11c9a078e0fdd166aa3fa44fc4887176e624c03a
[cascardo/linux.git] / drivers / cpufreq / acpi-cpufreq.c
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/init.h>
33 #include <linux/smp.h>
34 #include <linux/sched.h>
35 #include <linux/cpufreq.h>
36 #include <linux/compiler.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
39
40 #include <linux/acpi.h>
41 #include <linux/io.h>
42 #include <linux/delay.h>
43 #include <linux/uaccess.h>
44
45 #include <acpi/processor.h>
46
47 #include <asm/msr.h>
48 #include <asm/processor.h>
49 #include <asm/cpufeature.h>
50
51 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
52 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
53 MODULE_LICENSE("GPL");
54
55 enum {
56         UNDEFINED_CAPABLE = 0,
57         SYSTEM_INTEL_MSR_CAPABLE,
58         SYSTEM_AMD_MSR_CAPABLE,
59         SYSTEM_IO_CAPABLE,
60 };
61
62 #define INTEL_MSR_RANGE         (0xffff)
63 #define AMD_MSR_RANGE           (0x7)
64
65 #define MSR_K7_HWCR_CPB_DIS     (1ULL << 25)
66
67 struct acpi_cpufreq_data {
68         unsigned int resume;
69         unsigned int cpu_feature;
70         unsigned int acpi_perf_cpu;
71         cpumask_var_t freqdomain_cpus;
72         void (*cpu_freq_write)(struct acpi_pct_register *reg, u32 val);
73         u32 (*cpu_freq_read)(struct acpi_pct_register *reg);
74 };
75
76 /* acpi_perf_data is a pointer to percpu data. */
77 static struct acpi_processor_performance __percpu *acpi_perf_data;
78
79 static inline struct acpi_processor_performance *to_perf_data(struct acpi_cpufreq_data *data)
80 {
81         return per_cpu_ptr(acpi_perf_data, data->acpi_perf_cpu);
82 }
83
84 static struct cpufreq_driver acpi_cpufreq_driver;
85
86 static unsigned int acpi_pstate_strict;
87 static struct msr __percpu *msrs;
88
89 static bool boost_state(unsigned int cpu)
90 {
91         u32 lo, hi;
92         u64 msr;
93
94         switch (boot_cpu_data.x86_vendor) {
95         case X86_VENDOR_INTEL:
96                 rdmsr_on_cpu(cpu, MSR_IA32_MISC_ENABLE, &lo, &hi);
97                 msr = lo | ((u64)hi << 32);
98                 return !(msr & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
99         case X86_VENDOR_AMD:
100                 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
101                 msr = lo | ((u64)hi << 32);
102                 return !(msr & MSR_K7_HWCR_CPB_DIS);
103         }
104         return false;
105 }
106
107 static void boost_set_msrs(bool enable, const struct cpumask *cpumask)
108 {
109         u32 cpu;
110         u32 msr_addr;
111         u64 msr_mask;
112
113         switch (boot_cpu_data.x86_vendor) {
114         case X86_VENDOR_INTEL:
115                 msr_addr = MSR_IA32_MISC_ENABLE;
116                 msr_mask = MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
117                 break;
118         case X86_VENDOR_AMD:
119                 msr_addr = MSR_K7_HWCR;
120                 msr_mask = MSR_K7_HWCR_CPB_DIS;
121                 break;
122         default:
123                 return;
124         }
125
126         rdmsr_on_cpus(cpumask, msr_addr, msrs);
127
128         for_each_cpu(cpu, cpumask) {
129                 struct msr *reg = per_cpu_ptr(msrs, cpu);
130                 if (enable)
131                         reg->q &= ~msr_mask;
132                 else
133                         reg->q |= msr_mask;
134         }
135
136         wrmsr_on_cpus(cpumask, msr_addr, msrs);
137 }
138
139 static int set_boost(int val)
140 {
141         get_online_cpus();
142         boost_set_msrs(val, cpu_online_mask);
143         put_online_cpus();
144         pr_debug("Core Boosting %sabled.\n", val ? "en" : "dis");
145
146         return 0;
147 }
148
149 static ssize_t show_freqdomain_cpus(struct cpufreq_policy *policy, char *buf)
150 {
151         struct acpi_cpufreq_data *data = policy->driver_data;
152
153         if (unlikely(!data))
154                 return -ENODEV;
155
156         return cpufreq_show_cpus(data->freqdomain_cpus, buf);
157 }
158
159 cpufreq_freq_attr_ro(freqdomain_cpus);
160
161 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
162 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
163                          size_t count)
164 {
165         int ret;
166         unsigned int val = 0;
167
168         if (!acpi_cpufreq_driver.set_boost)
169                 return -EINVAL;
170
171         ret = kstrtouint(buf, 10, &val);
172         if (ret || val > 1)
173                 return -EINVAL;
174
175         set_boost(val);
176
177         return count;
178 }
179
180 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
181 {
182         return sprintf(buf, "%u\n", acpi_cpufreq_driver.boost_enabled);
183 }
184
185 cpufreq_freq_attr_rw(cpb);
186 #endif
187
188 static int check_est_cpu(unsigned int cpuid)
189 {
190         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
191
192         return cpu_has(cpu, X86_FEATURE_EST);
193 }
194
195 static int check_amd_hwpstate_cpu(unsigned int cpuid)
196 {
197         struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
198
199         return cpu_has(cpu, X86_FEATURE_HW_PSTATE);
200 }
201
202 static unsigned extract_io(struct cpufreq_policy *policy, u32 value)
203 {
204         struct acpi_cpufreq_data *data = policy->driver_data;
205         struct acpi_processor_performance *perf;
206         int i;
207
208         perf = to_perf_data(data);
209
210         for (i = 0; i < perf->state_count; i++) {
211                 if (value == perf->states[i].status)
212                         return policy->freq_table[i].frequency;
213         }
214         return 0;
215 }
216
217 static unsigned extract_msr(struct cpufreq_policy *policy, u32 msr)
218 {
219         struct acpi_cpufreq_data *data = policy->driver_data;
220         struct cpufreq_frequency_table *pos;
221         struct acpi_processor_performance *perf;
222
223         if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
224                 msr &= AMD_MSR_RANGE;
225         else
226                 msr &= INTEL_MSR_RANGE;
227
228         perf = to_perf_data(data);
229
230         cpufreq_for_each_entry(pos, policy->freq_table)
231                 if (msr == perf->states[pos->driver_data].status)
232                         return pos->frequency;
233         return policy->freq_table[0].frequency;
234 }
235
236 static unsigned extract_freq(struct cpufreq_policy *policy, u32 val)
237 {
238         struct acpi_cpufreq_data *data = policy->driver_data;
239
240         switch (data->cpu_feature) {
241         case SYSTEM_INTEL_MSR_CAPABLE:
242         case SYSTEM_AMD_MSR_CAPABLE:
243                 return extract_msr(policy, val);
244         case SYSTEM_IO_CAPABLE:
245                 return extract_io(policy, val);
246         default:
247                 return 0;
248         }
249 }
250
251 static u32 cpu_freq_read_intel(struct acpi_pct_register *not_used)
252 {
253         u32 val, dummy;
254
255         rdmsr(MSR_IA32_PERF_CTL, val, dummy);
256         return val;
257 }
258
259 static void cpu_freq_write_intel(struct acpi_pct_register *not_used, u32 val)
260 {
261         u32 lo, hi;
262
263         rdmsr(MSR_IA32_PERF_CTL, lo, hi);
264         lo = (lo & ~INTEL_MSR_RANGE) | (val & INTEL_MSR_RANGE);
265         wrmsr(MSR_IA32_PERF_CTL, lo, hi);
266 }
267
268 static u32 cpu_freq_read_amd(struct acpi_pct_register *not_used)
269 {
270         u32 val, dummy;
271
272         rdmsr(MSR_AMD_PERF_CTL, val, dummy);
273         return val;
274 }
275
276 static void cpu_freq_write_amd(struct acpi_pct_register *not_used, u32 val)
277 {
278         wrmsr(MSR_AMD_PERF_CTL, val, 0);
279 }
280
281 static u32 cpu_freq_read_io(struct acpi_pct_register *reg)
282 {
283         u32 val;
284
285         acpi_os_read_port(reg->address, &val, reg->bit_width);
286         return val;
287 }
288
289 static void cpu_freq_write_io(struct acpi_pct_register *reg, u32 val)
290 {
291         acpi_os_write_port(reg->address, val, reg->bit_width);
292 }
293
294 struct drv_cmd {
295         struct acpi_pct_register *reg;
296         u32 val;
297         union {
298                 void (*write)(struct acpi_pct_register *reg, u32 val);
299                 u32 (*read)(struct acpi_pct_register *reg);
300         } func;
301 };
302
303 /* Called via smp_call_function_single(), on the target CPU */
304 static void do_drv_read(void *_cmd)
305 {
306         struct drv_cmd *cmd = _cmd;
307
308         cmd->val = cmd->func.read(cmd->reg);
309 }
310
311 static u32 drv_read(struct acpi_cpufreq_data *data, const struct cpumask *mask)
312 {
313         struct acpi_processor_performance *perf = to_perf_data(data);
314         struct drv_cmd cmd = {
315                 .reg = &perf->control_register,
316                 .func.read = data->cpu_freq_read,
317         };
318         int err;
319
320         err = smp_call_function_any(mask, do_drv_read, &cmd, 1);
321         WARN_ON_ONCE(err);      /* smp_call_function_any() was buggy? */
322         return cmd.val;
323 }
324
325 /* Called via smp_call_function_many(), on the target CPUs */
326 static void do_drv_write(void *_cmd)
327 {
328         struct drv_cmd *cmd = _cmd;
329
330         cmd->func.write(cmd->reg, cmd->val);
331 }
332
333 static void drv_write(struct acpi_cpufreq_data *data,
334                       const struct cpumask *mask, u32 val)
335 {
336         struct acpi_processor_performance *perf = to_perf_data(data);
337         struct drv_cmd cmd = {
338                 .reg = &perf->control_register,
339                 .val = val,
340                 .func.write = data->cpu_freq_write,
341         };
342         int this_cpu;
343
344         this_cpu = get_cpu();
345         if (cpumask_test_cpu(this_cpu, mask))
346                 do_drv_write(&cmd);
347
348         smp_call_function_many(mask, do_drv_write, &cmd, 1);
349         put_cpu();
350 }
351
352 static u32 get_cur_val(const struct cpumask *mask, struct acpi_cpufreq_data *data)
353 {
354         u32 val;
355
356         if (unlikely(cpumask_empty(mask)))
357                 return 0;
358
359         val = drv_read(data, mask);
360
361         pr_debug("get_cur_val = %u\n", val);
362
363         return val;
364 }
365
366 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
367 {
368         struct acpi_cpufreq_data *data;
369         struct cpufreq_policy *policy;
370         unsigned int freq;
371         unsigned int cached_freq;
372
373         pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
374
375         policy = cpufreq_cpu_get_raw(cpu);
376         if (unlikely(!policy))
377                 return 0;
378
379         data = policy->driver_data;
380         if (unlikely(!data || !policy->freq_table))
381                 return 0;
382
383         cached_freq = policy->freq_table[to_perf_data(data)->state].frequency;
384         freq = extract_freq(policy, get_cur_val(cpumask_of(cpu), data));
385         if (freq != cached_freq) {
386                 /*
387                  * The dreaded BIOS frequency change behind our back.
388                  * Force set the frequency on next target call.
389                  */
390                 data->resume = 1;
391         }
392
393         pr_debug("cur freq = %u\n", freq);
394
395         return freq;
396 }
397
398 static unsigned int check_freqs(struct cpufreq_policy *policy,
399                                 const struct cpumask *mask, unsigned int freq)
400 {
401         struct acpi_cpufreq_data *data = policy->driver_data;
402         unsigned int cur_freq;
403         unsigned int i;
404
405         for (i = 0; i < 100; i++) {
406                 cur_freq = extract_freq(policy, get_cur_val(mask, data));
407                 if (cur_freq == freq)
408                         return 1;
409                 udelay(10);
410         }
411         return 0;
412 }
413
414 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
415                                unsigned int index)
416 {
417         struct acpi_cpufreq_data *data = policy->driver_data;
418         struct acpi_processor_performance *perf;
419         const struct cpumask *mask;
420         unsigned int next_perf_state = 0; /* Index into perf table */
421         int result = 0;
422
423         if (unlikely(!data)) {
424                 return -ENODEV;
425         }
426
427         perf = to_perf_data(data);
428         next_perf_state = policy->freq_table[index].driver_data;
429         if (perf->state == next_perf_state) {
430                 if (unlikely(data->resume)) {
431                         pr_debug("Called after resume, resetting to P%d\n",
432                                 next_perf_state);
433                         data->resume = 0;
434                 } else {
435                         pr_debug("Already at target state (P%d)\n",
436                                 next_perf_state);
437                         return 0;
438                 }
439         }
440
441         /*
442          * The core won't allow CPUs to go away until the governor has been
443          * stopped, so we can rely on the stability of policy->cpus.
444          */
445         mask = policy->shared_type == CPUFREQ_SHARED_TYPE_ANY ?
446                 cpumask_of(policy->cpu) : policy->cpus;
447
448         drv_write(data, mask, perf->states[next_perf_state].control);
449
450         if (acpi_pstate_strict) {
451                 if (!check_freqs(policy, mask,
452                                  policy->freq_table[index].frequency)) {
453                         pr_debug("acpi_cpufreq_target failed (%d)\n",
454                                 policy->cpu);
455                         result = -EAGAIN;
456                 }
457         }
458
459         if (!result)
460                 perf->state = next_perf_state;
461
462         return result;
463 }
464
465 unsigned int acpi_cpufreq_fast_switch(struct cpufreq_policy *policy,
466                                       unsigned int target_freq)
467 {
468         struct acpi_cpufreq_data *data = policy->driver_data;
469         struct acpi_processor_performance *perf;
470         struct cpufreq_frequency_table *entry;
471         unsigned int next_perf_state, next_freq, index;
472
473         /*
474          * Find the closest frequency above target_freq.
475          */
476         index = cpufreq_table_find_index_dl(policy, target_freq);
477
478         entry = &policy->freq_table[index];
479         next_freq = entry->frequency;
480         next_perf_state = entry->driver_data;
481
482         perf = to_perf_data(data);
483         if (perf->state == next_perf_state) {
484                 if (unlikely(data->resume))
485                         data->resume = 0;
486                 else
487                         return next_freq;
488         }
489
490         data->cpu_freq_write(&perf->control_register,
491                              perf->states[next_perf_state].control);
492         perf->state = next_perf_state;
493         return next_freq;
494 }
495
496 static unsigned long
497 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
498 {
499         struct acpi_processor_performance *perf;
500
501         perf = to_perf_data(data);
502         if (cpu_khz) {
503                 /* search the closest match to cpu_khz */
504                 unsigned int i;
505                 unsigned long freq;
506                 unsigned long freqn = perf->states[0].core_frequency * 1000;
507
508                 for (i = 0; i < (perf->state_count-1); i++) {
509                         freq = freqn;
510                         freqn = perf->states[i+1].core_frequency * 1000;
511                         if ((2 * cpu_khz) > (freqn + freq)) {
512                                 perf->state = i;
513                                 return freq;
514                         }
515                 }
516                 perf->state = perf->state_count-1;
517                 return freqn;
518         } else {
519                 /* assume CPU is at P0... */
520                 perf->state = 0;
521                 return perf->states[0].core_frequency * 1000;
522         }
523 }
524
525 static void free_acpi_perf_data(void)
526 {
527         unsigned int i;
528
529         /* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
530         for_each_possible_cpu(i)
531                 free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
532                                  ->shared_cpu_map);
533         free_percpu(acpi_perf_data);
534 }
535
536 static int boost_notify(struct notifier_block *nb, unsigned long action,
537                       void *hcpu)
538 {
539         unsigned cpu = (long)hcpu;
540         const struct cpumask *cpumask;
541
542         cpumask = get_cpu_mask(cpu);
543
544         /*
545          * Clear the boost-disable bit on the CPU_DOWN path so that
546          * this cpu cannot block the remaining ones from boosting. On
547          * the CPU_UP path we simply keep the boost-disable flag in
548          * sync with the current global state.
549          */
550
551         switch (action) {
552         case CPU_DOWN_FAILED:
553         case CPU_DOWN_FAILED_FROZEN:
554         case CPU_ONLINE:
555         case CPU_ONLINE_FROZEN:
556                 boost_set_msrs(acpi_cpufreq_driver.boost_enabled, cpumask);
557                 break;
558
559         case CPU_DOWN_PREPARE:
560         case CPU_DOWN_PREPARE_FROZEN:
561                 boost_set_msrs(1, cpumask);
562                 break;
563
564         default:
565                 break;
566         }
567
568         return NOTIFY_OK;
569 }
570
571
572 static struct notifier_block boost_nb = {
573         .notifier_call          = boost_notify,
574 };
575
576 /*
577  * acpi_cpufreq_early_init - initialize ACPI P-States library
578  *
579  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
580  * in order to determine correct frequency and voltage pairings. We can
581  * do _PDC and _PSD and find out the processor dependency for the
582  * actual init that will happen later...
583  */
584 static int __init acpi_cpufreq_early_init(void)
585 {
586         unsigned int i;
587         pr_debug("acpi_cpufreq_early_init\n");
588
589         acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
590         if (!acpi_perf_data) {
591                 pr_debug("Memory allocation error for acpi_perf_data.\n");
592                 return -ENOMEM;
593         }
594         for_each_possible_cpu(i) {
595                 if (!zalloc_cpumask_var_node(
596                         &per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
597                         GFP_KERNEL, cpu_to_node(i))) {
598
599                         /* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
600                         free_acpi_perf_data();
601                         return -ENOMEM;
602                 }
603         }
604
605         /* Do initialization in ACPI core */
606         acpi_processor_preregister_performance(acpi_perf_data);
607         return 0;
608 }
609
610 #ifdef CONFIG_SMP
611 /*
612  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
613  * or do it in BIOS firmware and won't inform about it to OS. If not
614  * detected, this has a side effect of making CPU run at a different speed
615  * than OS intended it to run at. Detect it and handle it cleanly.
616  */
617 static int bios_with_sw_any_bug;
618
619 static int sw_any_bug_found(const struct dmi_system_id *d)
620 {
621         bios_with_sw_any_bug = 1;
622         return 0;
623 }
624
625 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
626         {
627                 .callback = sw_any_bug_found,
628                 .ident = "Supermicro Server X6DLP",
629                 .matches = {
630                         DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
631                         DMI_MATCH(DMI_BIOS_VERSION, "080010"),
632                         DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
633                 },
634         },
635         { }
636 };
637
638 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
639 {
640         /* Intel Xeon Processor 7100 Series Specification Update
641          * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
642          * AL30: A Machine Check Exception (MCE) Occurring during an
643          * Enhanced Intel SpeedStep Technology Ratio Change May Cause
644          * Both Processor Cores to Lock Up. */
645         if (c->x86_vendor == X86_VENDOR_INTEL) {
646                 if ((c->x86 == 15) &&
647                     (c->x86_model == 6) &&
648                     (c->x86_mask == 8)) {
649                         pr_info("Intel(R) Xeon(R) 7100 Errata AL30, processors may lock up on frequency changes: disabling acpi-cpufreq\n");
650                         return -ENODEV;
651                     }
652                 }
653         return 0;
654 }
655 #endif
656
657 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
658 {
659         unsigned int i;
660         unsigned int valid_states = 0;
661         unsigned int cpu = policy->cpu;
662         struct acpi_cpufreq_data *data;
663         unsigned int result = 0;
664         struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
665         struct acpi_processor_performance *perf;
666         struct cpufreq_frequency_table *freq_table;
667 #ifdef CONFIG_SMP
668         static int blacklisted;
669 #endif
670
671         pr_debug("acpi_cpufreq_cpu_init\n");
672
673 #ifdef CONFIG_SMP
674         if (blacklisted)
675                 return blacklisted;
676         blacklisted = acpi_cpufreq_blacklist(c);
677         if (blacklisted)
678                 return blacklisted;
679 #endif
680
681         data = kzalloc(sizeof(*data), GFP_KERNEL);
682         if (!data)
683                 return -ENOMEM;
684
685         if (!zalloc_cpumask_var(&data->freqdomain_cpus, GFP_KERNEL)) {
686                 result = -ENOMEM;
687                 goto err_free;
688         }
689
690         perf = per_cpu_ptr(acpi_perf_data, cpu);
691         data->acpi_perf_cpu = cpu;
692         policy->driver_data = data;
693
694         if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
695                 acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
696
697         result = acpi_processor_register_performance(perf, cpu);
698         if (result)
699                 goto err_free_mask;
700
701         policy->shared_type = perf->shared_type;
702
703         /*
704          * Will let policy->cpus know about dependency only when software
705          * coordination is required.
706          */
707         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
708             policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
709                 cpumask_copy(policy->cpus, perf->shared_cpu_map);
710         }
711         cpumask_copy(data->freqdomain_cpus, perf->shared_cpu_map);
712
713 #ifdef CONFIG_SMP
714         dmi_check_system(sw_any_bug_dmi_table);
715         if (bios_with_sw_any_bug && !policy_is_shared(policy)) {
716                 policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
717                 cpumask_copy(policy->cpus, topology_core_cpumask(cpu));
718         }
719
720         if (check_amd_hwpstate_cpu(cpu) && !acpi_pstate_strict) {
721                 cpumask_clear(policy->cpus);
722                 cpumask_set_cpu(cpu, policy->cpus);
723                 cpumask_copy(data->freqdomain_cpus,
724                              topology_sibling_cpumask(cpu));
725                 policy->shared_type = CPUFREQ_SHARED_TYPE_HW;
726                 pr_info_once("overriding BIOS provided _PSD data\n");
727         }
728 #endif
729
730         /* capability check */
731         if (perf->state_count <= 1) {
732                 pr_debug("No P-States\n");
733                 result = -ENODEV;
734                 goto err_unreg;
735         }
736
737         if (perf->control_register.space_id != perf->status_register.space_id) {
738                 result = -ENODEV;
739                 goto err_unreg;
740         }
741
742         switch (perf->control_register.space_id) {
743         case ACPI_ADR_SPACE_SYSTEM_IO:
744                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
745                     boot_cpu_data.x86 == 0xf) {
746                         pr_debug("AMD K8 systems must use native drivers.\n");
747                         result = -ENODEV;
748                         goto err_unreg;
749                 }
750                 pr_debug("SYSTEM IO addr space\n");
751                 data->cpu_feature = SYSTEM_IO_CAPABLE;
752                 data->cpu_freq_read = cpu_freq_read_io;
753                 data->cpu_freq_write = cpu_freq_write_io;
754                 break;
755         case ACPI_ADR_SPACE_FIXED_HARDWARE:
756                 pr_debug("HARDWARE addr space\n");
757                 if (check_est_cpu(cpu)) {
758                         data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
759                         data->cpu_freq_read = cpu_freq_read_intel;
760                         data->cpu_freq_write = cpu_freq_write_intel;
761                         break;
762                 }
763                 if (check_amd_hwpstate_cpu(cpu)) {
764                         data->cpu_feature = SYSTEM_AMD_MSR_CAPABLE;
765                         data->cpu_freq_read = cpu_freq_read_amd;
766                         data->cpu_freq_write = cpu_freq_write_amd;
767                         break;
768                 }
769                 result = -ENODEV;
770                 goto err_unreg;
771         default:
772                 pr_debug("Unknown addr space %d\n",
773                         (u32) (perf->control_register.space_id));
774                 result = -ENODEV;
775                 goto err_unreg;
776         }
777
778         freq_table = kzalloc(sizeof(*freq_table) *
779                     (perf->state_count+1), GFP_KERNEL);
780         if (!freq_table) {
781                 result = -ENOMEM;
782                 goto err_unreg;
783         }
784
785         /* detect transition latency */
786         policy->cpuinfo.transition_latency = 0;
787         for (i = 0; i < perf->state_count; i++) {
788                 if ((perf->states[i].transition_latency * 1000) >
789                     policy->cpuinfo.transition_latency)
790                         policy->cpuinfo.transition_latency =
791                             perf->states[i].transition_latency * 1000;
792         }
793
794         /* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
795         if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
796             policy->cpuinfo.transition_latency > 20 * 1000) {
797                 policy->cpuinfo.transition_latency = 20 * 1000;
798                 pr_info_once("P-state transition latency capped at 20 uS\n");
799         }
800
801         /* table init */
802         for (i = 0; i < perf->state_count; i++) {
803                 if (i > 0 && perf->states[i].core_frequency >=
804                     freq_table[valid_states-1].frequency / 1000)
805                         continue;
806
807                 freq_table[valid_states].driver_data = i;
808                 freq_table[valid_states].frequency =
809                     perf->states[i].core_frequency * 1000;
810                 valid_states++;
811         }
812         freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
813         perf->state = 0;
814
815         result = cpufreq_table_validate_and_show(policy, freq_table);
816         if (result)
817                 goto err_freqfree;
818
819         if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
820                 pr_warn(FW_WARN "P-state 0 is not max freq\n");
821
822         switch (perf->control_register.space_id) {
823         case ACPI_ADR_SPACE_SYSTEM_IO:
824                 /*
825                  * The core will not set policy->cur, because
826                  * cpufreq_driver->get is NULL, so we need to set it here.
827                  * However, we have to guess it, because the current speed is
828                  * unknown and not detectable via IO ports.
829                  */
830                 policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
831                 break;
832         case ACPI_ADR_SPACE_FIXED_HARDWARE:
833                 acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
834                 break;
835         default:
836                 break;
837         }
838
839         /* notify BIOS that we exist */
840         acpi_processor_notify_smm(THIS_MODULE);
841
842         pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
843         for (i = 0; i < perf->state_count; i++)
844                 pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
845                         (i == perf->state ? '*' : ' '), i,
846                         (u32) perf->states[i].core_frequency,
847                         (u32) perf->states[i].power,
848                         (u32) perf->states[i].transition_latency);
849
850         /*
851          * the first call to ->target() should result in us actually
852          * writing something to the appropriate registers.
853          */
854         data->resume = 1;
855
856         policy->fast_switch_possible = !acpi_pstate_strict &&
857                 !(policy_is_shared(policy) && policy->shared_type != CPUFREQ_SHARED_TYPE_ANY);
858
859         return result;
860
861 err_freqfree:
862         kfree(freq_table);
863 err_unreg:
864         acpi_processor_unregister_performance(cpu);
865 err_free_mask:
866         free_cpumask_var(data->freqdomain_cpus);
867 err_free:
868         kfree(data);
869         policy->driver_data = NULL;
870
871         return result;
872 }
873
874 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
875 {
876         struct acpi_cpufreq_data *data = policy->driver_data;
877
878         pr_debug("acpi_cpufreq_cpu_exit\n");
879
880         policy->fast_switch_possible = false;
881         policy->driver_data = NULL;
882         acpi_processor_unregister_performance(data->acpi_perf_cpu);
883         free_cpumask_var(data->freqdomain_cpus);
884         kfree(policy->freq_table);
885         kfree(data);
886
887         return 0;
888 }
889
890 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
891 {
892         struct acpi_cpufreq_data *data = policy->driver_data;
893
894         pr_debug("acpi_cpufreq_resume\n");
895
896         data->resume = 1;
897
898         return 0;
899 }
900
901 static struct freq_attr *acpi_cpufreq_attr[] = {
902         &cpufreq_freq_attr_scaling_available_freqs,
903         &freqdomain_cpus,
904 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
905         &cpb,
906 #endif
907         NULL,
908 };
909
910 static struct cpufreq_driver acpi_cpufreq_driver = {
911         .verify         = cpufreq_generic_frequency_table_verify,
912         .target_index   = acpi_cpufreq_target,
913         .fast_switch    = acpi_cpufreq_fast_switch,
914         .bios_limit     = acpi_processor_get_bios_limit,
915         .init           = acpi_cpufreq_cpu_init,
916         .exit           = acpi_cpufreq_cpu_exit,
917         .resume         = acpi_cpufreq_resume,
918         .name           = "acpi-cpufreq",
919         .attr           = acpi_cpufreq_attr,
920 };
921
922 static void __init acpi_cpufreq_boost_init(void)
923 {
924         if (boot_cpu_has(X86_FEATURE_CPB) || boot_cpu_has(X86_FEATURE_IDA)) {
925                 msrs = msrs_alloc();
926
927                 if (!msrs)
928                         return;
929
930                 acpi_cpufreq_driver.set_boost = set_boost;
931                 acpi_cpufreq_driver.boost_enabled = boost_state(0);
932
933                 cpu_notifier_register_begin();
934
935                 /* Force all MSRs to the same value */
936                 boost_set_msrs(acpi_cpufreq_driver.boost_enabled,
937                                cpu_online_mask);
938
939                 __register_cpu_notifier(&boost_nb);
940
941                 cpu_notifier_register_done();
942         }
943 }
944
945 static void acpi_cpufreq_boost_exit(void)
946 {
947         if (msrs) {
948                 unregister_cpu_notifier(&boost_nb);
949
950                 msrs_free(msrs);
951                 msrs = NULL;
952         }
953 }
954
955 static int __init acpi_cpufreq_init(void)
956 {
957         int ret;
958
959         if (acpi_disabled)
960                 return -ENODEV;
961
962         /* don't keep reloading if cpufreq_driver exists */
963         if (cpufreq_get_current_driver())
964                 return -EEXIST;
965
966         pr_debug("acpi_cpufreq_init\n");
967
968         ret = acpi_cpufreq_early_init();
969         if (ret)
970                 return ret;
971
972 #ifdef CONFIG_X86_ACPI_CPUFREQ_CPB
973         /* this is a sysfs file with a strange name and an even stranger
974          * semantic - per CPU instantiation, but system global effect.
975          * Lets enable it only on AMD CPUs for compatibility reasons and
976          * only if configured. This is considered legacy code, which
977          * will probably be removed at some point in the future.
978          */
979         if (!check_amd_hwpstate_cpu(0)) {
980                 struct freq_attr **attr;
981
982                 pr_debug("CPB unsupported, do not expose it\n");
983
984                 for (attr = acpi_cpufreq_attr; *attr; attr++)
985                         if (*attr == &cpb) {
986                                 *attr = NULL;
987                                 break;
988                         }
989         }
990 #endif
991         acpi_cpufreq_boost_init();
992
993         ret = cpufreq_register_driver(&acpi_cpufreq_driver);
994         if (ret) {
995                 free_acpi_perf_data();
996                 acpi_cpufreq_boost_exit();
997         }
998         return ret;
999 }
1000
1001 static void __exit acpi_cpufreq_exit(void)
1002 {
1003         pr_debug("acpi_cpufreq_exit\n");
1004
1005         acpi_cpufreq_boost_exit();
1006
1007         cpufreq_unregister_driver(&acpi_cpufreq_driver);
1008
1009         free_acpi_perf_data();
1010 }
1011
1012 module_param(acpi_pstate_strict, uint, 0644);
1013 MODULE_PARM_DESC(acpi_pstate_strict,
1014         "value 0 or non-zero. non-zero -> strict ACPI checks are "
1015         "performed during frequency changes.");
1016
1017 late_initcall(acpi_cpufreq_init);
1018 module_exit(acpi_cpufreq_exit);
1019
1020 static const struct x86_cpu_id acpi_cpufreq_ids[] = {
1021         X86_FEATURE_MATCH(X86_FEATURE_ACPI),
1022         X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
1023         {}
1024 };
1025 MODULE_DEVICE_TABLE(x86cpu, acpi_cpufreq_ids);
1026
1027 static const struct acpi_device_id processor_device_ids[] = {
1028         {ACPI_PROCESSOR_OBJECT_HID, },
1029         {ACPI_PROCESSOR_DEVICE_HID, },
1030         {},
1031 };
1032 MODULE_DEVICE_TABLE(acpi, processor_device_ids);
1033
1034 MODULE_ALIAS("acpi");