x)
30 #define EXYNOS4_MCT_G_CNT_L             EXYNOS4_MCTREG(0x100)
31 #define EXYNOS4_MCT_G_CNT_U             EXYNOS4_MCTREG(0x104)
32 #define EXYNOS4_MCT_G_CNT_WSTAT         EXYNOS4_MCTREG(0x110)
33 #define EXYNOS4_MCT_G_COMP0_L           EXYNOS4_MCTREG(0x200)
34 #define EXYNOS4_MCT_G_COMP0_U           EXYNOS4_MCTREG(0x204)
35 #define EXYNOS4_MCT_G_COMP0_ADD_INCR    EXYNOS4_MCTREG(0x208)
36 #define EXYNOS4_MCT_G_TCON              EXYNOS4_MCTREG(0x240)
37 #define EXYNOS4_MCT_G_INT_CSTAT         EXYNOS4_MCTREG(0x244)
38 #define EXYNOS4_MCT_G_INT_ENB           EXYNOS4_MCTREG(0x248)
39 #define EXYNOS4_MCT_G_WSTAT             EXYNOS4_MCTREG(0x24C)
40 #define _EXYNOS4_MCT_L_BASE             EXYNOS4_MCTREG(0x300)
41 #define EXYNOS4_MCT_L_BASE(x)           (_EXYNOS4_MCT_L_BASE + (0x100 * x))
42 #define EXYNOS4_MCT_L_MASK              (0xffffff00)
43
44 #define MCT_L_TCNTB_OFFSET              (0x00)
45 #define MCT_L_ICNTB_OFFSET              (0x08)
46 #define MCT_L_TCON_OFFSET               (0x20)
47 #define MCT_L_INT_CSTAT_OFFSET          (0x30)
48 #define MCT_L_INT_ENB_OFFSET            (0x34)
49 #define MCT_L_WSTAT_OFFSET              (0x40)
50 #define MCT_G_TCON_START                (1 << 8)
51 #define MCT_G_TCON_COMP0_AUTO_INC       (1 << 1)
52 #define MCT_G_TCON_COMP0_ENABLE         (1 << 0)
53 #define MCT_L_TCON_INTERVAL_MODE        (1 << 2)
54 #define MCT_L_TCON_INT_START            (1 << 1)
55 #define MCT_L_TCON_TIMER_START          (1 << 0)
56
57 #define TICK_BASE_CNT   1
58
59 enum {
60         MCT_INT_SPI,
61         MCT_INT_PPI
62 };
63
64 enum {
65         MCT_G0_IRQ,
66         MCT_G1_IRQ,
67         MCT_G2_IRQ,
68         MCT_G3_IRQ,
69         MCT_L0_IRQ,
70         MCT_L1_IRQ,
71         MCT_L2_IRQ,
72         MCT_L3_IRQ,
73         MCT_L4_IRQ,
74         MCT_L5_IRQ,
75         MCT_L6_IRQ,
76         MCT_L7_IRQ,
77         MCT_NR_IRQS,
78 };
79
80 static void __iomem *reg_base;
81 static unsigned long clk_rate;
82 static unsigned int mct_int_type;
83 static int mct_irqs[MCT_NR_IRQS];
84
85 struct mct_clock_event_device {
86         struct clock_event_device evt;
87         unsigned long base;
88         char name[10];
89 };
90
91 static void exynos4_mct_write(unsigned int value, unsigned long offset)
92 {
93         unsigned long stat_addr;
94         u32 mask;
95         u32 i;
96
97         writel_relaxed(value, reg_base + offset);
98
99         if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
100                 stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
101                 switch (offset & ~EXYNOS4_MCT_L_MASK) {
102                 case MCT_L_TCON_OFFSET:
103                         mask = 1 << 3;          /* L_TCON write status */
104                         break;
105                 case MCT_L_ICNTB_OFFSET:
106                         mask = 1 << 1;          /* L_ICNTB write status */
107                         break;
108                 case MCT_L_TCNTB_OFFSET:
109                         mask = 1 << 0;          /* L_TCNTB write status */
110                         break;
111                 default:
112                         return;
113                 }
114         } else {
115                 switch (offset) {
116                 case EXYNOS4_MCT_G_TCON:
117                         stat_addr = EXYNOS4_MCT_G_WSTAT;
118                         mask = 1 << 16;         /* G_TCON write status */
119                         break;
120                 case EXYNOS4_MCT_G_COMP0_L:
121                         stat_addr = EXYNOS4_MCT_G_WSTAT;
122                         mask = 1 << 0;          /* G_COMP0_L write status */
123                         break;
124                 case EXYNOS4_MCT_G_COMP0_U:
125                         stat_addr = EXYNOS4_MCT_G_WSTAT;
126                         mask = 1 << 1;          /* G_COMP0_U write status */
127                         break;
128                 case EXYNOS4_MCT_G_COMP0_ADD_INCR:
129                         stat_addr = EXYNOS4_MCT_G_WSTAT;
130                         mask = 1 << 2;          /* G_COMP0_ADD_INCR w status */
131                         break;
132                 case EXYNOS4_MCT_G_CNT_L:
133                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
134                         mask = 1 << 0;          /* G_CNT_L write status */
135                         break;
136                 case EXYNOS4_MCT_G_CNT_U:
137                         stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
138                         mask = 1 << 1;          /* G_CNT_U write status */
139                         break;
140                 default:
141                         return;
142                 }
143         }
144
145         /* Wait maximum 1 ms until written values are applied */
146         for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
147                 if (readl_relaxed(reg_base + stat_addr) & mask) {
148                         writel_relaxed(mask, reg_base + stat_addr);
149                         return;
150                 }
151
152         panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
153 }
154
155 /* Clocksource handling */
156 static void exynos4_mct_frc_start(void)
157 {
158         u32 reg;
159
160         reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
161         reg |= MCT_G_TCON_START;
162         exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
163 }
164
165 /**
166  * exynos4_read_count_64 - Read all 64-bits of the global counter
167  *
168  * This will read all 64-bits of the global counter taking care to make sure
169  * that the upper and lower half match.  Note that reading the MCT can be quite
170  * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half
171  * only) version when possible.
172  *
173  * Returns the number of cycles in the global counter.
174  */
175 static u64 exynos4_read_count_64(void)
176 {
177         unsigned int lo, hi;
178         u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
179
180         do {
181                 hi = hi2;
182                 lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
183                 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U);
184         } while (hi != hi2);
185
186         return ((cycle_t)hi << 32) | lo;
187 }
188
189 /**
190  * exynos4_read_count_32 - Read the lower 32-bits of the global counter
191  *
192  * This will read just the lower 32-bits of the global counter.  This is marked
193  * as notrace so it can be used by the scheduler clock.
194  *
195  * Returns the number of cycles in the global counter (lower 32 bits).
196  */
197 static u32 notrace exynos4_read_count_32(void)
198 {
199         return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L);
200 }
201
202 static cycle_t exynos4_frc_read(struct clocksource *cs)
203 {
204         return exynos4_read_count_32();
205 }
206
207 static void exynos4_frc_resume(struct clocksource *cs)
208 {
209         exynos4_mct_frc_start();
210 }
211
212 static struct clocksource mct_frc = {
213         .name           = "mct-frc",
214         .rating         = 400,
215         .read           = exynos4_frc_read,
216         .mask           = CLOCKSOURCE_MASK(32),
217         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
218         .resume         = exynos4_frc_resume,
219 };
220
221 static u64 notrace exynos4_read_sched_clock(void)
222 {
223         return exynos4_read_count_32();
224 }
225
226 static struct delay_timer exynos4_delay_timer;
227
228 static cycles_t exynos4_read_current_timer(void)
229 {
230         BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32),
231                          "cycles_t needs to move to 32-bit for ARM64 usage");
232         return exynos4_read_count_32();
233 }
234
235 static void __init exynos4_clocksource_init(void)
236 {
237         exynos4_mct_frc_start();
238
239         exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer;
240         exynos4_delay_timer.freq = clk_rate;
241         register_current_timer_delay(&exynos4_delay_timer);
242
243         if (clocksource_register_hz(&mct_frc, clk_rate))
244                 panic("%s: can't register clocksource\n", mct_frc.name);
245
246         sched_clock_register(exynos4_read_sched_clock, 32, clk_rate);
247 }
248
249 static void exynos4_mct_comp0_stop(void)
250 {
251         unsigned int tcon;
252
253         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
254         tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
255
256         exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
257         exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
258 }
259
260 static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles)
261 {
262         unsigned int tcon;
263         cycle_t comp_cycle;
264
265         tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON);
266
267         if (periodic) {
268                 tcon |= MCT_G_TCON_COMP0_AUTO_INC;
269                 exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
270         }
271
272         comp_cycle = exynos4_read_count_64() + cycles;
273         exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
274         exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
275
276         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
277
278         tcon |= MCT_G_TCON_COMP0_ENABLE;
279         exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
280 }
281
282 static int exynos4_comp_set_next_event(unsigned long cycles,
283                                        struct clock_event_device *evt)
284 {
285         exynos4_mct_comp0_start(false, cycles);
286
287         return 0;
288 }
289
290 static int mct_set_state_shutdown(struct clock_event_device *evt)
291 {
292         exynos4_mct_comp0_stop();
293         return 0;
294 }
295
296 static int mct_set_state_periodic(struct clock_event_device *evt)
297 {
298         unsigned long cycles_per_jiffy;
299
300         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
301                             >> evt->shift);
302         exynos4_mct_comp0_stop();
303         exynos4_mct_comp0_start(true, cycles_per_jiffy);
304         return 0;
305 }
306
307 static struct clock_event_device mct_comp_device = {
308         .name                   = "mct-comp",
309         .features               = CLOCK_EVT_FEAT_PERIODIC |
310                                   CLOCK_EVT_FEAT_ONESHOT,
311         .rating                 = 250,
312         .set_next_event         = exynos4_comp_set_next_event,
313         .set_state_periodic     = mct_set_state_periodic,
314         .set_state_shutdown     = mct_set_state_shutdown,
315         .set_state_oneshot      = mct_set_state_shutdown,
316         .set_state_oneshot_stopped = mct_set_state_shutdown,
317         .tick_resume            = mct_set_state_shutdown,
318 };
319
320 static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
321 {
322         struct clock_event_device *evt = dev_id;
323
324         exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
325
326         evt->event_handler(evt);
327
328         return IRQ_HANDLED;
329 }
330
331 static struct irqaction mct_comp_event_irq = {
332         .name           = "mct_comp_irq",
333         .flags          = IRQF_TIMER | IRQF_IRQPOLL,
334         .handler        = exynos4_mct_comp_isr,
335         .dev_id         = &mct_comp_device,
336 };
337
338 static void exynos4_clockevent_init(void)
339 {
340         mct_comp_device.cpumask = cpumask_of(0);
341         clockevents_config_and_register(&mct_comp_device, clk_rate,
342                                         0xf, 0xffffffff);
343         setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
344 }
345
346 static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
347
348 /* Clock event handling */
349 static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
350 {
351         unsigned long tmp;
352         unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
353         unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
354
355         tmp = readl_relaxed(reg_base + offset);
356         if (tmp & mask) {
357                 tmp &= ~mask;
358                 exynos4_mct_write(tmp, offset);
359         }
360 }
361
362 static void exynos4_mct_tick_start(unsigned long cycles,
363                                    struct mct_clock_event_device *mevt)
364 {
365         unsigned long tmp;
366
367         exynos4_mct_tick_stop(mevt);
368
369         tmp = (1 << 31) | cycles;       /* MCT_L_UPDATE_ICNTB */
370
371         /* update interrupt count buffer */
372         exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
373
374         /* enable MCT tick interrupt */
375         exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
376
377         tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET);
378         tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
379                MCT_L_TCON_INTERVAL_MODE;
380         exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
381 }
382
383 static int exynos4_tick_set_next_event(unsigned long cycles,
384                                        struct clock_event_device *evt)
385 {
386         struct mct_clock_event_device *mevt;
387
388         mevt = container_of(evt, struct mct_clock_event_device, evt);
389         exynos4_mct_tick_start(cycles, mevt);
390         return 0;
391 }
392
393 static int set_state_shutdown(struct clock_event_device *evt)
394 {
395         struct mct_clock_event_device *mevt;
396
397         mevt = container_of(evt, struct mct_clock_event_device, evt);
398         exynos4_mct_tick_stop(mevt);
399         return 0;
400 }
401
402 static int set_state_periodic(struct clock_event_device *evt)
403 {
404         struct mct_clock_event_device *mevt;
405         unsigned long cycles_per_jiffy;
406
407         mevt = container_of(evt, struct mct_clock_event_device, evt);
408         cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult)
409                             >> evt->shift);
410         exynos4_mct_tick_stop(mevt);
411         exynos4_mct_tick_start(cycles_per_jiffy, mevt);
412         return 0;
413 }
414
415 static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
416 {
417         /*
418          * This is for supporting oneshot mode.
419          * Mct would generate interrupt periodically
420          * without explicit stopping.
421          */
422         if (!clockevent_state_periodic(&mevt->evt))
423                 exynos4_mct_tick_stop(mevt);
424
425         /* Clear the MCT tick interrupt */
426         if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1)
427                 exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
428 }
429
430 static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
431 {
432         struct mct_clock_event_device *mevt = dev_id;
433         struct clock_event_device *evt = &mevt->evt;
434
435         exynos4_mct_tick_clear(mevt);
436
437         evt->event_handler(evt);
438
439         return IRQ_HANDLED;
440 }
441
442 static int exynos4_local_timer_setup(struct mct_clock_event_device *mevt)
443 {
444         struct clock_event_device *evt = &mevt->evt;
445         unsigned int cpu = smp_processor_id();
446
447         mevt->base = EXYNOS4_MCT_L_BASE(cpu);
448         snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu);
449
450         evt->name = mevt->name;
451         evt->cpumask = cpumask_of(cpu);
452         evt->set_next_event = exynos4_tick_set_next_event;
453         evt->set_state_periodic = set_state_periodic;
454         evt->set_state_shutdown = set_state_shutdown;
455         evt->set_state_oneshot = set_state_shutdown;
456         evt->set_state_oneshot_stopped = set_state_shutdown;
457         evt->tick_resume = set_state_shutdown;
458         evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
459         evt->rating = 450;
460
461         exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
462
463         if (mct_int_type == MCT_INT_SPI) {
464
465                 if (evt->irq == -1)
466                         return -EIO;
467
468                 irq_force_affinity(evt->irq, cpumask_of(cpu));
469                 enable_irq(evt->irq);
470         } else {
471                 enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
472         }
473         clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
474                                         0xf, 0x7fffffff);
475
476         return 0;
477 }
478
479 static void exynos4_local_timer_stop(struct mct_clock_event_device *mevt)
480 {
481         struct clock_event_device *evt = &mevt->evt;
482
483         evt->set_state_shutdown(evt);
484         if (mct_int_type == MCT_INT_SPI) {
485                 if (evt->irq != -1)
486                         disable_irq_nosync(evt->irq);
487         } else {
488                 disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
489         }
490 }
491
492 static int exynos4_mct_cpu_notify(struct notifier_block *self,
493                                            unsigned long action, void *hcpu)
494 {
495         struct mct_clock_event_device *mevt;
496
497         /*
498          * Grab cpu pointer in each case to avoid spurious
499          * preemptible warnings
500          */
501         switch (action & ~CPU_TASKS_FROZEN) {
502         case CPU_STARTING:
503                 mevt = this_cpu_ptr(&percpu_mct_tick);
504                 exynos4_local_timer_setup(mevt);
505                 break;
506         case CPU_DYING:
507                 mevt = this_cpu_ptr(&percpu_mct_tick);
508                 exynos4_local_timer_stop(mevt);
509                 break;
510         }
511
512         return NOTIFY_OK;
513 }
514
515 static struct notifier_block exynos4_mct_cpu_nb = {
516         .notifier_call = exynos4_mct_cpu_notify,
517 };
518
519 static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base)
520 {
521         int err, cpu;
522         struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
523         struct clk *mct_clk, *tick_clk;
524
525         tick_clk = np ? of_clk_get_by_name(np, "fin_pll") :
526                                 clk_get(NULL, "fin_pll");
527         if (IS_ERR(tick_clk))
528                 panic("%s: unable to determine tick clock rate\n", __func__);
529         clk_rate = clk_get_rate(tick_clk);
530
531         mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct");
532         if (IS_ERR(mct_clk))
533                 panic("%s: unable to retrieve mct clock instance\n", __func__);
534         clk_prepare_enable(mct_clk);
535
536         reg_base = base;
537         if (!reg_base)
538                 panic("%s: unable to ioremap mct address space\n", __func__);
539
540         if (mct_int_type == MCT_INT_PPI) {
541
542                 err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
543                                          exynos4_mct_tick_isr, "MCT",
544                                          &percpu_mct_tick);
545                 WARN(err, "MCT: can't request IRQ %d (%d)\n",
546                      mct_irqs[MCT_L0_IRQ], err);
547         } else {
548                 for_each_possible_cpu(cpu) {
549                         int mct_irq = mct_irqs[MCT_L0_IRQ + cpu];
550                         struct mct_clock_event_device *pcpu_mevt =
551                                 per_cpu_ptr(&percpu_mct_tick, cpu);
552
553                         pcpu_mevt->evt.irq = -1;
554
555                         irq_set_status_flags(mct_irq, IRQ_NOAUTOEN);
556                         if (request_irq(mct_irq,
557                                         exynos4_mct_tick_isr,
558                                         IRQF_TIMER | IRQF_NOBALANCING,
559                                         pcpu_mevt->name, pcpu_mevt)) {
560                                 pr_err("exynos-mct: cannot register IRQ (cpu%d)\n",
561                                                                         cpu);
562
563                                 continue;
564                         }
565                         pcpu_mevt->evt.irq = mct_irq;
566                 }
567         }
568
569         err = register_cpu_notifier(&exynos4_mct_cpu_nb);
570         if (err)
571                 goto out_irq;
572
573         /* Immediately configure the timer on the boot CPU */
574         exynos4_local_timer_setup(mevt);
575         return;
576
577 out_irq:
578         free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick);
579 }
580
581 static void __init mct_init_dt(struct device_node *np, unsigned int int_type)
582 {
583         u32 nr_irqs, i;
584
585         mct_int_type = int_type;
586
587         /* This driver uses only one global timer interrupt */
588         mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
589
590         /*
591          * Find out the number of local irqs specified. The local
592          * timer irqs are specified after the four global timer
593          * irqs are specified.
594          */
595 #ifdef CONFIG_OF
596         nr_irqs = of_irq_count(np);
597 #else
598         nr_irqs = 0;
599 #endif
600         for (i = MCT_L0_IRQ; i < nr_irqs; i++)
601                 mct_irqs[i] = irq_of_parse_and_map(np, i);
602
603         exynos4_timer_resources(np, of_iomap(np, 0));
604         exynos4_clocksource_init();
605         exynos4_clockevent_init();
606 }
607
608
609 static void __init mct_init_spi(struct device_node *np)
610 {
611         return mct_init_dt(np, MCT_INT_SPI);
612 }
613
614 static void __init mct_init_ppi(struct device_node *np)
615 {
616         return mct_init_dt(np, MCT_INT_PPI);
617 }
618 CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi);
619 CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);